at v3.4 1985 lines 62 kB view raw
1/* 2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 3 <http://rt2x00.serialmonkey.com> 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, write to the 17 Free Software Foundation, Inc., 18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21/* 22 Module: rt2500usb 23 Abstract: rt2500usb device specific routines. 24 Supported chipsets: RT2570. 25 */ 26 27#include <linux/delay.h> 28#include <linux/etherdevice.h> 29#include <linux/init.h> 30#include <linux/kernel.h> 31#include <linux/module.h> 32#include <linux/slab.h> 33#include <linux/usb.h> 34 35#include "rt2x00.h" 36#include "rt2x00usb.h" 37#include "rt2500usb.h" 38 39/* 40 * Allow hardware encryption to be disabled. 41 */ 42static bool modparam_nohwcrypt; 43module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); 44MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 45 46/* 47 * Register access. 48 * All access to the CSR registers will go through the methods 49 * rt2500usb_register_read and rt2500usb_register_write. 50 * BBP and RF register require indirect register access, 51 * and use the CSR registers BBPCSR and RFCSR to achieve this. 52 * These indirect registers work with busy bits, 53 * and we will try maximal REGISTER_BUSY_COUNT times to access 54 * the register while taking a REGISTER_BUSY_DELAY us delay 55 * between each attampt. When the busy bit is still set at that time, 56 * the access attempt is considered to have failed, 57 * and we will print an error. 58 * If the csr_mutex is already held then the _lock variants must 59 * be used instead. 60 */ 61static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, 62 const unsigned int offset, 63 u16 *value) 64{ 65 __le16 reg; 66 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, 67 USB_VENDOR_REQUEST_IN, offset, 68 &reg, sizeof(reg), REGISTER_TIMEOUT); 69 *value = le16_to_cpu(reg); 70} 71 72static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev, 73 const unsigned int offset, 74 u16 *value) 75{ 76 __le16 reg; 77 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ, 78 USB_VENDOR_REQUEST_IN, offset, 79 &reg, sizeof(reg), REGISTER_TIMEOUT); 80 *value = le16_to_cpu(reg); 81} 82 83static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev, 84 const unsigned int offset, 85 void *value, const u16 length) 86{ 87 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, 88 USB_VENDOR_REQUEST_IN, offset, 89 value, length, 90 REGISTER_TIMEOUT16(length)); 91} 92 93static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, 94 const unsigned int offset, 95 u16 value) 96{ 97 __le16 reg = cpu_to_le16(value); 98 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, 99 USB_VENDOR_REQUEST_OUT, offset, 100 &reg, sizeof(reg), REGISTER_TIMEOUT); 101} 102 103static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev, 104 const unsigned int offset, 105 u16 value) 106{ 107 __le16 reg = cpu_to_le16(value); 108 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE, 109 USB_VENDOR_REQUEST_OUT, offset, 110 &reg, sizeof(reg), REGISTER_TIMEOUT); 111} 112 113static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev, 114 const unsigned int offset, 115 void *value, const u16 length) 116{ 117 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, 118 USB_VENDOR_REQUEST_OUT, offset, 119 value, length, 120 REGISTER_TIMEOUT16(length)); 121} 122 123static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev, 124 const unsigned int offset, 125 struct rt2x00_field16 field, 126 u16 *reg) 127{ 128 unsigned int i; 129 130 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 131 rt2500usb_register_read_lock(rt2x00dev, offset, reg); 132 if (!rt2x00_get_field16(*reg, field)) 133 return 1; 134 udelay(REGISTER_BUSY_DELAY); 135 } 136 137 ERROR(rt2x00dev, "Indirect register access failed: " 138 "offset=0x%.08x, value=0x%.08x\n", offset, *reg); 139 *reg = ~0; 140 141 return 0; 142} 143 144#define WAIT_FOR_BBP(__dev, __reg) \ 145 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg)) 146#define WAIT_FOR_RF(__dev, __reg) \ 147 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg)) 148 149static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev, 150 const unsigned int word, const u8 value) 151{ 152 u16 reg; 153 154 mutex_lock(&rt2x00dev->csr_mutex); 155 156 /* 157 * Wait until the BBP becomes available, afterwards we 158 * can safely write the new data into the register. 159 */ 160 if (WAIT_FOR_BBP(rt2x00dev, &reg)) { 161 reg = 0; 162 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value); 163 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word); 164 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0); 165 166 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); 167 } 168 169 mutex_unlock(&rt2x00dev->csr_mutex); 170} 171 172static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev, 173 const unsigned int word, u8 *value) 174{ 175 u16 reg; 176 177 mutex_lock(&rt2x00dev->csr_mutex); 178 179 /* 180 * Wait until the BBP becomes available, afterwards we 181 * can safely write the read request into the register. 182 * After the data has been written, we wait until hardware 183 * returns the correct value, if at any time the register 184 * doesn't become available in time, reg will be 0xffffffff 185 * which means we return 0xff to the caller. 186 */ 187 if (WAIT_FOR_BBP(rt2x00dev, &reg)) { 188 reg = 0; 189 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word); 190 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1); 191 192 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); 193 194 if (WAIT_FOR_BBP(rt2x00dev, &reg)) 195 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg); 196 } 197 198 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA); 199 200 mutex_unlock(&rt2x00dev->csr_mutex); 201} 202 203static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev, 204 const unsigned int word, const u32 value) 205{ 206 u16 reg; 207 208 mutex_lock(&rt2x00dev->csr_mutex); 209 210 /* 211 * Wait until the RF becomes available, afterwards we 212 * can safely write the new data into the register. 213 */ 214 if (WAIT_FOR_RF(rt2x00dev, &reg)) { 215 reg = 0; 216 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value); 217 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg); 218 219 reg = 0; 220 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16); 221 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20); 222 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0); 223 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1); 224 225 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg); 226 rt2x00_rf_write(rt2x00dev, word, value); 227 } 228 229 mutex_unlock(&rt2x00dev->csr_mutex); 230} 231 232#ifdef CONFIG_RT2X00_LIB_DEBUGFS 233static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, 234 const unsigned int offset, 235 u32 *value) 236{ 237 rt2500usb_register_read(rt2x00dev, offset, (u16 *)value); 238} 239 240static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, 241 const unsigned int offset, 242 u32 value) 243{ 244 rt2500usb_register_write(rt2x00dev, offset, value); 245} 246 247static const struct rt2x00debug rt2500usb_rt2x00debug = { 248 .owner = THIS_MODULE, 249 .csr = { 250 .read = _rt2500usb_register_read, 251 .write = _rt2500usb_register_write, 252 .flags = RT2X00DEBUGFS_OFFSET, 253 .word_base = CSR_REG_BASE, 254 .word_size = sizeof(u16), 255 .word_count = CSR_REG_SIZE / sizeof(u16), 256 }, 257 .eeprom = { 258 .read = rt2x00_eeprom_read, 259 .write = rt2x00_eeprom_write, 260 .word_base = EEPROM_BASE, 261 .word_size = sizeof(u16), 262 .word_count = EEPROM_SIZE / sizeof(u16), 263 }, 264 .bbp = { 265 .read = rt2500usb_bbp_read, 266 .write = rt2500usb_bbp_write, 267 .word_base = BBP_BASE, 268 .word_size = sizeof(u8), 269 .word_count = BBP_SIZE / sizeof(u8), 270 }, 271 .rf = { 272 .read = rt2x00_rf_read, 273 .write = rt2500usb_rf_write, 274 .word_base = RF_BASE, 275 .word_size = sizeof(u32), 276 .word_count = RF_SIZE / sizeof(u32), 277 }, 278}; 279#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 280 281static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) 