at v3.5-rc2 1369 lines 35 kB view raw
1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19#include <linux/integrity.h> 20#include <linux/ima.h> 21#include <linux/evm.h> 22#include <linux/fsnotify.h> 23#include <linux/mman.h> 24#include <linux/mount.h> 25#include <linux/personality.h> 26#include <net/flow.h> 27 28#define MAX_LSM_EVM_XATTR 2 29 30/* Boot-time LSM user choice */ 31static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 32 CONFIG_DEFAULT_SECURITY; 33 34static struct security_operations *security_ops; 35static struct security_operations default_security_ops = { 36 .name = "default", 37}; 38 39static inline int __init verify(struct security_operations *ops) 40{ 41 /* verify the security_operations structure exists */ 42 if (!ops) 43 return -EINVAL; 44 security_fixup_ops(ops); 45 return 0; 46} 47 48static void __init do_security_initcalls(void) 49{ 50 initcall_t *call; 51 call = __security_initcall_start; 52 while (call < __security_initcall_end) { 53 (*call) (); 54 call++; 55 } 56} 57 58/** 59 * security_init - initializes the security framework 60 * 61 * This should be called early in the kernel initialization sequence. 62 */ 63int __init security_init(void) 64{ 65 printk(KERN_INFO "Security Framework initialized\n"); 66 67 security_fixup_ops(&default_security_ops); 68 security_ops = &default_security_ops; 69 do_security_initcalls(); 70 71 return 0; 72} 73 74void reset_security_ops(void) 75{ 76 security_ops = &default_security_ops; 77} 78 79/* Save user chosen LSM */ 80static int __init choose_lsm(char *str) 81{ 82 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 83 return 1; 84} 85__setup("security=", choose_lsm); 86 87/** 88 * security_module_enable - Load given security module on boot ? 89 * @ops: a pointer to the struct security_operations that is to be checked. 90 * 91 * Each LSM must pass this method before registering its own operations 92 * to avoid security registration races. This method may also be used 93 * to check if your LSM is currently loaded during kernel initialization. 94 * 95 * Return true if: 96 * -The passed LSM is the one chosen by user at boot time, 97 * -or the passed LSM is configured as the default and the user did not 98 * choose an alternate LSM at boot time. 99 * Otherwise, return false. 100 */ 101int __init security_module_enable(struct security_operations *ops) 102{ 103 return !strcmp(ops->name, chosen_lsm); 104} 105 106/** 107 * register_security - registers a security framework with the kernel 108 * @ops: a pointer to the struct security_options that is to be registered 109 * 110 * This function allows a security module to register itself with the 111 * kernel security subsystem. Some rudimentary checking is done on the @ops 112 * value passed to this function. You'll need to check first if your LSM 113 * is allowed to register its @ops by calling security_module_enable(@ops). 114 * 115 * If there is already a security module registered with the kernel, 116 * an error will be returned. Otherwise %0 is returned on success. 117 */ 118int __init register_security(struct security_operations *ops) 119{ 120 if (verify(ops)) { 121 printk(KERN_DEBUG "%s could not verify " 122 "security_operations structure.\n", __func__); 123 return -EINVAL; 124 } 125 126 if (security_ops != &default_security_ops) 127 return -EAGAIN; 128 129 security_ops = ops; 130 131 return 0; 132} 133 134/* Security operations */ 135 136int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 137{ 138 return security_ops->ptrace_access_check(child, mode); 139} 140 141int security_ptrace_traceme(struct task_struct *parent) 142{ 143 return security_ops->ptrace_traceme(parent); 144} 145 146int security_capget(struct task_struct *target, 147 kernel_cap_t *effective, 148 kernel_cap_t *inheritable, 149 kernel_cap_t *permitted) 150{ 151 return security_ops->capget(target, effective, inheritable, permitted); 152} 153 154int security_capset(struct cred *new, const struct cred *old, 155 const kernel_cap_t *effective, 156 const kernel_cap_t *inheritable, 157 const kernel_cap_t *permitted) 158{ 159 return security_ops->capset(new, old, 160 effective, inheritable, permitted); 161} 162 163int security_capable(const struct cred *cred, struct user_namespace *ns, 164 int cap) 165{ 166 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT); 167} 168 169int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 170 int cap) 171{ 172 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 173} 174 175int security_quotactl(int cmds, int type, int id, struct super_block *sb) 176{ 177 return