at v3.4 46 kB view raw
1/* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5#include <linux/export.h> 6#include <linux/fs.h> 7#include <linux/mm.h> 8#include <linux/backing-dev.h> 9#include <linux/hash.h> 10#include <linux/swap.h> 11#include <linux/security.h> 12#include <linux/cdev.h> 13#include <linux/bootmem.h> 14#include <linux/fsnotify.h> 15#include <linux/mount.h> 16#include <linux/posix_acl.h> 17#include <linux/prefetch.h> 18#include <linux/buffer_head.h> /* for inode_has_buffers */ 19#include <linux/ratelimit.h> 20#include "internal.h" 21 22/* 23 * Inode locking rules: 24 * 25 * inode->i_lock protects: 26 * inode->i_state, inode->i_hash, __iget() 27 * inode->i_sb->s_inode_lru_lock protects: 28 * inode->i_sb->s_inode_lru, inode->i_lru 29 * inode_sb_list_lock protects: 30 * sb->s_inodes, inode->i_sb_list 31 * bdi->wb.list_lock protects: 32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 33 * inode_hash_lock protects: 34 * inode_hashtable, inode->i_hash 35 * 36 * Lock ordering: 37 * 38 * inode_sb_list_lock 39 * inode->i_lock 40 * inode->i_sb->s_inode_lru_lock 41 * 42 * bdi->wb.list_lock 43 * inode->i_lock 44 * 45 * inode_hash_lock 46 * inode_sb_list_lock 47 * inode->i_lock 48 * 49 * iunique_lock 50 * inode_hash_lock 51 */ 52 53static unsigned int i_hash_mask __read_mostly; 54static unsigned int i_hash_shift __read_mostly; 55static struct hlist_head *inode_hashtable __read_mostly; 56static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 57 58__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 59 60/* 61 * Empty aops. Can be used for the cases where the user does not 62 * define any of the address_space operations. 63 */ 64const struct address_space_operations empty_aops = { 65}; 66EXPORT_SYMBOL(empty_aops); 67 68/* 69 * Statistics gathering.. 70 */ 71struct inodes_stat_t inodes_stat; 72 73static DEFINE_PER_CPU(unsigned int, nr_inodes); 74static DEFINE_PER_CPU(unsigned int, nr_unused); 75 76static struct kmem_cache *inode_cachep __read_mostly; 77 78static int get_nr_inodes(void) 79{ 80 int i; 81 int sum = 0; 82 for_each_possible_cpu(i) 83 sum += per_cpu(nr_inodes, i); 84 return sum < 0 ? 0 : sum; 85} 86 87static inline int get_nr_inodes_unused(void) 88{ 89 int i; 90 int sum = 0; 91 for_each_possible_cpu(i) 92 sum += per_cpu(nr_unused, i); 93 return sum < 0 ? 0 : sum; 94} 95 96int get_nr_dirty_inodes(void) 97{ 98 /* not actually dirty inodes, but a wild approximation */ 99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 100 return nr_dirty > 0 ? nr_dirty : 0; 101} 102 103/* 104 * Handle nr_inode sysctl 105 */ 106#ifdef CONFIG_SYSCTL 107int proc_nr_inodes(ctl_table *table, int write, 108 void __user *buffer, size_t *lenp, loff_t *ppos) 109{ 110 inodes_stat.nr_inodes = get_nr_inodes(); 111 inodes_stat.nr_unused = get_nr_inodes_unused(); 112 return proc_dointvec(table, write, buffer, lenp, ppos); 113} 114#endif 115 116/** 117 * inode_init_always - perform inode structure intialisation 118 * @sb: superblock inode belongs to 119 * @inode: inode to initialise 120 * 121 * These are initializations that need to be done on every inode 122 * allocation as the fields are not initialised by slab allocation. 123 */ 124int inode_init_always(struct super_block *sb, struct inode *inode) 125{ 126 static const struct inode_operations empty_iops; 127 static const struct file_operations empty_fops; 128 struct address_space *const mapping = &inode->i_data; 129 130 inode->i_sb = sb; 131 inode->i_blkbits = sb->s_blocksize_bits; 132 inode->i_flags = 0; 133 atomic_set(&inode->i_count, 1); 134 inode->i_op = &empty_iops; 135 inode->i_fop = &empty_fops; 136 inode->__i_nlink = 1; 137 inode->i_opflags = 0; 138 inode->i_uid = 0; 139 inode->i_gid = 0; 140 atomic_set(&inode->i_writecount, 0); 141 inode->i_size = 0; 142 inode->i_blocks = 0; 143 inode->i_bytes = 0; 144 inode->i_generation = 0; 145#ifdef CONFIG_QUOTA 146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 147#endif 148 inode->i_pipe = NULL; 149 inode->i_bdev = NULL; 150 inode->i_cdev = NULL; 151 inode->i_rdev = 0; 152 inode->dirtied_when = 0; 153 154 if (security_inode_alloc(inode)) 155 goto out; 156 spin_lock_init(&inode->i_lock); 157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 158 159 mutex_init(&inode->i_mutex); 160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 161 162 atomic_set(&inode->i_dio_count, 0); 163 164 mapping->a_ops = &empty_aops; 165 mapping->host = inode; 166 mapping->flags = 0; 167 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 168 mapping->assoc_mapping = NULL; 169 mapping->backing_dev_info = &default_backing_dev_info; 170 mapping->writeback_index = 0; 171 172 /* 173 * If the block_device provides a backing_dev_info for client 174 * inodes then use that. Otherwise the inode share the bdev's 175 * backing_dev_info. 176 */ 177 if (sb->s_bdev) { 178 struct backing_dev_info *bdi; 179 180 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 181 mapping->backing_dev_info = bdi; 182 } 183 inode->i_private = NULL; 184 inode->i_mapping = mapping; 185 INIT_LIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 186#ifdef CONFIG_FS_POSIX_ACL 187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 188#endif 189 190#ifdef CONFIG_FSNOTIFY 191 inode->i_fsnotify_mask = 0; 192#endif 193 194 this_cpu_inc(nr_inodes); 195 196 return 0; 197out: 198 return -ENOMEM; 199} 200EXPORT_SYMBOL(inode_init_always); 201 202static struct inode *alloc_inode(struct super_block *sb) 203{ 204 struct inode *inode; 205 206 if (sb->s_op->alloc_inode) 207 inode = sb->s_op->alloc_inode(sb); 208 else 209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 210 211 if (!inode) 212 return NULL; 213 214 if (unlikely(inode_init_always(sb, inode))) { 215 if (inode->i_sb->s_op->destroy_inode) 216 inode->i_sb->s_op->destroy_inode(inode); 217 else 218 kmem_cache_free(inode_cachep, inode); 219 return NULL; 220 } 221 222 return inode; 223} 224 225void free_inode_nonrcu(struct inode *inode) 226{ 227 kmem_cache_free(inode_cachep, inode); 228} 229EXPORT_SYMBOL(free_inode_nonrcu); 230 231void __destroy_inode(struct inode *inode) 232{ 233 BUG_ON(inode_has_buffers(inode)); 234 security_inode_free(inode); 235 fsnotify_inode_delete(inode); 236 if (!inode->i_nlink) { 237 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 