at v3.4 1360 lines 34 kB view raw
1/* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the 18 Free Software Foundation, Inc., 19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22/* 23 Module: rt2x00lib 24 Abstract: rt2x00 generic device routines. 25 */ 26 27#include <linux/kernel.h> 28#include <linux/module.h> 29#include <linux/slab.h> 30#include <linux/log2.h> 31 32#include "rt2x00.h" 33#include "rt2x00lib.h" 34 35/* 36 * Utility functions. 37 */ 38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 39 struct ieee80211_vif *vif) 40{ 41 /* 42 * When in STA mode, bssidx is always 0 otherwise local_address[5] 43 * contains the bss number, see BSS_ID_MASK comments for details. 44 */ 45 if (rt2x00dev->intf_sta_count) 46 return 0; 47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 48} 49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 50 51/* 52 * Radio control handlers. 53 */ 54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 55{ 56 int status; 57 58 /* 59 * Don't enable the radio twice. 60 * And check if the hardware button has been disabled. 61 */ 62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 63 return 0; 64 65 /* 66 * Initialize all data queues. 67 */ 68 rt2x00queue_init_queues(rt2x00dev); 69 70 /* 71 * Enable radio. 72 */ 73 status = 74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 75 if (status) 76 return status; 77 78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 79 80 rt2x00leds_led_radio(rt2x00dev, true); 81 rt2x00led_led_activity(rt2x00dev, true); 82 83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 84 85 /* 86 * Enable queues. 87 */ 88 rt2x00queue_start_queues(rt2x00dev); 89 rt2x00link_start_tuner(rt2x00dev); 90 rt2x00link_start_agc(rt2x00dev); 91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) 92 rt2x00link_start_vcocal(rt2x00dev); 93 94 /* 95 * Start watchdog monitoring. 96 */ 97 rt2x00link_start_watchdog(rt2x00dev); 98 99 return 0; 100} 101 102void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 103{ 104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 105 return; 106 107 /* 108 * Stop watchdog monitoring. 109 */ 110 rt2x00link_stop_watchdog(rt2x00dev); 111 112 /* 113 * Stop all queues 114 */ 115 rt2x00link_stop_agc(rt2x00dev); 116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) 117 rt2x00link_stop_vcocal(rt2x00dev); 118 rt2x00link_stop_tuner(rt2x00dev); 119 rt2x00queue_stop_queues(rt2x00dev); 120 rt2x00queue_flush_queues(rt2x00dev, true); 121 122 /* 123 * Disable radio. 124 */ 125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 127 rt2x00led_led_activity(rt2x00dev, false); 128 rt2x00leds_led_radio(rt2x00dev, false); 129} 130 131static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 132 struct ieee80211_vif *vif) 133{ 134 struct rt2x00_dev *rt2x00dev = data; 135 struct rt2x00_intf *intf = vif_to_intf(vif); 136 137 /* 138 * It is possible the radio was disabled while the work had been 139 * scheduled. If that happens we should return here immediately, 140 * note that in the spinlock protected area above the delayed_flags 141 * have been cleared correctly. 142 */ 143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 144 return; 145 146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) 147 rt2x00queue_update_beacon(rt2x00dev, vif); 148} 149 150static void rt2x00lib_intf_scheduled(struct work_struct *work) 151{ 152 struct rt2x00_dev *rt2x00dev = 153 container_of(work, struct rt2x00_dev, intf_work); 154 155 /* 156 * Iterate over each interface and perform the 157 * requested configurations. 158 */ 159 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 160 rt2x00lib_intf_scheduled_iter, 161 rt2x00dev); 162} 163 164static void rt2x00lib_autowakeup(struct work_struct *work) 165{ 166 struct rt2x00_dev *rt2x00dev = 167 container_of(work, struct rt2x00_dev, autowakeup_work.work); 168 169 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 170 return; 171 172 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 173 ERROR(rt2x00dev, "Device failed to wakeup.\n"); 174 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 175} 176 177/* 178 * Interrupt context handlers. 