Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19#include <linux/integrity.h>
20#include <linux/ima.h>
21#include <linux/evm.h>
22#include <linux/fsnotify.h>
23#include <linux/mman.h>
24#include <linux/mount.h>
25#include <linux/personality.h>
26#include <net/flow.h>
27
28#define MAX_LSM_EVM_XATTR 2
29
30/* Boot-time LSM user choice */
31static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
32 CONFIG_DEFAULT_SECURITY;
33
34static struct security_operations *security_ops;
35static struct security_operations default_security_ops = {
36 .name = "default",
37};
38
39static inline int __init verify(struct security_operations *ops)
40{
41 /* verify the security_operations structure exists */
42 if (!ops)
43 return -EINVAL;
44 security_fixup_ops(ops);
45 return 0;
46}
47
48static void __init do_security_initcalls(void)
49{
50 initcall_t *call;
51 call = __security_initcall_start;
52 while (call < __security_initcall_end) {
53 (*call) ();
54 call++;
55 }
56}
57
58/**
59 * security_init - initializes the security framework
60 *
61 * This should be called early in the kernel initialization sequence.
62 */
63int __init security_init(void)
64{
65 printk(KERN_INFO "Security Framework initialized\n");
66
67 security_fixup_ops(&default_security_ops);
68 security_ops = &default_security_ops;
69 do_security_initcalls();
70
71 return 0;
72}
73
74void reset_security_ops(void)
75{
76 security_ops = &default_security_ops;
77}
78
79/* Save user chosen LSM */
80static int __init choose_lsm(char *str)
81{
82 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
83 return 1;
84}
85__setup("security=", choose_lsm);
86
87/**
88 * security_module_enable - Load given security module on boot ?
89 * @ops: a pointer to the struct security_operations that is to be checked.
90 *
91 * Each LSM must pass this method before registering its own operations
92 * to avoid security registration races. This method may also be used
93 * to check if your LSM is currently loaded during kernel initialization.
94 *
95 * Return true if:
96 * -The passed LSM is the one chosen by user at boot time,
97 * -or the passed LSM is configured as the default and the user did not
98 * choose an alternate LSM at boot time.
99 * Otherwise, return false.
100 */
101int __init security_module_enable(struct security_operations *ops)
102{
103 return !strcmp(ops->name, chosen_lsm);
104}
105
106/**
107 * register_security - registers a security framework with the kernel
108 * @ops: a pointer to the struct security_options that is to be registered
109 *
110 * This function allows a security module to register itself with the
111 * kernel security subsystem. Some rudimentary checking is done on the @ops
112 * value passed to this function. You'll need to check first if your LSM
113 * is allowed to register its @ops by calling security_module_enable(@ops).
114 *
115 * If there is already a security module registered with the kernel,
116 * an error will be returned. Otherwise %0 is returned on success.
117 */
118int __init register_security(struct security_operations *ops)
119{
120 if (verify(ops)) {
121 printk(KERN_DEBUG "%s could not verify "
122 "security_operations structure.\n", __func__);
123 return -EINVAL;
124 }
125
126 if (security_ops != &default_security_ops)
127 return -EAGAIN;
128
129 security_ops = ops;
130
131 return 0;
132}
133
134/* Security operations */
135
136int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
137{
138 return security_ops->ptrace_access_check(child, mode);
139}
140
141int security_ptrace_traceme(struct task_struct *parent)
142{
143 return security_ops->ptrace_traceme(parent);
144}
145
146int security_capget(struct task_struct *target,
147 kernel_cap_t *effective,
148 kernel_cap_t *inheritable,
149 kernel_cap_t *permitted)
150{
151 return security_ops->capget(target, effective, inheritable, permitted);
152}
153
154int security_capset(struct cred *new, const struct cred *old,
155 const kernel_cap_t *effective,
156 const kernel_cap_t *inheritable,
157 const kernel_cap_t *permitted)
158{
159 return security_ops->capset(new, old,
160 effective, inheritable, permitted);
161}
162
163int security_capable(const struct cred *cred, struct user_namespace *ns,
164 int cap)
165{
166 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
167}
168
169int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
170 int cap)
171{
172 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
173}
174
175int security_quotactl(int cmds, int type, int id, struct super_block *sb)
176{
