at v3.4 72 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23 24#include <linux/atomic.h> 25#include <asm/types.h> 26#include <linux/spinlock.h> 27#include <linux/net.h> 28#include <linux/textsearch.h> 29#include <net/checksum.h> 30#include <linux/rcupdate.h> 31#include <linux/dmaengine.h> 32#include <linux/hrtimer.h> 33#include <linux/dma-mapping.h> 34#include <linux/netdev_features.h> 35 36/* Don't change this without changing skb_csum_unnecessary! */ 37#define CHECKSUM_NONE 0 38#define CHECKSUM_UNNECESSARY 1 39#define CHECKSUM_COMPLETE 2 40#define CHECKSUM_PARTIAL 3 41 42#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 43 ~(SMP_CACHE_BYTES - 1)) 44#define SKB_WITH_OVERHEAD(X) \ 45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 46#define SKB_MAX_ORDER(X, ORDER) \ 47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 48#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 49#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 50 51/* return minimum truesize of one skb containing X bytes of data */ 52#define SKB_TRUESIZE(X) ((X) + \ 53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 55 56/* A. Checksumming of received packets by device. 57 * 58 * NONE: device failed to checksum this packet. 59 * skb->csum is undefined. 60 * 61 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 62 * skb->csum is undefined. 63 * It is bad option, but, unfortunately, many of vendors do this. 64 * Apparently with secret goal to sell you new device, when you 65 * will add new protocol to your host. F.e. IPv6. 8) 66 * 67 * COMPLETE: the most generic way. Device supplied checksum of _all_ 68 * the packet as seen by netif_rx in skb->csum. 69 * NOTE: Even if device supports only some protocols, but 70 * is able to produce some skb->csum, it MUST use COMPLETE, 71 * not UNNECESSARY. 72 * 73 * PARTIAL: identical to the case for output below. This may occur 74 * on a packet received directly from another Linux OS, e.g., 75 * a virtualised Linux kernel on the same host. The packet can 76 * be treated in the same way as UNNECESSARY except that on 77 * output (i.e., forwarding) the checksum must be filled in 78 * by the OS or the hardware. 79 * 80 * B. Checksumming on output. 81 * 82 * NONE: skb is checksummed by protocol or csum is not required. 83 * 84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 85 * from skb->csum_start to the end and to record the checksum 86 * at skb->csum_start + skb->csum_offset. 87 * 88 * Device must show its capabilities in dev->features, set 89 * at device setup time. 90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 91 * everything. 92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 93 * TCP/UDP over IPv4. Sigh. Vendors like this 94 * way by an unknown reason. Though, see comment above 95 * about CHECKSUM_UNNECESSARY. 8) 96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 97 * 98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 99 * that do not want net to perform the checksum calculation should use 100 * this flag in their outgoing skbs. 101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 102 * offload. Correspondingly, the FCoE protocol driver 103 * stack should use CHECKSUM_UNNECESSARY. 104 * 105 * Any questions? No questions, good. --ANK 106 */ 107 108struct net_device; 109struct scatterlist; 110struct pipe_inode_info; 111 112#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 113struct nf_conntrack { 114 atomic_t use; 115}; 116#endif 117 118#ifdef CONFIG_BRIDGE_NETFILTER 119struct nf_bridge_info { 120 atomic_t use; 121 struct net_device *physindev; 122 struct net_device *physoutdev; 123 unsigned int mask; 124 unsigned long data[32 / sizeof(unsigned long)]; 125}; 126#endif 127 128struct sk_buff_head { 129 /* These two members must be first. */ 130 struct sk_buff *next; 131 struct sk_buff *prev; 132 133 __u32 qlen; 134 spinlock_t lock; 135}; 136 137struct sk_buff; 138 139/* To allow 64K frame to be packed as single skb without frag_list we 140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 141 * buffers which do not start on a page boundary. 142 * 143 * Since GRO uses frags we allocate at least 16 regardless of page 144 * size. 145 */ 146#if (65536/PAGE_SIZE + 1) < 16 147#define MAX_SKB_FRAGS 16UL 148#else 149#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 150#endif 151 152typedef struct skb_frag_struct skb_frag_t; 153 154struct skb_frag_struct { 155 struct { 156 struct page *p; 157 } page; 158#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 159 __u32 page_offset; 160 __u32 size; 161#else 162 __u16 page_offset; 163 __u16 size; 164#endif 165}; 166 167static inline unsigned int skb_frag_size(const skb_frag_t *frag) 168{ 169 return frag->size; 170} 171 172static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 173{ 174 frag->size = size; 175} 176 177static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 178{ 179 frag->size += delta; 180} 181 182static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 183{ 184 frag->size -= delta; 185} 186 187#define HAVE_HW_TIME_STAMP 188 189/** 190 * struct skb_shared_hwtstamps - hardware time stamps 191 * @hwtstamp: hardware time stamp transformed into duration 192 * since arbitrary point in time 193 * @syststamp: hwtstamp transformed to system time base 194 * 195 * Software time stamps generated by ktime_get_real() are stored in 196 * skb->tstamp. The relation between the different kinds of time 197 * stamps is as follows: 198 * 199 * syststamp and tstamp can be compared against each other in 200 * arbitrary combinations. The accuracy of a 201 * syststamp/tstamp/"syststamp from other device" comparison is 202 * limited by the accuracy of the transformation into system time 203 * base. This depends on the device driver and its underlying 204 * hardware. 205 * 206 * hwtstamps can only be compared against other hwtstamps from 207 * the same device. 208 * 209 * This structure is attached to packets as part of the 210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 211 */ 212struct skb_shared_hwtstamps { 213 ktime_t hwtstamp; 214 ktime_t syststamp; 215}; 216 217/* Definitions for tx_flags in struct skb_shared_info */ 218enum { 219 /* generate hardware time stamp */ 220 SKBTX_HW_TSTAMP = 1 << 0, 221 222 /* generate software time stamp */ 223 SKBTX_SW_TSTAMP = 1 << 1, 224 225 /* device driver is going to provide hardware time stamp */ 226 SKBTX_IN_PROGRESS = 1 << 2, 227 228 /* ensure the originating sk reference is available on driver level */ 229 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 230 231 /* device driver supports TX zero-copy buffers */ 232 SKBTX_DEV_ZEROCOPY = 1 << 4, 233 234 /* generate wifi status information (where possible) */ 235 SKBTX_WIFI_STATUS = 1 << 5, 236}; 237 238/* 239 * The callback notifies userspace to release buffers when skb DMA is done in 240 * lower device, the skb last reference should be 0 when calling this. 241 * The ctx field is used to track device context. 242 * The desc field is used to track userspace buffer index. 243 */ 244struct ubuf_info { 245 void (*callback)(struct ubuf_info *); 246 void *ctx; 247 unsigned long desc; 248}; 249 250/* This data is invariant across clones and lives at 251 * the end of the header data, ie. at skb->end. 252 */ 253struct skb_shared_info { 254 unsigned char nr_frags; 255 __u8 tx_flags; 256 unsigned short gso_size; 257 /* Warning: this field is not always filled in (UFO)! */ 258 unsigned short gso_segs; 259 unsigned short gso_type; 260 struct sk_buff *frag_list; 261 struct skb_shared_hwtstamps hwtstamps; 262 __be32 ip6_frag_id; 263 264 /* 265 * Warning : all fields before dataref are cleared in __alloc_skb() 266 */ 267 atomic_t dataref; 268 269 /* Intermediate layers must ensure that destructor_arg 270 * remains valid until skb destructor */ 271 void * destructor_arg; 272 273 /* must be last field, see pskb_expand_head() */ 274 skb_frag_t frags[MAX_SKB_FRAGS]; 275}; 276 277/* We divide dataref into two halves. The higher 16 bits hold references 278 * to the payload part of skb->data. The lower 16 bits hold references to 279 * the entire skb->data. A clone of a headerless skb holds the length of 280 * the header in skb->hdr_len. 281 * 282 * All users must obey the rule that the skb->data reference count must be 283 * greater than or equal to the payload reference count. 