at v3.4 9.4 kB view raw
1#ifndef _LINUX_SLUB_DEF_H 2#define _LINUX_SLUB_DEF_H 3 4/* 5 * SLUB : A Slab allocator without object queues. 6 * 7 * (C) 2007 SGI, Christoph Lameter 8 */ 9#include <linux/types.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/workqueue.h> 13#include <linux/kobject.h> 14 15#include <linux/kmemleak.h> 16 17enum stat_item { 18 ALLOC_FASTPATH, /* Allocation from cpu slab */ 19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 20 FREE_FASTPATH, /* Free to cpu slub */ 21 FREE_SLOWPATH, /* Freeing not to cpu slab */ 22 FREE_FROZEN, /* Freeing to frozen slab */ 23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 29 FREE_SLAB, /* Slab freed to the page allocator */ 30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 36 DEACTIVATE_BYPASS, /* Implicit deactivation */ 37 ORDER_FALLBACK, /* Number of times fallback was necessary */ 38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ 39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */ 40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 41 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 42 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 43 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 44 NR_SLUB_STAT_ITEMS }; 45 46struct kmem_cache_cpu { 47 void **freelist; /* Pointer to next available object */ 48 unsigned long tid; /* Globally unique transaction id */ 49 struct page *page; /* The slab from which we are allocating */ 50 struct page *partial; /* Partially allocated frozen slabs */ 51 int node; /* The node of the page (or -1 for debug) */ 52#ifdef CONFIG_SLUB_STATS 53 unsigned stat[NR_SLUB_STAT_ITEMS]; 54#endif 55}; 56 57struct kmem_cache_node { 58 spinlock_t list_lock; /* Protect partial list and nr_partial */ 59 unsigned long nr_partial; 60 struct list_head partial; 61#ifdef CONFIG_SLUB_DEBUG 62 atomic_long_t nr_slabs; 63 atomic_long_t total_objects; 64 struct list_head full; 65#endif 66}; 67 68/* 69 * Word size structure that can be atomically updated or read and that 70 * contains both the order and the number of objects that a slab of the 71 * given order would contain. 72 */ 73struct kmem_cache_order_objects { 74 unsigned long x; 75}; 76 77/* 78 * Slab cache management. 79 */ 80struct kmem_cache { 81 struct kmem_cache_cpu __percpu *cpu_slab; 82 /* Used for retriving partial slabs etc */ 83 unsigned long flags; 84 unsigned long min_partial; 85 int size; /* The size of an object including meta data */ 86 int objsize; /* The size of an object without meta data */ 87 int offset; /* Free pointer offset. */ 88 int cpu_partial; /* Number of per cpu partial objects to keep around */ 89 struct kmem_cache_order_objects oo; 90 91 /* Allocation and freeing of slabs */ 92 struct kmem_cache_order_objects max; 93 struct kmem_cache_order_objects min; 94 gfp_t allocflags; /* gfp flags to use on each alloc */ 95 int refcount; /* Refcount for slab cache destroy */ 96 void (*ctor)(void *); 97 int inuse; /* Offset to metadata */ 98 int align; /* Alignment */ 99 int reserved; /* Reserved bytes at the end of slabs */ 100 const char *name; /* Name (only for display!) */ 101 struct list_head list; /* List of slab caches */ 102#ifdef CONFIG_SYSFS 103 struct kobject kobj; /* For sysfs */ 104#endif 105 106#ifdef CONFIG_NUMA 107 /* 108 * Defragmentation by allocating from a remote node. 109 */ 110 int remote_node_defrag_ratio; 111#endif 112 struct kmem_cache_node *node[MAX_NUMNODES]; 113}; 114 115/* 116 * Kmalloc subsystem. 117 */ 118#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 119#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 120#else 121#define KMALLOC_MIN_SIZE 8 122#endif 123 124#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 125 126/* 127 * Maximum kmalloc object size handled by SLUB. Larger object allocations 128 * are passed through to the page allocator. The page allocator "fastpath" 129 * is relatively slow so we need this value sufficiently high so that 130 * performance critical objects are allocated through the SLUB fastpath. 131 * 132 * This should be dropped to PAGE_SIZE / 2 once the page allocator 133 * "fastpath" becomes competitive with the slab allocator fastpaths. 134 */ 135#define SLUB_MAX_SIZE (2 * PAGE_SIZE) 136 137#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2) 138 139#ifdef CONFIG_ZONE_DMA 140#define SLUB_DMA __GFP_DMA 141#else 142/* Disable DMA functionality */ 143#define SLUB_DMA (__force gfp_t)0 144#endif 145 146/* 147 * We keep the general caches in an array of slab caches that are used for 148 * 2^x bytes of allocations. 