238 atomic_long_dec(&inode->i_sb->s_remove_count); 239 } 240 241#ifdef CONFIG_FS_POSIX_ACL 242 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 243 posix_acl_release(inode->i_acl); 244 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 245 posix_acl_release(inode->i_default_acl); 246#endif 247 this_cpu_dec(nr_inodes); 248} 249EXPORT_SYMBOL(__destroy_inode); 250 251static void i_callback(struct rcu_head *head) 252{ 253 struct inode *inode = container_of(head, struct inode, i_rcu); 254 kmem_cache_free(inode_cachep, inode); 255} 256 257static void destroy_inode(struct inode *inode) 258{ 259 BUG_ON(!list_empty(&inode->i_lru)); 260 __destroy_inode(inode); 261 if (inode->i_sb->s_op->destroy_inode) 262 inode->i_sb->s_op->destroy_inode(inode); 263 else 264 call_rcu(&inode->i_rcu, i_callback); 265} 266 267/** 268 * drop_nlink - directly drop an inode's link count 269 * @inode: inode 270 * 271 * This is a low-level filesystem helper to replace any 272 * direct filesystem manipulation of i_nlink. In cases 273 * where we are attempting to track writes to the 274 * filesystem, a decrement to zero means an imminent 275 * write when the file is truncated and actually unlinked 276 * on the filesystem. 277 */ 278void drop_nlink(struct inode *inode) 279{ 280 WARN_ON(inode->i_nlink == 0); 281 inode->__i_nlink--; 282 if (!inode->i_nlink) 283 atomic_long_inc(&inode->i_sb->s_remove_count); 284} 285EXPORT_SYMBOL(drop_nlink); 286 287/** 288 * clear_nlink - directly zero an inode's link count 289 * @inode: inode 290 * 291 * This is a low-level filesystem helper to replace any 292 * direct filesystem manipulation of i_nlink. See 293 * drop_nlink() for why we care about i_nlink hitting zero. 294 */ 295void clear_nlink(struct inode *inode) 296{ 297 if (inode->i_nlink) { 298 inode->__i_nlink = 0; 299 atomic_long_inc(&inode->i_sb->s_remove_count); 300 } 301} 302EXPORT_SYMBOL(clear_nlink); 303 304/** 305 * set_nlink - directly set an inode's link count 306 * @inode: inode 307 * @nlink: new nlink (should be non-zero) 308 * 309 * This is a low-level filesystem helper to replace any 310 * direct filesystem manipulation of i_nlink. 311 */ 312void set_nlink(struct inode *inode, unsigned int nlink) 313{ 314 if (!nlink) { 315 clear_nlink(inode); 316 } else { 317 /* Yes, some filesystems do change nlink from zero to one */ 318 if (inode->i_nlink == 0) 319 atomic_long_dec(&inode->i_sb->s_remove_count); 320 321 inode->__i_nlink = nlink; 322 } 323} 324EXPORT_SYMBOL(set_nlink); 325 326/** 327 * inc_nlink - directly increment an inode's link count 328 * @inode: inode 329 * 330 * This is a low-level filesystem helper to replace any 331 * direct filesystem manipulation of i_nlink. Currently, 332 * it is only here for parity with dec_nlink(). 333 */ 334void inc_nlink(struct inode *inode) 335{ 336 if (WARN_ON(inode->i_nlink == 0)) 337 atomic_long_dec(&inode->i_sb->s_remove_count); 338 339 inode->__i_nlink++; 340} 341EXPORT_SYMBOL(inc_nlink); 342 343void address_space_init_once(struct address_space *mapping) 344{ 345 memset(mapping, 0, sizeof(*mapping)); 346 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 347 spin_lock_init(&mapping->tree_lock); 348 mutex_init(&mapping->i_mmap_mutex); 349 INIT_LIST_HEAD(&mapping->private_list); 350 spin_lock_init(&mapping->private_lock); 351 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); 352 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 353} 354EXPORT_SYMBOL(address_space_init_once); 355 356/* 357 * These are initializations that only need to be done 358 * once, because the fields are idempotent across use 359 * of the inode, so let the slab aware of that. 360 */ 361void inode_init_once(struct inode *inode) 362{ 363 memset(inode, 0, sizeof(*inode)); 364 INIT_HLIST_NODE(&inode->i_hash); 365 INIT_LIST_HEAD(&inode->i_devices); 366 INIT_LIST_HEAD(&inode->i_wb_list); 367 INIT_LIST_HEAD(&inode->i_lru); 368 address_space_init_once(&inode->i_data); 369 i_size_ordered_init(inode); 370#ifdef CONFIG_FSNOTIFY 371 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 372#endif 373} 374EXPORT_SYMBOL(inode_init_once); 375 376static void init_once(void *foo) 377{ 378 struct inode *inode = (struct inode *) foo; 379 380 inode_init_once(inode); 381} 382 383/* 384 * inode->i_lock must be held 385 */ 386void __iget(struct inode *inode) 387{ 388 atomic_inc(&inode->i_count); 389} 390 391/* 392 * get additional reference to inode; caller must already hold one. 393 */ 394void ihold(struct inode *inode) 395{ 396 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 397} 398EXPORT_SYMBOL(ihold); 399 400static void inode_lru_list_add(struct inode *inode) 401{ 402 spin_lock(&inode->i_sb->s_inode_lru_lock); 403 if (list_empty(&inode->i_lru)) { 404 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru); 405 inode->i_sb->s_nr_inodes_unused++; 406 this_cpu_inc(nr_unused); 407 } 408 spin_unlock(&inode->i_sb->s_inode_lru_lock); 409} 410 411static void inode_lru_list_del(struct inode *inode) 412{ 413 spin_lock(&inode->i_sb->s_inode_lru_lock); 414 if (!list_empty(&inode->i_lru)) { 415 list_del_init(&inode->i_lru); 416 inode->i_sb->s_nr_inodes_unused--; 417 this_cpu_dec(nr_unused); 418 } 419 spin_unlock(&inode->i_sb->s_inode_lru_lock); 420} 421 422/** 423 * inode_sb_list_add - add inode to the superblock list of inodes 424 * @inode: inode to add 425 */ 426void inode_sb_list_add(struct inode *inode) 427{ 428 spin_lock(&inode_sb_list_lock); 429 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 430 spin_unlock(&inode_sb_list_lock); 431} 432EXPORT_SYMBOL_GPL(inode_sb_list_add); 433 434static inline void inode_sb_list_del(struct inode *inode) 435{ 436 if (!list_empty(&inode->i_sb_list)) { 437 spin_lock(&inode_sb_list_lock); 438 list_del_init(&inode->i_sb_list); 439 spin_unlock(&inode_sb_list_lock); 440 } 441} 442 443static unsigned long hash(struct super_block *sb, unsigned long hashval) 444{ 445 unsigned long tmp; 446 447 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 448 L1_CACHE_BYTES; 449 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 450 return tmp & i_hash_mask; 451} 452 453/** 454 * __insert_inode_hash - hash an inode 455 * @inode: unhashed inode 456 * @hashval: unsigned long value used to locate this object in the 457 * inode_hashtable. 