284 * 285 * Holding a reference to the payload part means that the user does not 286 * care about modifications to the header part of skb->data. 287 */ 288#define SKB_DATAREF_SHIFT 16 289#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 290 291 292enum { 293 SKB_FCLONE_UNAVAILABLE, 294 SKB_FCLONE_ORIG, 295 SKB_FCLONE_CLONE, 296}; 297 298enum { 299 SKB_GSO_TCPV4 = 1 << 0, 300 SKB_GSO_UDP = 1 << 1, 301 302 /* This indicates the skb is from an untrusted source. */ 303 SKB_GSO_DODGY = 1 << 2, 304 305 /* This indicates the tcp segment has CWR set. */ 306 SKB_GSO_TCP_ECN = 1 << 3, 307 308 SKB_GSO_TCPV6 = 1 << 4, 309 310 SKB_GSO_FCOE = 1 << 5, 311}; 312 313#if BITS_PER_LONG > 32 314#define NET_SKBUFF_DATA_USES_OFFSET 1 315#endif 316 317#ifdef NET_SKBUFF_DATA_USES_OFFSET 318typedef unsigned int sk_buff_data_t; 319#else 320typedef unsigned char *sk_buff_data_t; 321#endif 322 323#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 324 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 325#define NET_SKBUFF_NF_DEFRAG_NEEDED 1 326#endif 327 328/** 329 * struct sk_buff - socket buffer 330 * @next: Next buffer in list 331 * @prev: Previous buffer in list 332 * @tstamp: Time we arrived 333 * @sk: Socket we are owned by 334 * @dev: Device we arrived on/are leaving by 335 * @cb: Control buffer. Free for use by every layer. Put private vars here 336 * @_skb_refdst: destination entry (with norefcount bit) 337 * @sp: the security path, used for xfrm 338 * @len: Length of actual data 339 * @data_len: Data length 340 * @mac_len: Length of link layer header 341 * @hdr_len: writable header length of cloned skb 342 * @csum: Checksum (must include start/offset pair) 343 * @csum_start: Offset from skb->head where checksumming should start 344 * @csum_offset: Offset from csum_start where checksum should be stored 345 * @priority: Packet queueing priority 346 * @local_df: allow local fragmentation 347 * @cloned: Head may be cloned (check refcnt to be sure) 348 * @ip_summed: Driver fed us an IP checksum 349 * @nohdr: Payload reference only, must not modify header 350 * @nfctinfo: Relationship of this skb to the connection 351 * @pkt_type: Packet class 352 * @fclone: skbuff clone status 353 * @ipvs_property: skbuff is owned by ipvs 354 * @peeked: this packet has been seen already, so stats have been 355 * done for it, don't do them again 356 * @nf_trace: netfilter packet trace flag 357 * @protocol: Packet protocol from driver 358 * @destructor: Destruct function 359 * @nfct: Associated connection, if any 360 * @nfct_reasm: netfilter conntrack re-assembly pointer 361 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 362 * @skb_iif: ifindex of device we arrived on 363 * @tc_index: Traffic control index 364 * @tc_verd: traffic control verdict 365 * @rxhash: the packet hash computed on receive 366 * @queue_mapping: Queue mapping for multiqueue devices 367 * @ndisc_nodetype: router type (from link layer) 368 * @ooo_okay: allow the mapping of a socket to a queue to be changed 369 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 370 * ports. 371 * @wifi_acked_valid: wifi_acked was set 372 * @wifi_acked: whether frame was acked on wifi or not 373 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 374 * @dma_cookie: a cookie to one of several possible DMA operations 375 * done by skb DMA functions 376 * @secmark: security marking 377 * @mark: Generic packet mark 378 * @dropcount: total number of sk_receive_queue overflows 379 * @vlan_tci: vlan tag control information 380 * @transport_header: Transport layer header 381 * @network_header: Network layer header 382 * @mac_header: Link layer header 383 * @tail: Tail pointer 384 * @end: End pointer 385 * @head: Head of buffer 386 * @data: Data head pointer 387 * @truesize: Buffer size 388 * @users: User count - see {datagram,tcp}.c 389 */ 390 391struct sk_buff { 392 /* These two members must be first. */ 393 struct sk_buff *next; 394 struct sk_buff *prev; 395 396 ktime_t tstamp; 397 398 struct sock *sk; 399 struct net_device *dev; 400 401 /* 402 * This is the control buffer. It is free to use for every 403 * layer. Please put your private variables there. If you 404 * want to keep them across layers you have to do a skb_clone() 405 * first. This is owned by whoever has the skb queued ATM. 406 */ 407 char cb[48] __aligned(8); 408 409 unsigned long _skb_refdst; 410#ifdef CONFIG_XFRM 411 struct sec_path *sp; 412#endif 413 unsigned int len, 414 data_len; 415 __u16 mac_len, 416 hdr_len; 417 union { 418 __wsum csum; 419 struct { 420 __u16 csum_start; 421 __u16 csum_offset; 422 }; 423 }; 424 __u32 priority; 425 kmemcheck_bitfield_begin(flags1); 426 __u8 local_df:1, 427 cloned:1, 428 ip_summed:2, 429 nohdr:1, 430 nfctinfo:3; 431 __u8 pkt_type:3, 432 fclone:2, 433 ipvs_property:1, 434 peeked:1, 435 nf_trace:1; 436 kmemcheck_bitfield_end(flags1); 437 __be16 protocol; 438 439 void (*destructor)(struct sk_buff *skb); 440#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 441 struct nf_conntrack *nfct; 442#endif 443#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 444 struct sk_buff *nfct_reasm; 445#endif 446#ifdef CONFIG_BRIDGE_NETFILTER 447 struct nf_bridge_info *nf_bridge; 448#endif 449 450 int skb_iif; 451 452 __u32 rxhash; 453 454 __u16 vlan_tci; 455 456#ifdef CONFIG_NET_SCHED 457 __u16 tc_index; /* traffic control index */ 458#ifdef CONFIG_NET_CLS_ACT 459 __u16 tc_verd; /* traffic control verdict */ 460#endif 461#endif 462 463 __u16 queue_mapping; 464 kmemcheck_bitfield_begin(flags2); 465#ifdef CONFIG_IPV6_NDISC_NODETYPE 466 __u8 ndisc_nodetype:2; 467#endif 468 __u8 ooo_okay:1; 469 __u8 l4_rxhash:1; 470 __u8 wifi_acked_valid:1; 471 __u8 wifi_acked:1; 472 __u8 no_fcs:1; 473 /* 9/11 bit hole (depending on ndisc_nodetype presence) */ 474 kmemcheck_bitfield_end(flags2); 475 476#ifdef CONFIG_NET_DMA 477 dma_cookie_t dma_cookie; 478#endif 479#ifdef CONFIG_NETWORK_SECMARK 480 __u32 secmark; 481#endif 482 union { 483 __u32 mark; 484 __u32 dropcount; 485 __u32 avail_size; 486 }; 487 488 sk_buff_data_t transport_header; 489 sk_buff_data_t network_header; 490 sk_buff_data_t mac_header; 491 /* These elements must be at the end, see alloc_skb() for details. */ 492 sk_buff_data_t tail; 493 sk_buff_data_t end; 494 unsigned char *head, 495 *data; 496 unsigned int truesize; 497 atomic_t users; 498}; 499 500#ifdef __KERNEL__ 501/* 502 * Handling routines are only of interest to the kernel 503 */ 504#include <linux/slab.h> 505 506 507/* 508 * skb might have a dst pointer attached, refcounted or not. 509 * _skb_refdst low order bit is set if refcount was _not_ taken 510 */ 511#define SKB_DST_NOREF 1UL 512#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 513 514/** 515 * skb_dst - returns skb dst_entry 516 * @skb: buffer 517 * 518 * Returns skb dst_entry, regardless of reference taken or not. 519 */ 520static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 521{ 522 /* If refdst was not refcounted, check we still are in a 523 * rcu_read_lock section 524 */ 525 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 526 !rcu_read_lock_held() && 527 !rcu_read_lock_bh_held()); 528 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 529} 530 531/** 532 * skb_dst_set - sets skb dst 533 * @skb: buffer 534 * @dst: dst entry 535 * 536 * Sets skb dst, assuming a reference was taken on dst and should 537 * be released by skb_dst_drop() 538 */ 539static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 540{ 541 skb->_skb_refdst = (unsigned long)dst; 542} 543 544extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 545 546/** 547 * skb_dst_is_noref - Test if skb dst isn't refcounted 548 * @skb: buffer 549 */ 550static inline bool skb_dst_is_noref(const struct sk_buff *skb) 551{ 552 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 553} 554 555static inline struct rtable *skb_rtable(const struct sk_buff *skb) 556{ 557 return (struct rtable *)skb_dst(skb); 558} 559 560extern void kfree_skb(struct sk_buff *skb); 561extern void consume_skb(struct sk_buff *skb); 562extern void __kfree_skb(struct sk_buff *skb); 563extern struct sk_buff *__alloc_skb(unsigned int size, 564 gfp_t priority, int fclone, int node); 565extern struct sk_buff *build_skb(void *data); 566static inline struct sk_buff *alloc_skb(unsigned int size, 567 gfp_t priority) 568{ 569 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 570} 571 572static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 573 gfp_t priority) 574{ 575 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 576} 577 578extern void skb_recycle(struct sk_buff *skb); 579extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 580 581extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 582extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 583extern struct sk_buff *skb_clone(struct sk_buff *skb, 584 gfp_t priority); 585extern struct sk_buff *skb_copy(const struct sk_buff *skb, 586 gfp_t priority); 587extern struct sk_buff *__pskb_copy(struct sk_buff *skb, 588 int headroom, gfp_t gfp_mask); 589 590extern int pskb_expand_head(struct sk_buff *skb, 591 int nhead, int ntail, 592 gfp_t gfp_mask); 593extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 594 unsigned int headroom); 595extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 596 int newheadroom, int newtailroom, 597 gfp_t priority); 598extern int skb_to_sgvec(struct sk_buff *skb, 599 struct scatterlist *sg, int offset, 600 int len); 601extern int skb_cow_data(struct sk_buff *skb, int tailbits, 602 struct sk_buff **trailer); 603extern int skb_pad(struct sk_buff *skb, int pad); 604#define dev_kfree_skb(a) consume_skb(a) 605 606extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 607 int getfrag(void *from, char *to, int offset, 608 int len,int odd, struct sk_buff *skb), 609 void *from, int length); 610 611struct skb_seq_state { 612 __u32 lower_offset; 613 __u32 upper_offset; 614 __u32 frag_idx; 615 __u32 stepped_offset; 616 struct sk_buff *root_skb; 617 struct sk_buff *cur_skb; 618 __u8 *frag_data; 619}; 620 621extern void skb_prepare_seq_read(struct sk_buff *skb, 622 unsigned int from, unsigned int to, 623 struct skb_seq_state *st); 624extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 625 struct skb_seq_state *st); 626extern void skb_abort_seq_read(struct skb_seq_state *st); 627 628extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 629 unsigned int to, struct ts_config *config, 630 struct ts_state *state); 631 632extern void __skb_get_rxhash(struct sk_buff *skb); 633static inline __u32 skb_get_rxhash(struct sk_buff *skb) 634{ 635 if (!skb->rxhash) 636 __skb_get_rxhash(skb); 637 638 return skb->rxhash; 639} 640 641#ifdef NET_SKBUFF_DATA_USES_OFFSET 642static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 643{ 644 return skb->head + skb->end; 645} 646#else 647static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 648{ 649 return skb->end; 650} 651#endif 652 653/* Internal */ 654#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 655 656static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 657{ 658 return &skb_shinfo(skb)->hwtstamps; 659} 660 661/** 662 * skb_queue_empty - check if a queue is empty 663 * @list: queue head 664 * 665 * Returns true if the queue is empty, false otherwise. 