at v3.4 56 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/prio_tree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21 22struct mempolicy; 23struct anon_vma; 24struct file_ra_state; 25struct user_struct; 26struct writeback_control; 27 28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29extern unsigned long max_mapnr; 30#endif 31 32extern unsigned long num_physpages; 33extern unsigned long totalram_pages; 34extern void * high_memory; 35extern int page_cluster; 36 37#ifdef CONFIG_SYSCTL 38extern int sysctl_legacy_va_layout; 39#else 40#define sysctl_legacy_va_layout 0 41#endif 42 43#include <asm/page.h> 44#include <asm/pgtable.h> 45#include <asm/processor.h> 46 47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 48 49/* to align the pointer to the (next) page boundary */ 50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 51 52/* 53 * Linux kernel virtual memory manager primitives. 54 * The idea being to have a "virtual" mm in the same way 55 * we have a virtual fs - giving a cleaner interface to the 56 * mm details, and allowing different kinds of memory mappings 57 * (from shared memory to executable loading to arbitrary 58 * mmap() functions). 59 */ 60 61extern struct kmem_cache *vm_area_cachep; 62 63#ifndef CONFIG_MMU 64extern struct rb_root nommu_region_tree; 65extern struct rw_semaphore nommu_region_sem; 66 67extern unsigned int kobjsize(const void *objp); 68#endif 69 70/* 71 * vm_flags in vm_area_struct, see mm_types.h. 72 */ 73#define VM_READ 0x00000001 /* currently active flags */ 74#define VM_WRITE 0x00000002 75#define VM_EXEC 0x00000004 76#define VM_SHARED 0x00000008 77 78/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 79#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 80#define VM_MAYWRITE 0x00000020 81#define VM_MAYEXEC 0x00000040 82#define VM_MAYSHARE 0x00000080 83 84#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 85#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 86#define VM_GROWSUP 0x00000200 87#else 88#define VM_GROWSUP 0x00000000 89#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 90#endif 91#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 92#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 93 94#define VM_EXECUTABLE 0x00001000 95#define VM_LOCKED 0x00002000 96#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 97 98 /* Used by sys_madvise() */ 99#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 100#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 101 102#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 103#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 104#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 105#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 106#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 107#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 108#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 109#ifndef CONFIG_TRANSPARENT_HUGEPAGE 110#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 111#else 112#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 113#endif 114#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 115#define VM_NODUMP 0x04000000 /* Do not include in the core dump */ 116 117#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 118#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 119#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 120#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 121#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 122 123/* Bits set in the VMA until the stack is in its final location */ 124#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 125 126#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 127#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 128#endif 129 130#ifdef CONFIG_STACK_GROWSUP 131#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 132#else 133#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 134#endif 135 136#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 137#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 138#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 139#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 140#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 141 142/* 143 * Special vmas that are non-mergable, non-mlock()able. 144 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 145 */ 146#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 147 148/* 149 * mapping from the currently active vm_flags protection bits (the 150 * low four bits) to a page protection mask.. 151 */ 152extern pgprot_t protection_map[16]; 153 154#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 155#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 156#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 157#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 158#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 159#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 160 161/* 162 * This interface is used by x86 PAT code to identify a pfn mapping that is 163 * linear over entire vma. This is to optimize PAT code that deals with 164 * marking the physical region with a particular prot. This is not for generic 165 * mm use. Note also that this check will not work if the pfn mapping is 166 * linear for a vma starting at physical address 0. In which case PAT code 167 * falls back to slow path of reserving physical range page by page. 168 */ 169static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 170{ 171 return !!(vma->vm_flags & VM_PFN_AT_MMAP); 172} 173 174static inline int is_pfn_mapping(struct vm_area_struct *vma) 175{ 176 return !!(vma->vm_flags & VM_PFNMAP); 177} 178 179/* 180 * vm_fault is filled by the the pagefault handler and passed to the vma's 181 * ->fault function. The vma's ->fault is responsible for returning a bitmask 182 * of VM_FAULT_xxx flags that give details about how the fault was handled. 183 * 184 * pgoff should be used in favour of virtual_address, if possible. If pgoff 185 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 186 * mapping support. 187 */ 188struct vm_fault { 189 unsigned int flags; /* FAULT_FLAG_xxx flags */ 190 pgoff_t pgoff; /* Logical page offset based on vma */ 191 void __user *virtual_address; /* Faulting virtual address */ 192 193 struct page *page; /* ->fault handlers should return a 194 * page here, unless VM_FAULT_NOPAGE 195 * is set (which is also implied by 196 * VM_FAULT_ERROR). 197 */ 198}; 199 200/* 201 * These are the virtual MM functions - opening of an area, closing and 202 * unmapping it (needed to keep files on disk up-to-date etc), pointer 203 * to the functions called when a no-page or a wp-page exception occurs. 