179 */ 180static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 181 struct ieee80211_vif *vif) 182{ 183 struct rt2x00_dev *rt2x00dev = data; 184 struct sk_buff *skb; 185 186 /* 187 * Only AP mode interfaces do broad- and multicast buffering 188 */ 189 if (vif->type != NL80211_IFTYPE_AP) 190 return; 191 192 /* 193 * Send out buffered broad- and multicast frames 194 */ 195 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 196 while (skb) { 197 rt2x00mac_tx(rt2x00dev->hw, skb); 198 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 199 } 200} 201 202static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 203 struct ieee80211_vif *vif) 204{ 205 struct rt2x00_dev *rt2x00dev = data; 206 207 if (vif->type != NL80211_IFTYPE_AP && 208 vif->type != NL80211_IFTYPE_ADHOC && 209 vif->type != NL80211_IFTYPE_MESH_POINT && 210 vif->type != NL80211_IFTYPE_WDS) 211 return; 212 213 /* 214 * Update the beacon without locking. This is safe on PCI devices 215 * as they only update the beacon periodically here. This should 216 * never be called for USB devices. 217 */ 218 WARN_ON(rt2x00_is_usb(rt2x00dev)); 219 rt2x00queue_update_beacon_locked(rt2x00dev, vif); 220} 221 222void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 223{ 224 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 225 return; 226 227 /* send buffered bc/mc frames out for every bssid */ 228 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 229 rt2x00lib_bc_buffer_iter, 230 rt2x00dev); 231 /* 232 * Devices with pre tbtt interrupt don't need to update the beacon 233 * here as they will fetch the next beacon directly prior to 234 * transmission. 235 */ 236 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags)) 237 return; 238 239 /* fetch next beacon */ 240 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 241 rt2x00lib_beaconupdate_iter, 242 rt2x00dev); 243} 244EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 245 246void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 247{ 248 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 249 return; 250 251 /* fetch next beacon */ 252 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 253 rt2x00lib_beaconupdate_iter, 254 rt2x00dev); 255} 256EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 257 258void rt2x00lib_dmastart(struct queue_entry *entry) 259{ 260 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 261 rt2x00queue_index_inc(entry, Q_INDEX); 262} 263EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 264 265void rt2x00lib_dmadone(struct queue_entry *entry) 266{ 267 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 268 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 269 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 270} 271EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 272 273void rt2x00lib_txdone(struct queue_entry *entry, 274 struct txdone_entry_desc *txdesc) 275{ 276 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 277 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 278 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 279 unsigned int header_length, i; 280 u8 rate_idx, rate_flags, retry_rates; 281 u8 skbdesc_flags = skbdesc->flags; 282 bool success; 283 284 /* 285 * Unmap the skb. 286 */ 287 rt2x00queue_unmap_skb(entry); 288 289 /* 290 * Remove the extra tx headroom from the skb. 291 */ 292 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom); 293 294 /* 295 * Signal that the TX descriptor is no longer in the skb. 296 */ 297 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 298 299 /* 300 * Determine the length of 802.11 header. 301 */ 302 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 303 304 /* 305 * Remove L2 padding which was added during 306 */ 307 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 308 rt2x00queue_remove_l2pad(entry->skb, header_length); 309 310 /* 311 * If the IV/EIV data was stripped from the frame before it was 312 * passed to the hardware, we should now reinsert it again because 313 * mac80211 will expect the same data to be present it the 314 * frame as it was passed to us. 315 */ 316 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) 317 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 318 319 /* 320 * Send frame to debugfs immediately, after this call is completed 321 * we are going to overwrite the skb->cb array. 322 */ 323 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); 324 325 /* 326 * Determine if the frame has been successfully transmitted. 327 */ 328 success = 329 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 330 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 331 332 /* 333 * Update TX statistics. 334 */ 335 rt2x00dev->link.qual.tx_success += success; 336 rt2x00dev->link.qual.tx_failed += !success; 337 338 rate_idx = skbdesc->tx_rate_idx; 339 rate_flags = skbdesc->tx_rate_flags; 340 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 341 (txdesc->retry + 1) : 1; 342 343 /* 344 * Initialize TX status 345 */ 346 memset(&tx_info->status, 0, sizeof(tx_info->status)); 347 tx_info->status.ack_signal = 0; 348 349 /* 350 * Frame was send with retries, hardware tried 351 * different rates to send out the frame, at each 352 * retry it lowered the rate 1 step except when the 353 * lowest rate was used. 354 */ 355 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 356 tx_info->status.rates[i].idx = rate_idx - i; 357 tx_info->status.rates[i].flags = rate_flags; 358 359 if (rate_idx - i == 0) { 360 /* 361 * The lowest rate (index 0) was used until the 362 * number of max retries was reached. 