666 */ 667static inline int skb_queue_empty(const struct sk_buff_head *list) 668{ 669 return list->next == (struct sk_buff *)list; 670} 671 672/** 673 * skb_queue_is_last - check if skb is the last entry in the queue 674 * @list: queue head 675 * @skb: buffer 676 * 677 * Returns true if @skb is the last buffer on the list. 678 */ 679static inline bool skb_queue_is_last(const struct sk_buff_head *list, 680 const struct sk_buff *skb) 681{ 682 return skb->next == (struct sk_buff *)list; 683} 684 685/** 686 * skb_queue_is_first - check if skb is the first entry in the queue 687 * @list: queue head 688 * @skb: buffer 689 * 690 * Returns true if @skb is the first buffer on the list. 691 */ 692static inline bool skb_queue_is_first(const struct sk_buff_head *list, 693 const struct sk_buff *skb) 694{ 695 return skb->prev == (struct sk_buff *)list; 696} 697 698/** 699 * skb_queue_next - return the next packet in the queue 700 * @list: queue head 701 * @skb: current buffer 702 * 703 * Return the next packet in @list after @skb. It is only valid to 704 * call this if skb_queue_is_last() evaluates to false. 705 */ 706static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 707 const struct sk_buff *skb) 708{ 709 /* This BUG_ON may seem severe, but if we just return then we 710 * are going to dereference garbage. 711 */ 712 BUG_ON(skb_queue_is_last(list, skb)); 713 return skb->next; 714} 715 716/** 717 * skb_queue_prev - return the prev packet in the queue 718 * @list: queue head 719 * @skb: current buffer 720 * 721 * Return the prev packet in @list before @skb. It is only valid to 722 * call this if skb_queue_is_first() evaluates to false. 723 */ 724static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 725 const struct sk_buff *skb) 726{ 727 /* This BUG_ON may seem severe, but if we just return then we 728 * are going to dereference garbage. 729 */ 730 BUG_ON(skb_queue_is_first(list, skb)); 731 return skb->prev; 732} 733 734/** 735 * skb_get - reference buffer 736 * @skb: buffer to reference 737 * 738 * Makes another reference to a socket buffer and returns a pointer 739 * to the buffer. 740 */ 741static inline struct sk_buff *skb_get(struct sk_buff *skb) 742{ 743 atomic_inc(&skb->users); 744 return skb; 745} 746 747/* 748 * If users == 1, we are the only owner and are can avoid redundant 749 * atomic change. 750 */ 751 752/** 753 * skb_cloned - is the buffer a clone 754 * @skb: buffer to check 755 * 756 * Returns true if the buffer was generated with skb_clone() and is 757 * one of multiple shared copies of the buffer. Cloned buffers are 758 * shared data so must not be written to under normal circumstances. 759 */ 760static inline int skb_cloned(const struct sk_buff *skb) 761{ 762 return skb->cloned && 763 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 764} 765 766/** 767 * skb_header_cloned - is the header a clone 768 * @skb: buffer to check 769 * 770 * Returns true if modifying the header part of the buffer requires 771 * the data to be copied. 772 */ 773static inline int skb_header_cloned(const struct sk_buff *skb) 774{ 775 int dataref; 776 777 if (!skb->cloned) 778 return 0; 779 780 dataref = atomic_read(&skb_shinfo(skb)->dataref); 781 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 782 return dataref != 1; 783} 784 785/** 786 * skb_header_release - release reference to header 787 * @skb: buffer to operate on 788 * 789 * Drop a reference to the header part of the buffer. This is done 790 * by acquiring a payload reference. You must not read from the header 791 * part of skb->data after this. 792 */ 793static inline void skb_header_release(struct sk_buff *skb) 794{ 795 BUG_ON(skb->nohdr); 796 skb->nohdr = 1; 797 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 798} 799 800/** 801 * skb_shared - is the buffer shared 802 * @skb: buffer to check 803 * 804 * Returns true if more than one person has a reference to this 805 * buffer. 806 */ 807static inline int skb_shared(const struct sk_buff *skb) 808{ 809 return atomic_read(&skb->users) != 1; 810} 811 812/** 813 * skb_share_check - check if buffer is shared and if so clone it 814 * @skb: buffer to check 815 * @pri: priority for memory allocation 816 * 817 * If the buffer is shared the buffer is cloned and the old copy 818 * drops a reference. A new clone with a single reference is returned. 819 * If the buffer is not shared the original buffer is returned. When 820 * being called from interrupt status or with spinlocks held pri must 821 * be GFP_ATOMIC. 822 * 823 * NULL is returned on a memory allocation failure. 824 */ 825static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 826 gfp_t pri) 827{ 828 might_sleep_if(pri & __GFP_WAIT); 829 if (skb_shared(skb)) { 830 struct sk_buff *nskb = skb_clone(skb, pri); 831 kfree_skb(skb); 832 skb = nskb; 833 } 834 return skb; 835} 836 837/* 838 * Copy shared buffers into a new sk_buff. We effectively do COW on 839 * packets to handle cases where we have a local reader and forward 840 * and a couple of other messy ones. The normal one is tcpdumping 841 * a packet thats being forwarded. 842 */ 843 844/** 845 * skb_unshare - make a copy of a shared buffer 846 * @skb: buffer to check 847 * @pri: priority for memory allocation 848 * 849 * If the socket buffer is a clone then this function creates a new 850 * copy of the data, drops a reference count on the old copy and returns 851 * the new copy with the reference count at 1. If the buffer is not a clone 852 * the original buffer is returned. When called with a spinlock held or 853 * from interrupt state @pri must be %GFP_ATOMIC 854 * 855 * %NULL is returned on a memory allocation failure. 856 */ 857static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 858 gfp_t pri) 859{ 860 might_sleep_if(pri & __GFP_WAIT); 861 if (skb_cloned(skb)) { 862 struct sk_buff *nskb = skb_copy(skb, pri); 863 kfree_skb(skb); /* Free our shared copy */ 864 skb = nskb; 865 } 866 return skb; 867} 868 869/** 870 * skb_peek - peek at the head of an &sk_buff_head 871 * @list_: list to peek at 872 * 873 * Peek an &sk_buff. Unlike most other operations you _MUST_ 874 * be careful with this one. A peek leaves the buffer on the 875 * list and someone else may run off with it. You must hold 876 * the appropriate locks or have a private queue to do this. 877 * 878 * Returns %NULL for an empty list or a pointer to the head element. 879 * The reference count is not incremented and the reference is therefore 880 * volatile. Use with caution. 881 */ 882static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 883{ 884 struct sk_buff *list = ((const struct sk_buff *)list_)->next; 885 if (list == (struct sk_buff *)list_) 886 list = NULL; 887 return list; 888} 889 890/** 891 * skb_peek_next - peek skb following the given one from a queue 892 * @skb: skb to start from 893 * @list_: list to peek at 894 * 895 * Returns %NULL when the end of the list is met or a pointer to the 896 * next element. The reference count is not incremented and the 897 * reference is therefore volatile. Use with caution. 898 */ 899static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 900 const struct sk_buff_head *list_) 901{ 902 struct sk_buff *next = skb->next; 903 if (next == (struct sk_buff *)list_) 904 next = NULL; 905 return next; 906} 907 908/** 909 * skb_peek_tail - peek at the tail of an &sk_buff_head 910 * @list_: list to peek at 911 * 912 * Peek an &sk_buff. Unlike most other operations you _MUST_ 913 * be careful with this one. A peek leaves the buffer on the 914 * list and someone else may run off with it. You must hold 915 * the appropriate locks or have a private queue to do this. 916 * 917 * Returns %NULL for an empty list or a pointer to the tail element. 918 * The reference count is not incremented and the reference is therefore 919 * volatile. Use with caution. 920 */ 921static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 922{ 923 struct sk_buff *list = ((const struct sk_buff *)list_)->prev; 924 if (list == (struct sk_buff *)list_) 925 list = NULL; 926 return list; 927} 928 929/** 930 * skb_queue_len - get queue length 931 * @list_: list to measure 932 * 933 * Return the length of an &sk_buff queue. 934 */ 935static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 936{ 937 return list_->qlen; 938} 939 940/** 941 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 942 * @list: queue to initialize 943 * 944 * This initializes only the list and queue length aspects of 945 * an sk_buff_head object. This allows to initialize the list 946 * aspects of an sk_buff_head without reinitializing things like 947 * the spinlock. It can also be used for on-stack sk_buff_head 948 * objects where the spinlock is known to not be used. 949 */ 950static inline void __skb_queue_head_init(struct sk_buff_head *list) 951{ 952 list->prev = list->next = (struct sk_buff *)list; 953 list->qlen = 0; 954} 955 956/* 957 * This function creates a split out lock class for each invocation; 958 * this is needed for now since a whole lot of users of the skb-queue 959 * infrastructure in drivers have different locking usage (in hardirq) 960 * than the networking core (in softirq only). In the long run either the 961 * network layer or drivers should need annotation to consolidate the 962 * main types of usage into 3 classes. 