at v3.5-rc2 34 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef LINUX_DMAENGINE_H 22#define LINUX_DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/bug.h> 27#include <linux/scatterlist.h> 28#include <linux/bitmap.h> 29#include <linux/types.h> 30#include <asm/page.h> 31 32/** 33 * typedef dma_cookie_t - an opaque DMA cookie 34 * 35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 36 */ 37typedef s32 dma_cookie_t; 38#define DMA_MIN_COOKIE 1 39#define DMA_MAX_COOKIE INT_MAX 40 41#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 42 43/** 44 * enum dma_status - DMA transaction status 45 * @DMA_SUCCESS: transaction completed successfully 46 * @DMA_IN_PROGRESS: transaction not yet processed 47 * @DMA_PAUSED: transaction is paused 48 * @DMA_ERROR: transaction failed 49 */ 50enum dma_status { 51 DMA_SUCCESS, 52 DMA_IN_PROGRESS, 53 DMA_PAUSED, 54 DMA_ERROR, 55}; 56 57/** 58 * enum dma_transaction_type - DMA transaction types/indexes 59 * 60 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 61 * automatically set as dma devices are registered. 62 */ 63enum dma_transaction_type { 64 DMA_MEMCPY, 65 DMA_XOR, 66 DMA_PQ, 67 DMA_XOR_VAL, 68 DMA_PQ_VAL, 69 DMA_MEMSET, 70 DMA_INTERRUPT, 71 DMA_SG, 72 DMA_PRIVATE, 73 DMA_ASYNC_TX, 74 DMA_SLAVE, 75 DMA_CYCLIC, 76 DMA_INTERLEAVE, 77/* last transaction type for creation of the capabilities mask */ 78 DMA_TX_TYPE_END, 79}; 80 81/** 82 * enum dma_transfer_direction - dma transfer mode and direction indicator 83 * @DMA_MEM_TO_MEM: Async/Memcpy mode 84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 87 */ 88enum dma_transfer_direction { 89 DMA_MEM_TO_MEM, 90 DMA_MEM_TO_DEV, 91 DMA_DEV_TO_MEM, 92 DMA_DEV_TO_DEV, 93 DMA_TRANS_NONE, 94}; 95 96/** 97 * Interleaved Transfer Request 98 * ---------------------------- 99 * A chunk is collection of contiguous bytes to be transfered. 100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 101 * ICGs may or maynot change between chunks. 102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 103 * that when repeated an integral number of times, specifies the transfer. 104 * A transfer template is specification of a Frame, the number of times 105 * it is to be repeated and other per-transfer attributes. 106 * 107 * Practically, a client driver would have ready a template for each 108 * type of transfer it is going to need during its lifetime and 109 * set only 'src_start' and 'dst_start' before submitting the requests. 110 * 111 * 112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 114 * 115 * == Chunk size 116 * ... ICG 117 */ 118 119/** 120 * struct data_chunk - Element of scatter-gather list that makes a frame. 121 * @size: Number of bytes to read from source. 122 * size_dst := fn(op, size_src), so doesn't mean much for destination. 123 * @icg: Number of bytes to jump after last src/dst address of this 124 * chunk and before first src/dst address for next chunk. 125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 127 */ 128struct data_chunk { 129 size_t size; 130 size_t icg; 131}; 132 133/** 134 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 135 * and attributes. 136 * @src_start: Bus address of source for the first chunk. 137 * @dst_start: Bus address of destination for the first chunk. 138 * @dir: Specifies the type of Source and Destination. 139 * @src_inc: If the source address increments after reading from it. 140 * @dst_inc: If the destination address increments after writing to it. 141 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 142 * Otherwise, source is read contiguously (icg ignored). 143 * Ignored if src_inc is false. 144 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 145 * Otherwise, destination is filled contiguously (icg ignored). 146 * Ignored if dst_inc is false. 147 * @numf: Number of frames in this template. 148 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 149 * @sgl: Array of {chunk,icg} pairs that make up a frame. 150 */ 151struct dma_interleaved_template { 152 dma_addr_t src_start; 153 dma_addr_t dst_start; 154 enum dma_transfer_direction dir; 155 bool src_inc; 156 bool dst_inc; 157 bool src_sgl; 158 bool dst_sgl; 159 size_t numf; 160 size_t frame_size; 161 struct data_chunk sgl[0]; 162}; 163 164/** 165 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 166 * control completion, and communicate status. 