177 return security_ops->quotactl(cmds, type, id, sb);
178}
179
180int security_quota_on(struct dentry *dentry)
181{
182 return security_ops->quota_on(dentry);
183}
184
185int security_syslog(int type)
186{
187 return security_ops->syslog(type);
188}
189
190int security_settime(const struct timespec *ts, const struct timezone *tz)
191{
192 return security_ops->settime(ts, tz);
193}
194
195int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
196{
197 return security_ops->vm_enough_memory(mm, pages);
198}
199
200int security_bprm_set_creds(struct linux_binprm *bprm)
201{
202 return security_ops->bprm_set_creds(bprm);
203}
204
205int security_bprm_check(struct linux_binprm *bprm)
206{
207 int ret;
208
209 ret = security_ops->bprm_check_security(bprm);
210 if (ret)
211 return ret;
212 return ima_bprm_check(bprm);
213}
214
215void security_bprm_committing_creds(struct linux_binprm *bprm)
216{
217 security_ops->bprm_committing_creds(bprm);
218}
219
220void security_bprm_committed_creds(struct linux_binprm *bprm)
221{
222 security_ops->bprm_committed_creds(bprm);
223}
224
225int security_bprm_secureexec(struct linux_binprm *bprm)
226{
227 return security_ops->bprm_secureexec(bprm);
228}
229
230int security_sb_alloc(struct super_block *sb)
231{
232 return security_ops->sb_alloc_security(sb);
233}
234
235void security_sb_free(struct super_block *sb)
236{
237 security_ops->sb_free_security(sb);
238}
239
240int security_sb_copy_data(char *orig, char *copy)
241{
242 return security_ops->sb_copy_data(orig, copy);
243}
244EXPORT_SYMBOL(security_sb_copy_data);
245
246int security_sb_remount(struct super_block *sb, void *data)
247{
248 return security_ops->sb_remount(sb, data);
249}
250
251int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
252{
253 return security_ops->sb_kern_mount(sb, flags, data);
254}
255
256int security_sb_show_options(struct seq_file *m, struct super_block *sb)
257{
258 return security_ops->sb_show_options(m, sb);
259}
260
261int security_sb_statfs(struct dentry *dentry)
262{
263 return security_ops->sb_statfs(dentry);
264}
265
266int security_sb_mount(char *dev_name, struct path *path,
267 char *type, unsigned long flags, void *data)
268{
269 return security_ops->sb_mount(dev_name, path, type, flags, data);
270}
271
272int security_sb_umount(struct vfsmount *mnt, int flags)
273{
274 return security_ops->sb_umount(mnt, flags);
275}
276
277int security_sb_pivotroot(struct path *old_path, struct path *new_path)
278{
279 return security_ops->sb_pivotroot(old_path, new_path);
280}
281
282int security_sb_set_mnt_opts(struct super_block *sb,
283 struct security_mnt_opts *opts)
284{
285 return security_ops->sb_set_mnt_opts(sb, opts);
286}
287EXPORT_SYMBOL(security_sb_set_mnt_opts);
288
289void security_sb_clone_mnt_opts(const struct super_block *oldsb,
290 struct super_block *newsb)
291{
292 security_ops->sb_clone_mnt_opts(oldsb, newsb);
293}
294EXPORT_SYMBOL(security_sb_clone_mnt_opts);
295
296int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
297{
298 return security_ops->sb_parse_opts_str(options, opts);
299}
300EXPORT_SYMBOL(security_sb_parse_opts_str);
301
302int security_inode_alloc(struct inode *inode)
303{
304 inode->i_security = NULL;
305 return security_ops->inode_alloc_security(inode);
306}
307
308void security_inode_free(struct inode *inode)
309{
310 integrity_inode_free(inode);
311 security_ops->inode_free_security(inode);
312}
313
314int security_inode_init_security(struct inode *inode, struct inode *dir,
315 const struct qstr *qstr,
316 const initxattrs initxattrs, void *fs_data)
317{
318 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
319 struct xattr *lsm_xattr, *evm_xattr, *xattr;
320 int ret;
321
322 if (unlikely(IS_PRIVATE(inode)))
323 return 0;
324
325 memset(new_xattrs, 0, sizeof new_xattrs);
326 if (!initxattrs)
327 return security_ops->inode_init_security(inode, dir, qstr,
328 NULL, NULL, NULL);
329 lsm_xattr = new_xattrs;
330 ret = security_ops->inode_init_security(inode, dir, qstr,
331 &lsm_xattr->name,
332 &lsm_xattr->value,
333 &lsm_xattr->value_len);
334 if (ret)
335 goto out;
336
337 evm_xattr = lsm_xattr + 1;
338 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
339 if (ret)
340 goto out;
341 ret = initxattrs(inode, new_xattrs, fs_data);
342out:
343 for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
344 kfree(xattr->name);
345 kfree(xattr->value);
346 }
347 return (ret == -EOPNOTSUPP) ? 0 : ret;
348}
349EXPORT_SYMBOL(security_inode_init_security);
350
351int security_old_inode_init_security(struct inode *inode, struct inode *dir,