963 */ 964static inline void skb_queue_head_init(struct sk_buff_head *list) 965{ 966 spin_lock_init(&list->lock); 967 __skb_queue_head_init(list); 968} 969 970static inline void skb_queue_head_init_class(struct sk_buff_head *list, 971 struct lock_class_key *class) 972{ 973 skb_queue_head_init(list); 974 lockdep_set_class(&list->lock, class); 975} 976 977/* 978 * Insert an sk_buff on a list. 979 * 980 * The "__skb_xxxx()" functions are the non-atomic ones that 981 * can only be called with interrupts disabled. 982 */ 983extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 984static inline void __skb_insert(struct sk_buff *newsk, 985 struct sk_buff *prev, struct sk_buff *next, 986 struct sk_buff_head *list) 987{ 988 newsk->next = next; 989 newsk->prev = prev; 990 next->prev = prev->next = newsk; 991 list->qlen++; 992} 993 994static inline void __skb_queue_splice(const struct sk_buff_head *list, 995 struct sk_buff *prev, 996 struct sk_buff *next) 997{ 998 struct sk_buff *first = list->next; 999 struct sk_buff *last = list->prev; 1000 1001 first->prev = prev; 1002 prev->next = first; 1003 1004 last->next = next; 1005 next->prev = last; 1006} 1007 1008/** 1009 * skb_queue_splice - join two skb lists, this is designed for stacks 1010 * @list: the new list to add 1011 * @head: the place to add it in the first list 1012 */ 1013static inline void skb_queue_splice(const struct sk_buff_head *list, 1014 struct sk_buff_head *head) 1015{ 1016 if (!skb_queue_empty(list)) { 1017 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1018 head->qlen += list->qlen; 1019 } 1020} 1021 1022/** 1023 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1024 * @list: the new list to add 1025 * @head: the place to add it in the first list 1026 * 1027 * The list at @list is reinitialised 1028 */ 1029static inline void skb_queue_splice_init(struct sk_buff_head *list, 1030 struct sk_buff_head *head) 1031{ 1032 if (!skb_queue_empty(list)) { 1033 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1034 head->qlen += list->qlen; 1035 __skb_queue_head_init(list); 1036 } 1037} 1038 1039/** 1040 * skb_queue_splice_tail - join two skb lists, each list being a queue 1041 * @list: the new list to add 1042 * @head: the place to add it in the first list 1043 */ 1044static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1045 struct sk_buff_head *head) 1046{ 1047 if (!skb_queue_empty(list)) { 1048 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1049 head->qlen += list->qlen; 1050 } 1051} 1052 1053/** 1054 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1055 * @list: the new list to add 1056 * @head: the place to add it in the first list 1057 * 1058 * Each of the lists is a queue. 1059 * The list at @list is reinitialised 1060 */ 1061static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1062 struct sk_buff_head *head) 1063{ 1064 if (!skb_queue_empty(list)) { 1065 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1066 head->qlen += list->qlen; 1067 __skb_queue_head_init(list); 1068 } 1069} 1070 1071/** 1072 * __skb_queue_after - queue a buffer at the list head 1073 * @list: list to use 1074 * @prev: place after this buffer 1075 * @newsk: buffer to queue 1076 * 1077 * Queue a buffer int the middle of a list. This function takes no locks 1078 * and you must therefore hold required locks before calling it. 1079 * 1080 * A buffer cannot be placed on two lists at the same time. 1081 */ 1082static inline void __skb_queue_after(struct sk_buff_head *list, 1083 struct sk_buff *prev, 1084 struct sk_buff *newsk) 1085{ 1086 __skb_insert(newsk, prev, prev->next, list); 1087} 1088 1089extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1090 struct sk_buff_head *list); 1091 1092static inline void __skb_queue_before(struct sk_buff_head *list, 1093 struct sk_buff *next, 1094 struct sk_buff *newsk) 1095{ 1096 __skb_insert(newsk, next->prev, next, list); 1097} 1098 1099/** 1100 * __skb_queue_head - queue a buffer at the list head 1101 * @list: list to use 1102 * @newsk: buffer to queue 1103 * 1104 * Queue a buffer at the start of a list. This function takes no locks 1105 * and you must therefore hold required locks before calling it. 1106 * 1107 * A buffer cannot be placed on two lists at the same time. 1108 */ 1109extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1110static inline void __skb_queue_head(struct sk_buff_head *list, 1111 struct sk_buff *newsk) 1112{ 1113 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1114} 1115 1116/** 1117 * __skb_queue_tail - queue a buffer at the list tail 1118 * @list: list to use 1119 * @newsk: buffer to queue 1120 * 1121 * Queue a buffer at the end of a list. This function takes no locks 1122 * and you must therefore hold required locks before calling it. 1123 * 1124 * A buffer cannot be placed on two lists at the same time. 1125 */ 1126extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1127static inline void __skb_queue_tail(struct sk_buff_head *list, 1128 struct sk_buff *newsk) 1129{ 1130 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1131} 1132 1133/* 1134 * remove sk_buff from list. _Must_ be called atomically, and with 1135 * the list known.. 1136 */ 1137extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1138static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1139{ 1140 struct sk_buff *next, *prev; 1141 1142 list->qlen--; 1143 next = skb->next; 1144 prev = skb->prev; 1145 skb->next = skb->prev = NULL; 1146 next->prev = prev; 1147 prev->next = next; 1148} 1149 1150/** 1151 * __skb_dequeue - remove from the head of the queue 1152 * @list: list to dequeue from 1153 * 1154 * Remove the head of the list. This function does not take any locks 1155 * so must be used with appropriate locks held only. The head item is 1156 * returned or %NULL if the list is empty. 1157 */ 1158extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1159static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1160{ 1161 struct sk_buff *skb = skb_peek(list); 1162 if (skb) 1163 __skb_unlink(skb, list); 1164 return skb; 1165} 1166 1167/** 1168 * __skb_dequeue_tail - remove from the tail of the queue 1169 * @list: list to dequeue from 1170 * 1171 * Remove the tail of the list. This function does not take any locks 1172 * so must be used with appropriate locks held only. The tail item is 1173 * returned or %NULL if the list is empty. 1174 */ 1175extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1176static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1177{ 1178 struct sk_buff *skb = skb_peek_tail(list); 1179 if (skb) 1180 __skb_unlink(skb, list); 1181 return skb; 1182} 1183 1184 1185static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1186{ 1187 return skb->data_len; 1188} 1189 1190static inline unsigned int skb_headlen(const struct sk_buff *skb) 1191{ 1192 return skb->len - skb->data_len; 1193} 1194 1195static inline int skb_pagelen(const struct sk_buff *skb) 1196{ 1197 int i, len = 0; 1198 1199 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1200 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1201 return len + skb_headlen(skb); 1202} 1203 1204/** 1205 * __skb_fill_page_desc - initialise a paged fragment in an skb 1206 * @skb: buffer containing fragment to be initialised 1207 * @i: paged fragment index to initialise 1208 * @page: the page to use for this fragment 1209 * @off: the offset to the data with @page 1210 * @size: the length of the data 1211 * 1212 * Initialises the @i'th fragment of @skb to point to &size bytes at 1213 * offset @off within @page. 1214 * 1215 * Does not take any additional reference on the fragment. 1216 */ 1217static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1218 struct page *page, int off, int size) 1219{ 1220 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1221 1222 frag->page.p = page; 1223 frag->page_offset = off; 1224 skb_frag_size_set(frag, size); 1225} 1226 1227/** 1228 * skb_fill_page_desc - initialise a paged fragment in an skb 1229 * @skb: buffer containing fragment to be initialised 1230 * @i: paged fragment index to initialise 1231 * @page: the page to use for this fragment 1232 * @off: the offset to the data with @page 1233 * @size: the length of the data 1234 * 1235 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1236 * @skb to point to &size bytes at offset @off within @page. In 1237 * addition updates @skb such that @i is the last fragment. 1238 * 1239 * Does not take any additional reference on the fragment. 