204 */ 205struct vm_operations_struct { 206 void (*open)(struct vm_area_struct * area); 207 void (*close)(struct vm_area_struct * area); 208 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 209 210 /* notification that a previously read-only page is about to become 211 * writable, if an error is returned it will cause a SIGBUS */ 212 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 213 214 /* called by access_process_vm when get_user_pages() fails, typically 215 * for use by special VMAs that can switch between memory and hardware 216 */ 217 int (*access)(struct vm_area_struct *vma, unsigned long addr, 218 void *buf, int len, int write); 219#ifdef CONFIG_NUMA 220 /* 221 * set_policy() op must add a reference to any non-NULL @new mempolicy 222 * to hold the policy upon return. Caller should pass NULL @new to 223 * remove a policy and fall back to surrounding context--i.e. do not 224 * install a MPOL_DEFAULT policy, nor the task or system default 225 * mempolicy. 226 */ 227 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 228 229 /* 230 * get_policy() op must add reference [mpol_get()] to any policy at 231 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 232 * in mm/mempolicy.c will do this automatically. 233 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 234 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 235 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 236 * must return NULL--i.e., do not "fallback" to task or system default 237 * policy. 238 */ 239 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 240 unsigned long addr); 241 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 242 const nodemask_t *to, unsigned long flags); 243#endif 244}; 245 246struct mmu_gather; 247struct inode; 248 249#define page_private(page) ((page)->private) 250#define set_page_private(page, v) ((page)->private = (v)) 251 252/* 253 * FIXME: take this include out, include page-flags.h in 254 * files which need it (119 of them) 255 */ 256#include <linux/page-flags.h> 257#include <linux/huge_mm.h> 258 259/* 260 * Methods to modify the page usage count. 261 * 262 * What counts for a page usage: 263 * - cache mapping (page->mapping) 264 * - private data (page->private) 265 * - page mapped in a task's page tables, each mapping 266 * is counted separately 267 * 268 * Also, many kernel routines increase the page count before a critical 269 * routine so they can be sure the page doesn't go away from under them. 270 */ 271 272/* 273 * Drop a ref, return true if the refcount fell to zero (the page has no users) 274 */ 275static inline int put_page_testzero(struct page *page) 276{ 277 VM_BUG_ON(atomic_read(&page->_count) == 0); 278 return atomic_dec_and_test(&page->_count); 279} 280 281/* 282 * Try to grab a ref unless the page has a refcount of zero, return false if 283 * that is the case. 284 */ 285static inline int get_page_unless_zero(struct page *page) 286{ 287 return atomic_inc_not_zero(&page->_count); 288} 289 290extern int page_is_ram(unsigned long pfn); 291 292/* Support for virtually mapped pages */ 293struct page *vmalloc_to_page(const void *addr); 294unsigned long vmalloc_to_pfn(const void *addr); 295 296/* 297 * Determine if an address is within the vmalloc range 298 * 299 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 300 * is no special casing required. 301 */ 302static inline int is_vmalloc_addr(const void *x) 303{ 304#ifdef CONFIG_MMU 305 unsigned long addr = (unsigned long)x; 306 307 return addr >= VMALLOC_START && addr < VMALLOC_END; 308#else 309 return 0; 310#endif 311} 312#ifdef CONFIG_MMU 313extern int is_vmalloc_or_module_addr(const void *x); 314#else 315static inline int is_vmalloc_or_module_addr(const void *x) 316{ 317 return 0; 318} 319#endif 320 321static inline void compound_lock(struct page *page) 322{ 323#ifdef CONFIG_TRANSPARENT_HUGEPAGE 324 bit_spin_lock(PG_compound_lock, &page->flags); 325#endif 326} 327 328static inline void compound_unlock(struct page *page) 329{ 330#ifdef CONFIG_TRANSPARENT_HUGEPAGE 331 bit_spin_unlock(PG_compound_lock, &page->flags); 332#endif 333} 334 335static inline unsigned long compound_lock_irqsave(struct page *page) 336{ 337 unsigned long uninitialized_var(flags); 338#ifdef CONFIG_TRANSPARENT_HUGEPAGE 339 local_irq_save(flags); 340 compound_lock(page); 341#endif 342 return flags; 343} 344 345static inline void compound_unlock_irqrestore(struct page *page, 346 unsigned long flags) 347{ 348#ifdef CONFIG_TRANSPARENT_HUGEPAGE 349 compound_unlock(page); 350 local_irq_restore(flags); 351#endif 352} 353 354static inline struct page *compound_head(struct page *page) 355{ 356 if (unlikely(PageTail(page))) 357 return page->first_page; 358 return page; 359} 360 361/* 362 * The atomic page->_mapcount, starts from -1: so that transitions 363 * both from it and to it can be tracked, using atomic_inc_and_test 364 * and atomic_add_negative(-1). 365 */ 366static inline void reset_page_mapcount(struct page *page) 367{ 368 atomic_set(&(page)->_mapcount, -1); 369} 370 371static inline int page_mapcount(struct page *page) 372{ 373 return atomic_read(&(page)->_mapcount) + 1; 374} 375 376static inline int page_count(struct page *page) 377{ 378 return atomic_read(&compound_head(page)->_count); 379} 380 381static inline void get_huge_page_tail(struct page *page) 382{ 383 /* 384 * __split_huge_page_refcount() cannot run 385 * from under us. 386 */ 387 VM_BUG_ON(page_mapcount(page) < 0); 388 VM_BUG_ON(atomic_read(&page->_count) != 0); 389 atomic_inc(&page->_mapcount); 390} 391 392extern bool __get_page_tail(struct page *page); 393 394static inline void get_page(struct page *page) 395{ 396 if (unlikely(PageTail(page))) 397 if (likely(__get_page_tail(page))) 398 return; 399 /* 400 * Getting a normal page or the head of a compound page 401 * requires to already have an elevated page->_count. 402 */ 403 VM_BUG_ON(atomic_read(&page->_count) <= 0); 404 atomic_inc(&page->_count); 405} 406 407static inline struct page *virt_to_head_page(const void *x) 408{ 409 struct page *page = virt_to_page(x); 410 return compound_head(page); 411} 412 413/* 414 * Setup the page count before being freed into the page allocator for 415 * the first time (boot or memory hotplug) 416 */ 417static inline void init_page_count(struct page *page) 418{ 419 atomic_set(&page->_count, 1); 420} 421 422/* 423 * PageBuddy() indicate that the page is free and in the buddy system 424 * (see mm/page_alloc.c). 425 * 426 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 427 * -2 so that an underflow of the page_mapcount() won't be mistaken 428 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 429 * efficiently by most CPU architectures. 430 */ 431#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 432 433static inline int PageBuddy(struct page *page) 434{ 435 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 436} 437 438static inline void __SetPageBuddy(struct page *page) 439{ 440 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 441 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 442} 443 444static inline void __ClearPageBuddy(struct page *page) 445{ 446 VM_BUG_ON(!PageBuddy(page)); 447 atomic_set(&page->_mapcount, -1); 448} 449 450void put_page(struct page *page); 451void put_pages_list(struct list_head *pages); 452 453void split_page(struct page *page, unsigned int order); 454int split_free_page(struct page *page); 455 456/* 457 * Compound pages have a destructor function. Provide a 458 * prototype for that function and accessor functions. 