458 * 459 * Add an inode to the inode hash for this superblock. 460 */ 461void __insert_inode_hash(struct inode *inode, unsigned long hashval) 462{ 463 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 464 465 spin_lock(&inode_hash_lock); 466 spin_lock(&inode->i_lock); 467 hlist_add_head(&inode->i_hash, b); 468 spin_unlock(&inode->i_lock); 469 spin_unlock(&inode_hash_lock); 470} 471EXPORT_SYMBOL(__insert_inode_hash); 472 473/** 474 * __remove_inode_hash - remove an inode from the hash 475 * @inode: inode to unhash 476 * 477 * Remove an inode from the superblock. 478 */ 479void __remove_inode_hash(struct inode *inode) 480{ 481 spin_lock(&inode_hash_lock); 482 spin_lock(&inode->i_lock); 483 hlist_del_init(&inode->i_hash); 484 spin_unlock(&inode->i_lock); 485 spin_unlock(&inode_hash_lock); 486} 487EXPORT_SYMBOL(__remove_inode_hash); 488 489void end_writeback(struct inode *inode) 490{ 491 might_sleep(); 492 /* 493 * We have to cycle tree_lock here because reclaim can be still in the 494 * process of removing the last page (in __delete_from_page_cache()) 495 * and we must not free mapping under it. 496 */ 497 spin_lock_irq(&inode->i_data.tree_lock); 498 BUG_ON(inode->i_data.nrpages); 499 spin_unlock_irq(&inode->i_data.tree_lock); 500 BUG_ON(!list_empty(&inode->i_data.private_list)); 501 BUG_ON(!(inode->i_state & I_FREEING)); 502 BUG_ON(inode->i_state & I_CLEAR); 503 inode_sync_wait(inode); 504 /* don't need i_lock here, no concurrent mods to i_state */ 505 inode->i_state = I_FREEING | I_CLEAR; 506} 507EXPORT_SYMBOL(end_writeback); 508 509/* 510 * Free the inode passed in, removing it from the lists it is still connected 511 * to. We remove any pages still attached to the inode and wait for any IO that 512 * is still in progress before finally destroying the inode. 513 * 514 * An inode must already be marked I_FREEING so that we avoid the inode being 515 * moved back onto lists if we race with other code that manipulates the lists 516 * (e.g. writeback_single_inode). The caller is responsible for setting this. 517 * 518 * An inode must already be removed from the LRU list before being evicted from 519 * the cache. This should occur atomically with setting the I_FREEING state 520 * flag, so no inodes here should ever be on the LRU when being evicted. 521 */ 522static void evict(struct inode *inode) 523{ 524 const struct super_operations *op = inode->i_sb->s_op; 525 526 BUG_ON(!(inode->i_state & I_FREEING)); 527 BUG_ON(!list_empty(&inode->i_lru)); 528 529 if (!list_empty(&inode->i_wb_list)) 530 inode_wb_list_del(inode); 531 532 inode_sb_list_del(inode); 533 534 if (op->evict_inode) { 535 op->evict_inode(inode); 536 } else { 537 if (inode->i_data.nrpages) 538 truncate_inode_pages(&inode->i_data, 0); 539 end_writeback(inode); 540 } 541 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 542 bd_forget(inode); 543 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 544 cd_forget(inode); 545 546 remove_inode_hash(inode); 547 548 spin_lock(&inode->i_lock); 549 wake_up_bit(&inode->i_state, __I_NEW); 550 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 551 spin_unlock(&inode->i_lock); 552 553 destroy_inode(inode); 554} 555 556/* 557 * dispose_list - dispose of the contents of a local list 558 * @head: the head of the list to free 559 * 560 * Dispose-list gets a local list with local inodes in it, so it doesn't 561 * need to worry about list corruption and SMP locks. 562 */ 563static void dispose_list(struct list_head *head) 564{ 565 while (!list_empty(head)) { 566 struct inode *inode; 567 568 inode = list_first_entry(head, struct inode, i_lru); 569 list_del_init(&inode->i_lru); 570 571 evict(inode); 572 } 573} 574 575/** 576 * evict_inodes - evict all evictable inodes for a superblock 577 * @sb: superblock to operate on 578 * 579 * Make sure that no inodes with zero refcount are retained. This is 580 * called by superblock shutdown after having MS_ACTIVE flag removed, 581 * so any inode reaching zero refcount during or after that call will 582 * be immediately evicted. 583 */ 584void evict_inodes(struct super_block *sb) 585{ 586 struct inode *inode, *next; 587 LIST_HEAD(dispose); 588 589 spin_lock(&inode_sb_list_lock); 590 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 591 if (atomic_read(&inode->i_count)) 592 continue; 593 594 spin_lock(&inode->i_lock); 595 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 596 spin_unlock(&inode->i_lock); 597 continue; 598 } 599 600 inode->i_state |= I_FREEING; 601 inode_lru_list_del(inode); 602 spin_unlock(&inode->i_lock); 603 list_add(&inode->i_lru, &dispose); 604 } 605 spin_unlock(&inode_sb_list_lock); 606 607 dispose_list(&dispose); 608} 609 610/** 611 * invalidate_inodes - attempt to free all inodes on a superblock 612 * @sb: superblock to operate on 613 * @kill_dirty: flag to guide handling of dirty inodes 614 * 615 * Attempts to free all inodes for a given superblock. If there were any 616 * busy inodes return a non-zero value, else zero. 617 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 618 * them as busy. 619 */ 620int invalidate_inodes(struct super_block *sb, bool kill_dirty) 621{ 622 int busy = 0; 623 struct inode *inode, *next; 624 LIST_HEAD(dispose); 625 626 spin_lock(&inode_sb_list_lock); 627 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 628 spin_lock(&inode->i_lock); 629 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 630 spin_unlock(&inode->i_lock); 631 continue; 632 } 633 if (inode->i_state & I_DIRTY && !kill_dirty) { 634 spin_unlock(&inode->i_lock); 635 busy = 1; 636 continue; 637 } 638 if (atomic_read(&inode->i_count)) { 639 spin_unlock(&inode->i_lock); 640 busy = 1; 641 continue; 642 } 643 644 inode->i_state |= I_FREEING; 645 inode_lru_list_del(inode); 646 spin_unlock(&inode->i_lock); 647 list_add(&inode->i_lru, &dispose); 648 } 649 spin_unlock(&inode_sb_list_lock); 650 651 dispose_list(&dispose); 652 653 return busy; 654} 655 656static int can_unuse(struct inode *inode) 657{ 658 if (inode->i_state & ~I_REFERENCED) 659 return 0; 660 if (inode_has_buffers(inode)) 661 return 0; 662 if (atomic_read(&inode->i_count)) 663 return 0; 664 if (inode->i_data.nrpages) 665 return 0; 666 return 1; 667} 668 669/* 670 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 671 * This is called from the superblock shrinker function with a number of inodes 672 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 673 * then are freed outside inode_lock by dispose_list(). 