363 */ 364 tx_info->status.rates[i].count = retry_rates - i; 365 i++; 366 break; 367 } 368 tx_info->status.rates[i].count = 1; 369 } 370 if (i < (IEEE80211_TX_MAX_RATES - 1)) 371 tx_info->status.rates[i].idx = -1; /* terminate */ 372 373 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 374 if (success) 375 tx_info->flags |= IEEE80211_TX_STAT_ACK; 376 else 377 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 378 } 379 380 /* 381 * Every single frame has it's own tx status, hence report 382 * every frame as ampdu of size 1. 383 * 384 * TODO: if we can find out how many frames were aggregated 385 * by the hw we could provide the real ampdu_len to mac80211 386 * which would allow the rc algorithm to better decide on 387 * which rates are suitable. 388 */ 389 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 390 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 391 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 392 tx_info->status.ampdu_len = 1; 393 tx_info->status.ampdu_ack_len = success ? 1 : 0; 394 395 if (!success) 396 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 397 } 398 399 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 400 if (success) 401 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 402 else 403 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 404 } 405 406 /* 407 * Only send the status report to mac80211 when it's a frame 408 * that originated in mac80211. If this was a extra frame coming 409 * through a mac80211 library call (RTS/CTS) then we should not 410 * send the status report back. 411 */ 412 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 413 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags)) 414 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 415 else 416 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 417 } else 418 dev_kfree_skb_any(entry->skb); 419 420 /* 421 * Make this entry available for reuse. 422 */ 423 entry->skb = NULL; 424 entry->flags = 0; 425 426 rt2x00dev->ops->lib->clear_entry(entry); 427 428 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 429 430 /* 431 * If the data queue was below the threshold before the txdone 432 * handler we must make sure the packet queue in the mac80211 stack 433 * is reenabled when the txdone handler has finished. This has to be 434 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 435 * before it was stopped. 436 */ 437 spin_lock_bh(&entry->queue->tx_lock); 438 if (!rt2x00queue_threshold(entry->queue)) 439 rt2x00queue_unpause_queue(entry->queue); 440 spin_unlock_bh(&entry->queue->tx_lock); 441} 442EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 443 444void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 445{ 446 struct txdone_entry_desc txdesc; 447 448 txdesc.flags = 0; 449 __set_bit(status, &txdesc.flags); 450 txdesc.retry = 0; 451 452 rt2x00lib_txdone(entry, &txdesc); 453} 454EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 455 456static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 457{ 458 struct ieee80211_mgmt *mgmt = (void *)data; 459 u8 *pos, *end; 460 461 pos = (u8 *)mgmt->u.beacon.variable; 462 end = data + len; 463 while (pos < end) { 464 if (pos + 2 + pos[1] > end) 465 return NULL; 466 467 if (pos[0] == ie) 468 return pos; 469 470 pos += 2 + pos[1]; 471 } 472 473 return NULL; 474} 475 476static void rt2x00lib_sleep(struct work_struct *work) 477{ 478 struct rt2x00_dev *rt2x00dev = 479 container_of(work, struct rt2x00_dev, sleep_work); 480 481 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 482 return; 483 484 /* 485 * Check again is powersaving is enabled, to prevent races from delayed 486 * work execution. 