282{ 283 u16 reg; 284 285 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg); 286 return rt2x00_get_field32(reg, MAC_CSR19_BIT7); 287} 288 289#ifdef CONFIG_RT2X00_LIB_LEDS 290static void rt2500usb_brightness_set(struct led_classdev *led_cdev, 291 enum led_brightness brightness) 292{ 293 struct rt2x00_led *led = 294 container_of(led_cdev, struct rt2x00_led, led_dev); 295 unsigned int enabled = brightness != LED_OFF; 296 u16 reg; 297 298 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg); 299 300 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) 301 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled); 302 else if (led->type == LED_TYPE_ACTIVITY) 303 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled); 304 305 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg); 306} 307 308static int rt2500usb_blink_set(struct led_classdev *led_cdev, 309 unsigned long *delay_on, 310 unsigned long *delay_off) 311{ 312 struct rt2x00_led *led = 313 container_of(led_cdev, struct rt2x00_led, led_dev); 314 u16 reg; 315 316 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg); 317 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on); 318 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off); 319 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg); 320 321 return 0; 322} 323 324static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev, 325 struct rt2x00_led *led, 326 enum led_type type) 327{ 328 led->rt2x00dev = rt2x00dev; 329 led->type = type; 330 led->led_dev.brightness_set = rt2500usb_brightness_set; 331 led->led_dev.blink_set = rt2500usb_blink_set; 332 led->flags = LED_INITIALIZED; 333} 334#endif /* CONFIG_RT2X00_LIB_LEDS */ 335 336/* 337 * Configuration handlers. 338 */ 339 340/* 341 * rt2500usb does not differentiate between shared and pairwise 342 * keys, so we should use the same function for both key types. 343 */ 344static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev, 345 struct rt2x00lib_crypto *crypto, 346 struct ieee80211_key_conf *key) 347{ 348 u32 mask; 349 u16 reg; 350 enum cipher curr_cipher; 351 352 if (crypto->cmd == SET_KEY) { 353 /* 354 * Disallow to set WEP key other than with index 0, 355 * it is known that not work at least on some hardware. 356 * SW crypto will be used in that case. 357 */ 358 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 || 359 key->cipher == WLAN_CIPHER_SUITE_WEP104) && 360 key->keyidx != 0) 361 return -EOPNOTSUPP; 362 363 /* 364 * Pairwise key will always be entry 0, but this 365 * could collide with a shared key on the same 366 * position... 367 */ 368 mask = TXRX_CSR0_KEY_ID.bit_mask; 369 370 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg); 371 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM); 372 reg &= mask; 373 374 if (reg && reg == mask) 375 return -ENOSPC; 376 377 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); 378 379 key->hw_key_idx += reg ? ffz(reg) : 0; 380 /* 381 * Hardware requires that all keys use the same cipher 382 * (e.g. TKIP-only, AES-only, but not TKIP+AES). 383 * If this is not the first key, compare the cipher with the 384 * first one and fall back to SW crypto if not the same. 385 */ 386 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher) 387 return -EOPNOTSUPP; 388 389 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx), 390 crypto->key, sizeof(crypto->key)); 391 392 /* 393 * The driver does not support the IV/EIV generation 394 * in hardware. However it demands the data to be provided 395 * both separately as well as inside the frame. 396 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib 397 * to ensure rt2x00lib will not strip the data from the 398 * frame after the copy, now we must tell mac80211 399 * to generate the IV/EIV data. 400 */ 401 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 402 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; 403 } 404 405 /* 406 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate 407 * a particular key is valid. 408 */ 409 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg); 410 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher); 411 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); 412 413 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); 414 if (crypto->cmd == SET_KEY) 415 mask |= 1 << key->hw_key_idx; 416 else if (crypto->cmd == DISABLE_KEY) 417 mask &= ~(1 << key->hw_key_idx); 418 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask); 419 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); 420 421 return 0; 422} 423 424static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev, 425 const unsigned int filter_flags) 426{ 427 u16 reg; 428 429 /* 430 * Start configuration steps. 431 * Note that the version error will always be dropped 432 * and broadcast frames will always be accepted since 433 * there is no filter for it at this time. 434 */ 435 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg); 436 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC, 437 !(filter_flags & FIF_FCSFAIL)); 438 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL, 439 !(filter_flags & FIF_PLCPFAIL)); 440 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL, 441 !(filter_flags & FIF_CONTROL)); 442 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME, 443 !(filter_flags & FIF_PROMISC_IN_BSS)); 444 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS, 445 !(filter_flags & FIF_PROMISC_IN_BSS) && 446 !rt2x00dev->intf_ap_count); 447 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1); 448 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST, 449 !(filter_flags & FIF_ALLMULTI)); 450 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0); 451 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 452} 453 454static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev, 455 struct rt2x00_intf *intf, 456 struct rt2x00intf_conf *conf, 457 const unsigned int flags) 458{ 459 unsigned int bcn_preload; 460 u16 reg; 461 462 if (flags & CONFIG_UPDATE_TYPE) { 463 /* 464 * Enable beacon config 465 */ 466 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); 467 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg); 468 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6); 469 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW, 470 2 * (conf->type != NL80211_IFTYPE_STATION)); 471 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg); 472 473 /* 474 * Enable synchronisation. 475 */ 476 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg); 477 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0); 478 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); 479 480 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg); 481 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync); 482 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 483 } 484 485 if (flags & CONFIG_UPDATE_MAC) 486 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac, 487 (3 * sizeof(__le16))); 488 489 if (flags & CONFIG_UPDATE_BSSID) 490 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid, 491 (3 * sizeof(__le16))); 492} 493 494static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev, 495 struct rt2x00lib_erp *erp, 496 u32 changed) 497{ 498 u16 reg; 499 500 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 501 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg); 502 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE, 503 !!erp->short_preamble); 504 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg); 505 } 506 507 if (changed & BSS_CHANGED_BASIC_RATES) 508 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, 509 erp->basic_rates); 510 511 if (changed & BSS_CHANGED_BEACON_INT) { 512 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg); 513 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, 514 erp->beacon_int * 4); 515 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); 516 } 517 518 if (changed & BSS_CHANGED_ERP_SLOT) { 519 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time); 520 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs); 521 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs); 522 } 523} 524 525static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev, 526 struct antenna_setup *ant) 527{ 528 u8 r2; 529 u8 r14; 530 u16 csr5; 531 u16 csr6; 532 533 /* 534 * We should never come here because rt2x00lib is supposed 535 * to catch this and send us the correct antenna explicitely. 