352 const struct qstr *qstr, char **name,
353 void **value, size_t *len)
354{
355 if (unlikely(IS_PRIVATE(inode)))
356 return -EOPNOTSUPP;
357 return security_ops->inode_init_security(inode, dir, qstr, name, value,
358 len);
359}
360EXPORT_SYMBOL(security_old_inode_init_security);
361
362#ifdef CONFIG_SECURITY_PATH
363int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
364 unsigned int dev)
365{
366 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
367 return 0;
368 return security_ops->path_mknod(dir, dentry, mode, dev);
369}
370EXPORT_SYMBOL(security_path_mknod);
371
372int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
373{
374 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
375 return 0;
376 return security_ops->path_mkdir(dir, dentry, mode);
377}
378EXPORT_SYMBOL(security_path_mkdir);
379
380int security_path_rmdir(struct path *dir, struct dentry *dentry)
381{
382 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
383 return 0;
384 return security_ops->path_rmdir(dir, dentry);
385}
386
387int security_path_unlink(struct path *dir, struct dentry *dentry)
388{
389 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390 return 0;
391 return security_ops->path_unlink(dir, dentry);
392}
393EXPORT_SYMBOL(security_path_unlink);
394
395int security_path_symlink(struct path *dir, struct dentry *dentry,
396 const char *old_name)
397{
398 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399 return 0;
400 return security_ops->path_symlink(dir, dentry, old_name);
401}
402
403int security_path_link(struct dentry *old_dentry, struct path *new_dir,
404 struct dentry *new_dentry)
405{
406 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
407 return 0;
408 return security_ops->path_link(old_dentry, new_dir, new_dentry);
409}
410
411int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
412 struct path *new_dir, struct dentry *new_dentry)
413{
414 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
415 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
416 return 0;
417 return security_ops->path_rename(old_dir, old_dentry, new_dir,
418 new_dentry);
419}
420EXPORT_SYMBOL(security_path_rename);
421
422int security_path_truncate(struct path *path)
423{
424 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
425 return 0;
426 return security_ops->path_truncate(path);
427}
428
429int security_path_chmod(struct path *path, umode_t mode)
430{
431 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
432 return 0;
433 return security_ops->path_chmod(path, mode);
434}
435
436int security_path_chown(struct path *path, uid_t uid, gid_t gid)
437{
438 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
439 return 0;
440 return security_ops->path_chown(path, uid, gid);
441}
442
443int security_path_chroot(struct path *path)
444{
445 return security_ops->path_chroot(path);
446}
447#endif
448
449int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
450{
451 if (unlikely(IS_PRIVATE(dir)))
452 return 0;
453 return security_ops->inode_create(dir, dentry, mode);
454}
455EXPORT_SYMBOL_GPL(security_inode_create);
456
457int security_inode_link(struct dentry *old_dentry, struct inode *dir,
458 struct dentry *new_dentry)
459{
460 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
461 return 0;
462 return security_ops->inode_link(old_dentry, dir, new_dentry);
463}
464
465int security_inode_unlink(struct inode *dir, struct dentry *dentry)
466{
467 if (unlikely(IS_PRIVATE(dentry->d_inode)))
468 return 0;
469 return security_ops->inode_unlink(dir, dentry);
470}
471
472int security_inode_symlink(struct inode *dir, struct dentry *dentry,
473 const char *old_name)
474{
475 if (unlikely(IS_PRIVATE(dir)))
476 return 0;
477 return security_ops->inode_symlink(dir, dentry, old_name);
478}
479
480int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
481{
482 if (unlikely(IS_PRIVATE(dir)))
483 return 0;
484 return security_ops->inode_mkdir(dir, dentry, mode);
485}
486EXPORT_SYMBOL_GPL(security_inode_mkdir);
487
488int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
489{
490 if (unlikely(IS_PRIVATE(dentry->d_inode)))
491 return 0;
492 return security_ops->inode_rmdir(dir, dentry);
493}
494
495int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
496{
497 if (unlikely(IS_PRIVATE(dir)))
498 return 0;
499 return security_ops->inode_mknod(dir, dentry, mode, dev);
500}
501
502int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
503 struct inode *new_dir, struct dentry *new_dentry)
504{
505 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