459 * These are _only_ valid on the head of a PG_compound page. 460 */ 461typedef void compound_page_dtor(struct page *); 462 463static inline void set_compound_page_dtor(struct page *page, 464 compound_page_dtor *dtor) 465{ 466 page[1].lru.next = (void *)dtor; 467} 468 469static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 470{ 471 return (compound_page_dtor *)page[1].lru.next; 472} 473 474static inline int compound_order(struct page *page) 475{ 476 if (!PageHead(page)) 477 return 0; 478 return (unsigned long)page[1].lru.prev; 479} 480 481static inline int compound_trans_order(struct page *page) 482{ 483 int order; 484 unsigned long flags; 485 486 if (!PageHead(page)) 487 return 0; 488 489 flags = compound_lock_irqsave(page); 490 order = compound_order(page); 491 compound_unlock_irqrestore(page, flags); 492 return order; 493} 494 495static inline void set_compound_order(struct page *page, unsigned long order) 496{ 497 page[1].lru.prev = (void *)order; 498} 499 500#ifdef CONFIG_MMU 501/* 502 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 503 * servicing faults for write access. In the normal case, do always want 504 * pte_mkwrite. But get_user_pages can cause write faults for mappings 505 * that do not have writing enabled, when used by access_process_vm. 506 */ 507static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 508{ 509 if (likely(vma->vm_flags & VM_WRITE)) 510 pte = pte_mkwrite(pte); 511 return pte; 512} 513#endif 514 515/* 516 * Multiple processes may "see" the same page. E.g. for untouched 517 * mappings of /dev/null, all processes see the same page full of 518 * zeroes, and text pages of executables and shared libraries have 519 * only one copy in memory, at most, normally. 520 * 521 * For the non-reserved pages, page_count(page) denotes a reference count. 522 * page_count() == 0 means the page is free. page->lru is then used for 523 * freelist management in the buddy allocator. 524 * page_count() > 0 means the page has been allocated. 525 * 526 * Pages are allocated by the slab allocator in order to provide memory 527 * to kmalloc and kmem_cache_alloc. In this case, the management of the 528 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 529 * unless a particular usage is carefully commented. (the responsibility of 530 * freeing the kmalloc memory is the caller's, of course). 531 * 532 * A page may be used by anyone else who does a __get_free_page(). 533 * In this case, page_count still tracks the references, and should only 534 * be used through the normal accessor functions. The top bits of page->flags 535 * and page->virtual store page management information, but all other fields 536 * are unused and could be used privately, carefully. The management of this 537 * page is the responsibility of the one who allocated it, and those who have 538 * subsequently been given references to it. 539 * 540 * The other pages (we may call them "pagecache pages") are completely 541 * managed by the Linux memory manager: I/O, buffers, swapping etc. 542 * The following discussion applies only to them. 543 * 544 * A pagecache page contains an opaque `private' member, which belongs to the 545 * page's address_space. Usually, this is the address of a circular list of 546 * the page's disk buffers. PG_private must be set to tell the VM to call 547 * into the filesystem to release these pages. 548 * 549 * A page may belong to an inode's memory mapping. In this case, page->mapping 550 * is the pointer to the inode, and page->index is the file offset of the page, 551 * in units of PAGE_CACHE_SIZE. 552 * 553 * If pagecache pages are not associated with an inode, they are said to be 554 * anonymous pages. These may become associated with the swapcache, and in that 555 * case PG_swapcache is set, and page->private is an offset into the swapcache. 556 * 557 * In either case (swapcache or inode backed), the pagecache itself holds one 558 * reference to the page. Setting PG_private should also increment the 559 * refcount. The each user mapping also has a reference to the page. 560 * 561 * The pagecache pages are stored in a per-mapping radix tree, which is 562 * rooted at mapping->page_tree, and indexed by offset. 563 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 564 * lists, we instead now tag pages as dirty/writeback in the radix tree. 565 * 566 * All pagecache pages may be subject to I/O: 567 * - inode pages may need to be read from disk, 568 * - inode pages which have been modified and are MAP_SHARED may need 569 * to be written back to the inode on disk, 570 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 571 * modified may need to be swapped out to swap space and (later) to be read 572 * back into memory. 573 */ 574 575/* 576 * The zone field is never updated after free_area_init_core() 577 * sets it, so none of the operations on it need to be atomic. 578 */ 579 580 581/* 582 * page->flags layout: 583 * 584 * There are three possibilities for how page->flags get 585 * laid out. The first is for the normal case, without 586 * sparsemem. The second is for sparsemem when there is 587 * plenty of space for node and section. The last is when 588 * we have run out of space and have to fall back to an 589 * alternate (slower) way of determining the node. 590 * 591 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 592 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 593 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 594 */ 595#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 596#define SECTIONS_WIDTH SECTIONS_SHIFT 597#else 598#define SECTIONS_WIDTH 0 599#endif 600 601#define ZONES_WIDTH ZONES_SHIFT 602 603#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 604#define NODES_WIDTH NODES_SHIFT 605#else 606#ifdef CONFIG_SPARSEMEM_VMEMMAP 607#error "Vmemmap: No space for nodes field in page flags" 608#endif 609#define NODES_WIDTH 0 610#endif 611 612/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 613#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 614#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 615#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 616 617/* 618 * We are going to use the flags for the page to node mapping if its in 619 * there. This includes the case where there is no node, so it is implicit. 