1240 */ 1241static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1242 struct page *page, int off, int size) 1243{ 1244 __skb_fill_page_desc(skb, i, page, off, size); 1245 skb_shinfo(skb)->nr_frags = i + 1; 1246} 1247 1248extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1249 int off, int size, unsigned int truesize); 1250 1251#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1252#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1253#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1254 1255#ifdef NET_SKBUFF_DATA_USES_OFFSET 1256static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1257{ 1258 return skb->head + skb->tail; 1259} 1260 1261static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1262{ 1263 skb->tail = skb->data - skb->head; 1264} 1265 1266static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1267{ 1268 skb_reset_tail_pointer(skb); 1269 skb->tail += offset; 1270} 1271#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1272static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1273{ 1274 return skb->tail; 1275} 1276 1277static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1278{ 1279 skb->tail = skb->data; 1280} 1281 1282static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1283{ 1284 skb->tail = skb->data + offset; 1285} 1286 1287#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1288 1289/* 1290 * Add data to an sk_buff 1291 */ 1292extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1293static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1294{ 1295 unsigned char *tmp = skb_tail_pointer(skb); 1296 SKB_LINEAR_ASSERT(skb); 1297 skb->tail += len; 1298 skb->len += len; 1299 return tmp; 1300} 1301 1302extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1303static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1304{ 1305 skb->data -= len; 1306 skb->len += len; 1307 return skb->data; 1308} 1309 1310extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1311static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1312{ 1313 skb->len -= len; 1314 BUG_ON(skb->len < skb->data_len); 1315 return skb->data += len; 1316} 1317 1318static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1319{ 1320 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1321} 1322 1323extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1324 1325static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1326{ 1327 if (len > skb_headlen(skb) && 1328 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1329 return NULL; 1330 skb->len -= len; 1331 return skb->data += len; 1332} 1333 1334static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1335{ 1336 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1337} 1338 1339static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1340{ 1341 if (likely(len <= skb_headlen(skb))) 1342 return 1; 1343 if (unlikely(len > skb->len)) 1344 return 0; 1345 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1346} 1347 1348/** 1349 * skb_headroom - bytes at buffer head 1350 * @skb: buffer to check 1351 * 1352 * Return the number of bytes of free space at the head of an &sk_buff. 1353 */ 1354static inline unsigned int skb_headroom(const struct sk_buff *skb) 1355{ 1356 return skb->data - skb->head; 1357} 1358 1359/** 1360 * skb_tailroom - bytes at buffer end 1361 * @skb: buffer to check 1362 * 1363 * Return the number of bytes of free space at the tail of an sk_buff 1364 */ 1365static inline int skb_tailroom(const struct sk_buff *skb) 1366{ 1367 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1368} 1369 1370/** 1371 * skb_availroom - bytes at buffer end 1372 * @skb: buffer to check 1373 * 1374 * Return the number of bytes of free space at the tail of an sk_buff 1375 * allocated by sk_stream_alloc() 1376 */ 1377static inline int skb_availroom(const struct sk_buff *skb) 1378{ 1379 return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len; 1380} 1381 1382/** 1383 * skb_reserve - adjust headroom 1384 * @skb: buffer to alter 1385 * @len: bytes to move 1386 * 1387 * Increase the headroom of an empty &sk_buff by reducing the tail 1388 * room. This is only allowed for an empty buffer. 1389 */ 1390static inline void skb_reserve(struct sk_buff *skb, int len) 1391{ 1392 skb->data += len; 1393 skb->tail += len; 1394} 1395 1396static inline void skb_reset_mac_len(struct sk_buff *skb) 1397{ 1398 skb->mac_len = skb->network_header - skb->mac_header; 1399} 1400 1401#ifdef NET_SKBUFF_DATA_USES_OFFSET 1402static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1403{ 1404 return skb->head + skb->transport_header; 1405} 1406 1407static inline void skb_reset_transport_header(struct sk_buff *skb) 1408{ 1409 skb->transport_header = skb->data - skb->head; 1410} 1411 1412static inline void skb_set_transport_header(struct sk_buff *skb, 1413 const int offset) 1414{ 1415 skb_reset_transport_header(skb); 1416 skb->transport_header += offset; 1417} 1418 1419static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1420{ 1421 return skb->head + skb->network_header; 1422} 1423 1424static inline void skb_reset_network_header(struct sk_buff *skb) 1425{ 1426 skb->network_header = skb->data - skb->head; 1427} 1428 1429static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1430{ 1431 skb_reset_network_header(skb); 1432 skb->network_header += offset; 1433} 1434 1435static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1436{ 1437 return skb->head + skb->mac_header; 1438} 1439 1440static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1441{ 1442 return skb->mac_header != ~0U; 1443} 1444 1445static inline void skb_reset_mac_header(struct sk_buff *skb) 1446{ 1447 skb->mac_header = skb->data - skb->head; 1448} 1449 1450static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1451{ 1452 skb_reset_mac_header(skb); 1453 skb->mac_header += offset; 1454} 1455 1456#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1457 1458static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1459{ 1460 return skb->transport_header; 1461} 1462 1463static inline void skb_reset_transport_header(struct sk_buff *skb) 1464{ 1465 skb->transport_header = skb->data; 1466} 1467 1468static inline void skb_set_transport_header(struct sk_buff *skb, 1469 const int offset) 1470{ 1471 skb->transport_header = skb->data + offset; 1472} 1473 1474static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1475{ 1476 return skb->network_header; 1477} 1478 1479static inline void skb_reset_network_header(struct sk_buff *skb) 1480{ 1481 skb->network_header = skb->data; 1482} 1483 1484static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1485{ 1486 skb->network_header = skb->data + offset; 1487} 1488 1489static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1490{ 1491 return skb->mac_header; 1492} 1493 1494static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1495{ 1496 return skb->mac_header != NULL; 1497} 1498 1499static inline void skb_reset_mac_header(struct sk_buff *skb) 1500{ 1501 skb->mac_header = skb->data; 1502} 1503 1504static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1505{ 1506 skb->mac_header = skb->data + offset; 1507} 1508#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1509 1510static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1511{ 1512 if (skb_mac_header_was_set(skb)) { 1513 const unsigned char *old_mac = skb_mac_header(skb); 1514 1515 skb_set_mac_header(skb, -skb->mac_len); 1516 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1517 } 1518} 1519 1520static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1521{ 1522 return skb->csum_start - skb_headroom(skb); 1523} 1524 1525static inline int skb_transport_offset(const struct sk_buff *skb) 1526{ 1527 return skb_transport_header(skb) - skb->data; 1528} 1529 1530static inline u32 skb_network_header_len(const struct sk_buff *skb) 1531{ 1532 return skb->transport_header - skb->network_header; 1533} 1534 1535static inline int skb_network_offset(const struct sk_buff *skb) 1536{ 1537 return skb_network_header(skb) - skb->data; 1538} 1539 1540static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1541{ 1542 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1543} 1544 1545/* 1546 * CPUs often take a performance hit when accessing unaligned memory 1547 * locations. The actual performance hit varies, it can be small if the 1548 * hardware handles it or large if we have to take an exception and fix it 1549 * in software. 1550 * 1551 * Since an ethernet header is 14 bytes network drivers often end up with 1552 * the IP header at an unaligned offset. The IP header can be aligned by 1553 * shifting the start of the packet by 2 bytes. Drivers should do this 1554 * with: 1555 * 1556 * skb_reserve(skb, NET_IP_ALIGN); 1557 * 1558 * The downside to this alignment of the IP header is that the DMA is now 1559 * unaligned. On some architectures the cost of an unaligned DMA is high 1560 * and this cost outweighs the gains made by aligning the IP header. 1561 * 1562 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1563 * to be overridden. 1564 */ 1565#ifndef NET_IP_ALIGN 1566#define NET_IP_ALIGN 2 1567#endif 1568 1569/* 1570 * The networking layer reserves some headroom in skb data (via 1571 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1572 * the header has to grow. In the default case, if the header has to grow 1573 * 32 bytes or less we avoid the reallocation. 1574 * 1575 * Unfortunately this headroom changes the DMA alignment of the resulting 1576 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1577 * on some architectures. An architecture can override this value, 1578 * perhaps setting it to a cacheline in size (since that will maintain 1579 * cacheline alignment of the DMA). It must be a power of 2. 1580 * 1581 * Various parts of the networking layer expect at least 32 bytes of 1582 * headroom, you should not reduce this. 1583 * 1584 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1585 * to reduce average number of cache lines per packet. 1586 * get_rps_cpus() for example only access one 64 bytes aligned block : 1587 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1588 */ 1589#ifndef NET_SKB_PAD 1590#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1591#endif 1592 1593extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1594 1595static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1596{ 1597 if (unlikely(skb_is_nonlinear(skb))) { 1598 WARN_ON(1); 1599 return; 1600 } 1601 skb->len = len; 1602 skb_set_tail_pointer(skb, len); 1603} 1604 1605extern void skb_trim(struct sk_buff *skb, unsigned int len); 1606 1607static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1608{ 1609 if (skb->data_len) 1610 return ___pskb_trim(skb, len); 1611 __skb_trim(skb, len); 1612 return 0; 1613} 1614 1615static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1616{ 1617 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1618} 1619 1620/** 1621 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1622 * @skb: buffer to alter 1623 * @len: new length 1624 * 1625 * This is identical to pskb_trim except that the caller knows that 1626 * the skb is not cloned so we should never get an error due to out- 1627 * of-memory. 