security_ops->quotactl(cmds, type, id, sb); 178} 179 180int security_quota_on(struct dentry *dentry) 181{ 182 return security_ops->quota_on(dentry); 183} 184 185int security_syslog(int type) 186{ 187 return security_ops->syslog(type); 188} 189 190int security_settime(const struct timespec *ts, const struct timezone *tz) 191{ 192 return security_ops->settime(ts, tz); 193} 194 195int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 196{ 197 return security_ops->vm_enough_memory(mm, pages); 198} 199 200int security_bprm_set_creds(struct linux_binprm *bprm) 201{ 202 return security_ops->bprm_set_creds(bprm); 203} 204 205int security_bprm_check(struct linux_binprm *bprm) 206{ 207 int ret; 208 209 ret = security_ops->bprm_check_security(bprm); 210 if (ret) 211 return ret; 212 return ima_bprm_check(bprm); 213} 214 215void security_bprm_committing_creds(struct linux_binprm *bprm) 216{ 217 security_ops->bprm_committing_creds(bprm); 218} 219 220void security_bprm_committed_creds(struct linux_binprm *bprm) 221{ 222 security_ops->bprm_committed_creds(bprm); 223} 224 225int security_bprm_secureexec(struct linux_binprm *bprm) 226{ 227 return security_ops->bprm_secureexec(bprm); 228} 229 230int security_sb_alloc(struct super_block *sb) 231{ 232 return security_ops->sb_alloc_security(sb); 233} 234 235void security_sb_free(struct super_block *sb) 236{ 237 security_ops->sb_free_security(sb); 238} 239 240int security_sb_copy_data(char *orig, char *copy) 241{ 242 return security_ops->sb_copy_data(orig, copy); 243} 244EXPORT_SYMBOL(security_sb_copy_data); 245 246int security_sb_remount(struct super_block *sb, void *data) 247{ 248 return security_ops->sb_remount(sb, data); 249} 250 251int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 252{ 253 return security_ops->sb_kern_mount(sb, flags, data); 254} 255 256int security_sb_show_options(struct seq_file *m, struct super_block *sb) 257{ 258 return security_ops->sb_show_options(m, sb); 259} 260 261int security_sb_statfs(struct dentry *dentry) 262{ 263 return security_ops->sb_statfs(dentry); 264} 265 266int security_sb_mount(char *dev_name, struct path *path, 267 char *type, unsigned long flags, void *data) 268{ 269 return security_ops->sb_mount(dev_name, path, type, flags, data); 270} 271 272int security_sb_umount(struct vfsmount *mnt, int flags) 273{ 274 return security_ops->sb_umount(mnt, flags); 275} 276 277int security_sb_pivotroot(struct path *old_path, struct path *new_path) 278{ 279 return security_ops->sb_pivotroot(old_path, new_path); 280} 281 282int security_sb_set_mnt_opts(struct super_block *sb, 283 struct security_mnt_opts *opts) 284{ 285 return security_ops->sb_set_mnt_opts(sb, opts); 286} 287EXPORT_SYMBOL(security_sb_set_mnt_opts); 288 289void security_sb_clone_mnt_opts(const struct super_block *oldsb, 290 struct super_block *newsb) 291{ 292 security_ops->sb_clone_mnt_opts(oldsb, newsb); 293} 294EXPORT_SYMBOL(security_sb_clone_mnt_opts); 295 296int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 297{ 298 return security_ops->sb_parse_opts_str(options, opts); 299} 300EXPORT_SYMBOL(security_sb_parse_opts_str); 301 302int security_inode_alloc(struct inode *inode) 303{ 304 inode->i_security = NULL; 305 return security_ops->inode_alloc_security(inode); 306} 307 308void security_inode_free(struct inode *inode) 309{ 310 integrity_inode_free(inode); 311 security_ops->inode_free_security(inode); 312} 313 314int security_inode_init_security(struct inode *inode, struct inode *dir, 315 const struct qstr *qstr, 316 const initxattrs initxattrs, void *fs_data) 317{ 318 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 319 struct xattr *lsm_xattr, *evm_xattr, *xattr; 320 int ret; 321 322 if (unlikely(IS_PRIVATE(inode))) 323 return 0; 324 325 memset(new_xattrs, 0, sizeof new_xattrs); 326 if (!initxattrs) 327 return security_ops->inode_init_security(inode, dir, qstr, 328 NULL, NULL, NULL); 329 lsm_xattr = new_xattrs; 330 ret = security_ops->inode_init_security(inode, dir, qstr, 331 &lsm_xattr->name, 332 &lsm_xattr->value, 333 &lsm_xattr->value_len); 334 if (ret) 335 goto out; 336 337 evm_xattr = lsm_xattr + 1; 338 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 339 if (ret) 340 goto out; 341 ret = initxattrs(inode, new_xattrs, fs_data); 342out: 343 for (xattr = new_xattrs; xattr->name != NULL; xattr++) { 344 kfree(xattr->name); 345 kfree(xattr->value); 346 } 347 return (ret == -EOPNOTSUPP) ? 