506 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
507 return 0;
508 return security_ops->inode_rename(old_dir, old_dentry,
509 new_dir, new_dentry);
510}
511
512int security_inode_readlink(struct dentry *dentry)
513{
514 if (unlikely(IS_PRIVATE(dentry->d_inode)))
515 return 0;
516 return security_ops->inode_readlink(dentry);
517}
518
519int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
520{
521 if (unlikely(IS_PRIVATE(dentry->d_inode)))
522 return 0;
523 return security_ops->inode_follow_link(dentry, nd);
524}
525
526int security_inode_permission(struct inode *inode, int mask)
527{
528 if (unlikely(IS_PRIVATE(inode)))
529 return 0;
530 return security_ops->inode_permission(inode, mask);
531}
532
533int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
534{
535 int ret;
536
537 if (unlikely(IS_PRIVATE(dentry->d_inode)))
538 return 0;
539 ret = security_ops->inode_setattr(dentry, attr);
540 if (ret)
541 return ret;
542 return evm_inode_setattr(dentry, attr);
543}
544EXPORT_SYMBOL_GPL(security_inode_setattr);
545
546int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
547{
548 if (unlikely(IS_PRIVATE(dentry->d_inode)))
549 return 0;
550 return security_ops->inode_getattr(mnt, dentry);
551}
552
553int security_inode_setxattr(struct dentry *dentry, const char *name,
554 const void *value, size_t size, int flags)
555{
556 int ret;
557
558 if (unlikely(IS_PRIVATE(dentry->d_inode)))
559 return 0;
560 ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
561 if (ret)
562 return ret;
563 return evm_inode_setxattr(dentry, name, value, size);
564}
565
566void security_inode_post_setxattr(struct dentry *dentry, const char *name,
567 const void *value, size_t size, int flags)
568{
569 if (unlikely(IS_PRIVATE(dentry->d_inode)))
570 return;
571 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
572 evm_inode_post_setxattr(dentry, name, value, size);
573}
574
575int security_inode_getxattr(struct dentry *dentry, const char *name)
576{
577 if (unlikely(IS_PRIVATE(dentry->d_inode)))
578 return 0;
579 return security_ops->inode_getxattr(dentry, name);
580}
581
582int security_inode_listxattr(struct dentry *dentry)
583{
584 if (unlikely(IS_PRIVATE(dentry->d_inode)))
585 return 0;
586 return security_ops->inode_listxattr(dentry);
587}
588
589int security_inode_removexattr(struct dentry *dentry, const char *name)
590{
591 int ret;
592
593 if (unlikely(IS_PRIVATE(dentry->d_inode)))
594 return 0;
595 ret = security_ops->inode_removexattr(dentry, name);
596 if (ret)
597 return ret;
598 return evm_inode_removexattr(dentry, name);
599}
600
601int security_inode_need_killpriv(struct dentry *dentry)
602{
603 return security_ops->inode_need_killpriv(dentry);
604}
605
606int security_inode_killpriv(struct dentry *dentry)
607{
608 return security_ops->inode_killpriv(dentry);
609}
610
611int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
612{
613 if (unlikely(IS_PRIVATE(inode)))
614 return -EOPNOTSUPP;
615 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
616}
617
618int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
619{
620 if (unlikely(IS_PRIVATE(inode)))
621 return -EOPNOTSUPP;
622 return security_ops->inode_setsecurity(inode, name, value, size, flags);
623}
624
625int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
626{
627 if (unlikely(IS_PRIVATE(inode)))
628 return 0;
629 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
630}
631
632void security_inode_getsecid(const struct inode *inode, u32 *secid)
633{
634 security_ops->inode_getsecid(inode, secid);
635}
636
637int security_file_permission(struct file *file, int mask)
638{
639 int ret;
640
641 ret = security_ops->file_permission(file, mask);
642 if (ret)
643 return ret;
644
645 return fsnotify_perm(file, mask);
646}
647
648int security_file_alloc(struct file *file)
649{
650 return security_ops->file_alloc_security(file);
651}
652
653void security_file_free(struct file *file)
654{
655 security_ops->file_free_security(file);
656}
657
658int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
659{
660 return security_ops->file_ioctl(file, cmd, arg);
661}
662
663static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
664{
665 /*
666 * Does we have PROT_READ and does the application expect
667 * it to imply PROT_EXEC? If not, nothing to talk about...
668 */
669 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
670 return prot;
671 if (!(current->personality & READ_IMPLIES_EXEC))
672 return prot;
673 /*
674 * if that's an anonymous mapping, let it.