674 * 675 * Any inodes which are pinned purely because of attached pagecache have their 676 * pagecache removed. If the inode has metadata buffers attached to 677 * mapping->private_list then try to remove them. 678 * 679 * If the inode has the I_REFERENCED flag set, then it means that it has been 680 * used recently - the flag is set in iput_final(). When we encounter such an 681 * inode, clear the flag and move it to the back of the LRU so it gets another 682 * pass through the LRU before it gets reclaimed. This is necessary because of 683 * the fact we are doing lazy LRU updates to minimise lock contention so the 684 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 685 * with this flag set because they are the inodes that are out of order. 686 */ 687void prune_icache_sb(struct super_block *sb, int nr_to_scan) 688{ 689 LIST_HEAD(freeable); 690 int nr_scanned; 691 unsigned long reap = 0; 692 693 spin_lock(&sb->s_inode_lru_lock); 694 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) { 695 struct inode *inode; 696 697 if (list_empty(&sb->s_inode_lru)) 698 break; 699 700 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru); 701 702 /* 703 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here, 704 * so use a trylock. If we fail to get the lock, just move the 705 * inode to the back of the list so we don't spin on it. 706 */ 707 if (!spin_trylock(&inode->i_lock)) { 708 list_move_tail(&inode->i_lru, &sb->s_inode_lru); 709 continue; 710 } 711 712 /* 713 * Referenced or dirty inodes are still in use. Give them 714 * another pass through the LRU as we canot reclaim them now. 715 */ 716 if (atomic_read(&inode->i_count) || 717 (inode->i_state & ~I_REFERENCED)) { 718 list_del_init(&inode->i_lru); 719 spin_unlock(&inode->i_lock); 720 sb->s_nr_inodes_unused--; 721 this_cpu_dec(nr_unused); 722 continue; 723 } 724 725 /* recently referenced inodes get one more pass */ 726 if (inode->i_state & I_REFERENCED) { 727 inode->i_state &= ~I_REFERENCED; 728 list_move(&inode->i_lru, &sb->s_inode_lru); 729 spin_unlock(&inode->i_lock); 730 continue; 731 } 732 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 733 __iget(inode); 734 spin_unlock(&inode->i_lock); 735 spin_unlock(&sb->s_inode_lru_lock); 736 if (remove_inode_buffers(inode)) 737 reap += invalidate_mapping_pages(&inode->i_data, 738 0, -1); 739 iput(inode); 740 spin_lock(&sb->s_inode_lru_lock); 741 742 if (inode != list_entry(sb->s_inode_lru.next, 743 struct inode, i_lru)) 744 continue; /* wrong inode or list_empty */ 745 /* avoid lock inversions with trylock */ 746 if (!spin_trylock(&inode->i_lock)) 747 continue; 748 if (!can_unuse(inode)) { 749 spin_unlock(&inode->i_lock); 750 continue; 751 } 752 } 753 WARN_ON(inode->i_state & I_NEW); 754 inode->i_state |= I_FREEING; 755 spin_unlock(&inode->i_lock); 756 757 list_move(&inode->i_lru, &freeable); 758 sb->s_nr_inodes_unused--; 759 this_cpu_dec(nr_unused); 760 } 761 if (current_is_kswapd()) 762 __count_vm_events(KSWAPD_INODESTEAL, reap); 763 else 764 __count_vm_events(PGINODESTEAL, reap); 765 spin_unlock(&sb->s_inode_lru_lock); 766 if (current->reclaim_state) 767 current->reclaim_state->reclaimed_slab += reap; 768 769 dispose_list(&freeable); 770} 771 772static void __wait_on_freeing_inode(struct inode *inode); 773/* 774 * Called with the inode lock held. 775 */ 776static struct inode *find_inode(struct super_block *sb, 777 struct hlist_head *head, 778 int (*test)(struct inode *, void *), 779 void *data) 780{ 781 struct hlist_node *node; 782 struct inode *inode = NULL; 783 784repeat: 785 hlist_for_each_entry(inode, node, head, i_hash) { 786 spin_lock(&inode->i_lock); 787 if (inode->i_sb != sb) { 788 spin_unlock(&inode->i_lock); 789 continue; 790 } 791 if (!test(inode, data)) { 792 spin_unlock(&inode->i_lock); 793 continue; 794 } 795 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 796 __wait_on_freeing_inode(inode); 797 goto repeat; 798 } 799 __iget(inode); 800 spin_unlock(&inode->i_lock); 801 return inode; 802 } 803 return NULL; 804} 805 806/* 807 * find_inode_fast is the fast path version of find_inode, see the comment at 808 * iget_locked for details. 809 */ 810static struct inode *find_inode_fast(struct super_block *sb, 811 struct hlist_head *head, unsigned long ino) 812{ 813 struct hlist_node *node; 814 struct inode *inode = NULL; 815 816repeat: 817 hlist_for_each_entry(inode, node, head, i_hash) { 818 spin_lock(&inode->i_lock); 819 if (inode->i_ino != ino) { 820 spin_unlock(&inode->i_lock); 821 continue; 822 } 823 if (inode->i_sb != sb) { 824 spin_unlock(&inode->i_lock); 825 continue; 826 } 827 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 828 __wait_on_freeing_inode(inode); 829 goto repeat; 830 } 831 __iget(inode); 832 spin_unlock(&inode->i_lock); 833 return inode; 834 } 835 return NULL; 836} 837 838/* 839 * Each cpu owns a range of LAST_INO_BATCH numbers. 840 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 841 * to renew the exhausted range. 842 * 843 * This does not significantly increase overflow rate because every CPU can 844 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 845 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 846 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 847 * overflow rate by 2x, which does not seem too significant. 848 * 849 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 850 * error if st_ino won't fit in target struct field. Use 32bit counter 851 * here to attempt to avoid that. 852 */ 853#define LAST_INO_BATCH 1024 854static DEFINE_PER_CPU(unsigned int, last_ino); 855 856unsigned int get_next_ino(void) 857{ 858 unsigned int *p = &get_cpu_var(last_ino); 859 unsigned int res = *p; 860 861#ifdef CONFIG_SMP 862 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 863 static atomic_t shared_last_ino; 864 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 865 866 res = next - LAST_INO_BATCH; 867 } 868#endif 869 870 *p = ++res; 871 put_cpu_var(last_ino); 872 return res; 873} 874EXPORT_SYMBOL(get_next_ino); 875 876/** 877 * new_inode_pseudo - obtain an inode 878 * @sb: superblock 879 * 880 * Allocates a new inode for given superblock. 