0 : ret; 348} 349EXPORT_SYMBOL(security_inode_init_security); 350 351int security_old_inode_init_security(struct inode *inode, struct inode *dir, 352 const struct qstr *qstr, char **name, 353 void **value, size_t *len) 354{ 355 if (unlikely(IS_PRIVATE(inode))) 356 return -EOPNOTSUPP; 357 return security_ops->inode_init_security(inode, dir, qstr, name, value, 358 len); 359} 360EXPORT_SYMBOL(security_old_inode_init_security); 361 362#ifdef CONFIG_SECURITY_PATH 363int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 364 unsigned int dev) 365{ 366 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 367 return 0; 368 return security_ops->path_mknod(dir, dentry, mode, dev); 369} 370EXPORT_SYMBOL(security_path_mknod); 371 372int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode) 373{ 374 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 375 return 0; 376 return security_ops->path_mkdir(dir, dentry, mode); 377} 378EXPORT_SYMBOL(security_path_mkdir); 379 380int security_path_rmdir(struct path *dir, struct dentry *dentry) 381{ 382 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 383 return 0; 384 return security_ops->path_rmdir(dir, dentry); 385} 386 387int security_path_unlink(struct path *dir, struct dentry *dentry) 388{ 389 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 390 return 0; 391 return security_ops->path_unlink(dir, dentry); 392} 393EXPORT_SYMBOL(security_path_unlink); 394 395int security_path_symlink(struct path *dir, struct dentry *dentry, 396 const char *old_name) 397{ 398 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 399 return 0; 400 return security_ops->path_symlink(dir, dentry, old_name); 401} 402 403int security_path_link(struct dentry *old_dentry, struct path *new_dir, 404 struct dentry *new_dentry) 405{ 406 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 407 return 0; 408 return security_ops->path_link(old_dentry, new_dir, new_dentry); 409} 410 411int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 412 struct path *new_dir, struct dentry *new_dentry) 413{ 414 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 415 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 416 return 0; 417 return security_ops->path_rename(old_dir, old_dentry, new_dir, 418 new_dentry); 419} 420EXPORT_SYMBOL(security_path_rename); 421 422int security_path_truncate(struct path *path) 423{ 424 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 425 return 0; 426 return security_ops->path_truncate(path); 427} 428 429int security_path_chmod(struct path *path, umode_t mode) 430{ 431 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 432 return 0; 433 return security_ops->path_chmod(path, mode); 434} 435 436int security_path_chown(struct path *path, uid_t uid, gid_t gid) 437{ 438 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 439 return 0; 440 return security_ops->path_chown(path, uid, gid); 441} 442 443int security_path_chroot(struct path *path) 444{ 445 return security_ops->path_chroot(path); 446} 447#endif 448 449int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 450{ 451 if (unlikely(IS_PRIVATE(dir))) 452 return 0; 453 return security_ops->inode_create(dir, dentry, mode); 454} 455EXPORT_SYMBOL_GPL(security_inode_create); 456 457int security_inode_link(struct dentry *old_dentry, struct inode *dir, 458 struct dentry *new_dentry) 459{ 460 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 461 return 0; 462 return security_ops->inode_link(old_dentry, dir, new_dentry); 463} 464 465int security_inode_unlink(struct inode *dir, struct dentry *dentry) 466{ 467 if (unlikely(IS_PRIVATE(dentry->d_inode))) 468 return 0; 469 return security_ops->inode_unlink(dir, dentry); 470} 471 472int security_inode_symlink(struct inode *dir, struct dentry *dentry, 473 const char *old_name) 474{ 475 if (unlikely(IS_PRIVATE(dir))) 476 return 0; 477 return security_ops->inode_symlink(dir, dentry, old_name); 478} 479 480int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 481{ 482 if (unlikely(IS_PRIVATE(dir))) 483 return 0; 484 return security_ops->inode_mkdir(dir, dentry, mode); 485} 486EXPORT_SYMBOL_GPL(security_inode_mkdir); 487 488int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 489{ 490 if (unlikely(IS_PRIVATE(dentry->d_inode))) 491 return 0; 492 return security_ops->inode_rmdir(dir, dentry); 493} 494 495int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 496{ 497 if (unlikely(IS_PRIVATE(dir))) 498 return 0; 499 return security_ops->inode_mknod(dir, dentry, mode, dev); 500} 501 502int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 503 struct inode *new_dir, struct dentry *new_dentry) 504{ 505 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 506 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 507 return 0; 508 return