675 */
676 if (!file)
677 return prot | PROT_EXEC;
678 /*
679 * ditto if it's not on noexec mount, except that on !MMU we need
680 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
681 */
682 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
683#ifndef CONFIG_MMU
684 unsigned long caps = 0;
685 struct address_space *mapping = file->f_mapping;
686 if (mapping && mapping->backing_dev_info)
687 caps = mapping->backing_dev_info->capabilities;
688 if (!(caps & BDI_CAP_EXEC_MAP))
689 return prot;
690#endif
691 return prot | PROT_EXEC;
692 }
693 /* anything on noexec mount won't get PROT_EXEC */
694 return prot;
695}
696
697int security_mmap_file(struct file *file, unsigned long prot,
698 unsigned long flags)
699{
700 int ret;
701 ret = security_ops->mmap_file(file, prot,
702 mmap_prot(file, prot), flags);
703 if (ret)
704 return ret;
705 return ima_file_mmap(file, prot);
706}
707
708int security_mmap_addr(unsigned long addr)
709{
710 return security_ops->mmap_addr(addr);
711}
712
713int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
714 unsigned long prot)
715{
716 return security_ops->file_mprotect(vma, reqprot, prot);
717}
718
719int security_file_lock(struct file *file, unsigned int cmd)
720{
721 return security_ops->file_lock(file, cmd);
722}
723
724int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
725{
726 return security_ops->file_fcntl(file, cmd, arg);
727}
728
729int security_file_set_fowner(struct file *file)
730{
731 return security_ops->file_set_fowner(file);
732}
733
734int security_file_send_sigiotask(struct task_struct *tsk,
735 struct fown_struct *fown, int sig)
736{
737 return security_ops->file_send_sigiotask(tsk, fown, sig);
738}
739
740int security_file_receive(struct file *file)
741{
742 return security_ops->file_receive(file);
743}
744
745int security_file_open(struct file *file, const struct cred *cred)
746{
747 int ret;
748
749 ret = security_ops->file_open(file, cred);
750 if (ret)
751 return ret;
752
753 return fsnotify_perm(file, MAY_OPEN);
754}
755
756int security_task_create(unsigned long clone_flags)
757{
758 return security_ops->task_create(clone_flags);
759}
760
761void security_task_free(struct task_struct *task)
762{
763 security_ops->task_free(task);
764}
765
766int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
767{
768 return security_ops->cred_alloc_blank(cred, gfp);
769}
770
771void security_cred_free(struct cred *cred)
772{
773 security_ops->cred_free(cred);
774}
775
776int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
777{
778 return security_ops->cred_prepare(new, old, gfp);
779}
780
781void security_transfer_creds(struct cred *new, const struct cred *old)
782{
783 security_ops->cred_transfer(new, old);
784}
785
786int security_kernel_act_as(struct cred *new, u32 secid)
787{
788 return security_ops->kernel_act_as(new, secid);
789}
790
791int security_kernel_create_files_as(struct cred *new, struct inode *inode)
792{
793 return security_ops->kernel_create_files_as(new, inode);
794}
795
796int security_kernel_module_request(char *kmod_name)
797{
798 return security_ops->kernel_module_request(kmod_name);
799}
800
801int security_task_fix_setuid(struct cred *new, const struct cred *old,
802 int flags)
803{
804 return security_ops->task_fix_setuid(new, old, flags);
805}
806
807int security_task_setpgid(struct task_struct *p, pid_t pgid)
808{
809 return security_ops->task_setpgid(p, pgid);
810}
811
812int security_task_getpgid(struct task_struct *p)
813{
814 return security_ops->task_getpgid(p);
815}
816
817int security_task_getsid(struct task_struct *p)
818{
819 return security_ops->task_getsid(p);
820}
821
822void security_task_getsecid(struct task_struct *p, u32 *secid)
823{
824 security_ops->task_getsecid(p, secid);
825}
826EXPORT_SYMBOL(security_task_getsecid);
827
828int security_task_setnice(struct task_struct *p, int nice)
829{
830 return security_ops->task_setnice(p, nice);
831}
832
833int security_task_setioprio(struct task_struct *p, int ioprio)
834{
835 return security_ops->task_setioprio(p, ioprio);
836}
837
838int security_task_getioprio(struct task_struct *p)
839{
840 return security_ops->task_getioprio(p);
841}
842
843int security_task_setrlimit(struct task_struct *p, unsigned int resource,
844 struct rlimit *new_rlim)
845{
846 return security_ops->task_setrlimit(p, resource, new_rlim);
847}
848
849int security_task_setscheduler(struct task_struct *p)
850{
851 return security_ops->task_setscheduler(p);
852}
853
854int security_task_getscheduler(struct task_struct *p)
855{
856 return security_ops->task_getscheduler(p);
857}
858
859int security_task_movememory(struct task_struct *p)