881 * Inode wont be chained in superblock s_inodes list 882 * This means : 883 * - fs can't be unmount 884 * - quotas, fsnotify, writeback can't work 885 */ 886struct inode *new_inode_pseudo(struct super_block *sb) 887{ 888 struct inode *inode = alloc_inode(sb); 889 890 if (inode) { 891 spin_lock(&inode->i_lock); 892 inode->i_state = 0; 893 spin_unlock(&inode->i_lock); 894 INIT_LIST_HEAD(&inode->i_sb_list); 895 } 896 return inode; 897} 898 899/** 900 * new_inode - obtain an inode 901 * @sb: superblock 902 * 903 * Allocates a new inode for given superblock. The default gfp_mask 904 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 905 * If HIGHMEM pages are unsuitable or it is known that pages allocated 906 * for the page cache are not reclaimable or migratable, 907 * mapping_set_gfp_mask() must be called with suitable flags on the 908 * newly created inode's mapping 909 * 910 */ 911struct inode *new_inode(struct super_block *sb) 912{ 913 struct inode *inode; 914 915 spin_lock_prefetch(&inode_sb_list_lock); 916 917 inode = new_inode_pseudo(sb); 918 if (inode) 919 inode_sb_list_add(inode); 920 return inode; 921} 922EXPORT_SYMBOL(new_inode); 923 924#ifdef CONFIG_DEBUG_LOCK_ALLOC 925void lockdep_annotate_inode_mutex_key(struct inode *inode) 926{ 927 if (S_ISDIR(inode->i_mode)) { 928 struct file_system_type *type = inode->i_sb->s_type; 929 930 /* Set new key only if filesystem hasn't already changed it */ 931 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) { 932 /* 933 * ensure nobody is actually holding i_mutex 934 */ 935 mutex_destroy(&inode->i_mutex); 936 mutex_init(&inode->i_mutex); 937 lockdep_set_class(&inode->i_mutex, 938 &type->i_mutex_dir_key); 939 } 940 } 941} 942EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 943#endif 944 945/** 946 * unlock_new_inode - clear the I_NEW state and wake up any waiters 947 * @inode: new inode to unlock 948 * 949 * Called when the inode is fully initialised to clear the new state of the 950 * inode and wake up anyone waiting for the inode to finish initialisation. 951 */ 952void unlock_new_inode(struct inode *inode) 953{ 954 lockdep_annotate_inode_mutex_key(inode); 955 spin_lock(&inode->i_lock); 956 WARN_ON(!(inode->i_state & I_NEW)); 957 inode->i_state &= ~I_NEW; 958 smp_mb(); 959 wake_up_bit(&inode->i_state, __I_NEW); 960 spin_unlock(&inode->i_lock); 961} 962EXPORT_SYMBOL(unlock_new_inode); 963 964/** 965 * iget5_locked - obtain an inode from a mounted file system 966 * @sb: super block of file system 967 * @hashval: hash value (usually inode number) to get 968 * @test: callback used for comparisons between inodes 969 * @set: callback used to initialize a new struct inode 970 * @data: opaque data pointer to pass to @test and @set 971 * 972 * Search for the inode specified by @hashval and @data in the inode cache, 973 * and if present it is return it with an increased reference count. This is 974 * a generalized version of iget_locked() for file systems where the inode 975 * number is not sufficient for unique identification of an inode. 976 * 977 * If the inode is not in cache, allocate a new inode and return it locked, 978 * hashed, and with the I_NEW flag set. The file system gets to fill it in 979 * before unlocking it via unlock_new_inode(). 980 * 981 * Note both @test and @set are called with the inode_hash_lock held, so can't 982 * sleep. 983 */ 984struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 985 int (*test)(struct inode *, void *), 986 int (*set)(struct inode *, void *), void *data) 987{ 988 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 989 struct inode *inode; 990 991 spin_lock(&inode_hash_lock); 992 inode = find_inode(sb, head, test, data); 993 spin_unlock(&inode_hash_lock); 994 995 if (inode) { 996 wait_on_inode(inode); 997 return inode; 998 } 999 1000 inode = alloc_inode(sb); 1001 if (inode) { 1002 struct inode *old; 1003 1004 spin_lock(&inode_hash_lock); 1005 /* We released the lock, so.. */ 1006 old = find_inode(sb, head, test, data); 1007 if (!old) { 1008 if (set(inode, data)) 1009 goto set_failed; 1010 1011 spin_lock(&inode->i_lock); 1012 inode->i_state = I_NEW; 1013 hlist_add_head(&inode->i_hash, head); 1014 spin_unlock(&inode->i_lock); 1015 inode_sb_list_add(inode); 1016 spin_unlock(&inode_hash_lock); 1017 1018 /* Return the locked inode with I_NEW set, the 1019 * caller is responsible for filling in the contents 1020 */ 1021 return inode; 1022 } 1023 1024 /* 1025 * Uhhuh, somebody else created the same inode under 1026 * us. Use the old inode instead of the one we just 1027 * allocated. 1028 */ 1029 spin_unlock(&inode_hash_lock); 1030 destroy_inode(inode); 1031 inode = old; 1032 wait_on_inode(inode); 1033 } 1034 return inode; 1035 1036set_failed: 1037 spin_unlock(&inode_hash_lock); 1038 destroy_inode(inode); 1039 return NULL; 1040} 1041EXPORT_SYMBOL(iget5_locked); 1042 1043/** 1044 * iget_locked - obtain an inode from a mounted file system 1045 * @sb: super block of file system 1046 * @ino: inode number to get 1047 * 1048 * Search for the inode specified by @ino in the inode cache and if present 1049 * return it with an increased reference count. This is for file systems 1050 * where the inode number is sufficient for unique identification of an inode. 1051 * 1052 * If the inode is not in cache, allocate a new inode and return it locked, 1053 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1054 * before unlocking it via unlock_new_inode(). 1055 */ 1056struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1057{ 1058 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1059 struct inode *inode; 1060 1061 spin_lock(&inode_hash_lock); 1062 inode = find_inode_fast(sb, head, ino); 1063 spin_unlock(&inode_hash_lock); 1064 if (inode) { 1065 wait_on_inode(inode); 1066 return inode; 1067 } 1068 1069 inode = alloc_inode(sb); 1070 if (inode) { 1071 struct inode *old; 1072 1073 spin_lock(&inode_hash_lock); 1074 /* We released the lock, so.. */ 1075 old = find_inode_fast(sb, head, ino); 1076 if (!old) { 1077 inode->i_ino = ino; 1078 spin_lock(&inode->i_lock); 1079 inode->i_state = I_NEW; 1080 hlist_add_head(&inode->i_hash, head); 1081 spin_unlock(&inode->i_lock); 1082 inode_sb_list_add(inode); 1083 spin_unlock(&inode_hash_lock); 1084 1085 /* Return the locked inode with I_NEW set, the 1086 * caller is responsible for filling in the contents 1087 */ 1088 return inode; 1089 } 1090 1091 /* 1092 * Uhhuh, somebody else created the same inode under 1093 * us. Use the old inode instead of the one we just 1094 * allocated. 