security_ops->inode_rename(old_dir, old_dentry, 509 new_dir, new_dentry); 510} 511 512int security_inode_readlink(struct dentry *dentry) 513{ 514 if (unlikely(IS_PRIVATE(dentry->d_inode))) 515 return 0; 516 return security_ops->inode_readlink(dentry); 517} 518 519int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 520{ 521 if (unlikely(IS_PRIVATE(dentry->d_inode))) 522 return 0; 523 return security_ops->inode_follow_link(dentry, nd); 524} 525 526int security_inode_permission(struct inode *inode, int mask) 527{ 528 if (unlikely(IS_PRIVATE(inode))) 529 return 0; 530 return security_ops->inode_permission(inode, mask); 531} 532 533int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 534{ 535 int ret; 536 537 if (unlikely(IS_PRIVATE(dentry->d_inode))) 538 return 0; 539 ret = security_ops->inode_setattr(dentry, attr); 540 if (ret) 541 return ret; 542 return evm_inode_setattr(dentry, attr); 543} 544EXPORT_SYMBOL_GPL(security_inode_setattr); 545 546int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 547{ 548 if (unlikely(IS_PRIVATE(dentry->d_inode))) 549 return 0; 550 return security_ops->inode_getattr(mnt, dentry); 551} 552 553int security_inode_setxattr(struct dentry *dentry, const char *name, 554 const void *value, size_t size, int flags) 555{ 556 int ret; 557 558 if (unlikely(IS_PRIVATE(dentry->d_inode))) 559 return 0; 560 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 561 if (ret) 562 return ret; 563 return evm_inode_setxattr(dentry, name, value, size); 564} 565 566void security_inode_post_setxattr(struct dentry *dentry, const char *name, 567 const void *value, size_t size, int flags) 568{ 569 if (unlikely(IS_PRIVATE(dentry->d_inode))) 570 return; 571 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 572 evm_inode_post_setxattr(dentry, name, value, size); 573} 574 575int security_inode_getxattr(struct dentry *dentry, const char *name) 576{ 577 if (unlikely(IS_PRIVATE(dentry->d_inode))) 578 return 0; 579 return security_ops->inode_getxattr(dentry, name); 580} 581 582int security_inode_listxattr(struct dentry *dentry) 583{ 584 if (unlikely(IS_PRIVATE(dentry->d_inode))) 585 return 0; 586 return security_ops->inode_listxattr(dentry); 587} 588 589int security_inode_removexattr(struct dentry *dentry, const char *name) 590{ 591 int ret; 592 593 if (unlikely(IS_PRIVATE(dentry->d_inode))) 594 return 0; 595 ret = security_ops->inode_removexattr(dentry, name); 596 if (ret) 597 return ret; 598 return evm_inode_removexattr(dentry, name); 599} 600 601int security_inode_need_killpriv(struct dentry *dentry) 602{ 603 return security_ops->inode_need_killpriv(dentry); 604} 605 606int security_inode_killpriv(struct dentry *dentry) 607{ 608 return security_ops->inode_killpriv(dentry); 609} 610 611int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 612{ 613 if (unlikely(IS_PRIVATE(inode))) 614 return -EOPNOTSUPP; 615 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 616} 617 618int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 619{ 620 if (unlikely(IS_PRIVATE(inode))) 621 return -EOPNOTSUPP; 622 return security_ops->inode_setsecurity(inode, name, value, size, flags); 623} 624 625int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 626{ 627 if (unlikely(IS_PRIVATE(inode))) 628 return 0; 629 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 630} 631 632void security_inode_getsecid(const struct inode *inode, u32 *secid) 633{ 634 security_ops->inode_getsecid(inode, secid); 635} 636 637int security_file_permission(struct file *file, int mask) 638{ 639 int ret; 640 641 ret = security_ops->file_permission(file, mask); 642 if (ret) 643 return ret; 644 645 return fsnotify_perm(file, mask); 646} 647 648int security_file_alloc(struct file *file) 649{ 650 return security_ops->file_alloc_security(file); 651} 652 653void security_file_free(struct file *file) 654{ 655 security_ops->file_free_security(file); 656} 657 658int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 659{ 660 return security_ops->file_ioctl(file, cmd, arg); 661} 662 663static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 664{ 665 /* 666 * Does we have PROT_READ and does the application expect 667 * it to imply PROT_EXEC? If not, nothing to talk about... 668 */ 669 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 670 return prot; 671 if (!