167 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 168 * this transaction 169 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 170 * acknowledges receipt, i.e. has has a chance to establish any dependency 171 * chains 172 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 173 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 174 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 175 * (if not set, do the source dma-unmapping as page) 176 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 177 * (if not set, do the destination dma-unmapping as page) 178 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 179 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 180 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 181 * sources that were the result of a previous operation, in the case of a PQ 182 * operation it continues the calculation with new sources 183 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 184 * on the result of this operation 185 */ 186enum dma_ctrl_flags { 187 DMA_PREP_INTERRUPT = (1 << 0), 188 DMA_CTRL_ACK = (1 << 1), 189 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 190 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 191 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 192 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 193 DMA_PREP_PQ_DISABLE_P = (1 << 6), 194 DMA_PREP_PQ_DISABLE_Q = (1 << 7), 195 DMA_PREP_CONTINUE = (1 << 8), 196 DMA_PREP_FENCE = (1 << 9), 197}; 198 199/** 200 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 201 * on a running channel. 202 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 203 * @DMA_PAUSE: pause ongoing transfers 204 * @DMA_RESUME: resume paused transfer 205 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 206 * that need to runtime reconfigure the slave channels (as opposed to passing 207 * configuration data in statically from the platform). An additional 208 * argument of struct dma_slave_config must be passed in with this 209 * command. 210 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller 211 * into external start mode. 212 */ 213enum dma_ctrl_cmd { 214 DMA_TERMINATE_ALL, 215 DMA_PAUSE, 216 DMA_RESUME, 217 DMA_SLAVE_CONFIG, 218 FSLDMA_EXTERNAL_START, 219}; 220 221/** 222 * enum sum_check_bits - bit position of pq_check_flags 223 */ 224enum sum_check_bits { 225 SUM_CHECK_P = 0, 226 SUM_CHECK_Q = 1, 227}; 228 229/** 230 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 231 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 232 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 233 */ 234enum sum_check_flags { 235 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 236 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 237}; 238 239 240/** 241 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 242 * See linux/cpumask.h 243 */ 244typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 245 246/** 247 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 248 * @memcpy_count: transaction counter 249 * @bytes_transferred: byte counter 250 */ 251 252struct dma_chan_percpu { 253 /* stats */ 254 unsigned long memcpy_count; 255 unsigned long bytes_transferred; 256}; 257 258/** 259 * struct dma_chan - devices supply DMA channels, clients use them 260 * @device: ptr to the dma device who supplies this channel, always !%NULL 261 * @cookie: last cookie value returned to client 262 * @completed_cookie: last completed cookie for this channel 263 * @chan_id: channel ID for sysfs 264 * @dev: class device for sysfs 265 * @device_node: used to add this to the device chan list 266 * @local: per-cpu pointer to a struct dma_chan_percpu 267 * @client-count: how many clients are using this channel 268 * @table_count: number of appearances in the mem-to-mem allocation table 269 * @private: private data for certain client-channel associations 270 */ 271struct dma_chan { 272 struct dma_device *device; 273 dma_cookie_t cookie; 274 dma_cookie_t completed_cookie; 275 276 /* sysfs */ 277 int chan_id; 278 struct dma_chan_dev *dev; 279 280 struct list_head device_node; 281 struct dma_chan_percpu __percpu *local; 282 int client_count; 283 int table_count; 284 void *private; 285}; 286 287/** 288 * struct dma_chan_dev - relate sysfs device node to backing channel device 289 * @chan - driver channel device 290 * @device - sysfs device 291 * @dev_id - parent dma_device dev_id 292 * @idr_ref - reference count to gate release of dma_device dev_id 293 */ 294struct dma_chan_dev { 295 struct dma_chan *chan; 296 struct device device; 297 int dev_id; 298 atomic_t *idr_ref; 299}; 300 301/** 302 * enum dma_slave_buswidth - defines bus with of the DMA slave 303 * device, source or target buses 304 */ 305enum dma_slave_buswidth { 306 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 307 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 308 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 309 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 310 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 311}; 312 313/** 314 * struct dma_slave_config - dma slave channel runtime config 315 * @direction: whether the data shall go in or out on this slave 316 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are 317 * legal values, DMA_BIDIRECTIONAL is not acceptable since we 318 * need to differentiate source and target addresses. 