860{
861 return security_ops->task_movememory(p);
862}
863
864int security_task_kill(struct task_struct *p, struct siginfo *info,
865 int sig, u32 secid)
866{
867 return security_ops->task_kill(p, info, sig, secid);
868}
869
870int security_task_wait(struct task_struct *p)
871{
872 return security_ops->task_wait(p);
873}
874
875int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
876 unsigned long arg4, unsigned long arg5)
877{
878 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
879}
880
881void security_task_to_inode(struct task_struct *p, struct inode *inode)
882{
883 security_ops->task_to_inode(p, inode);
884}
885
886int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
887{
888 return security_ops->ipc_permission(ipcp, flag);
889}
890
891void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
892{
893 security_ops->ipc_getsecid(ipcp, secid);
894}
895
896int security_msg_msg_alloc(struct msg_msg *msg)
897{
898 return security_ops->msg_msg_alloc_security(msg);
899}
900
901void security_msg_msg_free(struct msg_msg *msg)
902{
903 security_ops->msg_msg_free_security(msg);
904}
905
906int security_msg_queue_alloc(struct msg_queue *msq)
907{
908 return security_ops->msg_queue_alloc_security(msq);
909}
910
911void security_msg_queue_free(struct msg_queue *msq)
912{
913 security_ops->msg_queue_free_security(msq);
914}
915
916int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
917{
918 return security_ops->msg_queue_associate(msq, msqflg);
919}
920
921int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
922{
923 return security_ops->msg_queue_msgctl(msq, cmd);
924}
925
926int security_msg_queue_msgsnd(struct msg_queue *msq,
927 struct msg_msg *msg, int msqflg)
928{
929 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
930}
931
932int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
933 struct task_struct *target, long type, int mode)
934{
935 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
936}
937
938int security_shm_alloc(struct shmid_kernel *shp)
939{
940 return security_ops->shm_alloc_security(shp);
941}
942
943void security_shm_free(struct shmid_kernel *shp)
944{
945 security_ops->shm_free_security(shp);
946}
947
948int security_shm_associate(struct shmid_kernel *shp, int shmflg)
949{
950 return security_ops->shm_associate(shp, shmflg);
951}
952
953int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
954{
955 return security_ops->shm_shmctl(shp, cmd);
956}
957
958int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
959{
960 return security_ops->shm_shmat(shp, shmaddr, shmflg);
961}
962
963int security_sem_alloc(struct sem_array *sma)
964{
965 return security_ops->sem_alloc_security(sma);
966}
967
968void security_sem_free(struct sem_array *sma)
969{
970 security_ops->sem_free_security(sma);
971}
972
973int security_sem_associate(struct sem_array *sma, int semflg)
974{
975 return security_ops->sem_associate(sma, semflg);
976}
977
978int security_sem_semctl(struct sem_array *sma, int cmd)
979{
980 return security_ops->sem_semctl(sma, cmd);
981}
982
983int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
984 unsigned nsops, int alter)
985{
986 return security_ops->sem_semop(sma, sops, nsops, alter);
987}
988
989void security_d_instantiate(struct dentry *dentry, struct inode *inode)
990{
991 if (unlikely(inode && IS_PRIVATE(inode)))
992 return;
993 security_ops->d_instantiate(dentry, inode);
994}
995EXPORT_SYMBOL(security_d_instantiate);
996
997int security_getprocattr(struct task_struct *p, char *name, char **value)
998{
999 return security_ops->getprocattr(p, name, value);
1000}
1001
1002int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1003{
1004 return security_ops->setprocattr(p, name, value, size);
1005}
1006
1007int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1008{
1009 return security_ops->netlink_send(sk, skb);
1010}
1011
1012int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1013{
1014 return security_ops->secid_to_secctx(secid, secdata, seclen);
1015}
1016EXPORT_SYMBOL(security_secid_to_secctx);
1017
1018int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1019{
1020 return security_ops->secctx_to_secid(secdata, seclen, secid);
1021}
1022EXPORT_SYMBOL(security_secctx_to_secid);
1023
1024void security_release_secctx(char *secdata, u32 seclen)
1025{
1026 security_ops->release_secctx(secdata, seclen);
1027}
1028EXPORT_SYMBOL(security_release_secctx);
1029
1030int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1031{
1032 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1033}
1034EXPORT_SYMBOL(security_inode_notifysecctx);
1035