487 */ 488 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 489 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 490 IEEE80211_CONF_CHANGE_PS); 491} 492 493static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 494 struct sk_buff *skb, 495 struct rxdone_entry_desc *rxdesc) 496{ 497 struct ieee80211_hdr *hdr = (void *) skb->data; 498 struct ieee80211_tim_ie *tim_ie; 499 u8 *tim; 500 u8 tim_len; 501 bool cam; 502 503 /* If this is not a beacon, or if mac80211 has no powersaving 504 * configured, or if the device is already in powersaving mode 505 * we can exit now. */ 506 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 507 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 508 return; 509 510 /* min. beacon length + FCS_LEN */ 511 if (skb->len <= 40 + FCS_LEN) 512 return; 513 514 /* and only beacons from the associated BSSID, please */ 515 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 516 !rt2x00dev->aid) 517 return; 518 519 rt2x00dev->last_beacon = jiffies; 520 521 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 522 if (!tim) 523 return; 524 525 if (tim[1] < sizeof(*tim_ie)) 526 return; 527 528 tim_len = tim[1]; 529 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 530 531 /* Check whenever the PHY can be turned off again. */ 532 533 /* 1. What about buffered unicast traffic for our AID? */ 534 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 535 536 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 537 cam |= (tim_ie->bitmap_ctrl & 0x01); 538 539 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 540 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 541} 542 543static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 544 struct rxdone_entry_desc *rxdesc) 545{ 546 struct ieee80211_supported_band *sband; 547 const struct rt2x00_rate *rate; 548 unsigned int i; 549 int signal = rxdesc->signal; 550 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 551 552 switch (rxdesc->rate_mode) { 553 case RATE_MODE_CCK: 554 case RATE_MODE_OFDM: 555 /* 556 * For non-HT rates the MCS value needs to contain the 557 * actually used rate modulation (CCK or OFDM). 558 */ 559 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 560 signal = RATE_MCS(rxdesc->rate_mode, signal); 561 562 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 563 for (i = 0; i < sband->n_bitrates; i++) { 564 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 565 if (((type == RXDONE_SIGNAL_PLCP) && 566 (rate->plcp == signal)) || 567 ((type == RXDONE_SIGNAL_BITRATE) && 568 (rate->bitrate == signal)) || 569 ((type == RXDONE_SIGNAL_MCS) && 570 (rate->mcs == signal))) { 571 return i; 572 } 573 } 574 break; 575 case RATE_MODE_HT_MIX: 576 case RATE_MODE_HT_GREENFIELD: 577 if (signal >= 0 && signal <= 76) 578 return signal; 579 break; 580 default: 581 break; 582 } 583 584 WARNING(rt2x00dev, "Frame received with unrecognized signal, " 585 "mode=0x%.4x, signal=0x%.4x, type=%d.\n", 586 rxdesc->rate_mode, signal, type); 587 return 0; 588} 589 590void rt2x00lib_rxdone(struct queue_entry *entry) 591{ 592 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 593 struct rxdone_entry_desc rxdesc; 594 struct sk_buff *skb; 595 struct ieee80211_rx_status *rx_status; 596 unsigned int header_length; 597 int rate_idx; 598 599 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 600 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 601 goto submit_entry; 602 603 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 604 goto submit_entry; 605 606 /* 607 * Allocate a new sk_buffer. If no new buffer available, drop the 608 * received frame and reuse the existing buffer. 609 */ 610 skb = rt2x00queue_alloc_rxskb(entry); 611 if (!skb) 612 goto submit_entry; 613 614 /* 615 * Unmap the skb. 616 */ 617 rt2x00queue_unmap_skb(entry); 618 619 /* 620 * Extract the RXD details. 621 */ 622 memset(&rxdesc, 0, sizeof(rxdesc)); 623 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 624 625 /* 626 * Check for valid size in case we get corrupted descriptor from 627 * hardware. 628 */ 629 if (unlikely(rxdesc.size == 0 || 630 rxdesc.size > entry->queue->data_size)) { 631 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n", 632 rxdesc.size, entry->queue->data_size); 633 dev_kfree_skb(entry->skb); 634 goto renew_skb; 635 } 636 637 /* 638 * The data behind the ieee80211 header must be 639 * aligned on a 4 byte boundary. 640 */ 641 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 642 643 /* 644 * Hardware might have stripped the IV/EIV/ICV data, 645 * in that case it is possible that the data was 646 * provided separately (through hardware descriptor) 647 * in which case we should reinsert the data into the frame. 648 */ 649 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 650 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 651 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 652 &rxdesc); 653 else if (header_length && 654 (rxdesc.size > header_length) && 655 (rxdesc.dev_flags & RXDONE_L2PAD)) 656 rt2x00queue_remove_l2pad(entry->skb, header_length); 657 658 /* Trim buffer to correct size */ 659 skb_trim(entry->skb, rxdesc.size); 660 661 /* 662 * Translate the signal to the correct bitrate index. 