1095 */ 1096 spin_unlock(&inode_hash_lock); 1097 destroy_inode(inode); 1098 inode = old; 1099 wait_on_inode(inode); 1100 } 1101 return inode; 1102} 1103EXPORT_SYMBOL(iget_locked); 1104 1105/* 1106 * search the inode cache for a matching inode number. 1107 * If we find one, then the inode number we are trying to 1108 * allocate is not unique and so we should not use it. 1109 * 1110 * Returns 1 if the inode number is unique, 0 if it is not. 1111 */ 1112static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1113{ 1114 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1115 struct hlist_node *node; 1116 struct inode *inode; 1117 1118 spin_lock(&inode_hash_lock); 1119 hlist_for_each_entry(inode, node, b, i_hash) { 1120 if (inode->i_ino == ino && inode->i_sb == sb) { 1121 spin_unlock(&inode_hash_lock); 1122 return 0; 1123 } 1124 } 1125 spin_unlock(&inode_hash_lock); 1126 1127 return 1; 1128} 1129 1130/** 1131 * iunique - get a unique inode number 1132 * @sb: superblock 1133 * @max_reserved: highest reserved inode number 1134 * 1135 * Obtain an inode number that is unique on the system for a given 1136 * superblock. This is used by file systems that have no natural 1137 * permanent inode numbering system. An inode number is returned that 1138 * is higher than the reserved limit but unique. 1139 * 1140 * BUGS: 1141 * With a large number of inodes live on the file system this function 1142 * currently becomes quite slow. 1143 */ 1144ino_t iunique(struct super_block *sb, ino_t max_reserved) 1145{ 1146 /* 1147 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1148 * error if st_ino won't fit in target struct field. Use 32bit counter 1149 * here to attempt to avoid that. 1150 */ 1151 static DEFINE_SPINLOCK(iunique_lock); 1152 static unsigned int counter; 1153 ino_t res; 1154 1155 spin_lock(&iunique_lock); 1156 do { 1157 if (counter <= max_reserved) 1158 counter = max_reserved + 1; 1159 res = counter++; 1160 } while (!test_inode_iunique(sb, res)); 1161 spin_unlock(&iunique_lock); 1162 1163 return res; 1164} 1165EXPORT_SYMBOL(iunique); 1166 1167struct inode *igrab(struct inode *inode) 1168{ 1169 spin_lock(&inode->i_lock); 1170 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1171 __iget(inode); 1172 spin_unlock(&inode->i_lock); 1173 } else { 1174 spin_unlock(&inode->i_lock); 1175 /* 1176 * Handle the case where s_op->clear_inode is not been 1177 * called yet, and somebody is calling igrab 1178 * while the inode is getting freed. 1179 */ 1180 inode = NULL; 1181 } 1182 return inode; 1183} 1184EXPORT_SYMBOL(igrab); 1185 1186/** 1187 * ilookup5_nowait - search for an inode in the inode cache 1188 * @sb: super block of file system to search 1189 * @hashval: hash value (usually inode number) to search for 1190 * @test: callback used for comparisons between inodes 1191 * @data: opaque data pointer to pass to @test 1192 * 1193 * Search for the inode specified by @hashval and @data in the inode cache. 1194 * If the inode is in the cache, the inode is returned with an incremented 1195 * reference count. 1196 * 1197 * Note: I_NEW is not waited upon so you have to be very careful what you do 1198 * with the returned inode. You probably should be using ilookup5() instead. 1199 * 1200 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1201 */ 1202struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1203 int (*test)(struct inode *, void *), void *data) 1204{ 1205 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1206 struct inode *inode; 1207 1208 spin_lock(&inode_hash_lock); 1209 inode = find_inode(sb, head, test, data); 1210 spin_unlock(&inode_hash_lock); 1211 1212 return inode; 1213} 1214EXPORT_SYMBOL(ilookup5_nowait); 1215 1216/** 1217 * ilookup5 - search for an inode in the inode cache 1218 * @sb: super block of file system to search 1219 * @hashval: hash value (usually inode number) to search for 1220 * @test: callback used for comparisons between inodes 1221 * @data: opaque data pointer to pass to @test 1222 * 1223 * Search for the inode specified by @hashval and @data in the inode cache, 1224 * and if the inode is in the cache, return the inode with an incremented 1225 * reference count. Waits on I_NEW before returning the inode. 1226 * returned with an incremented reference count. 1227 * 1228 * This is a generalized version of ilookup() for file systems where the 1229 * inode number is not sufficient for unique identification of an inode. 1230 * 1231 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1232 */ 1233struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1234 int (*test)(struct inode *, void *), void *data) 1235{ 1236 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1237 1238 if (inode) 1239 wait_on_inode(inode); 1240 return inode; 1241} 1242EXPORT_SYMBOL(ilookup5); 1243 1244/** 1245 * ilookup - search for an inode in the inode cache 1246 * @sb: super block of file system to search 1247 * @ino: inode number to search for 1248 * 1249 * Search for the inode @ino in the inode cache, and if the inode is in the 1250 * cache, the inode is returned with an incremented reference count. 