319 * @src_addr: this is the physical address where DMA slave data 320 * should be read (RX), if the source is memory this argument is 321 * ignored. 322 * @dst_addr: this is the physical address where DMA slave data 323 * should be written (TX), if the source is memory this argument 324 * is ignored. 325 * @src_addr_width: this is the width in bytes of the source (RX) 326 * register where DMA data shall be read. If the source 327 * is memory this may be ignored depending on architecture. 328 * Legal values: 1, 2, 4, 8. 329 * @dst_addr_width: same as src_addr_width but for destination 330 * target (TX) mutatis mutandis. 331 * @src_maxburst: the maximum number of words (note: words, as in 332 * units of the src_addr_width member, not bytes) that can be sent 333 * in one burst to the device. Typically something like half the 334 * FIFO depth on I/O peripherals so you don't overflow it. This 335 * may or may not be applicable on memory sources. 336 * @dst_maxburst: same as src_maxburst but for destination target 337 * mutatis mutandis. 338 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 339 * with 'true' if peripheral should be flow controller. Direction will be 340 * selected at Runtime. 341 * 342 * This struct is passed in as configuration data to a DMA engine 343 * in order to set up a certain channel for DMA transport at runtime. 344 * The DMA device/engine has to provide support for an additional 345 * command in the channel config interface, DMA_SLAVE_CONFIG 346 * and this struct will then be passed in as an argument to the 347 * DMA engine device_control() function. 348 * 349 * The rationale for adding configuration information to this struct 350 * is as follows: if it is likely that most DMA slave controllers in 351 * the world will support the configuration option, then make it 352 * generic. If not: if it is fixed so that it be sent in static from 353 * the platform data, then prefer to do that. Else, if it is neither 354 * fixed at runtime, nor generic enough (such as bus mastership on 355 * some CPU family and whatnot) then create a custom slave config 356 * struct and pass that, then make this config a member of that 357 * struct, if applicable. 358 */ 359struct dma_slave_config { 360 enum dma_transfer_direction direction; 361 dma_addr_t src_addr; 362 dma_addr_t dst_addr; 363 enum dma_slave_buswidth src_addr_width; 364 enum dma_slave_buswidth dst_addr_width; 365 u32 src_maxburst; 366 u32 dst_maxburst; 367 bool device_fc; 368}; 369 370static inline const char *dma_chan_name(struct dma_chan *chan) 371{ 372 return dev_name(&chan->dev->device); 373} 374 375void dma_chan_cleanup(struct kref *kref); 376 377/** 378 * typedef dma_filter_fn - callback filter for dma_request_channel 379 * @chan: channel to be reviewed 380 * @filter_param: opaque parameter passed through dma_request_channel 381 * 382 * When this optional parameter is specified in a call to dma_request_channel a 383 * suitable channel is passed to this routine for further dispositioning before 384 * being returned. Where 'suitable' indicates a non-busy channel that 385 * satisfies the given capability mask. It returns 'true' to indicate that the 386 * channel is suitable. 387 */ 388typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 389 390typedef void (*dma_async_tx_callback)(void *dma_async_param); 391/** 392 * struct dma_async_tx_descriptor - async transaction descriptor 393 * ---dma generic offload fields--- 394 * @cookie: tracking cookie for this transaction, set to -EBUSY if 395 * this tx is sitting on a dependency list 396 * @flags: flags to augment operation preparation, control completion, and 397 * communicate status 398 * @phys: physical address of the descriptor 399 * @chan: target channel for this operation 400 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 401 * @callback: routine to call after this operation is complete 402 * @callback_param: general parameter to pass to the callback routine 403 * ---async_tx api specific fields--- 404 * @next: at completion submit this descriptor 405 * @parent: pointer to the next level up in the dependency chain 406 * @lock: protect the parent and next pointers 407 */ 408struct dma_async_tx_descriptor { 409 dma_cookie_t cookie; 410 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 411 dma_addr_t phys; 412 struct dma_chan *chan; 413 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 414 dma_async_tx_callback callback; 415 void *callback_param; 416#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 417 struct dma_async_tx_descriptor *next; 418 struct dma_async_tx_descriptor *parent; 419 spinlock_t lock; 420#endif 421}; 422 