1628 */ 1629static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1630{ 1631 int err = pskb_trim(skb, len); 1632 BUG_ON(err); 1633} 1634 1635/** 1636 * skb_orphan - orphan a buffer 1637 * @skb: buffer to orphan 1638 * 1639 * If a buffer currently has an owner then we call the owner's 1640 * destructor function and make the @skb unowned. The buffer continues 1641 * to exist but is no longer charged to its former owner. 1642 */ 1643static inline void skb_orphan(struct sk_buff *skb) 1644{ 1645 if (skb->destructor) 1646 skb->destructor(skb); 1647 skb->destructor = NULL; 1648 skb->sk = NULL; 1649} 1650 1651/** 1652 * __skb_queue_purge - empty a list 1653 * @list: list to empty 1654 * 1655 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1656 * the list and one reference dropped. This function does not take the 1657 * list lock and the caller must hold the relevant locks to use it. 1658 */ 1659extern void skb_queue_purge(struct sk_buff_head *list); 1660static inline void __skb_queue_purge(struct sk_buff_head *list) 1661{ 1662 struct sk_buff *skb; 1663 while ((skb = __skb_dequeue(list)) != NULL) 1664 kfree_skb(skb); 1665} 1666 1667/** 1668 * __dev_alloc_skb - allocate an skbuff for receiving 1669 * @length: length to allocate 1670 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1671 * 1672 * Allocate a new &sk_buff and assign it a usage count of one. The 1673 * buffer has unspecified headroom built in. Users should allocate 1674 * the headroom they think they need without accounting for the 1675 * built in space. The built in space is used for optimisations. 1676 * 1677 * %NULL is returned if there is no free memory. 1678 */ 1679static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1680 gfp_t gfp_mask) 1681{ 1682 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1683 if (likely(skb)) 1684 skb_reserve(skb, NET_SKB_PAD); 1685 return skb; 1686} 1687 1688extern struct sk_buff *dev_alloc_skb(unsigned int length); 1689 1690extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1691 unsigned int length, gfp_t gfp_mask); 1692 1693/** 1694 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1695 * @dev: network device to receive on 1696 * @length: length to allocate 1697 * 1698 * Allocate a new &sk_buff and assign it a usage count of one. The 1699 * buffer has unspecified headroom built in. Users should allocate 1700 * the headroom they think they need without accounting for the 1701 * built in space. The built in space is used for optimisations. 1702 * 1703 * %NULL is returned if there is no free memory. Although this function 1704 * allocates memory it can be called from an interrupt. 1705 */ 1706static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1707 unsigned int length) 1708{ 1709 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1710} 1711 1712static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1713 unsigned int length, gfp_t gfp) 1714{ 1715 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1716 1717 if (NET_IP_ALIGN && skb) 1718 skb_reserve(skb, NET_IP_ALIGN); 1719 return skb; 1720} 1721 1722static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1723 unsigned int length) 1724{ 1725 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1726} 1727 1728/** 1729 * skb_frag_page - retrieve the page refered to by a paged fragment 1730 * @frag: the paged fragment 1731 * 1732 * Returns the &struct page associated with @frag. 1733 */ 1734static inline struct page *skb_frag_page(const skb_frag_t *frag) 1735{ 1736 return frag->page.p; 1737} 1738 1739/** 1740 * __skb_frag_ref - take an addition reference on a paged fragment. 1741 * @frag: the paged fragment 1742 * 1743 * Takes an additional reference on the paged fragment @frag. 1744 */ 1745static inline void __skb_frag_ref(skb_frag_t *frag) 1746{ 1747 get_page(skb_frag_page(frag)); 1748} 1749 1750/** 1751 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 1752 * @skb: the buffer 1753 * @f: the fragment offset. 1754 * 1755 * Takes an additional reference on the @f'th paged fragment of @skb. 1756 */ 1757static inline void skb_frag_ref(struct sk_buff *skb, int f) 1758{ 1759 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 1760} 1761 1762/** 1763 * __skb_frag_unref - release a reference on a paged fragment. 1764 * @frag: the paged fragment 1765 * 1766 * Releases a reference on the paged fragment @frag. 1767 */ 1768static inline void __skb_frag_unref(skb_frag_t *frag) 1769{ 1770 put_page(skb_frag_page(frag)); 1771} 1772 1773/** 1774 * skb_frag_unref - release a reference on a paged fragment of an skb. 1775 * @skb: the buffer 1776 * @f: the fragment offset 1777 * 1778 * Releases a reference on the @f'th paged fragment of @skb. 1779 */ 1780static inline void skb_frag_unref(struct sk_buff *skb, int f) 1781{ 1782 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 1783} 1784 1785/** 1786 * skb_frag_address - gets the address of the data contained in a paged fragment 1787 * @frag: the paged fragment buffer 1788 * 1789 * Returns the address of the data within @frag. The page must already 1790 * be mapped. 1791 */ 1792static inline void *skb_frag_address(const skb_frag_t *frag) 1793{ 1794 return page_address(skb_frag_page(frag)) + frag->page_offset; 1795} 1796 1797/** 1798 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 1799 * @frag: the paged fragment buffer 1800 * 1801 * Returns the address of the data within @frag. Checks that the page 1802 * is mapped and returns %NULL otherwise. 1803 */ 1804static inline void *skb_frag_address_safe(const skb_frag_t *frag) 1805{ 1806 void *ptr = page_address(skb_frag_page(frag)); 1807 if (unlikely(!ptr)) 1808 return NULL; 1809 1810 return ptr + frag->page_offset; 1811} 1812 1813/** 1814 * __skb_frag_set_page - sets the page contained in a paged fragment 1815 * @frag: the paged fragment 1816 * @page: the page to set 1817 * 1818 * Sets the fragment @frag to contain @page. 1819 */ 1820static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 1821{ 1822 frag->page.p = page; 1823} 1824 1825/** 1826 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 1827 * @skb: the buffer 1828 * @f: the fragment offset 1829 * @page: the page to set 1830 * 1831 * Sets the @f'th fragment of @skb to contain @page. 1832 */ 1833static inline void skb_frag_set_page(struct sk_buff *skb, int f, 1834 struct page *page) 1835{ 1836 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 1837} 1838 1839/** 1840 * skb_frag_dma_map - maps a paged fragment via the DMA API 1841 * @dev: the device to map the fragment to 1842 * @frag: the paged fragment to map 1843 * @offset: the offset within the fragment (starting at the 1844 * fragment's own offset) 1845 * @size: the number of bytes to map 1846 * @dir: the direction of the mapping (%PCI_DMA_*) 1847 * 1848 * Maps the page associated with @frag to @device. 1849 */ 1850static inline dma_addr_t skb_frag_dma_map(struct device *dev, 1851 const skb_frag_t *frag, 1852 size_t offset, size_t size, 1853 enum dma_data_direction dir) 1854{ 1855 return dma_map_page(dev, skb_frag_page(frag), 1856 frag->page_offset + offset, size, dir); 1857} 1858 1859static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 1860 gfp_t gfp_mask) 1861{ 1862 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 1863} 1864 1865/** 1866 * skb_clone_writable - is the header of a clone writable 1867 * @skb: buffer to check 1868 * @len: length up to which to write 1869 * 1870 * Returns true if modifying the header part of the cloned buffer 1871 * does not requires the data to be copied. 1872 */ 1873static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 1874{ 1875 return !skb_header_cloned(skb) && 1876 skb_headroom(skb) + len <= skb->hdr_len; 1877} 1878 1879static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1880 int cloned) 1881{ 1882 int delta = 0; 1883 1884 if (headroom < NET_SKB_PAD) 1885 headroom = NET_SKB_PAD; 1886 if (headroom > skb_headroom(skb)) 1887 delta = headroom - skb_headroom(skb); 1888 1889 if (delta || cloned) 1890 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1891 GFP_ATOMIC); 1892 return 0; 1893} 1894 1895/** 1896 * skb_cow - copy header of skb when it is required 1897 * @skb: buffer to cow 1898 * @headroom: needed headroom 1899 * 1900 * If the skb passed lacks sufficient headroom or its data part 1901 * is shared, data is reallocated. If reallocation fails, an error 1902 * is returned and original skb is not changed. 1903 * 1904 * The result is skb with writable area skb->head...skb->tail 1905 * and at least @headroom of space at head. 1906 */ 1907static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1908{ 1909 return __skb_cow(skb, headroom, skb_cloned(skb)); 1910} 1911 1912/** 1913 * skb_cow_head - skb_cow but only making the head writable 1914 * @skb: buffer to cow 1915 * @headroom: needed headroom 1916 * 1917 * This function is identical to skb_cow except that we replace the 1918 * skb_cloned check by skb_header_cloned. It should be used when 1919 * you only need to push on some header and do not need to modify 1920 * the data. 1921 */ 1922static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1923{ 1924 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1925} 1926 1927/** 1928 * skb_padto - pad an skbuff up to a minimal size 1929 * @skb: buffer to pad 1930 * @len: minimal length 1931 * 1932 * Pads up a buffer to ensure the trailing bytes exist and are 1933 * blanked. If the buffer already contains sufficient data it 1934 * is untouched. Otherwise it is extended. Returns zero on 1935 * success. The skb is freed on error. 