663 */ 664 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 665 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 666 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 667 rxdesc.flags |= RX_FLAG_HT; 668 669 /* 670 * Check if this is a beacon, and more frames have been 671 * buffered while we were in powersaving mode. 672 */ 673 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 674 675 /* 676 * Update extra components 677 */ 678 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 679 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 680 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); 681 682 /* 683 * Initialize RX status information, and send frame 684 * to mac80211. 685 */ 686 rx_status = IEEE80211_SKB_RXCB(entry->skb); 687 rx_status->mactime = rxdesc.timestamp; 688 rx_status->band = rt2x00dev->curr_band; 689 rx_status->freq = rt2x00dev->curr_freq; 690 rx_status->rate_idx = rate_idx; 691 rx_status->signal = rxdesc.rssi; 692 rx_status->flag = rxdesc.flags; 693 rx_status->antenna = rt2x00dev->link.ant.active.rx; 694 695 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 696 697renew_skb: 698 /* 699 * Replace the skb with the freshly allocated one. 700 */ 701 entry->skb = skb; 702 703submit_entry: 704 entry->flags = 0; 705 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 706 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 707 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 708 rt2x00dev->ops->lib->clear_entry(entry); 709} 710EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 711 712/* 713 * Driver initialization handlers. 714 */ 715const struct rt2x00_rate rt2x00_supported_rates[12] = { 716 { 717 .flags = DEV_RATE_CCK, 718 .bitrate = 10, 719 .ratemask = BIT(0), 720 .plcp = 0x00, 721 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 722 }, 723 { 724 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 725 .bitrate = 20, 726 .ratemask = BIT(1), 727 .plcp = 0x01, 728 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 729 }, 730 { 731 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 732 .bitrate = 55, 733 .ratemask = BIT(2), 734 .plcp = 0x02, 735 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 736 }, 737 { 738 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 739 .bitrate = 110, 740 .ratemask = BIT(3), 741 .plcp = 0x03, 742 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 743 }, 744 { 745 .flags = DEV_RATE_OFDM, 746 .bitrate = 60, 747 .ratemask = BIT(4), 748 .plcp = 0x0b, 749 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 750 }, 751 { 752 .flags = DEV_RATE_OFDM, 753 .bitrate = 90, 754 .ratemask = BIT(5), 755 .plcp = 0x0f, 756 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 757 }, 758 { 759 .flags = DEV_RATE_OFDM, 760 .bitrate = 120, 761 .ratemask = BIT(6), 762 .plcp = 0x0a, 763 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 764 }, 765 { 766 .flags = DEV_RATE_OFDM, 767 .bitrate = 180, 768 .ratemask = BIT(7), 769 .plcp = 0x0e, 770 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 771 }, 772 { 773 .flags = DEV_RATE_OFDM, 774 .bitrate = 240, 775 .ratemask = BIT(8), 776 .plcp = 0x09, 777 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 778 }, 779 { 780 .flags = DEV_RATE_OFDM, 781 .bitrate = 360, 782 .ratemask = BIT(9), 783 .plcp = 0x0d, 784 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 785 }, 786 { 787 .flags = DEV_RATE_OFDM, 788 .bitrate = 480, 789 .ratemask = BIT(10), 790 .plcp = 0x08, 791 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 792 }, 793 { 794 .flags = DEV_RATE_OFDM, 795 .bitrate = 540, 796 .ratemask = BIT(11), 797 .plcp = 0x0c, 798 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 799 }, 800}; 801 802static void rt2x00lib_channel(struct ieee80211_channel *entry, 803 const int channel, const int tx_power, 804 const int value) 805{ 806 /* XXX: this assumption about the band is wrong for 802.11j */ 807 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 808 entry->center_freq = ieee80211_channel_to_frequency(channel, 809 entry->band); 810 entry->hw_value = value; 811 entry->max_power = tx_power; 812 entry->max_antenna_gain = 0xff; 813} 814 815static void rt2x00lib_rate(struct ieee80211_rate *entry, 816 const u16 index, const struct rt2x00_rate *rate) 817{ 818 entry->flags = 0; 819 entry->bitrate = rate->bitrate; 820 entry->hw_value = index; 821 entry->hw_value_short = index; 822 823 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 824 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 825} 826 827static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 828 struct hw_mode_spec *spec) 829{ 830 struct ieee80211_hw *hw = rt2x00dev->hw; 831 struct ieee80211_channel *channels; 832 struct ieee80211_rate *rates; 833 unsigned int num_rates; 834 unsigned int