536 */ 537 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 538 ant->tx == ANTENNA_SW_DIVERSITY); 539 540 rt2500usb_bbp_read(rt2x00dev, 2, &r2); 541 rt2500usb_bbp_read(rt2x00dev, 14, &r14); 542 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5); 543 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6); 544 545 /* 546 * Configure the TX antenna. 547 */ 548 switch (ant->tx) { 549 case ANTENNA_HW_DIVERSITY: 550 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1); 551 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1); 552 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1); 553 break; 554 case ANTENNA_A: 555 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); 556 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0); 557 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0); 558 break; 559 case ANTENNA_B: 560 default: 561 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); 562 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2); 563 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2); 564 break; 565 } 566 567 /* 568 * Configure the RX antenna. 569 */ 570 switch (ant->rx) { 571 case ANTENNA_HW_DIVERSITY: 572 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1); 573 break; 574 case ANTENNA_A: 575 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); 576 break; 577 case ANTENNA_B: 578 default: 579 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); 580 break; 581 } 582 583 /* 584 * RT2525E and RT5222 need to flip TX I/Q 585 */ 586 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { 587 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); 588 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1); 589 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1); 590 591 /* 592 * RT2525E does not need RX I/Q Flip. 593 */ 594 if (rt2x00_rf(rt2x00dev, RF2525E)) 595 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); 596 } else { 597 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0); 598 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0); 599 } 600 601 rt2500usb_bbp_write(rt2x00dev, 2, r2); 602 rt2500usb_bbp_write(rt2x00dev, 14, r14); 603 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5); 604 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6); 605} 606 607static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev, 608 struct rf_channel *rf, const int txpower) 609{ 610 /* 611 * Set TXpower. 612 */ 613 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 614 615 /* 616 * For RT2525E we should first set the channel to half band higher. 617 */ 618 if (rt2x00_rf(rt2x00dev, RF2525E)) { 619 static const u32 vals[] = { 620 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2, 621 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba, 622 0x000008ba, 0x000008be, 0x000008b7, 0x00000902, 623 0x00000902, 0x00000906 624 }; 625 626 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); 627 if (rf->rf4) 628 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); 629 } 630 631 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1); 632 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2); 633 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3); 634 if (rf->rf4) 635 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); 636} 637 638static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev, 639 const int txpower) 640{ 641 u32 rf3; 642 643 rt2x00_rf_read(rt2x00dev, 3, &rf3); 644 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 645 rt2500usb_rf_write(rt2x00dev, 3, rf3); 646} 647 648static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev, 649 struct rt2x00lib_conf *libconf) 650{ 651 enum dev_state state = 652 (libconf->conf->flags & IEEE80211_CONF_PS) ? 653 STATE_SLEEP : STATE_AWAKE; 654 u16 reg; 655 656 if (state == STATE_SLEEP) { 657 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg); 658 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 659 rt2x00dev->beacon_int - 20); 660 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP, 661 libconf->conf->listen_interval - 1); 662 663 /* We must first disable autowake before it can be enabled */ 664 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0); 665 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 666 667 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1); 668 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 669 } else { 670 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg); 671 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0); 672 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 673 } 674 675 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); 676} 677 678static void rt2500usb_config(struct rt2x00_dev *rt2x00dev, 679 struct rt2x00lib_conf *libconf, 680 const unsigned int flags) 681{ 682 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 683 rt2500usb_config_channel(rt2x00dev, &libconf->rf, 684 libconf->conf->power_level); 685 if ((flags & IEEE80211_CONF_CHANGE_POWER) && 686 !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) 687 rt2500usb_config_txpower(rt2x00dev, 688 libconf->conf->power_level); 689 if (flags & IEEE80211_CONF_CHANGE_PS) 690 rt2500usb_config_ps(rt2x00dev, libconf); 691} 692 693/* 694 * Link tuning 695 */ 696static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev, 697 struct link_qual *qual) 698{ 699 u16 reg; 700 701 /* 702 * Update FCS error count from register. 703 */ 704 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg); 705 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR); 706 707 /* 708 * Update False CCA count from register. 709 */ 710 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg); 711 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR); 712} 713 714static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev, 715 struct link_qual *qual) 716{ 717 u16 eeprom; 718 u16 value; 719 720 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom); 721 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW); 722 rt2500usb_bbp_write(rt2x00dev, 24, value); 723 724 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom); 725 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW); 726 rt2500usb_bbp_write(rt2x00dev, 25, value); 727 728 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom); 729 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW); 730 rt2500usb_bbp_write(rt2x00dev, 61, value); 731 732 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom); 733 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER); 734 rt2500usb_bbp_write(rt2x00dev, 17, value); 735 736 qual->vgc_level = value; 737} 738 739/* 740 * Queue handlers. 741 */ 742static void rt2500usb_start_queue(struct data_queue *queue) 743{ 744 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 745 u16 reg; 746 747 switch (queue->qid) { 748 case QID_RX: 749 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg); 750 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0); 751 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 752 break; 753 case QID_BEACON: 754 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg); 755 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1); 756 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1); 757 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1); 758 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 759 break; 760 default: 761 break; 762 } 763} 764 765static void rt2500usb_stop_queue(struct data_queue *queue) 766{ 767 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 768 u16 reg; 769 770 switch (queue->qid) { 771 case QID_RX: 772 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg); 773 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1); 774 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 775 break; 776 case QID_BEACON: 777 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg); 778 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0); 779 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0); 780 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0); 781 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 782 break; 783 default: 784 break; 785 } 786} 787 788/* 789 * Initialization functions. 