1251 */ 1252struct inode *ilookup(struct super_block *sb, unsigned long ino) 1253{ 1254 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1255 struct inode *inode; 1256 1257 spin_lock(&inode_hash_lock); 1258 inode = find_inode_fast(sb, head, ino); 1259 spin_unlock(&inode_hash_lock); 1260 1261 if (inode) 1262 wait_on_inode(inode); 1263 return inode; 1264} 1265EXPORT_SYMBOL(ilookup); 1266 1267int insert_inode_locked(struct inode *inode) 1268{ 1269 struct super_block *sb = inode->i_sb; 1270 ino_t ino = inode->i_ino; 1271 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1272 1273 while (1) { 1274 struct hlist_node *node; 1275 struct inode *old = NULL; 1276 spin_lock(&inode_hash_lock); 1277 hlist_for_each_entry(old, node, head, i_hash) { 1278 if (old->i_ino != ino) 1279 continue; 1280 if (old->i_sb != sb) 1281 continue; 1282 spin_lock(&old->i_lock); 1283 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1284 spin_unlock(&old->i_lock); 1285 continue; 1286 } 1287 break; 1288 } 1289 if (likely(!node)) { 1290 spin_lock(&inode->i_lock); 1291 inode->i_state |= I_NEW; 1292 hlist_add_head(&inode->i_hash, head); 1293 spin_unlock(&inode->i_lock); 1294 spin_unlock(&inode_hash_lock); 1295 return 0; 1296 } 1297 __iget(old); 1298 spin_unlock(&old->i_lock); 1299 spin_unlock(&inode_hash_lock); 1300 wait_on_inode(old); 1301 if (unlikely(!inode_unhashed(old))) { 1302 iput(old); 1303 return -EBUSY; 1304 } 1305 iput(old); 1306 } 1307} 1308EXPORT_SYMBOL(insert_inode_locked); 1309 1310int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1311 int (*test)(struct inode *, void *), void *data) 1312{ 1313 struct super_block *sb = inode->i_sb; 1314 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1315 1316 while (1) { 1317 struct hlist_node *node; 1318 struct inode *old = NULL; 1319 1320 spin_lock(&inode_hash_lock); 1321 hlist_for_each_entry(old, node, head, i_hash) { 1322 if (old->i_sb != sb) 1323 continue; 1324 if (!test(old, data)) 1325 continue; 1326 spin_lock(&old->i_lock); 1327 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1328 spin_unlock(&old->i_lock); 1329 continue; 1330 } 1331 break; 1332 } 1333 if (likely(!node)) { 1334 spin_lock(&inode->i_lock); 1335 inode->i_state |= I_NEW; 1336 hlist_add_head(&inode->i_hash, head); 1337 spin_unlock(&inode->i_lock); 1338 spin_unlock(&inode_hash_lock); 1339 return 0; 1340 } 1341 __iget(old); 1342 spin_unlock(&old->i_lock); 1343 spin_unlock(&inode_hash_lock); 1344 wait_on_inode(old); 1345 if (unlikely(!inode_unhashed(old))) { 1346 iput(old); 1347 return -EBUSY; 1348 } 1349 iput(old); 1350 } 1351} 1352EXPORT_SYMBOL(insert_inode_locked4); 1353 1354 1355int generic_delete_inode(struct inode *inode) 1356{ 1357 return 1; 1358} 1359EXPORT_SYMBOL(generic_delete_inode); 1360 1361/* 1362 * Called when we're dropping the last reference 1363 * to an inode. 1364 * 1365 * Call the FS "drop_inode()" function, defaulting to 1366 * the legacy UNIX filesystem behaviour. If it tells 1367 * us to evict inode, do so. Otherwise, retain inode 1368 * in cache if fs is alive, sync and evict if fs is 1369 * shutting down. 1370 */ 1371static void iput_final(struct inode *inode) 1372{ 1373 struct super_block *sb = inode->i_sb; 1374 const struct super_operations *op = inode->i_sb->s_op; 1375 int drop; 1376 1377 WARN_ON(inode->i_state & I_NEW); 1378 1379 if (op->drop_inode) 1380 drop = op->drop_inode(inode); 1381 else 1382 drop = generic_drop_inode(inode); 1383 1384 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1385 inode->i_state |= I_REFERENCED; 1386 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1387 inode_lru_list_add(inode); 1388 spin_unlock(&inode->i_lock); 1389 return; 1390 } 1391 1392 if (!drop) { 1393 inode->i_state |= I_WILL_FREE; 1394 spin_unlock(&inode->i_lock); 1395 write_inode_now(inode, 1); 1396 spin_lock(&inode->i_lock); 1397 WARN_ON(inode->i_state & I_NEW); 1398 inode->i_state &= ~I_WILL_FREE; 1399 } 1400 1401 inode->i_state |= I_FREEING; 1402 if (!list_empty(&inode->i_lru)) 1403 inode_lru_list_del(inode); 1404 spin_unlock(&inode->i_lock); 1405 1406 evict(inode); 1407} 1408 1409/** 1410 * iput - put an inode 1411 * @inode: inode to put 1412 * 1413 * Puts an inode, dropping its usage count. If the inode use count hits 1414 * zero, the inode is then freed and may also be destroyed. 1415 * 1416 * Consequently, iput() can sleep. 1417 */ 1418void iput(struct inode *inode) 1419{ 1420 if (inode) { 1421 BUG_ON(inode->i_state & I_CLEAR); 1422 1423 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1424 iput_final(inode); 1425 } 1426} 1427EXPORT_SYMBOL(iput); 1428 1429/** 1430 * bmap - find a block number in a file 1431 * @inode: inode of file 1432 * @block: block to find 1433 * 1434 * Returns the block number on the device holding the inode that 1435 * is the disk block number for the block of the file requested. 1436 * That is, asked for block 4 of inode 1 the function will return the 1437 * disk block relative to the disk start that holds that block of the 1438 * file. 1439 */ 1440sector_t bmap(struct inode *inode, sector_t block) 1441{ 1442 sector_t res = 0; 1443 if (inode->i_mapping->a_ops->bmap) 1444 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1445 return res; 1446} 1447EXPORT_SYMBOL(bmap); 1448 1449/* 1450 * With relative atime, only update atime if the previous atime is 1451 * earlier than either the ctime or mtime or if at least a day has 1452 * passed since the last atime update. 1453 */ 1454static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1455 struct timespec now) 1456{ 1457 1458 if (!(mnt->mnt_flags & MNT_RELATIME)) 1459 return 1; 1460 /* 1461 * Is mtime younger than atime? If yes, update atime: 1462 */ 1463 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1464 return 1; 1465 /* 1466 * Is ctime younger than atime? If yes, update atime: 1467 */ 1468 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1469 return 1; 1470 1471 /* 1472 * Is the previous atime value older than a day? If yes, 1473 * update atime: 1474 */ 1475 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1476 return 1; 1477 /* 1478 * Good, we can skip the atime update: 1479 */ 1480 return 0; 1481} 1482 1483/** 1484 * touch_atime - update the access time 1485 * @mnt: mount the inode is accessed on 1486 * @dentry: dentry accessed 1487 * 1488 * Update the accessed time on an inode and mark it for writeback. 1489 * This function automatically handles read only file systems and media, 1490 * as well as the "noatime" flag and inode specific "noatime" markers. 