620 */ 621#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 622#define NODE_NOT_IN_PAGE_FLAGS 623#endif 624 625/* 626 * Define the bit shifts to access each section. For non-existent 627 * sections we define the shift as 0; that plus a 0 mask ensures 628 * the compiler will optimise away reference to them. 629 */ 630#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 631#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 632#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 633 634/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 635#ifdef NODE_NOT_IN_PAGE_FLAGS 636#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 637#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 638 SECTIONS_PGOFF : ZONES_PGOFF) 639#else 640#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 641#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 642 NODES_PGOFF : ZONES_PGOFF) 643#endif 644 645#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 646 647#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 648#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 649#endif 650 651#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 652#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 653#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 654#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 655 656static inline enum zone_type page_zonenum(const struct page *page) 657{ 658 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 659} 660 661/* 662 * The identification function is only used by the buddy allocator for 663 * determining if two pages could be buddies. We are not really 664 * identifying a zone since we could be using a the section number 665 * id if we have not node id available in page flags. 666 * We guarantee only that it will return the same value for two 667 * combinable pages in a zone. 668 */ 669static inline int page_zone_id(struct page *page) 670{ 671 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 672} 673 674static inline int zone_to_nid(struct zone *zone) 675{ 676#ifdef CONFIG_NUMA 677 return zone->node; 678#else 679 return 0; 680#endif 681} 682 683#ifdef NODE_NOT_IN_PAGE_FLAGS 684extern int page_to_nid(const struct page *page); 685#else 686static inline int page_to_nid(const struct page *page) 687{ 688 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 689} 690#endif 691 692static inline struct zone *page_zone(const struct page *page) 693{ 694 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 695} 696 697#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 698static inline void set_page_section(struct page *page, unsigned long section) 699{ 700 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 701 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 702} 703 704static inline unsigned long page_to_section(const struct page *page) 705{ 706 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 707} 708#endif 709 710static inline void set_page_zone(struct page *page, enum zone_type zone) 711{ 712 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 713 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 714} 715 716static inline void set_page_node(struct page *page, unsigned long node) 717{ 718 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 719 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 720} 721 722static inline void set_page_links(struct page *page, enum zone_type zone, 723 unsigned long node, unsigned long pfn) 724{ 725 set_page_zone(page, zone); 726 set_page_node(page, node); 727#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 728 set_page_section(page, pfn_to_section_nr(pfn)); 729#endif 730} 731 732/* 733 * Some inline functions in vmstat.h depend on page_zone() 734 */ 735#include <linux/vmstat.h> 736 737static __always_inline void *lowmem_page_address(const struct page *page) 738{ 739 return __va(PFN_PHYS(page_to_pfn(page))); 740} 741 742#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 743#define HASHED_PAGE_VIRTUAL 744#endif 745 746#if defined(WANT_PAGE_VIRTUAL) 747#define page_address(page) ((page)->virtual) 748#define set_page_address(page, address) \ 749 do { \ 750 (page)->virtual = (address); \ 751 } while(0) 752#define page_address_init() do { } while(0) 753#endif 754 755#if defined(HASHED_PAGE_VIRTUAL) 756void *page_address(const struct page *page); 757void set_page_address(struct page *page, void *virtual); 758void page_address_init(void); 759#endif 760 761#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 762#define page_address(page) lowmem_page_address(page) 763#define set_page_address(page, address) do { } while(0) 764#define page_address_init() do { } while(0) 765#endif 766 767/* 768 * On an anonymous page mapped into a user virtual memory area, 769 * page->mapping points to its anon_vma, not to a struct address_space; 770 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 771 * 772 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 773 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 774 * and then page->mapping points, not to an anon_vma, but to a private 775 * structure which KSM associates with that merged page. See ksm.h. 776 * 777 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 778 * 779 * Please note that, confusingly, "page_mapping" refers to the inode 780 * address_space which maps the page from disk; whereas "page_mapped" 781 * refers to user virtual address space into which the page is mapped. 782 */ 783#define PAGE_MAPPING_ANON 1 784#define PAGE_MAPPING_KSM 2 785#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 786 787extern struct address_space swapper_space; 788static inline struct address_space *page_mapping(struct page *page) 789{ 790 struct address_space *mapping = page->mapping; 791 792 VM_BUG_ON(PageSlab(page)); 793 if (unlikely(PageSwapCache(page))) 794 mapping = &swapper_space; 795 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 796 mapping = NULL; 797 return mapping; 798} 799 800/* Neutral page->mapping pointer to address_space or anon_vma or other */ 801static inline void *page_rmapping(struct page *page) 802{ 803 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 804} 805 806static inline int PageAnon(struct page *page) 807{ 808 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 809} 810 811/* 812 * Return the pagecache index of the passed page. Regular pagecache pages 813 * use ->index whereas swapcache pages use ->private 814 */ 815static inline pgoff_t page_index(struct page *page) 816{ 817 if (unlikely(PageSwapCache(page))) 818 return page_private(page); 819 return page->index; 820} 821 822/* 823 * Return true if this page is mapped into pagetables. 824 */ 825static inline int page_mapped(struct page *page) 826{ 827 return atomic_read(&(page)->_mapcount) >= 0; 828} 829 830/* 831 * Different kinds of faults, as returned by handle_mm_fault(). 832 * Used to decide whether a process gets delivered SIGBUS or 833 * just gets major/minor fault counters bumped up. 834 */ 835 836#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 837 838#define VM_FAULT_OOM 0x0001 839#define VM_FAULT_SIGBUS 0x0002 840#define VM_FAULT_MAJOR 0x0004 841#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 842#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 843#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 844 845#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 846#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 847#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 848 849#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 850 851#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 852 VM_FAULT_HWPOISON_LARGE) 853 854/* Encode hstate index for a hwpoisoned large page */ 855#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 856#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 857 858/* 859 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 860 */ 861extern void pagefault_out_of_memory(void); 862 863#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 864 865/* 866 * Flags passed to show_mem() and show_free_areas() to suppress output in 867 * various contexts. 