1936 */ 1937 1938static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1939{ 1940 unsigned int size = skb->len; 1941 if (likely(size >= len)) 1942 return 0; 1943 return skb_pad(skb, len - size); 1944} 1945 1946static inline int skb_add_data(struct sk_buff *skb, 1947 char __user *from, int copy) 1948{ 1949 const int off = skb->len; 1950 1951 if (skb->ip_summed == CHECKSUM_NONE) { 1952 int err = 0; 1953 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1954 copy, 0, &err); 1955 if (!err) { 1956 skb->csum = csum_block_add(skb->csum, csum, off); 1957 return 0; 1958 } 1959 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1960 return 0; 1961 1962 __skb_trim(skb, off); 1963 return -EFAULT; 1964} 1965 1966static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1967 const struct page *page, int off) 1968{ 1969 if (i) { 1970 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1971 1972 return page == skb_frag_page(frag) && 1973 off == frag->page_offset + skb_frag_size(frag); 1974 } 1975 return 0; 1976} 1977 1978static inline int __skb_linearize(struct sk_buff *skb) 1979{ 1980 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1981} 1982 1983/** 1984 * skb_linearize - convert paged skb to linear one 1985 * @skb: buffer to linarize 1986 * 1987 * If there is no free memory -ENOMEM is returned, otherwise zero 1988 * is returned and the old skb data released. 1989 */ 1990static inline int skb_linearize(struct sk_buff *skb) 1991{ 1992 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1993} 1994 1995/** 1996 * skb_linearize_cow - make sure skb is linear and writable 1997 * @skb: buffer to process 1998 * 1999 * If there is no free memory -ENOMEM is returned, otherwise zero 2000 * is returned and the old skb data released. 2001 */ 2002static inline int skb_linearize_cow(struct sk_buff *skb) 2003{ 2004 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2005 __skb_linearize(skb) : 0; 2006} 2007 2008/** 2009 * skb_postpull_rcsum - update checksum for received skb after pull 2010 * @skb: buffer to update 2011 * @start: start of data before pull 2012 * @len: length of data pulled 2013 * 2014 * After doing a pull on a received packet, you need to call this to 2015 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2016 * CHECKSUM_NONE so that it can be recomputed from scratch. 2017 */ 2018 2019static inline void skb_postpull_rcsum(struct sk_buff *skb, 2020 const void *start, unsigned int len) 2021{ 2022 if (skb->ip_summed == CHECKSUM_COMPLETE) 2023 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2024} 2025 2026unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2027 2028/** 2029 * pskb_trim_rcsum - trim received skb and update checksum 2030 * @skb: buffer to trim 2031 * @len: new length 2032 * 2033 * This is exactly the same as pskb_trim except that it ensures the 2034 * checksum of received packets are still valid after the operation. 2035 */ 2036 2037static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2038{ 2039 if (likely(len >= skb->len)) 2040 return 0; 2041 if (skb->ip_summed == CHECKSUM_COMPLETE) 2042 skb->ip_summed = CHECKSUM_NONE; 2043 return __pskb_trim(skb, len); 2044} 2045 2046#define skb_queue_walk(queue, skb) \ 2047 for (skb = (queue)->next; \ 2048 skb != (struct sk_buff *)(queue); \ 2049 skb = skb->next) 2050 2051#define skb_queue_walk_safe(queue, skb, tmp) \ 2052 for (skb = (queue)->next, tmp = skb->next; \ 2053 skb != (struct sk_buff *)(queue); \ 2054 skb = tmp, tmp = skb->next) 2055 2056#define skb_queue_walk_from(queue, skb) \ 2057 for (; skb != (struct sk_buff *)(queue); \ 2058 skb = skb->next) 2059 2060#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2061 for (tmp = skb->next; \ 2062 skb != (struct sk_buff *)(queue); \ 2063 skb = tmp, tmp = skb->next) 2064 2065#define skb_queue_reverse_walk(queue, skb) \ 2066 for (skb = (queue)->prev; \ 2067 skb != (struct sk_buff *)(queue); \ 2068 skb = skb->prev) 2069 2070#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2071 for (skb = (queue)->prev, tmp = skb->prev; \ 2072 skb != (struct sk_buff *)(queue); \ 2073 skb = tmp, tmp = skb->prev) 2074 2075#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2076 for (tmp = skb->prev; \ 2077 skb != (struct sk_buff *)(queue); \ 2078 skb = tmp, tmp = skb->prev) 2079 2080static inline bool skb_has_frag_list(const struct sk_buff *skb) 2081{ 2082 return skb_shinfo(skb)->frag_list != NULL; 2083} 2084 2085static inline void skb_frag_list_init(struct sk_buff *skb) 2086{ 2087 skb_shinfo(skb)->frag_list = NULL; 2088} 2089 2090static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2091{ 2092 frag->next = skb_shinfo(skb)->frag_list; 2093 skb_shinfo(skb)->frag_list = frag; 2094} 2095 2096#define skb_walk_frags(skb, iter) \ 2097 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2098 2099extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2100 int *peeked, int *off, int *err); 2101extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 2102 int noblock, int *err); 2103extern unsigned int datagram_poll(struct file *file, struct socket *sock, 2104 struct poll_table_struct *wait); 2105extern int skb_copy_datagram_iovec(const struct sk_buff *from, 2106 int offset, struct iovec *to, 2107 int size); 2108extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 2109 int hlen, 2110 struct iovec *iov); 2111extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 2112 int offset, 2113 const struct iovec *from, 2114 int from_offset, 2115 int len); 2116extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 2117 int offset, 2118 const struct iovec *to, 2119 int to_offset, 2120 int size); 2121extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2122extern void skb_free_datagram_locked(struct sock *sk, 2123 struct sk_buff *skb); 2124extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 2125 unsigned int flags); 2126extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 2127 int len, __wsum csum); 2128extern int skb_copy_bits(const struct sk_buff *skb, int offset, 2129 void *to, int len); 2130extern int skb_store_bits(struct sk_buff *skb, int offset, 2131 const void *from, int len); 2132extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 2133 int offset, u8 *to, int len, 2134 __wsum csum); 2135extern int skb_splice_bits(struct sk_buff *skb, 2136 unsigned int offset, 2137 struct pipe_inode_info *pipe, 2138 unsigned int len, 2139 unsigned int flags); 2140extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2141extern void skb_split(struct sk_buff *skb, 2142 struct sk_buff *skb1, const u32 len); 2143extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 2144 int shiftlen); 2145 2146extern struct sk_buff *skb_segment(struct sk_buff *skb, 2147 netdev_features_t features); 2148 2149static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2150 int len, void *buffer) 2151{ 2152 int hlen = skb_headlen(skb); 2153 2154 if (hlen - offset >= len) 2155 return skb->data + offset; 2156 2157 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2158 return NULL; 2159 2160 return buffer; 2161} 2162 2163static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2164 void *to, 2165 const unsigned int len) 2166{ 2167 memcpy(to, skb->data, len); 2168} 2169 2170static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2171 const int offset, void *to, 2172 const unsigned int len) 2173{ 2174 memcpy(to, skb->data + offset, len); 2175} 2176 2177static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2178 const void *from, 2179 const unsigned int len) 2180{ 2181 memcpy(skb->data, from, len); 2182} 2183 2184static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2185 const int offset, 2186 const void *from, 2187 const unsigned int len) 2188{ 2189 memcpy(skb->data + offset, from, len); 2190} 2191 2192extern void skb_init(void); 2193 2194static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2195{ 2196 return skb->tstamp; 2197} 2198 2199/** 2200 * skb_get_timestamp - get timestamp from a skb 2201 * @skb: skb to get stamp from 2202 * @stamp: pointer to struct timeval to store stamp in 2203 * 2204 * Timestamps are stored in the skb as offsets to a base timestamp. 2205 * This function converts the offset back to a struct timeval and stores 2206 * it in stamp. 2207 */ 2208static inline void skb_get_timestamp(const struct sk_buff *skb, 2209 struct timeval *stamp) 2210{ 2211 *stamp = ktime_to_timeval(skb->tstamp); 2212} 2213 2214static inline void skb_get_timestampns(const struct sk_buff *skb, 2215 struct timespec *stamp) 2216{ 2217 *stamp = ktime_to_timespec(skb->tstamp); 2218} 2219 2220static inline void __net_timestamp(struct sk_buff *skb) 2221{ 2222 skb->tstamp = ktime_get_real(); 2223} 2224 2225static inline ktime_t net_timedelta(ktime_t t) 2226{ 2227 return ktime_sub(ktime_get_real(), t); 2228} 2229 2230static inline ktime_t net_invalid_timestamp(void) 2231{ 2232 return ktime_set(0, 0); 2233} 2234 2235extern void skb_timestamping_init(void); 2236 2237#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2238 2239extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2240extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2241 2242#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2243 2244static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2245{ 2246} 2247 2248static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2249{ 2250 return false; 2251} 2252 2253#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2254 2255/** 2256 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2257 * 2258 * PHY drivers may accept clones of transmitted packets for 2259 * timestamping via their phy_driver.txtstamp method. These drivers 2260 * must call this function to return the skb back to the stack, with 2261 * or without a timestamp. 