at v3.4 466 lines 12 kB view raw
1/* 2 * lib/prio_tree.c - priority search tree 3 * 4 * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> 5 * 6 * This file is released under the GPL v2. 7 * 8 * Based on the radix priority search tree proposed by Edward M. McCreight 9 * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 10 * 11 * 02Feb2004 Initial version 12 */ 13 14#include <linux/init.h> 15#include <linux/mm.h> 16#include <linux/prio_tree.h> 17 18/* 19 * A clever mix of heap and radix trees forms a radix priority search tree (PST) 20 * which is useful for storing intervals, e.g, we can consider a vma as a closed 21 * interval of file pages [offset_begin, offset_end], and store all vmas that 22 * map a file in a PST. Then, using the PST, we can answer a stabbing query, 23 * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a 24 * given input interval X (a set of consecutive file pages), in "O(log n + m)" 25 * time where 'log n' is the height of the PST, and 'm' is the number of stored 26 * intervals (vmas) that overlap (map) with the input interval X (the set of 27 * consecutive file pages). 28 * 29 * In our implementation, we store closed intervals of the form [radix_index, 30 * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST 31 * is designed for storing intervals with unique radix indices, i.e., each 32 * interval have different radix_index. However, this limitation can be easily 33 * overcome by using the size, i.e., heap_index - radix_index, as part of the 34 * index, so we index the tree using [(radix_index,size), heap_index]. 35 * 36 * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit 37 * machine, the maximum height of a PST can be 64. We can use a balanced version 38 * of the priority search tree to optimize the tree height, but the balanced 39 * tree proposed by McCreight is too complex and memory-hungry for our purpose. 40 */ 41 42/* 43 * The following macros are used for implementing prio_tree for i_mmap 44 */ 45 46#define RADIX_INDEX(vma) ((vma)->vm_pgoff) 47#define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) 48/* avoid overflow */ 49#define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) 50 51 52static void get_index(const struct prio_tree_root *root, 53 const struct prio_tree_node *node, 54 unsigned long *radix, unsigned long *heap) 55{ 56 if (root->raw) { 57 struct vm_area_struct *vma = prio_tree_entry( 58 node, struct vm_area_struct, shared.prio_tree_node); 59 60 *radix = RADIX_INDEX(vma); 61 *heap = HEAP_INDEX(vma); 62 } 63 else { 64 *radix = node->start; 65 *heap = node->last; 66 } 67} 68 69static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; 70 71void __init prio_tree_init(void) 72{ 73 unsigned int i; 74 75 for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) 76 index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; 77 index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; 78} 79 80/* 81 * Maximum heap_index that can be stored in a PST with index_bits bits 82 */ 83static inline unsigned long prio_tree_maxindex(unsigned int bits) 84{ 85 return index_bits_to_maxindex[bits - 1]; 86} 87 88static void prio_set_parent(struct prio_tree_node *parent, 89 struct prio_tree_node *child, bool left) 90{ 91 if (left) 92 parent->left = child; 93 else 94 parent->right = child; 95 96 child->parent = parent; 97} 98 99/* 100 * Extend a priority search tree so that it can store a node with heap_index 101 * max_heap_index. In the worst case, this algorithm takes O((log n)^2). 102 * However, this function is used rarely and the common case performance is 103 * not bad. 104 */ 105static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, 106 struct prio_tree_node *node, unsigned long max_heap_index) 107{ 108 struct prio_tree_node *prev; 109 110 if (max_heap_index > prio_tree_maxindex(root->index_bits)) 111 root->index_bits++; 112 113 prev = node; 114 INIT_PRIO_TREE_NODE(node); 115 116 while (max_heap_index > prio_tree_maxindex(root->index_bits)) { 117 struct prio_tree_node *tmp = root->prio_tree_node; 118 119 root->index_bits++; 120 121 if (prio_tree_empty(root)) 122 continue; 123 124 prio_tree_remove(root, root->prio_tree_node); 125 INIT_PRIO_TREE_NODE(tmp); 126 127 prio_set_parent(prev, tmp, true); 128 prev = tmp; 129 } 130 131 if (!prio_tree_empty(root)) 132 prio_set_parent(prev, root->prio_tree_node, true); 133 134 root->prio_tree_node = node; 135 return node; 136} 137 138/* 139 * Replace a prio_tree_node with a new node and return the old node 140 */ 141struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, 142 struct prio_tree_node *old, struct prio_tree_node *node) 143{ 144 INIT_PRIO_TREE_NODE(node); 145 146 if (prio_tree_root(old)) { 147 BUG_ON(root->prio_tree_node != old); 148 /* 149 * We can reduce root->index_bits here. However, it is complex 150 * and does not help much to improve performance (IMO). 