790 */ 791static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev) 792{ 793 u16 reg; 794 795 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001, 796 USB_MODE_TEST, REGISTER_TIMEOUT); 797 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308, 798 0x00f0, REGISTER_TIMEOUT); 799 800 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg); 801 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1); 802 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 803 804 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111); 805 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11); 806 807 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg); 808 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1); 809 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1); 810 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0); 811 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 812 813 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg); 814 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0); 815 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0); 816 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0); 817 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 818 819 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg); 820 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13); 821 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1); 822 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12); 823 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1); 824 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg); 825 826 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg); 827 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10); 828 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1); 829 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11); 830 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1); 831 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg); 832 833 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg); 834 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7); 835 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1); 836 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6); 837 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1); 838 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg); 839 840 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg); 841 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5); 842 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1); 843 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0); 844 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0); 845 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg); 846 847 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg); 848 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0); 849 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0); 850 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0); 851 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0); 852 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 853 854 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f); 855 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d); 856 857 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 858 return -EBUSY; 859 860 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg); 861 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0); 862 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0); 863 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1); 864 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 865 866 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) { 867 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg); 868 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0); 869 } else { 870 reg = 0; 871 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1); 872 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3); 873 } 874 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg); 875 876 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002); 877 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053); 878 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee); 879 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000); 880 881 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg); 882 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT, 883 rt2x00dev->rx->data_size); 884 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg); 885 886 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg); 887 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE); 888 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); 889 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0); 890 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); 891 892 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg); 893 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90); 894 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 895 896 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg); 897 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1); 898 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg); 899 900 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg); 901 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1); 902 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg); 903 904 return 0; 905} 906 907static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 908{ 909 unsigned int i; 910 u8 value; 911 912 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 913 rt2500usb_bbp_read(rt2x00dev, 0, &value); 914 if ((value != 0xff) && (value != 0x00)) 915 return 0; 916 udelay(REGISTER_BUSY_DELAY); 917 } 918 919 ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); 920 return -EACCES; 921} 922 923static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev) 924{ 925 unsigned int i; 926 u16 eeprom; 927 u8 value; 928 u8 reg_id; 929 930 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev))) 931 return -EACCES; 932 933 rt2500usb_bbp_write(rt2x00dev, 3, 0x02); 934 rt2500usb_bbp_write(rt2x00dev, 4, 0x19); 935 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c); 936 rt2500usb_bbp_write(rt2x00dev, 15, 0x30); 937 rt2500usb_bbp_write(rt2x00dev, 16, 0xac); 938 rt2500usb_bbp_write(rt2x00dev, 18, 0x18); 939 rt2500usb_bbp_write(rt2x00dev, 19, 0xff); 940 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e); 941 rt2500usb_bbp_write(rt2x00dev, 21, 0x08); 942 rt2500usb_bbp_write(rt2x00dev, 22, 0x08); 943 rt2500usb_bbp_write(rt2x00dev, 23, 0x08); 944 rt2500usb_bbp_write(rt2x00dev, 24, 0x80); 945 rt2500usb_bbp_write(rt2x00dev, 25, 0x50); 946 rt2500usb_bbp_write(rt2x00dev, 26, 0x08); 947 rt2500usb_bbp_write(rt2x00dev, 27, 0x23); 948 rt2500usb_bbp_write(rt2x00dev, 30, 0x10); 949 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b); 950 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9); 951 rt2500usb_bbp_write(rt2x00dev, 34, 0x12); 952 rt2500usb_bbp_write(rt2x00dev, 35, 0x50); 953 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4); 954 rt2500usb_bbp_write(rt2x00dev, 40, 0x02); 955 rt2500usb_bbp_write(rt2x00dev, 41, 0x60); 956 rt2500usb_bbp_write(rt2x00dev, 53, 0x10); 957 rt2500usb_bbp_write(rt2x00dev, 54, 0x18); 958 rt2500usb_bbp_write(rt2x00dev, 56, 0x08); 959 rt2500usb_bbp_write(rt2x00dev, 57, 0x10); 960 rt2500usb_bbp_write(rt2x00dev, 58, 0x08); 961 rt2500usb_bbp_write(rt2x00dev, 61, 0x60); 962 rt2500usb_bbp_write(rt2x00dev, 62, 0x10); 963 rt2500usb_bbp_write(rt2x00dev, 75, 0xff); 964 965 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 966 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); 967 968 if (eeprom != 0xffff && eeprom != 0x0000) { 969 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 970 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 971 rt2500usb_bbp_write(rt2x00dev, reg_id, value); 972 } 973 } 974 975 return 0; 976} 977 978/* 979 * Device state switch handlers. 