2262 * 2263 * @skb: clone of the the original outgoing packet 2264 * @hwtstamps: hardware time stamps, may be NULL if not available 2265 * 2266 */ 2267void skb_complete_tx_timestamp(struct sk_buff *skb, 2268 struct skb_shared_hwtstamps *hwtstamps); 2269 2270/** 2271 * skb_tstamp_tx - queue clone of skb with send time stamps 2272 * @orig_skb: the original outgoing packet 2273 * @hwtstamps: hardware time stamps, may be NULL if not available 2274 * 2275 * If the skb has a socket associated, then this function clones the 2276 * skb (thus sharing the actual data and optional structures), stores 2277 * the optional hardware time stamping information (if non NULL) or 2278 * generates a software time stamp (otherwise), then queues the clone 2279 * to the error queue of the socket. Errors are silently ignored. 2280 */ 2281extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2282 struct skb_shared_hwtstamps *hwtstamps); 2283 2284static inline void sw_tx_timestamp(struct sk_buff *skb) 2285{ 2286 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2287 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2288 skb_tstamp_tx(skb, NULL); 2289} 2290 2291/** 2292 * skb_tx_timestamp() - Driver hook for transmit timestamping 2293 * 2294 * Ethernet MAC Drivers should call this function in their hard_xmit() 2295 * function immediately before giving the sk_buff to the MAC hardware. 2296 * 2297 * @skb: A socket buffer. 2298 */ 2299static inline void skb_tx_timestamp(struct sk_buff *skb) 2300{ 2301 skb_clone_tx_timestamp(skb); 2302 sw_tx_timestamp(skb); 2303} 2304 2305/** 2306 * skb_complete_wifi_ack - deliver skb with wifi status 2307 * 2308 * @skb: the original outgoing packet 2309 * @acked: ack status 2310 * 2311 */ 2312void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2313 2314extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2315extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2316 2317static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2318{ 2319 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2320} 2321 2322/** 2323 * skb_checksum_complete - Calculate checksum of an entire packet 2324 * @skb: packet to process 2325 * 2326 * This function calculates the checksum over the entire packet plus 2327 * the value of skb->csum. The latter can be used to supply the 2328 * checksum of a pseudo header as used by TCP/UDP. It returns the 2329 * checksum. 2330 * 2331 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2332 * this function can be used to verify that checksum on received 2333 * packets. In that case the function should return zero if the 2334 * checksum is correct. In particular, this function will return zero 2335 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2336 * hardware has already verified the correctness of the checksum. 2337 */ 2338static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2339{ 2340 return skb_csum_unnecessary(skb) ? 2341 0 : __skb_checksum_complete(skb); 2342} 2343 2344#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2345extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2346static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2347{ 2348 if (nfct && atomic_dec_and_test(&nfct->use)) 2349 nf_conntrack_destroy(nfct); 2350} 2351static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2352{ 2353 if (nfct) 2354 atomic_inc(&nfct->use); 2355} 2356#endif 2357#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2358static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2359{ 2360 if (skb) 2361 atomic_inc(&skb->users); 2362} 2363static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2364{ 2365 if (skb) 2366 kfree_skb(skb); 2367} 2368#endif 2369#ifdef CONFIG_BRIDGE_NETFILTER 2370static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2371{ 2372 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2373 kfree(nf_bridge); 2374} 2375static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2376{ 2377 if (nf_bridge) 2378 atomic_inc(&nf_bridge->use); 2379} 2380#endif /* CONFIG_BRIDGE_NETFILTER */ 2381static inline void nf_reset(struct sk_buff *skb) 2382{ 2383#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2384 nf_conntrack_put(skb->nfct); 2385 skb->nfct = NULL; 2386#endif 2387#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2388 nf_conntrack_put_reasm(skb->nfct_reasm); 2389 skb->nfct_reasm = NULL; 2390#endif 2391#ifdef CONFIG_BRIDGE_NETFILTER 2392 nf_bridge_put(skb->nf_bridge); 2393 skb->nf_bridge = NULL; 2394#endif 2395} 2396 2397/* Note: This doesn't put any conntrack and bridge info in dst. */ 2398static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2399{ 2400#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2401 dst->nfct = src->nfct; 2402 nf_conntrack_get(src->nfct); 2403 dst->nfctinfo = src->nfctinfo; 2404#endif 2405#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2406 dst->nfct_reasm = src->nfct_reasm; 2407 nf_conntrack_get_reasm(src->nfct_reasm); 2408#endif 2409#ifdef CONFIG_BRIDGE_NETFILTER 2410 dst->nf_bridge = src->nf_bridge; 2411 nf_bridge_get(src->nf_bridge); 2412#endif 2413} 2414 2415static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2416{ 2417#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2418 nf_conntrack_put(dst->nfct); 2419#endif 2420#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2421 nf_conntrack_put_reasm(dst->nfct_reasm); 2422#endif 2423#ifdef CONFIG_BRIDGE_NETFILTER 2424 nf_bridge_put(dst->nf_bridge); 2425#endif 2426 __nf_copy(dst, src); 2427} 2428 2429#ifdef CONFIG_NETWORK_SECMARK 2430static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2431{ 2432 to->secmark = from->secmark; 2433} 2434 2435static inline void skb_init_secmark(struct sk_buff *skb) 2436{ 2437 skb->secmark = 0; 2438} 2439#else 2440static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2441{ } 2442 2443static inline void skb_init_secmark(struct sk_buff *skb) 2444{ } 2445#endif 2446 2447static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2448{ 2449 skb->queue_mapping = queue_mapping; 2450} 2451 2452static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2453{ 2454 return skb->queue_mapping; 2455} 2456 2457static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2458{ 2459 to->queue_mapping = from->queue_mapping; 2460} 2461 2462static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2463{ 2464 skb->queue_mapping = rx_queue + 1; 2465} 2466 2467static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2468{ 2469 return skb->queue_mapping - 1; 2470} 2471 2472static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2473{ 2474 return skb->queue_mapping != 0; 2475} 2476 2477extern u16 __skb_tx_hash(const struct net_device *dev, 2478 const struct sk_buff *skb, 2479 unsigned int num_tx_queues); 2480 2481#ifdef CONFIG_XFRM 2482static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2483{ 2484 return skb->sp; 2485} 2486#else 2487static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2488{ 2489 return NULL; 2490} 2491#endif 2492 2493static inline bool skb_is_gso(const struct sk_buff *skb) 2494{ 2495 return skb_shinfo(skb)->gso_size; 2496} 2497 2498static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2499{ 2500 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2501} 2502 2503extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2504 2505static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2506{ 2507 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2508 * wanted then gso_type will be set. */ 2509 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2510 2511 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2512 unlikely(shinfo->gso_type == 0)) { 2513 __skb_warn_lro_forwarding(skb); 2514 return true; 2515 } 2516 return false; 2517} 2518 2519static inline void skb_forward_csum(struct sk_buff *skb) 2520{ 2521 /* Unfortunately we don't support this one. Any brave souls? */ 2522 if (skb->ip_summed == CHECKSUM_COMPLETE) 2523 skb->ip_summed = CHECKSUM_NONE; 2524} 2525 2526/** 2527 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2528 * @skb: skb to check 2529 * 2530 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2531 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2532 * use this helper, to document places where we make this assertion. 2533 */ 2534static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2535{ 2536#ifdef DEBUG 2537 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2538#endif 2539} 2540 2541bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2542 2543static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size) 2544{ 2545 if (irqs_disabled()) 2546 return false; 2547 2548 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) 2549 return false; 2550 2551 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 2552 return false; 2553 2554 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 2555 if (skb_end_pointer(skb) - skb->head < skb_size) 2556 return false; 2557 2558 if (skb_shared(skb) || skb_cloned(skb)) 2559 return false; 2560 2561 return true; 2562} 2563#endif /* __KERNEL__ */ 2564#endif /* _LINUX_SKBUFF_H */