151 */ 152 root->prio_tree_node = node; 153 } else 154 prio_set_parent(old->parent, node, old->parent->left == old); 155 156 if (!prio_tree_left_empty(old)) 157 prio_set_parent(node, old->left, true); 158 159 if (!prio_tree_right_empty(old)) 160 prio_set_parent(node, old->right, false); 161 162 return old; 163} 164 165/* 166 * Insert a prio_tree_node @node into a radix priority search tree @root. The 167 * algorithm typically takes O(log n) time where 'log n' is the number of bits 168 * required to represent the maximum heap_index. In the worst case, the algo 169 * can take O((log n)^2) - check prio_tree_expand. 170 * 171 * If a prior node with same radix_index and heap_index is already found in 172 * the tree, then returns the address of the prior node. Otherwise, inserts 173 * @node into the tree and returns @node. 174 */ 175struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, 176 struct prio_tree_node *node) 177{ 178 struct prio_tree_node *cur, *res = node; 179 unsigned long radix_index, heap_index; 180 unsigned long r_index, h_index, index, mask; 181 int size_flag = 0; 182 183 get_index(root, node, &radix_index, &heap_index); 184 185 if (prio_tree_empty(root) || 186 heap_index > prio_tree_maxindex(root->index_bits)) 187 return prio_tree_expand(root, node, heap_index); 188 189 cur = root->prio_tree_node; 190 mask = 1UL << (root->index_bits - 1); 191 192 while (mask) { 193 get_index(root, cur, &r_index, &h_index); 194 195 if (r_index == radix_index && h_index == heap_index) 196 return cur; 197 198 if (h_index < heap_index || 199 (h_index == heap_index && r_index > radix_index)) { 200 struct prio_tree_node *tmp = node; 201 node = prio_tree_replace(root, cur, node); 202 cur = tmp; 203 /* swap indices */ 204 index = r_index; 205 r_index = radix_index; 206 radix_index = index; 207 index = h_index; 208 h_index = heap_index; 209 heap_index = index; 210 } 211 212 if (size_flag) 213 index = heap_index - radix_index; 214 else 215 index = radix_index; 216 217 if (index & mask) { 218 if (prio_tree_right_empty(cur)) { 219 INIT_PRIO_TREE_NODE(node); 220 prio_set_parent(cur, node, false); 221 return res; 222 } else 223 cur = cur->right; 224 } else { 225 if (prio_tree_left_empty(cur)) { 226 INIT_PRIO_TREE_NODE(node); 227 prio_set_parent(cur, node, true); 228 return res; 229 } else 230 cur = cur->left; 231 } 232 233 mask >>= 1; 234 235 if (!mask) { 236 mask = 1UL << (BITS_PER_LONG - 1); 237 size_flag = 1; 238 } 239 } 240 /* Should not reach here */ 241 BUG(); 242 return NULL; 243} 244 245/* 246 * Remove a prio_tree_node @node from a radix priority search tree @root. The 247 * algorithm takes O(log n) time where 'log n' is the number of bits required 248 * to represent the maximum heap_index. 249 */ 250void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) 251{ 252 struct prio_tree_node *cur; 253 unsigned long r_index, h_index_right, h_index_left; 254 255 cur = node; 256 257 while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { 258 if (!prio_tree_left_empty(cur)) 259 get_index(root, cur->left, &r_index, &h_index_left); 260 else { 261 cur = cur->right; 262 continue; 263 } 264 265 if (!prio_tree_right_empty(cur)) 266 get_index(root, cur->right, &r_index, &h_index_right); 267 else { 268 cur = cur->left; 269 continue; 270 } 271 272 /* both h_index_left and h_index_right cannot be 0 */ 273 if (h_index_left >= h_index_right) 274 cur = cur->left; 275 else 276 cur = cur->right; 277 } 278 279 if (prio_tree_root(cur)) { 280 BUG_ON(root->prio_tree_node != cur); 281 __INIT_PRIO_TREE_ROOT(root, root->raw); 282 return; 283 } 284 285 if (cur->parent->right == cur) 286 cur->parent->right = cur->parent; 287 else 288 cur->parent->left = cur->parent; 289 290 while (cur != node) 291 cur = prio_tree_replace(root, cur->parent, cur); 