980 */ 981static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev) 982{ 983 /* 984 * Initialize all registers. 985 */ 986 if (unlikely(rt2500usb_init_registers(rt2x00dev) || 987 rt2500usb_init_bbp(rt2x00dev))) 988 return -EIO; 989 990 return 0; 991} 992 993static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev) 994{ 995 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121); 996 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121); 997 998 /* 999 * Disable synchronisation. 1000 */ 1001 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0); 1002 1003 rt2x00usb_disable_radio(rt2x00dev); 1004} 1005 1006static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev, 1007 enum dev_state state) 1008{ 1009 u16 reg; 1010 u16 reg2; 1011 unsigned int i; 1012 char put_to_sleep; 1013 char bbp_state; 1014 char rf_state; 1015 1016 put_to_sleep = (state != STATE_AWAKE); 1017 1018 reg = 0; 1019 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state); 1020 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state); 1021 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep); 1022 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1023 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1); 1024 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1025 1026 /* 1027 * Device is not guaranteed to be in the requested state yet. 1028 * We must wait until the register indicates that the 1029 * device has entered the correct state. 1030 */ 1031 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1032 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2); 1033 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE); 1034 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE); 1035 if (bbp_state == state && rf_state == state) 1036 return 0; 1037 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1038 msleep(30); 1039 } 1040 1041 return -EBUSY; 1042} 1043 1044static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev, 1045 enum dev_state state) 1046{ 1047 int retval = 0; 1048 1049 switch (state) { 1050 case STATE_RADIO_ON: 1051 retval = rt2500usb_enable_radio(rt2x00dev); 1052 break; 1053 case STATE_RADIO_OFF: 1054 rt2500usb_disable_radio(rt2x00dev); 1055 break; 1056 case STATE_RADIO_IRQ_ON: 1057 case STATE_RADIO_IRQ_OFF: 1058 /* No support, but no error either */ 1059 break; 1060 case STATE_DEEP_SLEEP: 1061 case STATE_SLEEP: 1062 case STATE_STANDBY: 1063 case STATE_AWAKE: 1064 retval = rt2500usb_set_state(rt2x00dev, state); 1065 break; 1066 default: 1067 retval = -ENOTSUPP; 1068 break; 1069 } 1070 1071 if (unlikely(retval)) 1072 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", 1073 state, retval); 1074 1075 return retval; 1076} 1077 1078/* 1079 * TX descriptor initialization 1080 */ 1081static void rt2500usb_write_tx_desc(struct queue_entry *entry, 1082 struct txentry_desc *txdesc) 1083{ 1084 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1085 __le32 *txd = (__le32 *) entry->skb->data; 1086 u32 word; 1087 1088 /* 1089 * Start writing the descriptor words. 1090 */ 1091 rt2x00_desc_read(txd, 0, &word); 1092 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit); 1093 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1094 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1095 rt2x00_set_field32(&word, TXD_W0_ACK, 1096 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1097 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1098 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1099 rt2x00_set_field32(&word, TXD_W0_OFDM, 1100 (txdesc->rate_mode == RATE_MODE_OFDM)); 1101 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ, 1102 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)); 1103 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1104 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); 1105 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher); 1106 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx); 1107 rt2x00_desc_write(txd, 0, word); 1108 1109 rt2x00_desc_read(txd, 1, &word); 1110 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); 1111 rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs); 1112 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); 1113 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); 1114 rt2x00_desc_write(txd, 1, word); 1115 1116 rt2x00_desc_read(txd, 2, &word); 1117 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); 1118 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); 1119 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, 1120 txdesc->u.plcp.length_low); 1121 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, 1122 txdesc->u.plcp.length_high); 1123 rt2x00_desc_write(txd, 2, word); 1124 1125 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { 1126 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); 1127 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); 1128 } 1129 1130 /* 1131 * Register descriptor details in skb frame descriptor. 1132 */ 1133 skbdesc->flags |= SKBDESC_DESC_IN_SKB; 1134 skbdesc->desc = txd; 1135 skbdesc->desc_len = TXD_DESC_SIZE; 1136} 1137 1138/* 1139 * TX data initialization 1140 */ 1141static void rt2500usb_beacondone(struct urb *urb); 1142 1143static void rt2500usb_write_beacon(struct queue_entry *entry, 1144 struct txentry_desc *txdesc) 1145{ 1146 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1147 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); 1148 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; 1149 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint); 1150 int length; 1151 u16 reg, reg0; 1152 1153 /* 1154 * Disable beaconing while we are reloading the beacon data, 1155 * otherwise we might be sending out invalid data. 1156 */ 1157 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg); 1158 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0); 1159 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1160 1161 /* 1162 * Add space for the descriptor in front of the skb. 1163 */ 1164 skb_push(entry->skb, TXD_DESC_SIZE); 1165 memset(entry->skb->data, 0, TXD_DESC_SIZE); 1166 1167 /* 1168 * Write the TX descriptor for the beacon. 1169 */ 1170 rt2500usb_write_tx_desc(entry, txdesc); 1171 1172 /* 1173 * Dump beacon to userspace through debugfs. 1174 */ 1175 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); 1176 1177 /* 1178 * USB devices cannot blindly pass the skb->len as the 1179 * length of the data to usb_fill_bulk_urb. Pass the skb 1180 * to the driver to determine what the length should be. 1181 */ 1182 length = rt2x00dev->ops->lib->get_tx_data_len(entry); 1183 1184 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe, 1185 entry->skb->data, length, rt2500usb_beacondone, 1186 entry); 1187 1188 /* 1189 * Second we need to create the guardian byte. 1190 * We only need a single byte, so lets recycle 1191 * the 'flags' field we are not using for beacons. 1192 */ 1193 bcn_priv->guardian_data = 0; 1194 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe, 1195 &bcn_priv->guardian_data, 1, rt2500usb_beacondone, 1196 entry); 1197 1198 /* 1199 * Send out the guardian byte. 1200 */ 1201 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC); 1202 1203 /* 1204 * Enable beaconing again. 1205 */ 1206 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1); 1207 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1); 1208 reg0 = reg; 1209 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1); 1210 /* 1211 * Beacon generation will fail initially. 1212 * To prevent this we need to change the TXRX_CSR19 1213 * register several times (reg0 is the same as reg 1214 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0 1215 * and 1 in reg). 