868 */ 869#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 870 871extern void show_free_areas(unsigned int flags); 872extern bool skip_free_areas_node(unsigned int flags, int nid); 873 874int shmem_lock(struct file *file, int lock, struct user_struct *user); 875struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 876int shmem_zero_setup(struct vm_area_struct *); 877 878extern int can_do_mlock(void); 879extern int user_shm_lock(size_t, struct user_struct *); 880extern void user_shm_unlock(size_t, struct user_struct *); 881 882/* 883 * Parameter block passed down to zap_pte_range in exceptional cases. 884 */ 885struct zap_details { 886 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 887 struct address_space *check_mapping; /* Check page->mapping if set */ 888 pgoff_t first_index; /* Lowest page->index to unmap */ 889 pgoff_t last_index; /* Highest page->index to unmap */ 890}; 891 892struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 893 pte_t pte); 894 895int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 896 unsigned long size); 897void zap_page_range(struct vm_area_struct *vma, unsigned long address, 898 unsigned long size, struct zap_details *); 899void unmap_vmas(struct mmu_gather *tlb, 900 struct vm_area_struct *start_vma, unsigned long start_addr, 901 unsigned long end_addr, unsigned long *nr_accounted, 902 struct zap_details *); 903 904/** 905 * mm_walk - callbacks for walk_page_range 906 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 907 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 908 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 909 * this handler is required to be able to handle 910 * pmd_trans_huge() pmds. They may simply choose to 911 * split_huge_page() instead of handling it explicitly. 912 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 913 * @pte_hole: if set, called for each hole at all levels 914 * @hugetlb_entry: if set, called for each hugetlb entry 915 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 916 * is used. 917 * 918 * (see walk_page_range for more details) 919 */ 920struct mm_walk { 921 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 922 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 923 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 924 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 925 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 926 int (*hugetlb_entry)(pte_t *, unsigned long, 927 unsigned long, unsigned long, struct mm_walk *); 928 struct mm_struct *mm; 929 void *private; 930}; 931 932int walk_page_range(unsigned long addr, unsigned long end, 933 struct mm_walk *walk); 934void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 935 unsigned long end, unsigned long floor, unsigned long ceiling); 936int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 937 struct vm_area_struct *vma); 938void unmap_mapping_range(struct address_space *mapping, 939 loff_t const holebegin, loff_t const holelen, int even_cows); 940int follow_pfn(struct vm_area_struct *vma, unsigned long address, 941 unsigned long *pfn); 942int follow_phys(struct vm_area_struct *vma, unsigned long address, 943 unsigned int flags, unsigned long *prot, resource_size_t *phys); 944int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 945 void *buf, int len, int write); 946 947static inline void unmap_shared_mapping_range(struct address_space *mapping, 948 loff_t const holebegin, loff_t const holelen) 949{ 950 unmap_mapping_range(mapping, holebegin, holelen, 0); 951} 952 953extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 954extern void truncate_setsize(struct inode *inode, loff_t newsize); 955extern int vmtruncate(struct inode *inode, loff_t offset); 956extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 957void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 958int truncate_inode_page(struct address_space *mapping, struct page *page); 959int generic_error_remove_page(struct address_space *mapping, struct page *page); 960 961int invalidate_inode_page(struct page *page); 962 963#ifdef CONFIG_MMU 964extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 965 unsigned long address, unsigned int flags); 966extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 967 unsigned long address, unsigned int fault_flags); 968#else 969static inline int handle_mm_fault(struct mm_struct *mm, 970 struct vm_area_struct *vma, unsigned long address, 971 unsigned int flags) 972{ 973 /* should never happen if there's no MMU */ 974 BUG(); 975 return VM_FAULT_SIGBUS; 976} 977static inline int fixup_user_fault(struct task_struct *tsk, 978 struct mm_struct *mm, unsigned long address, 979 unsigned int fault_flags) 980{ 981 /* should never happen if there's no MMU */ 982 BUG(); 983 return -EFAULT; 984} 985#endif 986 987extern int make_pages_present(unsigned long addr, unsigned long end); 988extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 989extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 990 void *buf, int len, int write); 991 992int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 993 unsigned long start, int len, unsigned int foll_flags, 994 struct page **pages, struct vm_area_struct **vmas, 995 int *nonblocking); 996int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 997 unsigned long start, int nr_pages, int write, int force, 998 struct page **pages, struct vm_area_struct **vmas); 999int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1000 struct page **pages); 1001struct page *get_dump_page(unsigned long addr); 1002 1003extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1004extern void do_invalidatepage(struct page *page, unsigned long offset); 1005 1006int __set_page_dirty_nobuffers(struct page *page); 1007int __set_page_dirty_no_writeback(struct page *page); 1008int redirty_page_for_writepage(struct writeback_control *wbc, 1009 struct page *page); 1010void account_page_dirtied(struct page *page, struct address_space *mapping); 1011void account_page_writeback(struct page *page); 1012int set_page_dirty(struct page *page); 1013int set_page_dirty_lock(struct page *page); 1014int clear_page_dirty_for_io(struct page *page); 1015 1016/* Is the vma a continuation of the stack vma above it? */ 1017static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1018{ 1019 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1020} 1021 1022static inline int stack_guard_page_start(struct vm_area_struct *vma, 1023 unsigned long addr) 1024{ 1025 return (vma->vm_flags & VM_GROWSDOWN) && 1026 (vma->vm_start == addr) && 1027 !vma_growsdown(vma->vm_prev, addr); 1028} 1029 1030/* Is the vma a continuation of the stack vma below it? */ 1031static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1032{ 1033 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1034} 1035 1036static inline int stack_guard_page_end(struct vm_area_struct *vma, 1037 unsigned long addr) 1038{ 1039 return (vma->vm_flags & VM_GROWSUP) && 1040 (vma->vm_end == addr) && 1041 !vma_growsup(vma->vm_next, addr); 1042} 1043 1044extern pid_t 1045vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1046 1047extern unsigned long move_page_tables(struct vm_area_struct *vma, 1048 unsigned long old_addr, struct vm_area_struct *new_vma, 1049 unsigned long new_addr, unsigned long len); 1050extern unsigned long do_mremap(unsigned long addr, 1051 unsigned long old_len, unsigned long new_len, 1052 unsigned long flags, unsigned long new_addr); 1053extern int mprotect_fixup(struct vm_area_struct *vma, 1054 struct vm_area_struct **pprev, unsigned long start, 1055 unsigned long end, unsigned long newflags); 1056 1057/* 1058 * doesn't attempt to fault and will return short. 