423#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 424static inline void txd_lock(struct dma_async_tx_descriptor *txd) 425{ 426} 427static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 428{ 429} 430static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 431{ 432 BUG(); 433} 434static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 435{ 436} 437static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 438{ 439} 440static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 441{ 442 return NULL; 443} 444static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 445{ 446 return NULL; 447} 448 449#else 450static inline void txd_lock(struct dma_async_tx_descriptor *txd) 451{ 452 spin_lock_bh(&txd->lock); 453} 454static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 455{ 456 spin_unlock_bh(&txd->lock); 457} 458static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 459{ 460 txd->next = next; 461 next->parent = txd; 462} 463static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 464{ 465 txd->parent = NULL; 466} 467static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 468{ 469 txd->next = NULL; 470} 471static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 472{ 473 return txd->parent; 474} 475static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 476{ 477 return txd->next; 478} 479#endif 480 481/** 482 * struct dma_tx_state - filled in to report the status of 483 * a transfer. 484 * @last: last completed DMA cookie 485 * @used: last issued DMA cookie (i.e. the one in progress) 486 * @residue: the remaining number of bytes left to transmit 487 * on the selected transfer for states DMA_IN_PROGRESS and 488 * DMA_PAUSED if this is implemented in the driver, else 0 489 */ 490struct dma_tx_state { 491 dma_cookie_t last; 492 dma_cookie_t used; 493 u32 residue; 494}; 495 496/** 497 * struct dma_device - info on the entity supplying DMA services 498 * @chancnt: how many DMA channels are supported 499 * @privatecnt: how many DMA channels are requested by dma_request_channel 500 * @channels: the list of struct dma_chan 501 * @global_node: list_head for global dma_device_list 502 * @cap_mask: one or more dma_capability flags 503 * @max_xor: maximum number of xor sources, 0 if no capability 504 * @max_pq: maximum number of PQ sources and PQ-continue capability 505 * @copy_align: alignment shift for memcpy operations 506 * @xor_align: alignment shift for xor operations 507 * @pq_align: alignment shift for pq operations 508 * @fill_align: alignment shift for memset operations 509 * @dev_id: unique device ID 510 * @dev: struct device reference for dma mapping api 511 * @device_alloc_chan_resources: allocate resources and return the 512 * number of allocated descriptors 513 * @device_free_chan_resources: release DMA channel's resources 514 * @device_prep_dma_memcpy: prepares a memcpy operation 515 * @device_prep_dma_xor: prepares a xor operation 516 * @device_prep_dma_xor_val: prepares a xor validation operation 517 * @device_prep_dma_pq: prepares a pq operation 518 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 519 * @device_prep_dma_memset: prepares a memset operation 520 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 521 * @device_prep_slave_sg: prepares a slave dma operation 522 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 523 * The function takes a buffer of size buf_len. The callback function will 524 * be called after period_len bytes have been transferred. 525 * @device_prep_interleaved_dma: Transfer expression in a generic way. 526 * @device_control: manipulate all pending operations on a channel, returns 527 * zero or error code 528 * @device_tx_status: poll for transaction completion, the optional 529 * txstate parameter can be supplied with a pointer to get a 530 * struct with auxiliary transfer status information, otherwise the call 531 * will just return a simple status code 532 * @device_issue_pending: push pending transactions to hardware 533 */ 534struct dma_device { 535 536 unsigned int chancnt; 537 unsigned int privatecnt; 538 struct list_head channels; 539 struct list_head global_node; 540 dma_cap_mask_t cap_mask; 541 unsigned short max_xor; 542 unsigned short max_pq; 543 u8 copy_align; 544 u8 xor_align; 545 u8 pq_align; 546 u8 fill_align; 547 #define DMA_HAS_PQ_CONTINUE (1 << 15) 548 549 int dev_id; 550 struct device *dev; 551 552 int (*device_alloc_chan_resources)(struct dma_chan *chan); 553 void (*device_free_chan_resources)(struct dma_chan *chan); 554 555 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 556 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 557 size_t len, unsigned long flags); 558 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 559 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 560 unsigned int src_cnt, size_t