i; 835 836 num_rates = 0; 837 if (spec->supported_rates & SUPPORT_RATE_CCK) 838 num_rates += 4; 839 if (spec->supported_rates & SUPPORT_RATE_OFDM) 840 num_rates += 8; 841 842 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 843 if (!channels) 844 return -ENOMEM; 845 846 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 847 if (!rates) 848 goto exit_free_channels; 849 850 /* 851 * Initialize Rate list. 852 */ 853 for (i = 0; i < num_rates; i++) 854 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 855 856 /* 857 * Initialize Channel list. 858 */ 859 for (i = 0; i < spec->num_channels; i++) { 860 rt2x00lib_channel(&channels[i], 861 spec->channels[i].channel, 862 spec->channels_info[i].max_power, i); 863 } 864 865 /* 866 * Intitialize 802.11b, 802.11g 867 * Rates: CCK, OFDM. 868 * Channels: 2.4 GHz 869 */ 870 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 871 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; 872 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; 873 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; 874 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; 875 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = 876 &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; 877 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap, 878 &spec->ht, sizeof(spec->ht)); 879 } 880 881 /* 882 * Intitialize 802.11a 883 * Rates: OFDM. 884 * Channels: OFDM, UNII, HiperLAN2. 885 */ 886 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 887 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = 888 spec->num_channels - 14; 889 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = 890 num_rates - 4; 891 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; 892 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; 893 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = 894 &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; 895 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap, 896 &spec->ht, sizeof(spec->ht)); 897 } 898 899 return 0; 900 901 exit_free_channels: 902 kfree(channels); 903 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); 904 return -ENOMEM; 905} 906 907static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 908{ 909 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 910 ieee80211_unregister_hw(rt2x00dev->hw); 911 912 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { 913 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); 914 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); 915 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; 916 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; 917 } 918 919 kfree(rt2x00dev->spec.channels_info); 920} 921 922static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 923{ 924 struct hw_mode_spec *spec = &rt2x00dev->spec; 925 int status; 926 927 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 928 return 0; 929 930 /* 931 * Initialize HW modes. 932 */ 933 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 934 if (status) 935 return status; 936 937 /* 938 * Initialize HW fields. 939 */ 940 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 941 942 /* 943 * Initialize extra TX headroom required. 944 */ 945 rt2x00dev->hw->extra_tx_headroom = 946 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 947 rt2x00dev->ops->extra_tx_headroom); 948 949 /* 950 * Take TX headroom required for alignment into account. 951 */ 952 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 953 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 954 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) 955 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 956 957 /* 958 * Tell mac80211 about the size of our private STA structure. 959 */ 960 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 961 962 /* 963 * Allocate tx status FIFO for driver use. 964 */ 965 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) { 966 /* 967 * Allocate the txstatus fifo. In the worst case the tx 968 * status fifo has to hold the tx status of all entries 969 * in all tx queues. Hence, calculate the kfifo size as 970 * tx_queues * entry_num and round up to the nearest 971 * power of 2. 