1036int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1037{
1038 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1039}
1040EXPORT_SYMBOL(security_inode_setsecctx);
1041
1042int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1043{
1044 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1045}
1046EXPORT_SYMBOL(security_inode_getsecctx);
1047
1048#ifdef CONFIG_SECURITY_NETWORK
1049
1050int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1051{
1052 return security_ops->unix_stream_connect(sock, other, newsk);
1053}
1054EXPORT_SYMBOL(security_unix_stream_connect);
1055
1056int security_unix_may_send(struct socket *sock, struct socket *other)
1057{
1058 return security_ops->unix_may_send(sock, other);
1059}
1060EXPORT_SYMBOL(security_unix_may_send);
1061
1062int security_socket_create(int family, int type, int protocol, int kern)
1063{
1064 return security_ops->socket_create(family, type, protocol, kern);
1065}
1066
1067int security_socket_post_create(struct socket *sock, int family,
1068 int type, int protocol, int kern)
1069{
1070 return security_ops->socket_post_create(sock, family, type,
1071 protocol, kern);
1072}
1073
1074int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1075{
1076 return security_ops->socket_bind(sock, address, addrlen);
1077}
1078
1079int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1080{
1081 return security_ops->socket_connect(sock, address, addrlen);
1082}
1083
1084int security_socket_listen(struct socket *sock, int backlog)
1085{
1086 return security_ops->socket_listen(sock, backlog);
1087}
1088
1089int security_socket_accept(struct socket *sock, struct socket *newsock)
1090{
1091 return security_ops->socket_accept(sock, newsock);
1092}
1093
1094int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1095{
1096 return security_ops->socket_sendmsg(sock, msg, size);
1097}
1098
1099int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1100 int size, int flags)
1101{
1102 return security_ops->socket_recvmsg(sock, msg, size, flags);
1103}
1104
1105int security_socket_getsockname(struct socket *sock)
1106{
1107 return security_ops->socket_getsockname(sock);
1108}
1109
1110int security_socket_getpeername(struct socket *sock)
1111{
1112 return security_ops->socket_getpeername(sock);
1113}
1114
1115int security_socket_getsockopt(struct socket *sock, int level, int optname)
1116{
1117 return security_ops->socket_getsockopt(sock, level, optname);
1118}
1119
1120int security_socket_setsockopt(struct socket *sock, int level, int optname)
1121{
1122 return security_ops->socket_setsockopt(sock, level, optname);
1123}
1124
1125int security_socket_shutdown(struct socket *sock, int how)
1126{
1127 return security_ops->socket_shutdown(sock, how);
1128}
1129
1130int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1131{
1132 return security_ops->socket_sock_rcv_skb(sk, skb);
1133}
1134EXPORT_SYMBOL(security_sock_rcv_skb);
1135
1136int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1137 int __user *optlen, unsigned len)
1138{
1139 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1140}
1141
1142int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1143{
1144 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1145}
1146EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1147
1148int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1149{
1150 return security_ops->sk_alloc_security(sk, family, priority);
1151}
1152
1153void security_sk_free(struct sock *sk)
1154{
1155 security_ops->sk_free_security(sk);
1156}
1157
1158void security_sk_clone(const struct sock *sk, struct sock *newsk)
1159{
1160 security_ops->sk_clone_security(sk, newsk);
1161}
1162EXPORT_SYMBOL(security_sk_clone);
1163
1164void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1165{
1166 security_ops->sk_getsecid(sk, &fl->flowi_secid);
1167}
1168EXPORT_SYMBOL(security_sk_classify_flow);
1169
1170void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1171{
1172 security_ops->req_classify_flow(req, fl);
1173}
1174EXPORT_SYMBOL(security_req_classify_flow);
1175
1176void security_sock_graft(struct sock *sk, struct socket *parent)
1177{
1178 security_ops->sock_graft(sk, parent);
1179}
1180EXPORT_SYMBOL(security_sock_graft);
1181
1182int security_inet_conn_request(struct sock *sk,
1183 struct sk_buff *skb, struct request_sock *req)
1184{
1185 return security_ops->inet_conn_request(sk, skb, req);
1186}
1187EXPORT_SYMBOL(security_inet_conn_request);
1188
1189void security_inet_csk_clone(struct sock *newsk,
1190 const struct request_sock *req)
1191{
1192 security_ops->inet_csk_clone(newsk, req);
1193}
1194