len, unsigned long flags); 561 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 562 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 563 size_t len, enum sum_check_flags *result, unsigned long flags); 564 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 565 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 566 unsigned int src_cnt, const unsigned char *scf, 567 size_t len, unsigned long flags); 568 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 569 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 570 unsigned int src_cnt, const unsigned char *scf, size_t len, 571 enum sum_check_flags *pqres, unsigned long flags); 572 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 573 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 574 unsigned long flags); 575 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 576 struct dma_chan *chan, unsigned long flags); 577 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 578 struct dma_chan *chan, 579 struct scatterlist *dst_sg, unsigned int dst_nents, 580 struct scatterlist *src_sg, unsigned int src_nents, 581 unsigned long flags); 582 583 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 584 struct dma_chan *chan, struct scatterlist *sgl, 585 unsigned int sg_len, enum dma_transfer_direction direction, 586 unsigned long flags, void *context); 587 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 588 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 589 size_t period_len, enum dma_transfer_direction direction, 590 void *context); 591 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 592 struct dma_chan *chan, struct dma_interleaved_template *xt, 593 unsigned long flags); 594 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 595 unsigned long arg); 596 597 enum dma_status (*device_tx_status)(struct dma_chan *chan, 598 dma_cookie_t cookie, 599 struct dma_tx_state *txstate); 600 void (*device_issue_pending)(struct dma_chan *chan); 601}; 602 603static inline int dmaengine_device_control(struct dma_chan *chan, 604 enum dma_ctrl_cmd cmd, 605 unsigned long arg) 606{ 607 return chan->device->device_control(chan, cmd, arg); 608} 609 610static inline int dmaengine_slave_config(struct dma_chan *chan, 611 struct dma_slave_config *config) 612{ 613 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 614 (unsigned long)config); 615} 616 617static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 618 struct dma_chan *chan, dma_addr_t buf, size_t len, 619 enum dma_transfer_direction dir, unsigned long flags) 620{ 621 struct scatterlist sg; 622 sg_init_table(&sg, 1); 623 sg_dma_address(&sg) = buf; 624 sg_dma_len(&sg) = len; 625 626 return chan->device->device_prep_slave_sg(chan, &sg, 1, 627 dir, flags, NULL); 628} 629 630static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 631 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 632 enum dma_transfer_direction dir, unsigned long flags) 633{ 634 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 635 dir, flags, NULL); 636} 637 638#ifdef CONFIG_RAPIDIO_DMA_ENGINE 639struct rio_dma_ext; 640static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 641 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 642 enum dma_transfer_direction dir, unsigned long flags, 643 struct rio_dma_ext *rio_ext) 644{ 645 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 646 dir, flags, rio_ext); 647} 648#endif 649 650static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 651 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 652 size_t period_len, enum dma_transfer_direction dir) 653{ 654 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 655 period_len, dir, NULL); 656} 657 658static inline int dmaengine_terminate_all(struct dma_chan *chan) 659{ 660 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 661} 662 663static inline int dmaengine_pause(struct dma_chan *chan) 664{ 665 return dmaengine_device_control(chan, DMA_PAUSE, 0); 666} 667 668static inline int dmaengine_resume(struct dma_chan *chan) 669{ 670 return dmaengine_device_control(chan, DMA_RESUME, 0); 671} 672 673static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 674{ 675 return desc->tx_submit(desc); 676} 677 678static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 679{ 680 size_t mask; 681 682 if (!align) 683 return true; 684 mask = (1 << align) - 1; 685 if (mask & (off1 | off2 | len)) 686 return false; 687 return true; 688} 689 690static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 691 size_t off2, size_t len) 692{ 693 return dmaengine_check_align(dev->copy_align, off1, off2, len); 694} 695 696static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 697 size_t off2, size_t len) 698{ 699 return dmaengine_check_align(dev->xor_align, off1, off2, len); 700} 701 