(current->personality & READ_IMPLIES_EXEC)) 672 return prot; 673 /* 674 * if that's an anonymous mapping, let it. 675 */ 676 if (!file) 677 return prot | PROT_EXEC; 678 /* 679 * ditto if it's not on noexec mount, except that on !MMU we need 680 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case 681 */ 682 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) { 683#ifndef CONFIG_MMU 684 unsigned long caps = 0; 685 struct address_space *mapping = file->f_mapping; 686 if (mapping && mapping->backing_dev_info) 687 caps = mapping->backing_dev_info->capabilities; 688 if (!(caps & BDI_CAP_EXEC_MAP)) 689 return prot; 690#endif 691 return prot | PROT_EXEC; 692 } 693 /* anything on noexec mount won't get PROT_EXEC */ 694 return prot; 695} 696 697int security_mmap_file(struct file *file, unsigned long prot, 698 unsigned long flags) 699{ 700 int ret; 701 ret = security_ops->mmap_file(file, prot, 702 mmap_prot(file, prot), flags); 703 if (ret) 704 return ret; 705 return ima_file_mmap(file, prot); 706} 707 708int security_mmap_addr(unsigned long addr) 709{ 710 return security_ops->mmap_addr(addr); 711} 712 713int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 714 unsigned long prot) 715{ 716 return security_ops->file_mprotect(vma, reqprot, prot); 717} 718 719int security_file_lock(struct file *file, unsigned int cmd) 720{ 721 return security_ops->file_lock(file, cmd); 722} 723 724int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 725{ 726 return security_ops->file_fcntl(file, cmd, arg); 727} 728 729int security_file_set_fowner(struct file *file) 730{ 731 return security_ops->file_set_fowner(file); 732} 733 734int security_file_send_sigiotask(struct task_struct *tsk, 735 struct fown_struct *fown, int sig) 736{ 737 return security_ops->file_send_sigiotask(tsk, fown, sig); 738} 739 740int security_file_receive(struct file *file) 741{ 742 return security_ops->file_receive(file); 743} 744 745int security_file_open(struct file *file, const struct cred *cred) 746{ 747 int ret; 748 749 ret = security_ops->file_open(file, cred); 750 if (ret) 751 return ret; 752 753 return fsnotify_perm(file, MAY_OPEN); 754} 755 756int security_task_create(unsigned long clone_flags) 757{ 758 return security_ops->task_create(clone_flags); 759} 760 761void security_task_free(struct task_struct *task) 762{ 763 security_ops->task_free(task); 764} 765 766int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 767{ 768 return security_ops->cred_alloc_blank(cred, gfp); 769} 770 771void security_cred_free(struct cred *cred) 772{ 773 security_ops->cred_free(cred); 774} 775 776int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 777{ 778 return security_ops->cred_prepare(new, old, gfp); 779} 780 781void security_transfer_creds(struct cred *new, const struct cred *old) 782{ 783 security_ops->cred_transfer(new, old); 784} 785 786int security_kernel_act_as(struct cred *new, u32 secid) 787{ 788 return security_ops->kernel_act_as(new, secid); 789} 790 791int security_kernel_create_files_as(struct cred *new, struct inode *inode) 792{ 793 return security_ops->kernel_create_files_as(new, inode); 794} 795 796int security_kernel_module_request(char *kmod_name) 797{ 798 return security_ops->kernel_module_request(kmod_name); 799} 800 801int security_task_fix_setuid(struct cred *new, const struct cred *old, 802 int flags) 803{ 804 return security_ops->task_fix_setuid(new, old, flags); 805} 806 807int security_task_setpgid(struct task_struct *p, pid_t pgid) 808{ 809 return security_ops->task_setpgid(p, pgid); 810} 811 812int security_task_getpgid(struct task_struct *p) 813{ 814 return security_ops->task_getpgid(p); 815} 816 817int security_task_getsid(struct task_struct *p) 818{ 819 return security_ops->task_getsid(p); 820} 821 822void security_task_getsecid(struct task_struct *p, u32 *secid) 823{ 824 security_ops->task_getsecid(p, secid); 825} 826EXPORT_SYMBOL(security_task_getsecid); 827 828int security_task_setnice(struct task_struct *p, int nice) 829{ 830 return security_ops->task_setnice(p, nice); 831} 832 833int security_task_setioprio(struct task_struct *p, int ioprio) 834{ 835 return security_ops->task_setioprio(p, ioprio); 836} 837 838int security_task_getioprio(struct task_struct *p) 839{ 840 return security_ops->task_getioprio(p); 841} 842 843int security_task_setrlimit(struct task_struct *p, unsigned int resource, 844 struct rlimit *new_rlim) 845{ 846 return security_ops->task_setrlimit(p, resource, new_rlim); 847} 848 849int security_task_setscheduler(struct task_struct *p) 850{ 851 return security_ops->task_setscheduler(p); 852} 853 854int security_task_getscheduler(struct task_struct *p) 855{ 856 return security_ops->task_getscheduler(p); 857} 858 859int security_task_movememory(struct task_struct *p) 860{ 861 return security_ops->task_movememory(p); 862} 863 864int security_task_kill(struct