1216 */ 1217 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1218 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); 1219 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1220 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); 1221 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1222} 1223 1224static int rt2500usb_get_tx_data_len(struct queue_entry *entry) 1225{ 1226 int length; 1227 1228 /* 1229 * The length _must_ be a multiple of 2, 1230 * but it must _not_ be a multiple of the USB packet size. 1231 */ 1232 length = roundup(entry->skb->len, 2); 1233 length += (2 * !(length % entry->queue->usb_maxpacket)); 1234 1235 return length; 1236} 1237 1238/* 1239 * RX control handlers 1240 */ 1241static void rt2500usb_fill_rxdone(struct queue_entry *entry, 1242 struct rxdone_entry_desc *rxdesc) 1243{ 1244 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1245 struct queue_entry_priv_usb *entry_priv = entry->priv_data; 1246 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1247 __le32 *rxd = 1248 (__le32 *)(entry->skb->data + 1249 (entry_priv->urb->actual_length - 1250 entry->queue->desc_size)); 1251 u32 word0; 1252 u32 word1; 1253 1254 /* 1255 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of 1256 * frame data in rt2x00usb. 1257 */ 1258 memcpy(skbdesc->desc, rxd, skbdesc->desc_len); 1259 rxd = (__le32 *)skbdesc->desc; 1260 1261 /* 1262 * It is now safe to read the descriptor on all architectures. 1263 */ 1264 rt2x00_desc_read(rxd, 0, &word0); 1265 rt2x00_desc_read(rxd, 1, &word1); 1266 1267 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 1268 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 1269 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) 1270 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; 1271 1272 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER); 1273 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR)) 1274 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY; 1275 1276 if (rxdesc->cipher != CIPHER_NONE) { 1277 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]); 1278 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]); 1279 rxdesc->dev_flags |= RXDONE_CRYPTO_IV; 1280 1281 /* ICV is located at the end of frame */ 1282 1283 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; 1284 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) 1285 rxdesc->flags |= RX_FLAG_DECRYPTED; 1286 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) 1287 rxdesc->flags |= RX_FLAG_MMIC_ERROR; 1288 } 1289 1290 /* 1291 * Obtain the status about this packet. 1292 * When frame was received with an OFDM bitrate, 1293 * the signal is the PLCP value. If it was received with 1294 * a CCK bitrate the signal is the rate in 100kbit/s. 1295 */ 1296 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); 1297 rxdesc->rssi = 1298 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset; 1299 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 1300 1301 if (rt2x00_get_field32(word0, RXD_W0_OFDM)) 1302 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 1303 else 1304 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; 1305 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 1306 rxdesc->dev_flags |= RXDONE_MY_BSS; 1307 1308 /* 1309 * Adjust the skb memory window to the frame boundaries. 1310 */ 1311 skb_trim(entry->skb, rxdesc->size); 1312} 1313 1314/* 1315 * Interrupt functions. 1316 */ 1317static void rt2500usb_beacondone(struct urb *urb) 1318{ 1319 struct queue_entry *entry = (struct queue_entry *)urb->context; 1320 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; 1321 1322 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags)) 1323 return; 1324 1325 /* 1326 * Check if this was the guardian beacon, 1327 * if that was the case we need to send the real beacon now. 1328 * Otherwise we should free the sk_buffer, the device 1329 * should be doing the rest of the work now. 1330 */ 1331 if (bcn_priv->guardian_urb == urb) { 1332 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC); 1333 } else if (bcn_priv->urb == urb) { 1334 dev_kfree_skb(entry->skb); 1335 entry->skb = NULL; 1336 } 1337} 1338 1339/* 1340 * Device probe functions. 1341 */ 1342static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) 1343{ 1344 u16 word; 1345 u8 *mac; 1346 u8 bbp; 1347 1348 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); 1349 1350 /* 1351 * Start validation of the data that has been read. 1352 */ 1353 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 1354 if (!is_valid_ether_addr(mac)) { 1355 random_ether_addr(mac); 1356 EEPROM(rt2x00dev, "MAC: %pM\n", mac); 1357 } 1358 1359 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); 1360 if (word == 0xffff) { 1361 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); 1362 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 1363 ANTENNA_SW_DIVERSITY); 1364 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 1365 ANTENNA_SW_DIVERSITY); 1366 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 1367 LED_MODE_DEFAULT); 1368 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); 1369 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); 1370 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); 1371 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); 1372 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); 1373 } 1374 1375 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); 1376 if (word == 0xffff) { 1377 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); 1378 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); 1379 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); 1380 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); 1381 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); 1382 } 1383 1384 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word); 1385 if (word == 0xffff) { 1386 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, 1387 DEFAULT_RSSI_OFFSET); 1388 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); 1389 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word); 1390 } 1391 1392 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word); 1393 if (word == 0xffff) { 1394 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45); 1395 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word); 1396 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word); 1397 } 1398 1399 /* 1400 * Switch lower vgc bound to current BBP R17 value, 1401 * lower the value a bit for better quality. 1402 */ 1403 rt2500usb_bbp_read(rt2x00dev, 17, &bbp); 1404 bbp -= 6; 1405 1406 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word); 1407 if (word == 0xffff) { 1408 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40); 1409 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); 1410 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); 1411 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word); 1412 } else { 1413 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); 1414 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); 1415 } 1416 1417 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word); 1418 if (word == 0xffff) { 1419 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48); 1420 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41); 1421 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word); 1422 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word); 1423 } 1424 1425 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word); 1426 if (word == 0xffff) { 1427 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40); 1428 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80); 1429 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word); 1430 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word); 1431 } 1432 1433 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word); 1434 if (word == 0xffff) { 1435 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40); 1436 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50); 1437 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word); 1438 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word); 1439 } 1440 1441 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word); 1442 if (word == 0xffff) { 1443 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60); 1444 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d); 1445 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word); 1446 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word); 1447 } 1448 1449 return 0; 1450} 1451 1452static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev) 1453{ 1454 u16 reg; 1455 u16 value; 1456 u16 eeprom; 1457 1458 /* 1459 * Read EEPROM word for configuration. 