702static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 703 size_t off2, size_t len) 704{ 705 return dmaengine_check_align(dev->pq_align, off1, off2, len); 706} 707 708static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 709 size_t off2, size_t len) 710{ 711 return dmaengine_check_align(dev->fill_align, off1, off2, len); 712} 713 714static inline void 715dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 716{ 717 dma->max_pq = maxpq; 718 if (has_pq_continue) 719 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 720} 721 722static inline bool dmaf_continue(enum dma_ctrl_flags flags) 723{ 724 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 725} 726 727static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 728{ 729 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 730 731 return (flags & mask) == mask; 732} 733 734static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 735{ 736 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 737} 738 739static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 740{ 741 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 742} 743 744/* dma_maxpq - reduce maxpq in the face of continued operations 745 * @dma - dma device with PQ capability 746 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 747 * 748 * When an engine does not support native continuation we need 3 extra 749 * source slots to reuse P and Q with the following coefficients: 750 * 1/ {00} * P : remove P from Q', but use it as a source for P' 751 * 2/ {01} * Q : use Q to continue Q' calculation 752 * 3/ {00} * Q : subtract Q from P' to cancel (2) 753 * 754 * In the case where P is disabled we only need 1 extra source: 755 * 1/ {01} * Q : use Q to continue Q' calculation 756 */ 757static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 758{ 759 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 760 return dma_dev_to_maxpq(dma); 761 else if (dmaf_p_disabled_continue(flags)) 762 return dma_dev_to_maxpq(dma) - 1; 763 else if (dmaf_continue(flags)) 764 return dma_dev_to_maxpq(dma) - 3; 765 BUG(); 766} 767 768/* --- public DMA engine API --- */ 769 770#ifdef CONFIG_DMA_ENGINE 771void dmaengine_get(void); 772void dmaengine_put(void); 773#else 774static inline void dmaengine_get(void) 775{ 776} 777static inline void dmaengine_put(void) 778{ 779} 780#endif 781 782#ifdef CONFIG_NET_DMA 783#define net_dmaengine_get() dmaengine_get() 784#define net_dmaengine_put() dmaengine_put() 785#else 786static inline void net_dmaengine_get(void) 787{ 788} 789static inline void net_dmaengine_put(void) 790{ 791} 792#endif 793 794#ifdef CONFIG_ASYNC_TX_DMA 795#define async_dmaengine_get() dmaengine_get() 796#define async_dmaengine_put() dmaengine_put() 797#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 798#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 799#else 800#define async_dma_find_channel(type) dma_find_channel(type) 801#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 802#else 803static inline void async_dmaengine_get(void) 804{ 805} 806static inline void async_dmaengine_put(void) 807{ 808} 809static inline struct dma_chan * 810async_dma_find_channel(enum dma_transaction_type type) 811{ 812 return NULL; 813} 814#endif /* CONFIG_ASYNC_TX_DMA */ 815 816dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 817 void *dest, void *src, size_t len); 818dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 819 struct page *page, unsigned int offset, void *kdata, size_t len); 820dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 821 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 822 unsigned int src_off, size_t len); 823void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 824 struct dma_chan *chan); 825 826static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 827{ 828 tx->flags |= DMA_CTRL_ACK; 829} 830 831static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 832{ 833 tx->flags &= ~DMA_CTRL_ACK; 834} 835 836static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 837{ 838 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 839} 840 841#define first_dma_cap(mask) __first_dma_cap(&(mask)) 842static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 843{ 844 return min_t(int, DMA_TX_TYPE_END, 845 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 846} 847 848#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 849static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 850{ 851 return min_t(int, DMA_TX_TYPE_END, 852 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 853} 854 855#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 856static inline void 857__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 858{ 859 set_bit(tx_type, dstp->bits); 860} 861 862#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 863static