292} 293 294static void iter_walk_down(struct prio_tree_iter *iter) 295{ 296 iter->mask >>= 1; 297 if (iter->mask) { 298 if (iter->size_level) 299 iter->size_level++; 300 return; 301 } 302 303 if (iter->size_level) { 304 BUG_ON(!prio_tree_left_empty(iter->cur)); 305 BUG_ON(!prio_tree_right_empty(iter->cur)); 306 iter->size_level++; 307 iter->mask = ULONG_MAX; 308 } else { 309 iter->size_level = 1; 310 iter->mask = 1UL << (BITS_PER_LONG - 1); 311 } 312} 313 314static void iter_walk_up(struct prio_tree_iter *iter) 315{ 316 if (iter->mask == ULONG_MAX) 317 iter->mask = 1UL; 318 else if (iter->size_level == 1) 319 iter->mask = 1UL; 320 else 321 iter->mask <<= 1; 322 if (iter->size_level) 323 iter->size_level--; 324 if (!iter->size_level && (iter->value & iter->mask)) 325 iter->value ^= iter->mask; 326} 327 328/* 329 * Following functions help to enumerate all prio_tree_nodes in the tree that 330 * overlap with the input interval X [radix_index, heap_index]. The enumeration 331 * takes O(log n + m) time where 'log n' is the height of the tree (which is 332 * proportional to # of bits required to represent the maximum heap_index) and 333 * 'm' is the number of prio_tree_nodes that overlap the interval X. 334 */ 335 336static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, 337 unsigned long *r_index, unsigned long *h_index) 338{ 339 if (prio_tree_left_empty(iter->cur)) 340 return NULL; 341 342 get_index(iter->root, iter->cur->left, r_index, h_index); 343 344 if (iter->r_index <= *h_index) { 345 iter->cur = iter->cur->left; 346 iter_walk_down(iter); 347 return iter->cur; 348 } 349 350 return NULL; 351} 352 353static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, 354 unsigned long *r_index, unsigned long *h_index) 355{ 356 unsigned long value; 357 358 if (prio_tree_right_empty(iter->cur)) 359 return NULL; 360 361 if (iter->size_level) 362 value = iter->value; 363 else 364 value = iter->value | iter->mask; 365 366 if (iter->h_index < value) 367 return NULL; 368 369 get_index(iter->root, iter->cur->right, r_index, h_index); 370 371 if (iter->r_index <= *h_index) { 372 iter->cur = iter->cur->right; 373 iter_walk_down(iter); 374 return iter->cur; 375 } 376 377 return NULL; 378} 379 380static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) 381{ 382 iter->cur = iter->cur->parent; 383 iter_walk_up(iter); 384 return iter->cur; 385} 386 387static inline int overlap(struct prio_tree_iter *iter, 388 unsigned long r_index, unsigned long h_index) 389{ 390 return iter->h_index >= r_index && iter->r_index <= h_index; 391} 392 393/* 394 * prio_tree_first: 395 * 396 * Get the first prio_tree_node that overlaps with the interval [radix_index, 397 * heap_index]. Note that always radix_index <= heap_index. We do a pre-order 398 * traversal of the tree. 399 */ 400static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) 401{ 402 struct prio_tree_root *root; 403 unsigned long r_index, h_index; 404 405 INIT_PRIO_TREE_ITER(iter); 406 407 root = iter->root; 408 if (prio_tree_empty(root)) 409 return NULL; 410 411 get_index(root, root->prio_tree_node, &r_index, &h_index); 412 413 if (iter->r_index > h_index) 414 return NULL; 415 416 iter->mask = 1UL << (root->index_bits - 1); 417 iter->cur = root->prio_tree_node; 418 419 while (1) { 420 if (overlap(iter, r_index, h_index)) 421 return iter->cur; 422 423 if (prio_tree_left(iter, &r_index, &h_index)) 424 continue; 425 426 if (prio_tree_right(iter, &r_index, &h_index)) 427 continue; 428 429 break; 430 } 431 return NULL; 432} 433 434/* 435 * prio_tree_next: 436 * 437 * Get the next prio_tree_node that overlaps with the input interval in iter 438 */ 439struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) 440{ 441 unsigned long r_index, h_index; 442 443 if (iter->cur == NULL) 444 return prio_tree_first(iter); 445 446repeat: 447 while (prio_tree_left(iter, &r_index, &h_index)) 448 if (overlap(iter, r_index, h_index)) 449 return iter->cur; 450 451 while (!prio_tree_right(iter, &r_index, &h_index)) { 452 while (!prio_tree_root(iter->cur) && 453 iter->cur->parent->right == iter->cur) 454 prio_tree_parent(iter); 455 456 if (prio_tree_root(iter->cur)) 457 return NULL; 458 459 prio_tree_parent(iter); 460 } 461 462 if (overlap(iter, r_index, h_index)) 463 return iter->cur; 464 465 goto repeat; 466}