task_struct *p, struct siginfo *info, 865 int sig, u32 secid) 866{ 867 return security_ops->task_kill(p, info, sig, secid); 868} 869 870int security_task_wait(struct task_struct *p) 871{ 872 return security_ops->task_wait(p); 873} 874 875int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 876 unsigned long arg4, unsigned long arg5) 877{ 878 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 879} 880 881void security_task_to_inode(struct task_struct *p, struct inode *inode) 882{ 883 security_ops->task_to_inode(p, inode); 884} 885 886int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 887{ 888 return security_ops->ipc_permission(ipcp, flag); 889} 890 891void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 892{ 893 security_ops->ipc_getsecid(ipcp, secid); 894} 895 896int security_msg_msg_alloc(struct msg_msg *msg) 897{ 898 return security_ops->msg_msg_alloc_security(msg); 899} 900 901void security_msg_msg_free(struct msg_msg *msg) 902{ 903 security_ops->msg_msg_free_security(msg); 904} 905 906int security_msg_queue_alloc(struct msg_queue *msq) 907{ 908 return security_ops->msg_queue_alloc_security(msq); 909} 910 911void security_msg_queue_free(struct msg_queue *msq) 912{ 913 security_ops->msg_queue_free_security(msq); 914} 915 916int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 917{ 918 return security_ops->msg_queue_associate(msq, msqflg); 919} 920 921int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 922{ 923 return security_ops->msg_queue_msgctl(msq, cmd); 924} 925 926int security_msg_queue_msgsnd(struct msg_queue *msq, 927 struct msg_msg *msg, int msqflg) 928{ 929 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 930} 931 932int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 933 struct task_struct *target, long type, int mode) 934{ 935 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 936} 937 938int security_shm_alloc(struct shmid_kernel *shp) 939{ 940 return security_ops->shm_alloc_security(shp); 941} 942 943void security_shm_free(struct shmid_kernel *shp) 944{ 945 security_ops->shm_free_security(shp); 946} 947 948int security_shm_associate(struct shmid_kernel *shp, int shmflg) 949{ 950 return security_ops->shm_associate(shp, shmflg); 951} 952 953int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 954{ 955 return security_ops->shm_shmctl(shp, cmd); 956} 957 958int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 959{ 960 return security_ops->shm_shmat(shp, shmaddr, shmflg); 961} 962 963int security_sem_alloc(struct sem_array *sma) 964{ 965 return security_ops->sem_alloc_security(sma); 966} 967 968void security_sem_free(struct sem_array *sma) 969{ 970 security_ops->sem_free_security(sma); 971} 972 973int security_sem_associate(struct sem_array *sma, int semflg) 974{ 975 return security_ops->sem_associate(sma, semflg); 976} 977 978int security_sem_semctl(struct sem_array *sma, int cmd) 979{ 980 return security_ops->sem_semctl(sma, cmd); 981} 982 983int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 984 unsigned nsops, int alter) 985{ 986 return security_ops->sem_semop(sma, sops, nsops, alter); 987} 988 989void security_d_instantiate(struct dentry *dentry, struct inode *inode) 990{ 991 if (unlikely(inode && IS_PRIVATE(inode))) 992 return; 993 security_ops->d_instantiate(dentry, inode); 994} 995EXPORT_SYMBOL(security_d_instantiate); 996 997int security_getprocattr(struct task_struct *p, char *name, char **value) 998{ 999 return security_ops->getprocattr(p, name, value); 1000} 1001 1002int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1003{ 1004 return security_ops->setprocattr(p, name, value, size); 1005} 1006 1007int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1008{ 1009 return security_ops->netlink_send(sk, skb); 1010} 1011 1012int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1013{ 1014 return security_ops->secid_to_secctx(secid, secdata, seclen); 1015} 1016EXPORT_SYMBOL(security_secid_to_secctx); 1017 1018int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1019{ 1020 return security_ops->secctx_to_secid(secdata, seclen, secid); 1021} 1022EXPORT_SYMBOL(security_secctx_to_secid); 1023 1024void security_release_secctx(char *secdata, u32 seclen) 1025{ 1026 security_ops->release_secctx(secdata, seclen); 1027} 1028EXPORT_SYMBOL(security_release_secctx); 1029 1030int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1031{ 1032 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1033} 1034EXPORT_SYMBOL(security_inode_notifysecctx); 1035 1036int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1037{ 1038 