inline void 864__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 865{ 866 clear_bit(tx_type, dstp->bits); 867} 868 869#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 870static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 871{ 872 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 873} 874 875#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 876static inline int 877__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 878{ 879 return test_bit(tx_type, srcp->bits); 880} 881 882#define for_each_dma_cap_mask(cap, mask) \ 883 for ((cap) = first_dma_cap(mask); \ 884 (cap) < DMA_TX_TYPE_END; \ 885 (cap) = next_dma_cap((cap), (mask))) 886 887/** 888 * dma_async_issue_pending - flush pending transactions to HW 889 * @chan: target DMA channel 890 * 891 * This allows drivers to push copies to HW in batches, 892 * reducing MMIO writes where possible. 893 */ 894static inline void dma_async_issue_pending(struct dma_chan *chan) 895{ 896 chan->device->device_issue_pending(chan); 897} 898 899#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 900 901/** 902 * dma_async_is_tx_complete - poll for transaction completion 903 * @chan: DMA channel 904 * @cookie: transaction identifier to check status of 905 * @last: returns last completed cookie, can be NULL 906 * @used: returns last issued cookie, can be NULL 907 * 908 * If @last and @used are passed in, upon return they reflect the driver 909 * internal state and can be used with dma_async_is_complete() to check 910 * the status of multiple cookies without re-checking hardware state. 911 */ 912static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 913 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 914{ 915 struct dma_tx_state state; 916 enum dma_status status; 917 918 status = chan->device->device_tx_status(chan, cookie, &state); 919 if (last) 920 *last = state.last; 921 if (used) 922 *used = state.used; 923 return status; 924} 925 926#define dma_async_memcpy_complete(chan, cookie, last, used)\ 927 dma_async_is_tx_complete(chan, cookie, last, used) 928 929/** 930 * dma_async_is_complete - test a cookie against chan state 931 * @cookie: transaction identifier to test status of 932 * @last_complete: last know completed transaction 933 * @last_used: last cookie value handed out 934 * 935 * dma_async_is_complete() is used in dma_async_memcpy_complete() 936 * the test logic is separated for lightweight testing of multiple cookies 937 */ 938static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 939 dma_cookie_t last_complete, dma_cookie_t last_used) 940{ 941 if (last_complete <= last_used) { 942 if ((cookie <= last_complete) || (cookie > last_used)) 943 return DMA_SUCCESS; 944 } else { 945 if ((cookie <= last_complete) && (cookie > last_used)) 946 return DMA_SUCCESS; 947 } 948 return DMA_IN_PROGRESS; 949} 950 951static inline void 952dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 953{ 954 if (st) { 955 st->last = last; 956 st->used = used; 957 st->residue = residue; 958 } 959} 960 961enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 962#ifdef CONFIG_DMA_ENGINE 963enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 964void dma_issue_pending_all(void); 965struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 966void dma_release_channel(struct dma_chan *chan); 967#else 968static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 969{ 970 return DMA_SUCCESS; 971} 972static inline void dma_issue_pending_all(void) 973{ 974} 975static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, 976 dma_filter_fn fn, void *fn_param) 977{ 978 return NULL; 979} 980static inline void dma_release_channel(struct dma_chan *chan) 981{ 982} 983#endif 984 985/* --- DMA device --- */ 986 987int dma_async_device_register(struct dma_device *device); 988void dma_async_device_unregister(struct dma_device *device); 989void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 990struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 991struct dma_chan *net_dma_find_channel(void); 992#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 993 994/* --- Helper iov-locking functions --- */ 995 996struct dma_page_list { 997 char __user *base_address; 998 int nr_pages; 999 struct page **pages; 1000}; 1001 1002struct dma_pinned_list { 1003 int nr_iovecs; 1004 struct dma_page_list page_list[0]; 1005}; 1006 1007struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 1008void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 1009 1010dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 1011 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 1012dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 1013 struct dma_pinned_list *pinned_list, struct page *page, 1014 unsigned int offset, size_t len); 1015 1016#endif /* DMAENGINE_H */