972 */ 973 int kfifo_size = 974 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 975 rt2x00dev->ops->tx->entry_num * 976 sizeof(u32)); 977 978 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 979 GFP_KERNEL); 980 if (status) 981 return status; 982 } 983 984 /* 985 * Initialize tasklets if used by the driver. Tasklets are 986 * disabled until the interrupts are turned on. The driver 987 * has to handle that. 988 */ 989#define RT2X00_TASKLET_INIT(taskletname) \ 990 if (rt2x00dev->ops->lib->taskletname) { \ 991 tasklet_init(&rt2x00dev->taskletname, \ 992 rt2x00dev->ops->lib->taskletname, \ 993 (unsigned long)rt2x00dev); \ 994 } 995 996 RT2X00_TASKLET_INIT(txstatus_tasklet); 997 RT2X00_TASKLET_INIT(pretbtt_tasklet); 998 RT2X00_TASKLET_INIT(tbtt_tasklet); 999 RT2X00_TASKLET_INIT(rxdone_tasklet); 1000 RT2X00_TASKLET_INIT(autowake_tasklet); 1001 1002#undef RT2X00_TASKLET_INIT 1003 1004 /* 1005 * Register HW. 1006 */ 1007 status = ieee80211_register_hw(rt2x00dev->hw); 1008 if (status) 1009 return status; 1010 1011 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1012 1013 return 0; 1014} 1015 1016/* 1017 * Initialization/uninitialization handlers. 1018 */ 1019static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1020{ 1021 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1022 return; 1023 1024 /* 1025 * Unregister extra components. 1026 */ 1027 rt2x00rfkill_unregister(rt2x00dev); 1028 1029 /* 1030 * Allow the HW to uninitialize. 1031 */ 1032 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1033 1034 /* 1035 * Free allocated queue entries. 1036 */ 1037 rt2x00queue_uninitialize(rt2x00dev); 1038} 1039 1040static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1041{ 1042 int status; 1043 1044 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1045 return 0; 1046 1047 /* 1048 * Allocate all queue entries. 1049 */ 1050 status = rt2x00queue_initialize(rt2x00dev); 1051 if (status) 1052 return status; 1053 1054 /* 1055 * Initialize the device. 1056 */ 1057 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1058 if (status) { 1059 rt2x00queue_uninitialize(rt2x00dev); 1060 return status; 1061 } 1062 1063 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1064 1065 return 0; 1066} 1067 1068int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1069{ 1070 int retval; 1071 1072 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1073 return 0; 1074 1075 /* 1076 * If this is the first interface which is added, 1077 * we should load the firmware now. 1078 */ 1079 retval = rt2x00lib_load_firmware(rt2x00dev); 1080 if (retval) 1081 return retval; 1082 1083 /* 1084 * Initialize the device. 1085 */ 1086 retval = rt2x00lib_initialize(rt2x00dev); 1087 if (retval) 1088 return retval; 1089 1090 rt2x00dev->intf_ap_count = 0; 1091 rt2x00dev->intf_sta_count = 0; 1092 rt2x00dev->intf_associated = 0; 1093 1094 /* Enable the radio */ 1095 retval = rt2x00lib_enable_radio(rt2x00dev); 1096 if (retval) 1097 return retval; 1098 1099 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1100 1101 return 0; 1102} 1103 1104void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1105{ 1106 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1107 return; 1108 1109 /* 1110 * Perhaps we can add something smarter here, 1111 * but for now just disabling the radio should do. 1112 */ 1113 rt2x00lib_disable_radio(rt2x00dev); 1114 1115 rt2x00dev->intf_ap_count = 0; 1116 rt2x00dev->intf_sta_count = 0; 1117 rt2x00dev->intf_associated = 0; 1118} 1119 1120/* 1121 * driver allocation handlers. 1122 */ 1123int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1124{ 1125 int retval = -ENOMEM; 1126 1127 /* 1128 * Allocate the driver data memory, if necessary. 1129 */ 1130 if (rt2x00dev->ops->drv_data_size > 0) { 1131 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1132 GFP_KERNEL); 1133 if (!rt2x00dev->drv_data) { 1134 retval = -ENOMEM; 1135 goto exit; 1136 } 1137 } 1138 1139 spin_lock_init(&rt2x00dev->irqmask_lock); 1140 mutex_init(&rt2x00dev->csr_mutex); 1141 1142 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1143 1144 /* 1145 * Make room for rt2x00_intf inside the per-interface 1146 * structure ieee80211_vif. 1147 */ 1148 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1149 1150 /* 1151 * Determine which operating modes are supported, all modes 1152 * which require beaconing, depend on the availability of 1153 * beacon entries. 1154 */ 1155 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1156 if (rt2x00dev->ops->bcn->entry_num > 0) 1157 rt2x00dev->hw->wiphy->interface_modes |= 1158 BIT(NL80211_IFTYPE_ADHOC) | 1159 BIT(NL80211_IFTYPE_AP) | 1160 BIT(NL80211_IFTYPE_MESH_POINT) | 1161 BIT(NL80211_IFTYPE_WDS); 1162 1163 /* 1164 * Initialize work. 1165 */ 1166 rt2x00dev->workqueue = 1167 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0); 1168 if (!rt2x00dev->workqueue) { 1169 retval = -ENOMEM; 1170 goto exit; 1171 } 1172 1173 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1174 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1175 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1176 1177 /* 1178 * Let the driver probe the device to detect the capabilities. 