1059 */ 1060int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1061 struct page **pages); 1062/* 1063 * per-process(per-mm_struct) statistics. 1064 */ 1065static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1066{ 1067 long val = atomic_long_read(&mm->rss_stat.count[member]); 1068 1069#ifdef SPLIT_RSS_COUNTING 1070 /* 1071 * counter is updated in asynchronous manner and may go to minus. 1072 * But it's never be expected number for users. 1073 */ 1074 if (val < 0) 1075 val = 0; 1076#endif 1077 return (unsigned long)val; 1078} 1079 1080static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1081{ 1082 atomic_long_add(value, &mm->rss_stat.count[member]); 1083} 1084 1085static inline void inc_mm_counter(struct mm_struct *mm, int member) 1086{ 1087 atomic_long_inc(&mm->rss_stat.count[member]); 1088} 1089 1090static inline void dec_mm_counter(struct mm_struct *mm, int member) 1091{ 1092 atomic_long_dec(&mm->rss_stat.count[member]); 1093} 1094 1095static inline unsigned long get_mm_rss(struct mm_struct *mm) 1096{ 1097 return get_mm_counter(mm, MM_FILEPAGES) + 1098 get_mm_counter(mm, MM_ANONPAGES); 1099} 1100 1101static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1102{ 1103 return max(mm->hiwater_rss, get_mm_rss(mm)); 1104} 1105 1106static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1107{ 1108 return max(mm->hiwater_vm, mm->total_vm); 1109} 1110 1111static inline void update_hiwater_rss(struct mm_struct *mm) 1112{ 1113 unsigned long _rss = get_mm_rss(mm); 1114 1115 if ((mm)->hiwater_rss < _rss) 1116 (mm)->hiwater_rss = _rss; 1117} 1118 1119static inline void update_hiwater_vm(struct mm_struct *mm) 1120{ 1121 if (mm->hiwater_vm < mm->total_vm) 1122 mm->hiwater_vm = mm->total_vm; 1123} 1124 1125static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1126 struct mm_struct *mm) 1127{ 1128 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1129 1130 if (*maxrss < hiwater_rss) 1131 *maxrss = hiwater_rss; 1132} 1133 1134#if defined(SPLIT_RSS_COUNTING) 1135void sync_mm_rss(struct mm_struct *mm); 1136#else 1137static inline void sync_mm_rss(struct mm_struct *mm) 1138{ 1139} 1140#endif 1141 1142int vma_wants_writenotify(struct vm_area_struct *vma); 1143 1144extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1145 spinlock_t **ptl); 1146static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1147 spinlock_t **ptl) 1148{ 1149 pte_t *ptep; 1150 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1151 return ptep; 1152} 1153 1154#ifdef __PAGETABLE_PUD_FOLDED 1155static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1156 unsigned long address) 1157{ 1158 return 0; 1159} 1160#else 1161int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1162#endif 1163 1164#ifdef __PAGETABLE_PMD_FOLDED 1165static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1166 unsigned long address) 1167{ 1168 return 0; 1169} 1170#else 1171int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1172#endif 1173 1174int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1175 pmd_t *pmd, unsigned long address); 1176int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1177 1178/* 1179 * The following ifdef needed to get the 4level-fixup.h header to work. 1180 * Remove it when 4level-fixup.h has been removed. 1181 */ 1182#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1183static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1184{ 1185 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1186 NULL: pud_offset(pgd, address); 1187} 1188 1189static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1190{ 1191 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1192 NULL: pmd_offset(pud, address); 1193} 1194#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1195 1196#if USE_SPLIT_PTLOCKS 1197/* 1198 * We tuck a spinlock to guard each pagetable page into its struct page, 1199 * at page->private, with BUILD_BUG_ON to make sure that this will not 1200 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1201 * When freeing, reset page->mapping so free_pages_check won't complain. 1202 */ 1203#define __pte_lockptr(page) &((page)->ptl) 1204#define pte_lock_init(_page) do { \ 1205 spin_lock_init(__pte_lockptr(_page)); \ 1206} while (0) 1207#define pte_lock_deinit(page) ((page)->mapping = NULL) 1208#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1209#else /* !USE_SPLIT_PTLOCKS */ 1210/* 1211 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1212 */ 1213#define pte_lock_init(page) do {} while (0) 1214#define pte_lock_deinit(page) do {} while (0) 1215#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1216#endif /* USE_SPLIT_PTLOCKS */ 1217 1218static inline void pgtable_page_ctor(struct page *page) 1219{ 1220 pte_lock_init(page); 1221 inc_zone_page_state(page, NR_PAGETABLE); 1222} 1223 1224static inline void pgtable_page_dtor(struct page *page) 1225{ 1226 pte_lock_deinit(page); 1227 dec_zone_page_state(page, NR_PAGETABLE); 1228} 1229 1230#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1231({ \ 1232 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1233 pte_t *__pte = pte_offset_map(pmd, address); \ 1234 *(ptlp) = __ptl; \ 1235 spin_lock(__ptl); \ 1236 __pte; \ 1237}) 1238 1239#define pte_unmap_unlock(pte, ptl) do { \ 1240 spin_unlock(ptl); \ 1241 pte_unmap(pte); \ 1242} while (0) 1243 1244#define pte_alloc_map(mm, vma, pmd, address) \ 1245 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1246 pmd, address))? \ 1247 NULL: pte_offset_map(pmd, address)) 1248 1249#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1250 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1251 pmd, address))? \ 1252 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1253 1254#define pte_alloc_kernel(pmd, address) \ 1255 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1256 NULL: pte_offset_kernel(pmd, address)) 1257 1258extern void free_area_init(unsigned long * zones_size); 1259extern void free_area_init_node(int nid, unsigned long * zones_size, 1260 unsigned long zone_start_pfn, unsigned long *zholes_size); 1261extern void free_initmem(void); 1262 1263#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1264/* 1265 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1266 * zones, allocate the backing mem_map and account for memory holes in a more 1267 * architecture independent manner. This is a substitute for creating the 1268 * zone_sizes[] and zholes_size[] arrays and passing them to 1269 * free_area_init_node() 1270 * 1271 * An architecture is expected to register range of page frames backed by 1272 * physical memory with memblock_add[_node]() before calling 1273 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1274 * usage, an architecture is expected to do something like 1275 * 1276 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1277 * max_highmem_pfn}; 1278 * for_each_valid_physical_page_range() 1279 * memblock_add_node(base, size, nid) 1280 * free_area_init_nodes(max_zone_pfns); 1281 * 1282 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1283 * registered physical page range. Similarly 1284 * sparse_memory_present_with_active_regions() calls memory_present() for 1285 * each range when SPARSEMEM is enabled. 