1460 */ 1461 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); 1462 1463 /* 1464 * Identify RF chipset. 1465 */ 1466 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 1467 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg); 1468 rt2x00_set_chip(rt2x00dev, RT2570, value, reg); 1469 1470 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) { 1471 ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); 1472 return -ENODEV; 1473 } 1474 1475 if (!rt2x00_rf(rt2x00dev, RF2522) && 1476 !rt2x00_rf(rt2x00dev, RF2523) && 1477 !rt2x00_rf(rt2x00dev, RF2524) && 1478 !rt2x00_rf(rt2x00dev, RF2525) && 1479 !rt2x00_rf(rt2x00dev, RF2525E) && 1480 !rt2x00_rf(rt2x00dev, RF5222)) { 1481 ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); 1482 return -ENODEV; 1483 } 1484 1485 /* 1486 * Identify default antenna configuration. 1487 */ 1488 rt2x00dev->default_ant.tx = 1489 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 1490 rt2x00dev->default_ant.rx = 1491 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 1492 1493 /* 1494 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead. 1495 * I am not 100% sure about this, but the legacy drivers do not 1496 * indicate antenna swapping in software is required when 1497 * diversity is enabled. 1498 */ 1499 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) 1500 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; 1501 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) 1502 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; 1503 1504 /* 1505 * Store led mode, for correct led behaviour. 1506 */ 1507#ifdef CONFIG_RT2X00_LIB_LEDS 1508 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); 1509 1510 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 1511 if (value == LED_MODE_TXRX_ACTIVITY || 1512 value == LED_MODE_DEFAULT || 1513 value == LED_MODE_ASUS) 1514 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual, 1515 LED_TYPE_ACTIVITY); 1516#endif /* CONFIG_RT2X00_LIB_LEDS */ 1517 1518 /* 1519 * Detect if this device has an hardware controlled radio. 1520 */ 1521 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 1522 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 1523 1524 /* 1525 * Read the RSSI <-> dBm offset information. 1526 */ 1527 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom); 1528 rt2x00dev->rssi_offset = 1529 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); 1530 1531 return 0; 1532} 1533 1534/* 1535 * RF value list for RF2522 1536 * Supports: 2.4 GHz 1537 */ 1538static const struct rf_channel rf_vals_bg_2522[] = { 1539 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, 1540 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, 1541 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, 1542 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, 1543 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, 1544 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, 1545 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, 1546 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, 1547 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, 1548 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, 1549 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, 1550 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, 1551 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, 1552 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, 1553}; 1554 1555/* 1556 * RF value list for RF2523 1557 * Supports: 2.4 GHz 1558 */ 1559static const struct rf_channel rf_vals_bg_2523[] = { 1560 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, 1561 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, 1562 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, 1563 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, 1564 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, 1565 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, 1566 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, 1567 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, 1568 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, 1569 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, 1570 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, 1571 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, 1572 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, 1573 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, 1574}; 1575 1576/* 1577 * RF value list for RF2524 1578 * Supports: 2.4 GHz 1579 */ 1580static const struct rf_channel rf_vals_bg_2524[] = { 1581 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, 1582 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, 1583 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, 1584 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, 1585 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, 1586 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, 1587 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, 1588 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, 1589 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, 1590 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, 1591 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, 1592 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, 1593 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, 1594 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, 1595}; 1596 1597/* 1598 * RF value list for RF2525 1599 * Supports: 2.4 GHz 1600 */ 1601static const struct rf_channel rf_vals_bg_2525[] = { 1602 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, 1603 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, 1604 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, 1605 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, 1606 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, 1607 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, 1608 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, 1609 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, 1610 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, 1611 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, 1612 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, 1613 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, 1614 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, 1615 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, 1616}; 1617 1618/* 1619 * RF value list for RF2525e 1620 * Supports: 2.4 GHz 1621 */ 1622static const struct rf_channel rf_vals_bg_2525e[] = { 1623 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b }, 1624 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 }, 1625 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b }, 1626 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 }, 1627 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b }, 1628 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 }, 1629 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b }, 1630 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 }, 1631 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b }, 1632 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 }, 1633 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b }, 1634 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 }, 1635 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b }, 1636 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 }, 1637}; 1638 1639/* 1640 * RF value list for RF5222 1641 * Supports: 2.4 GHz & 5.2 GHz 1642 */ 1643static const struct rf_channel rf_vals_5222[] = { 1644 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, 1645 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, 1646 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, 1647 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, 1648 