1179 */ 1180 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1181 if (retval) { 1182 ERROR(rt2x00dev, "Failed to allocate device.\n"); 1183 goto exit; 1184 } 1185 1186 /* 1187 * Allocate queue array. 1188 */ 1189 retval = rt2x00queue_allocate(rt2x00dev); 1190 if (retval) 1191 goto exit; 1192 1193 /* 1194 * Initialize ieee80211 structure. 1195 */ 1196 retval = rt2x00lib_probe_hw(rt2x00dev); 1197 if (retval) { 1198 ERROR(rt2x00dev, "Failed to initialize hw.\n"); 1199 goto exit; 1200 } 1201 1202 /* 1203 * Register extra components. 1204 */ 1205 rt2x00link_register(rt2x00dev); 1206 rt2x00leds_register(rt2x00dev); 1207 rt2x00debug_register(rt2x00dev); 1208 rt2x00rfkill_register(rt2x00dev); 1209 1210 return 0; 1211 1212exit: 1213 rt2x00lib_remove_dev(rt2x00dev); 1214 1215 return retval; 1216} 1217EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1218 1219void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1220{ 1221 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1222 1223 /* 1224 * Disable radio. 1225 */ 1226 rt2x00lib_disable_radio(rt2x00dev); 1227 1228 /* 1229 * Stop all work. 1230 */ 1231 cancel_work_sync(&rt2x00dev->intf_work); 1232 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1233 cancel_work_sync(&rt2x00dev->sleep_work); 1234 if (rt2x00_is_usb(rt2x00dev)) { 1235 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1236 cancel_work_sync(&rt2x00dev->rxdone_work); 1237 cancel_work_sync(&rt2x00dev->txdone_work); 1238 } 1239 if (rt2x00dev->workqueue) 1240 destroy_workqueue(rt2x00dev->workqueue); 1241 1242 /* 1243 * Free the tx status fifo. 1244 */ 1245 kfifo_free(&rt2x00dev->txstatus_fifo); 1246 1247 /* 1248 * Kill the tx status tasklet. 1249 */ 1250 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1251 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1252 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1253 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1254 tasklet_kill(&rt2x00dev->autowake_tasklet); 1255 1256 /* 1257 * Uninitialize device. 1258 */ 1259 rt2x00lib_uninitialize(rt2x00dev); 1260 1261 /* 1262 * Free extra components 1263 */ 1264 rt2x00debug_deregister(rt2x00dev); 1265 rt2x00leds_unregister(rt2x00dev); 1266 1267 /* 1268 * Free ieee80211_hw memory. 1269 */ 1270 rt2x00lib_remove_hw(rt2x00dev); 1271 1272 /* 1273 * Free firmware image. 1274 */ 1275 rt2x00lib_free_firmware(rt2x00dev); 1276 1277 /* 1278 * Free queue structures. 1279 */ 1280 rt2x00queue_free(rt2x00dev); 1281 1282 /* 1283 * Free the driver data. 1284 */ 1285 if (rt2x00dev->drv_data) 1286 kfree(rt2x00dev->drv_data); 1287} 1288EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1289 1290/* 1291 * Device state handlers 1292 */ 1293#ifdef CONFIG_PM 1294int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1295{ 1296 NOTICE(rt2x00dev, "Going to sleep.\n"); 1297 1298 /* 1299 * Prevent mac80211 from accessing driver while suspended. 1300 */ 1301 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1302 return 0; 1303 1304 /* 1305 * Cleanup as much as possible. 1306 */ 1307 rt2x00lib_uninitialize(rt2x00dev); 1308 1309 /* 1310 * Suspend/disable extra components. 1311 */ 1312 rt2x00leds_suspend(rt2x00dev); 1313 rt2x00debug_deregister(rt2x00dev); 1314 1315 /* 1316 * Set device mode to sleep for power management, 1317 * on some hardware this call seems to consistently fail. 1318 * From the specifications it is hard to tell why it fails, 1319 * and if this is a "bad thing". 1320 * Overall it is safe to just ignore the failure and 1321 * continue suspending. The only downside is that the 1322 * device will not be in optimal power save mode, but with 1323 * the radio and the other components already disabled the 1324 * device is as good as disabled. 1325 */ 1326 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1327 WARNING(rt2x00dev, "Device failed to enter sleep state, " 1328 "continue suspending.\n"); 1329 1330 return 0; 1331} 1332EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1333 1334int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1335{ 1336 NOTICE(rt2x00dev, "Waking up.\n"); 1337 1338 /* 1339 * Restore/enable extra components. 1340 */ 1341 rt2x00debug_register(rt2x00dev); 1342 rt2x00leds_resume(rt2x00dev); 1343 1344 /* 1345 * We are ready again to receive requests from mac80211. 1346 */ 1347 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1348 1349 return 0; 1350} 1351EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1352#endif /* CONFIG_PM */ 1353 1354/* 1355 * rt2x00lib module information. 1356 */ 1357MODULE_AUTHOR(DRV_PROJECT); 1358MODULE_VERSION(DRV_VERSION); 1359MODULE_DESCRIPTION("rt2x00 library"); 1360MODULE_LICENSE("GPL");