1286 * 1287 * See mm/page_alloc.c for more information on each function exposed by 1288 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1289 */ 1290extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1291unsigned long node_map_pfn_alignment(void); 1292unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1293 unsigned long end_pfn); 1294extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1295 unsigned long end_pfn); 1296extern void get_pfn_range_for_nid(unsigned int nid, 1297 unsigned long *start_pfn, unsigned long *end_pfn); 1298extern unsigned long find_min_pfn_with_active_regions(void); 1299extern void free_bootmem_with_active_regions(int nid, 1300 unsigned long max_low_pfn); 1301extern void sparse_memory_present_with_active_regions(int nid); 1302 1303#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1304 1305#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1306 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1307static inline int __early_pfn_to_nid(unsigned long pfn) 1308{ 1309 return 0; 1310} 1311#else 1312/* please see mm/page_alloc.c */ 1313extern int __meminit early_pfn_to_nid(unsigned long pfn); 1314#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1315/* there is a per-arch backend function. */ 1316extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1317#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1318#endif 1319 1320extern void set_dma_reserve(unsigned long new_dma_reserve); 1321extern void memmap_init_zone(unsigned long, int, unsigned long, 1322 unsigned long, enum memmap_context); 1323extern void setup_per_zone_wmarks(void); 1324extern int __meminit init_per_zone_wmark_min(void); 1325extern void mem_init(void); 1326extern void __init mmap_init(void); 1327extern void show_mem(unsigned int flags); 1328extern void si_meminfo(struct sysinfo * val); 1329extern void si_meminfo_node(struct sysinfo *val, int nid); 1330extern int after_bootmem; 1331 1332extern __printf(3, 4) 1333void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1334 1335extern void setup_per_cpu_pageset(void); 1336 1337extern void zone_pcp_update(struct zone *zone); 1338 1339/* nommu.c */ 1340extern atomic_long_t mmap_pages_allocated; 1341extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1342 1343/* prio_tree.c */ 1344void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1345void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1346void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1347struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1348 struct prio_tree_iter *iter); 1349 1350#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1351 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1352 (vma = vma_prio_tree_next(vma, iter)); ) 1353 1354static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1355 struct list_head *list) 1356{ 1357 vma->shared.vm_set.parent = NULL; 1358 list_add_tail(&vma->shared.vm_set.list, list); 1359} 1360 1361/* mmap.c */ 1362extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1363extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1364 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1365extern struct vm_area_struct *vma_merge(struct mm_struct *, 1366 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1367 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1368 struct mempolicy *); 1369extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1370extern int split_vma(struct mm_struct *, 1371 struct vm_area_struct *, unsigned long addr, int new_below); 1372extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1373extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1374 struct rb_node **, struct rb_node *); 1375extern void unlink_file_vma(struct vm_area_struct *); 1376extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1377 unsigned long addr, unsigned long len, pgoff_t pgoff); 1378extern void exit_mmap(struct mm_struct *); 1379 1380extern int mm_take_all_locks(struct mm_struct *mm); 1381extern void mm_drop_all_locks(struct mm_struct *mm); 1382 1383/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1384extern void added_exe_file_vma(struct mm_struct *mm); 1385extern void removed_exe_file_vma(struct mm_struct *mm); 1386extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1387extern struct file *get_mm_exe_file(struct mm_struct *mm); 1388 1389extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1390extern int install_special_mapping(struct mm_struct *mm, 1391 unsigned long addr, unsigned long len, 1392 unsigned long flags, struct page **pages); 1393 1394extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1395 1396extern unsigned long mmap_region(struct file *file, unsigned long addr, 1397 unsigned long len, unsigned long flags, 1398 vm_flags_t vm_flags, unsigned long pgoff); 1399extern unsigned long do_mmap(struct file *, unsigned long, 1400 unsigned long, unsigned long, 1401 unsigned long, unsigned long); 1402extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1403 1404/* These take the mm semaphore themselves */ 1405extern unsigned long vm_brk(unsigned long, unsigned long); 1406extern int vm_munmap(unsigned long, size_t); 1407extern unsigned long vm_mmap(struct file *, unsigned long, 1408 unsigned long, unsigned long, 1409 unsigned long, unsigned long); 1410 1411/* truncate.c */ 1412extern void truncate_inode_pages(struct address_space *, loff_t); 1413extern void truncate_inode_pages_range(struct address_space *, 1414 loff_t lstart, loff_t lend); 1415 1416/* generic vm_area_ops exported for stackable file systems */ 1417extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1418 1419/* mm/page-writeback.c */ 1420int write_one_page(struct page *page, int wait); 1421void task_dirty_inc(struct task_struct *tsk); 1422 1423/* readahead.c */ 1424#define VM_MAX_READAHEAD 128 /* kbytes */ 1425#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1426 1427int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1428 pgoff_t offset, unsigned long nr_to_read); 1429 1430void page_cache_sync_readahead(struct address_space *mapping, 1431 struct file_ra_state *ra, 1432 struct file *filp, 1433 pgoff_t offset, 1434 unsigned long size); 1435 1436void page_cache_async_readahead(struct address_space *mapping, 1437 struct file_ra_state *ra, 1438 struct file *filp, 1439 struct page *pg, 1440 pgoff_t offset, 1441 unsigned long size); 1442 1443unsigned long max_sane_readahead(unsigned long