1491 */ 1492void touch_atime(struct path *path) 1493{ 1494 struct vfsmount *mnt = path->mnt; 1495 struct inode *inode = path->dentry->d_inode; 1496 struct timespec now; 1497 1498 if (inode->i_flags & S_NOATIME) 1499 return; 1500 if (IS_NOATIME(inode)) 1501 return; 1502 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1503 return; 1504 1505 if (mnt->mnt_flags & MNT_NOATIME) 1506 return; 1507 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1508 return; 1509 1510 now = current_fs_time(inode->i_sb); 1511 1512 if (!relatime_need_update(mnt, inode, now)) 1513 return; 1514 1515 if (timespec_equal(&inode->i_atime, &now)) 1516 return; 1517 1518 if (mnt_want_write(mnt)) 1519 return; 1520 1521 inode->i_atime = now; 1522 mark_inode_dirty_sync(inode); 1523 mnt_drop_write(mnt); 1524} 1525EXPORT_SYMBOL(touch_atime); 1526 1527/** 1528 * file_update_time - update mtime and ctime time 1529 * @file: file accessed 1530 * 1531 * Update the mtime and ctime members of an inode and mark the inode 1532 * for writeback. Note that this function is meant exclusively for 1533 * usage in the file write path of filesystems, and filesystems may 1534 * choose to explicitly ignore update via this function with the 1535 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1536 * timestamps are handled by the server. 1537 */ 1538 1539void file_update_time(struct file *file) 1540{ 1541 struct inode *inode = file->f_path.dentry->d_inode; 1542 struct timespec now; 1543 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1544 1545 /* First try to exhaust all avenues to not sync */ 1546 if (IS_NOCMTIME(inode)) 1547 return; 1548 1549 now = current_fs_time(inode->i_sb); 1550 if (!timespec_equal(&inode->i_mtime, &now)) 1551 sync_it = S_MTIME; 1552 1553 if (!timespec_equal(&inode->i_ctime, &now)) 1554 sync_it |= S_CTIME; 1555 1556 if (IS_I_VERSION(inode)) 1557 sync_it |= S_VERSION; 1558 1559 if (!sync_it) 1560 return; 1561 1562 /* Finally allowed to write? Takes lock. */ 1563 if (mnt_want_write_file(file)) 1564 return; 1565 1566 /* Only change inode inside the lock region */ 1567 if (sync_it & S_VERSION) 1568 inode_inc_iversion(inode); 1569 if (sync_it & S_CTIME) 1570 inode->i_ctime = now; 1571 if (sync_it & S_MTIME) 1572 inode->i_mtime = now; 1573 mark_inode_dirty_sync(inode); 1574 mnt_drop_write_file(file); 1575} 1576EXPORT_SYMBOL(file_update_time); 1577 1578int inode_needs_sync(struct inode *inode) 1579{ 1580 if (IS_SYNC(inode)) 1581 return 1; 1582 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1583 return 1; 1584 return 0; 1585} 1586EXPORT_SYMBOL(inode_needs_sync); 1587 1588int inode_wait(void *word) 1589{ 1590 schedule(); 1591 return 0; 1592} 1593EXPORT_SYMBOL(inode_wait); 1594 1595/* 1596 * If we try to find an inode in the inode hash while it is being 1597 * deleted, we have to wait until the filesystem completes its 1598 * deletion before reporting that it isn't found. This function waits 1599 * until the deletion _might_ have completed. Callers are responsible 1600 * to recheck inode state. 1601 * 1602 * It doesn't matter if I_NEW is not set initially, a call to 1603 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1604 * will DTRT. 1605 */ 1606static void __wait_on_freeing_inode(struct inode *inode) 1607{ 1608 wait_queue_head_t *wq; 1609 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1610 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1611 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1612 spin_unlock(&inode->i_lock); 1613 spin_unlock(&inode_hash_lock); 1614 schedule(); 1615 finish_wait(wq, &wait.wait); 1616 spin_lock(&inode_hash_lock); 1617} 1618 1619static __initdata unsigned long ihash_entries; 1620static int __init set_ihash_entries(char *str) 1621{ 1622 if (!str) 1623 return 0; 1624 ihash_entries = simple_strtoul(str, &str, 0); 1625 return 1; 1626} 1627__setup("ihash_entries=", set_ihash_entries); 1628 1629/* 1630 * Initialize the waitqueues and inode hash table. 1631 */ 1632void __init inode_init_early(void) 1633{ 1634 unsigned int loop; 1635 1636 /* If hashes are distributed across NUMA nodes, defer 1637 * hash allocation until vmalloc space is available. 1638 */ 1639 if (hashdist) 1640 return; 1641 1642 inode_hashtable = 1643 alloc_large_system_hash("Inode-cache", 1644 sizeof(struct hlist_head), 1645 ihash_entries, 1646 14, 1647 HASH_EARLY, 1648 &i_hash_shift, 1649 &i_hash_mask, 1650 0); 1651 1652 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1653 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1654} 1655 1656void __init inode_init(void) 1657{ 1658 unsigned int loop; 1659 1660 /* inode slab cache */ 1661 inode_cachep = kmem_cache_create("inode_cache", 1662 sizeof(struct inode), 1663 0, 1664 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1665 SLAB_MEM_SPREAD), 1666 init_once); 1667 1668 /* Hash may have been set up in inode_init_early */ 1669 if (!hashdist) 1670 return; 1671 1672 inode_hashtable = 1673 alloc_large_system_hash("Inode-cache", 1674 sizeof(struct hlist_head), 1675 ihash_entries, 1676 14, 1677 0, 1678 &i_hash_shift, 1679 &i_hash_mask, 1680 0); 1681 1682 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1683 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1684} 1685 1686void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1687{ 1688 inode->i_mode = mode; 1689 if (S_ISCHR(mode)) { 1690 inode->i_fop = &def_chr_fops; 1691 inode->i_rdev = rdev; 1692 } else if (S_ISBLK(mode)) { 1693 inode->i_fop = &def_blk_fops; 1694 inode->i_rdev = rdev; 1695 } else if (S_ISFIFO(mode)) 1696 inode->i_fop = &def_fifo_fops; 1697 else if (S_ISSOCK(mode)) 1698 inode->i_fop = &bad_sock_fops; 1699 else 1700 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1701 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1702 inode->i_ino); 1703} 1704EXPORT_SYMBOL(init_special_inode); 1705 1706/** 1707 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1708 * @inode: New inode 1709 * @dir: Directory inode 1710 * @mode: mode of the new inode 1711 */ 1712void inode_init_owner(struct inode *inode, const struct inode *dir, 1713 umode_t mode) 1714{ 1715 inode->i_uid = current_fsuid(); 1716 if (dir && dir->i_mode & S_ISGID) { 1717 inode->i_gid = dir->i_gid; 1718 if (S_ISDIR(mode)) 1719 mode |= S_ISGID; 1720 } else 1721 inode->i_gid = current_fsgid(); 1722 inode->i_mode = mode; 1723} 1724EXPORT_SYMBOL(inode_init_owner); 1725 1726/** 1727 * inode_owner_or_capable - check current task permissions to inode 1728 * @inode: inode being checked 1729 * 1730 * Return true if current either has CAP_FOWNER to the inode, or 1731 * owns the file. 1732 */ 1733bool inode_owner_or_capable(const struct inode *inode) 1734{ 1735 struct user_namespace *ns = inode_userns(inode); 1736 1737 if (current_user_ns() == ns && current_fsuid() == inode->i_uid) 1738 return true; 1739 if (ns_capable(ns, CAP_FOWNER)) 1740 return true; 1741 return false; 1742} 1743EXPORT_SYMBOL(inode_owner_or_capable);