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1039} 1040EXPORT_SYMBOL(security_inode_setsecctx); 1041 1042int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1043{ 1044 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1045} 1046EXPORT_SYMBOL(security_inode_getsecctx); 1047 1048#ifdef CONFIG_SECURITY_NETWORK 1049 1050int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1051{ 1052 return security_ops->unix_stream_connect(sock, other, newsk); 1053} 1054EXPORT_SYMBOL(security_unix_stream_connect); 1055 1056int security_unix_may_send(struct socket *sock, struct socket *other) 1057{ 1058 return security_ops->unix_may_send(sock, other); 1059} 1060EXPORT_SYMBOL(security_unix_may_send); 1061 1062int security_socket_create(int family, int type, int protocol, int kern) 1063{ 1064 return security_ops->socket_create(family, type, protocol, kern); 1065} 1066 1067int security_socket_post_create(struct socket *sock, int family, 1068 int type, int protocol, int kern) 1069{ 1070 return security_ops->socket_post_create(sock, family, type, 1071 protocol, kern); 1072} 1073 1074int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1075{ 1076 return security_ops->socket_bind(sock, address, addrlen); 1077} 1078 1079int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1080{ 1081 return security_ops->socket_connect(sock, address, addrlen); 1082} 1083 1084int security_socket_listen(struct socket *sock, int backlog) 1085{ 1086 return security_ops->socket_listen(sock, backlog); 1087} 1088 1089int security_socket_accept(struct socket *sock, struct socket *newsock) 1090{ 1091 return security_ops->socket_accept(sock, newsock); 1092} 1093 1094int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1095{ 1096 return security_ops->socket_sendmsg(sock, msg, size); 1097} 1098 1099int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1100 int size, int flags) 1101{ 1102 return security_ops->socket_recvmsg(sock, msg, size, flags); 1103} 1104 1105int security_socket_getsockname(struct socket *sock) 1106{ 1107 return security_ops->socket_getsockname(sock); 1108} 1109 1110int security_socket_getpeername(struct socket *sock) 1111{ 1112 return security_ops->socket_getpeername(sock); 1113} 1114 1115int security_socket_getsockopt(struct socket *sock, int level, int optname) 1116{ 1117 return security_ops->socket_getsockopt(sock, level, optname); 1118} 1119 1120int security_socket_setsockopt(struct socket *sock, int level, int optname) 1121{ 1122 return security_ops->socket_setsockopt(sock, level, optname); 1123} 1124 1125int security_socket_shutdown(struct socket *sock, int how) 1126{ 1127 return security_ops->socket_shutdown(sock, how); 1128} 1129 1130int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1131{ 1132 return security_ops->socket_sock_rcv_skb(sk, skb); 1133} 1134EXPORT_SYMBOL(security_sock_rcv_skb); 1135 1136int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1137 int __user *optlen, unsigned len) 1138{ 1139 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1140} 1141 1142int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1143{ 1144 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1145} 1146EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1147 1148int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1149{ 1150 return security_ops->sk_alloc_security(sk, family, priority); 1151} 1152 1153void security_sk_free(struct sock *sk) 1154{ 1155 security_ops->sk_free_security(sk); 1156} 1157 1158void security_sk_clone(const struct sock *sk, struct sock *newsk) 1159{ 1160 security_ops->sk_clone_security(sk, newsk); 1161} 1162EXPORT_SYMBOL(security_sk_clone); 1163 1164void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1165{ 1166 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1167} 1168EXPORT_SYMBOL(security_sk_classify_flow); 1169 1170void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1171{ 1172 security_ops->req_classify_flow(req, fl); 1173} 1174EXPORT_SYMBOL(security_req_classify_flow); 1175 1176void security_sock_graft(struct sock *sk, struct socket *parent) 1177{ 1178 security_ops->sock_graft(sk, parent); 1179} 1180EXPORT_SYMBOL(security_sock_graft); 1181 1182int security_inet_conn_request(struct sock *sk, 1183 struct sk_buff *skb, struct request_sock *req) 1184{ 1185 return security_ops->inet_conn_request(sk, skb, req); 1186} 1187EXPORT_SYMBOL(security_inet_conn_request); 1188 1189void security_inet_csk_clone(struct sock *newsk, 1190 const struct request_sock *req) 1191{ 1192 security_ops->inet_csk_clone(newsk, req); 1193} 1194 1195void security_inet_conn_established(struct sock *sk, 