nr); 1444unsigned long ra_submit(struct file_ra_state *ra, 1445 struct address_space *mapping, 1446 struct file *filp); 1447 1448/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1449extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1450 1451/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1452extern int expand_downwards(struct vm_area_struct *vma, 1453 unsigned long address); 1454#if VM_GROWSUP 1455extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1456#else 1457 #define expand_upwards(vma, address) do { } while (0) 1458#endif 1459 1460/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1461extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1462extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1463 struct vm_area_struct **pprev); 1464 1465/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1466 NULL if none. Assume start_addr < end_addr. */ 1467static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1468{ 1469 struct vm_area_struct * vma = find_vma(mm,start_addr); 1470 1471 if (vma && end_addr <= vma->vm_start) 1472 vma = NULL; 1473 return vma; 1474} 1475 1476static inline unsigned long vma_pages(struct vm_area_struct *vma) 1477{ 1478 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1479} 1480 1481/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1482static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1483 unsigned long vm_start, unsigned long vm_end) 1484{ 1485 struct vm_area_struct *vma = find_vma(mm, vm_start); 1486 1487 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1488 vma = NULL; 1489 1490 return vma; 1491} 1492 1493#ifdef CONFIG_MMU 1494pgprot_t vm_get_page_prot(unsigned long vm_flags); 1495#else 1496static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1497{ 1498 return __pgprot(0); 1499} 1500#endif 1501 1502struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1503int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1504 unsigned long pfn, unsigned long size, pgprot_t); 1505int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1506int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1507 unsigned long pfn); 1508int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1509 unsigned long pfn); 1510 1511struct page *follow_page(struct vm_area_struct *, unsigned long address, 1512 unsigned int foll_flags); 1513#define FOLL_WRITE 0x01 /* check pte is writable */ 1514#define FOLL_TOUCH 0x02 /* mark page accessed */ 1515#define FOLL_GET 0x04 /* do get_page on page */ 1516#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1517#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1518#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1519 * and return without waiting upon it */ 1520#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1521#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1522#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1523 1524typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1525 void *data); 1526extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1527 unsigned long size, pte_fn_t fn, void *data); 1528 1529#ifdef CONFIG_PROC_FS 1530void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1531#else 1532static inline void vm_stat_account(struct mm_struct *mm, 1533 unsigned long flags, struct file *file, long pages) 1534{ 1535} 1536#endif /* CONFIG_PROC_FS */ 1537 1538#ifdef CONFIG_DEBUG_PAGEALLOC 1539extern void kernel_map_pages(struct page *page, int numpages, int enable); 1540#ifdef CONFIG_HIBERNATION 1541extern bool kernel_page_present(struct page *page); 1542#endif /* CONFIG_HIBERNATION */ 1543#else 1544static inline void 1545kernel_map_pages(struct page *page, int numpages, int enable) {} 1546#ifdef CONFIG_HIBERNATION 1547static inline bool kernel_page_present(struct page *page) { return true; } 1548#endif /* CONFIG_HIBERNATION */ 1549#endif 1550 1551extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1552#ifdef __HAVE_ARCH_GATE_AREA 1553int in_gate_area_no_mm(unsigned long addr); 1554int in_gate_area(struct mm_struct *mm, unsigned long addr); 1555#else 1556int in_gate_area_no_mm(unsigned long addr); 1557#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1558#endif /* __HAVE_ARCH_GATE_AREA */ 1559 1560int drop_caches_sysctl_handler(struct ctl_table *, int, 1561 void __user *, size_t *, loff_t *); 1562unsigned long shrink_slab(struct shrink_control *shrink, 1563 unsigned long nr_pages_scanned, 1564 unsigned long lru_pages); 1565 1566#ifndef CONFIG_MMU 1567#define randomize_va_space 0 1568#else 1569extern int randomize_va_space; 1570#endif 1571 1572const char * arch_vma_name(struct vm_area_struct *vma); 1573void print_vma_addr(char *prefix, unsigned long rip); 1574 1575void sparse_mem_maps_populate_node(struct page **map_map, 1576 unsigned long pnum_begin, 1577 unsigned long pnum_end, 1578 unsigned long map_count, 1579 int nodeid); 1580 1581struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1582pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1583pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1584pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1585pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1586void *vmemmap_alloc_block(unsigned long size, int node); 1587void *vmemmap_alloc_block_buf(unsigned long size, int node); 1588void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1589int vmemmap_populate_basepages(struct page *start_page, 1590 unsigned long pages, int node); 1591int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1592void vmemmap_populate_print_last(void); 1593 1594 1595enum mf_flags { 1596 MF_COUNT_INCREASED = 1 << 0, 1597 MF_ACTION_REQUIRED = 1 << 1, 1598}; 1599extern int memory_failure(unsigned long pfn, int trapno, int flags); 1600extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1601extern int unpoison_memory(unsigned long pfn); 1602extern int sysctl_memory_failure_early_kill; 1603extern int sysctl_memory_failure_recovery; 1604extern void shake_page(struct page *p, int access); 1605extern atomic_long_t mce_bad_pages; 1606extern int soft_offline_page(struct page *page, int flags); 1607 1608extern void dump_page(struct page *page); 1609 1610#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1611extern void clear_huge_page(struct page *page, 1612 unsigned long addr, 1613 unsigned int pages_per_huge_page); 1614extern void copy_user_huge_page(struct page *dst, struct page *src, 1615 unsigned long addr, struct vm_area_struct *vma, 1616 unsigned int pages_per_huge_page); 1617#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1618 1619#ifdef CONFIG_DEBUG_PAGEALLOC 1620extern unsigned int _debug_guardpage_minorder; 1621 1622static inline unsigned int debug_guardpage_minorder(void) 1623{ 1624 return _debug_guardpage_minorder; 1625} 1626 1627static inline bool page_is_guard(struct page *page) 1628{ 1629 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1630} 1631#else 1632static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1633static inline bool page_is_guard(struct page *page) { return false; } 1634#endif /* CONFIG_DEBUG_PAGEALLOC */ 1635 1636#endif /* __KERNEL__ */ 1637#endif /* _LINUX_MM_H */