1195void security_inet_conn_established(struct sock *sk,
1196 struct sk_buff *skb)
1197{
1198 security_ops->inet_conn_established(sk, skb);
1199}
1200
1201int security_secmark_relabel_packet(u32 secid)
1202{
1203 return security_ops->secmark_relabel_packet(secid);
1204}
1205EXPORT_SYMBOL(security_secmark_relabel_packet);
1206
1207void security_secmark_refcount_inc(void)
1208{
1209 security_ops->secmark_refcount_inc();
1210}
1211EXPORT_SYMBOL(security_secmark_refcount_inc);
1212
1213void security_secmark_refcount_dec(void)
1214{
1215 security_ops->secmark_refcount_dec();
1216}
1217EXPORT_SYMBOL(security_secmark_refcount_dec);
1218
1219int security_tun_dev_create(void)
1220{
1221 return security_ops->tun_dev_create();
1222}
1223EXPORT_SYMBOL(security_tun_dev_create);
1224
1225void security_tun_dev_post_create(struct sock *sk)
1226{
1227 return security_ops->tun_dev_post_create(sk);
1228}
1229EXPORT_SYMBOL(security_tun_dev_post_create);
1230
1231int security_tun_dev_attach(struct sock *sk)
1232{
1233 return security_ops->tun_dev_attach(sk);
1234}
1235EXPORT_SYMBOL(security_tun_dev_attach);
1236
1237#endif /* CONFIG_SECURITY_NETWORK */
1238
1239#ifdef CONFIG_SECURITY_NETWORK_XFRM
1240
1241int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1242{
1243 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1244}
1245EXPORT_SYMBOL(security_xfrm_policy_alloc);
1246
1247int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1248 struct xfrm_sec_ctx **new_ctxp)
1249{
1250 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1251}
1252
1253void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1254{
1255 security_ops->xfrm_policy_free_security(ctx);
1256}
1257EXPORT_SYMBOL(security_xfrm_policy_free);
1258
1259int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1260{
1261 return security_ops->xfrm_policy_delete_security(ctx);
1262}
1263
1264int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1265{
1266 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1267}
1268EXPORT_SYMBOL(security_xfrm_state_alloc);
1269
1270int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1271 struct xfrm_sec_ctx *polsec, u32 secid)
1272{
1273 if (!polsec)
1274 return 0;
1275 /*
1276 * We want the context to be taken from secid which is usually
1277 * from the sock.
1278 */
1279 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1280}
1281
1282int security_xfrm_state_delete(struct xfrm_state *x)
1283{
1284 return security_ops->xfrm_state_delete_security(x);
1285}
1286EXPORT_SYMBOL(security_xfrm_state_delete);
1287
1288void security_xfrm_state_free(struct xfrm_state *x)
1289{
1290 security_ops->xfrm_state_free_security(x);
1291}
1292
1293int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1294{
1295 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1296}
1297
1298int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1299 struct xfrm_policy *xp,
1300 const struct flowi *fl)
1301{
1302 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1303}
1304
1305int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1306{
1307 return security_ops->xfrm_decode_session(skb, secid, 1);
1308}
1309
1310void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1311{
1312 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1313
1314 BUG_ON(rc);
1315}
1316EXPORT_SYMBOL(security_skb_classify_flow);
1317
1318#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1319
1320#ifdef CONFIG_KEYS
1321
1322int security_key_alloc(struct key *key, const struct cred *cred,
1323 unsigned long flags)
1324{
1325 return security_ops->key_alloc(key, cred, flags);
1326}
1327
1328void security_key_free(struct key *key)
1329{
1330 security_ops->key_free(key);
1331}
1332
1333int security_key_permission(key_ref_t key_ref,
1334 const struct cred *cred, key_perm_t perm)
1335{
1336 return security_ops->key_permission(key_ref, cred, perm);
1337}
1338
1339int security_key_getsecurity(struct key *key, char **_buffer)
1340{
1341 return security_ops->key_getsecurity(key, _buffer);
1342}
1343
1344#endif /* CONFIG_KEYS */
1345
1346#ifdef CONFIG_AUDIT
1347
1348int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1349{
1350 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1351}
1352
1353int security_audit_rule_known(struct audit_krule *krule)
1354{
1355 return security_ops->audit_rule_known(krule);
1356}
1357
1358void security_audit_rule_free(void *lsmrule)
1359{
1360 security_ops->audit_rule_free(lsmrule);
1361}
1362
1363int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1364 struct audit_context *actx)
1365{
1366 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1367}
1368
1369#endif /* CONFIG_AUDIT */