1196 struct sk_buff *skb) 1197{ 1198 security_ops->inet_conn_established(sk, skb); 1199} 1200 1201int security_secmark_relabel_packet(u32 secid) 1202{ 1203 return security_ops->secmark_relabel_packet(secid); 1204} 1205EXPORT_SYMBOL(security_secmark_relabel_packet); 1206 1207void security_secmark_refcount_inc(void) 1208{ 1209 security_ops->secmark_refcount_inc(); 1210} 1211EXPORT_SYMBOL(security_secmark_refcount_inc); 1212 1213void security_secmark_refcount_dec(void) 1214{ 1215 security_ops->secmark_refcount_dec(); 1216} 1217EXPORT_SYMBOL(security_secmark_refcount_dec); 1218 1219int security_tun_dev_create(void) 1220{ 1221 return security_ops->tun_dev_create(); 1222} 1223EXPORT_SYMBOL(security_tun_dev_create); 1224 1225void security_tun_dev_post_create(struct sock *sk) 1226{ 1227 return security_ops->tun_dev_post_create(sk); 1228} 1229EXPORT_SYMBOL(security_tun_dev_post_create); 1230 1231int security_tun_dev_attach(struct sock *sk) 1232{ 1233 return security_ops->tun_dev_attach(sk); 1234} 1235EXPORT_SYMBOL(security_tun_dev_attach); 1236 1237#endif /* CONFIG_SECURITY_NETWORK */ 1238 1239#ifdef CONFIG_SECURITY_NETWORK_XFRM 1240 1241int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1242{ 1243 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1244} 1245EXPORT_SYMBOL(security_xfrm_policy_alloc); 1246 1247int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1248 struct xfrm_sec_ctx **new_ctxp) 1249{ 1250 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1251} 1252 1253void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1254{ 1255 security_ops->xfrm_policy_free_security(ctx); 1256} 1257EXPORT_SYMBOL(security_xfrm_policy_free); 1258 1259int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1260{ 1261 return security_ops->xfrm_policy_delete_security(ctx); 1262} 1263 1264int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1265{ 1266 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1267} 1268EXPORT_SYMBOL(security_xfrm_state_alloc); 1269 1270int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1271 struct xfrm_sec_ctx *polsec, u32 secid) 1272{ 1273 if (!polsec) 1274 return 0; 1275 /* 1276 * We want the context to be taken from secid which is usually 1277 * from the sock. 1278 */ 1279 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1280} 1281 1282int security_xfrm_state_delete(struct xfrm_state *x) 1283{ 1284 return security_ops->xfrm_state_delete_security(x); 1285} 1286EXPORT_SYMBOL(security_xfrm_state_delete); 1287 1288void security_xfrm_state_free(struct xfrm_state *x) 1289{ 1290 security_ops->xfrm_state_free_security(x); 1291} 1292 1293int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1294{ 1295 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1296} 1297 1298int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1299 struct xfrm_policy *xp, 1300 const struct flowi *fl) 1301{ 1302 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1303} 1304 1305int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1306{ 1307 return security_ops->xfrm_decode_session(skb, secid, 1); 1308} 1309 1310void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1311{ 1312 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1313 1314 BUG_ON(rc); 1315} 1316EXPORT_SYMBOL(security_skb_classify_flow); 1317 1318#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1319 1320#ifdef CONFIG_KEYS 1321 1322int security_key_alloc(struct key *key, const struct cred *cred, 1323 unsigned long flags) 1324{ 1325 return security_ops->key_alloc(key, cred, flags); 1326} 1327 1328void security_key_free(struct key *key) 1329{ 1330 security_ops->key_free(key); 1331} 1332 1333int security_key_permission(key_ref_t key_ref, 1334 const struct cred *cred, key_perm_t perm) 1335{ 1336 return security_ops->key_permission(key_ref, cred, perm); 1337} 1338 1339int security_key_getsecurity(struct key *key, char **_buffer) 1340{ 1341 return security_ops->key_getsecurity(key, _buffer); 1342} 1343 1344#endif /* CONFIG_KEYS */ 1345 1346#ifdef CONFIG_AUDIT 1347 1348int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1349{ 1350 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1351} 1352 1353int security_audit_rule_known(struct audit_krule *krule) 1354{ 1355 return security_ops->audit_rule_known(krule); 1356} 1357 1358void security_audit_rule_free(void *lsmrule) 1359{ 1360 security_ops->audit_rule_free(lsmrule); 1361} 1362 1363int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1364 struct audit_context *actx) 1365{ 1366 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1367} 1368 1369#endif /* CONFIG_AUDIT */