149 */ 150extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 151 152/* 153 * Sorry that the following has to be that ugly but some versions of GCC 154 * have trouble with constant propagation and loops. 155 */ 156static __always_inline int kmalloc_index(size_t size) 157{ 158 if (!size) 159 return 0; 160 161 if (size <= KMALLOC_MIN_SIZE) 162 return KMALLOC_SHIFT_LOW; 163 164 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 165 return 1; 166 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 167 return 2; 168 if (size <= 8) return 3; 169 if (size <= 16) return 4; 170 if (size <= 32) return 5; 171 if (size <= 64) return 6; 172 if (size <= 128) return 7; 173 if (size <= 256) return 8; 174 if (size <= 512) return 9; 175 if (size <= 1024) return 10; 176 if (size <= 2 * 1024) return 11; 177 if (size <= 4 * 1024) return 12; 178/* 179 * The following is only needed to support architectures with a larger page 180 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page 181 * size we would have to go up to 128k. 182 */ 183 if (size <= 8 * 1024) return 13; 184 if (size <= 16 * 1024) return 14; 185 if (size <= 32 * 1024) return 15; 186 if (size <= 64 * 1024) return 16; 187 if (size <= 128 * 1024) return 17; 188 if (size <= 256 * 1024) return 18; 189 if (size <= 512 * 1024) return 19; 190 if (size <= 1024 * 1024) return 20; 191 if (size <= 2 * 1024 * 1024) return 21; 192 BUG(); 193 return -1; /* Will never be reached */ 194 195/* 196 * What we really wanted to do and cannot do because of compiler issues is: 197 * int i; 198 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) 199 * if (size <= (1 << i)) 200 * return i; 201 */ 202} 203 204/* 205 * Find the slab cache for a given combination of allocation flags and size. 206 * 207 * This ought to end up with a global pointer to the right cache 208 * in kmalloc_caches. 209 */ 210static __always_inline struct kmem_cache *kmalloc_slab(size_t size) 211{ 212 int index = kmalloc_index(size); 213 214 if (index == 0) 215 return NULL; 216 217 return kmalloc_caches[index]; 218} 219 220void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 221void *__kmalloc(size_t size, gfp_t flags); 222 223static __always_inline void * 224kmalloc_order(size_t size, gfp_t flags, unsigned int order) 225{ 226 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order); 227 kmemleak_alloc(ret, size, 1, flags); 228 return ret; 229} 230 231/** 232 * Calling this on allocated memory will check that the memory 233 * is expected to be in use, and print warnings if not. 234 */ 235#ifdef CONFIG_SLUB_DEBUG 236extern bool verify_mem_not_deleted(const void *x); 237#else 238static inline bool verify_mem_not_deleted(const void *x) 239{ 240 return true; 241} 242#endif 243 244#ifdef CONFIG_TRACING 245extern void * 246kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size); 247extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 248#else 249static __always_inline void * 250kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 251{ 252 return kmem_cache_alloc(s, gfpflags); 253} 254 255static __always_inline void * 256kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 257{ 258 return kmalloc_order(size, flags, order); 259} 260#endif 261 262static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 263{ 264 unsigned int order = get_order(size); 265 return kmalloc_order_trace(size, flags, order); 266} 267 268static __always_inline void *kmalloc(size_t size, gfp_t flags) 269{ 270 if (__builtin_constant_p(size)) { 271 if (size > SLUB_MAX_SIZE) 272 return kmalloc_large(size, flags); 273 274 if (!(flags & SLUB_DMA)) { 275 struct kmem_cache *s = kmalloc_slab(size); 276 277 if (!s) 278 return ZERO_SIZE_PTR; 279 280 return kmem_cache_alloc_trace(s, flags, size); 281 } 282 } 283 return __kmalloc(size, flags); 284} 285 286#ifdef CONFIG_NUMA 287void *__kmalloc_node(size_t size, gfp_t flags, int node); 288void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 289 290#ifdef CONFIG_TRACING 291extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 292 gfp_t gfpflags, 293 int node, size_t size); 294#else 295static __always_inline void * 296kmem_cache_alloc_node_trace(struct kmem_cache *s, 297 gfp_t gfpflags, 298 int node, size_t size) 299{ 300 return kmem_cache_alloc_node(s, gfpflags, node); 301} 302#endif 303 304static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 305{ 306 if (__builtin_constant_p(size) && 307 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) { 308 struct kmem_cache *s = kmalloc_slab(size); 309 310 if (!s) 311 return ZERO_SIZE_PTR; 312 313 return kmem_cache_alloc_node_trace(s, flags, node, size); 314 } 315 return __kmalloc_node(size, flags, node); 316} 317#endif 318 319#endif /* _LINUX_SLUB_DEF_H */