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, 1649 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, 1650 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, 1651 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, 1652 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, 1653 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, 1654 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, 1655 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, 1656 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, 1657 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, 1658 1659 /* 802.11 UNI / HyperLan 2 */ 1660 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, 1661 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, 1662 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, 1663 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, 1664 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, 1665 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, 1666 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, 1667 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, 1668 1669 /* 802.11 HyperLan 2 */ 1670 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, 1671 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, 1672 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, 1673 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, 1674 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, 1675 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, 1676 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, 1677 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, 1678 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, 1679 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, 1680 1681 /* 802.11 UNII */ 1682 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, 1683 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, 1684 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, 1685 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, 1686 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, 1687}; 1688 1689static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 1690{ 1691 struct hw_mode_spec *spec = &rt2x00dev->spec; 1692 struct channel_info *info; 1693 char *tx_power; 1694 unsigned int i; 1695 1696 /* 1697 * Initialize all hw fields. 1698 * 1699 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are 1700 * capable of sending the buffered frames out after the DTIM 1701 * transmission using rt2x00lib_beacondone. This will send out 1702 * multicast and broadcast traffic immediately instead of buffering it 1703 * infinitly and thus dropping it after some time. 1704 */ 1705 rt2x00dev->hw->flags = 1706 IEEE80211_HW_RX_INCLUDES_FCS | 1707 IEEE80211_HW_SIGNAL_DBM | 1708 IEEE80211_HW_SUPPORTS_PS | 1709 IEEE80211_HW_PS_NULLFUNC_STACK; 1710 1711 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 1712 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 1713 rt2x00_eeprom_addr(rt2x00dev, 1714 EEPROM_MAC_ADDR_0)); 1715 1716 /* 1717 * Initialize hw_mode information. 1718 */ 1719 spec->supported_bands = SUPPORT_BAND_2GHZ; 1720 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; 1721 1722 if (rt2x00_rf(rt2x00dev, RF2522)) { 1723 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); 1724 spec->channels = rf_vals_bg_2522; 1725 } else if (rt2x00_rf(rt2x00dev, RF2523)) { 1726 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); 1727 spec->channels = rf_vals_bg_2523; 1728 } else if (rt2x00_rf(rt2x00dev, RF2524)) { 1729 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); 1730 spec->channels = rf_vals_bg_2524; 1731 } else if (rt2x00_rf(rt2x00dev, RF2525)) { 1732 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); 1733 spec->channels = rf_vals_bg_2525; 1734 } else if (rt2x00_rf(rt2x00dev, RF2525E)) { 1735 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); 1736 spec->channels = rf_vals_bg_2525e; 1737 } else if (rt2x00_rf(rt2x00dev, RF5222)) { 1738 spec->supported_bands |= SUPPORT_BAND_5GHZ; 1739 spec->num_channels = ARRAY_SIZE(rf_vals_5222); 1740 spec->channels = rf_vals_5222; 1741 } 1742 1743 /* 1744 * Create channel information array 1745 */ 1746 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 1747 if (!info) 1748 return -ENOMEM; 1749 1750 spec->channels_info = info; 1751 1752 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); 1753 for (i = 0; i < 14; i++) { 1754 info[i].max_power = MAX_TXPOWER; 1755 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 1756 } 1757 1758 if (spec->num_channels > 14) { 1759 for (i = 14; i < spec->num_channels; i++) { 1760 info[i].max_power = MAX_TXPOWER; 1761 info[i].default_power1 = DEFAULT_TXPOWER; 1762 } 1763 } 1764 1765 return 0; 1766} 1767 1768static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev) 1769{ 1770 int retval; 1771 1772 /* 1773 * Allocate eeprom data. 1774 */ 1775 retval = rt2500usb_validate_eeprom(rt2x00dev); 1776 if (retval) 1777 return retval; 1778 1779 retval = rt2500usb_init_eeprom(rt2x00dev); 1780 if (retval) 1781 return retval; 1782 1783 /* 1784 * Initialize hw specifications. 1785 */ 1786 retval = rt2500usb_probe_hw_mode(rt2x00dev); 1787 if (retval) 1788 return retval; 1789 1790 /* 1791 * This device requires the atim queue 1792 */ 1793 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); 1794 __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags); 1795 if (!modparam_nohwcrypt) { 1796 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); 1797 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags); 1798 } 1799 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); 1800 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); 1801 1802 /* 1803 * Set the rssi offset. 1804 */ 1805 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 1806 1807 return 0; 1808} 1809 1810static const struct ieee80211_ops rt2500usb_mac80211_ops = { 1811 .tx = rt2x00mac_tx, 1812 .start = rt2x00mac_start, 1813 .stop = rt2x00mac_stop, 1814 .add_interface = rt2x00mac_add_interface, 1815 .remove_interface = rt2x00mac_remove_interface, 1816 .config = rt2x00mac_config, 1817 .configure_filter = rt2x00mac_configure_filter, 1818 .set_tim = rt2x00mac_set_tim, 1819 .set_key = rt2x00mac_set_key, 1820 .sw_scan_start = rt2x00mac_sw_scan_start, 1821 .sw_scan_complete = rt2x00mac_sw_scan_complete, 1822 .get_stats = rt2x00mac_get_stats, 1823 .bss_info_changed = rt2x00mac_bss_info_changed, 1824 .conf_tx = rt2x00mac_conf_tx, 1825 .rfkill_poll = rt2x00mac_rfkill_poll, 1826 .flush = rt2x00mac_flush, 1827 .set_antenna = rt2x00mac_set_antenna, 1828 .get_antenna = rt2x00mac_get_antenna, 1829 .get_ringparam = rt2x00mac_get_ringparam, 1830 .tx_frames_pending = rt2x00mac_tx_frames_pending, 1831}; 1832 1833static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = { 1834 .probe_hw = rt2500usb_probe_hw, 1835 .initialize = rt2x00usb_initialize, 1836 .uninitialize = rt2x00usb_uninitialize, 1837 .clear_entry = rt2x00usb_clear_entry, 1838 .set_device_state = rt2500usb_set_device_state, 1839 .rfkill_poll = rt2500usb_rfkill_poll, 1840 .link_stats = rt2500usb_link_stats, 1841 .reset_tuner = rt2500usb_reset_tuner, 1842 .watchdog = rt2x00usb_watchdog, 1843 .start_queue = rt2500usb_start_queue, 1844 .kick_queue = rt2x00usb_kick_queue, 1845 .stop_queue = rt2500usb_stop_queue, 1846 .flush_queue = rt2x00usb_flush_queue, 1847 .write_tx_desc = rt2500usb_write_tx_desc, 1848 .write_beacon = rt2500usb_write_beacon, 1849 .get_tx_data_len = rt2500usb_get_tx_data_len, 1850 .fill_rxdone = rt2500usb_fill_rxdone, 1851 .config_shared_key = rt2500usb_config_key, 1852 .config_pairwise_key = rt2500usb_config_key, 1853 .config_filter = rt2500usb_config_filter, 1854 .config_intf = rt2500usb_config_intf, 1855 .config_erp = rt2500usb_config_erp, 1856 .config_ant = rt2500usb_config_ant, 1857 .config = rt2500usb_config, 1858}; 1859 1860static const struct data_queue_desc rt2500usb_queue_rx = { 1861 .entry_num = 32, 1862 .data_size = DATA_FRAME_SIZE, 1863 .desc_size = RXD_DESC_SIZE, 1864 .priv_size = sizeof(struct queue_entry_priv_usb), 1865}; 1866 1867static const struct data_queue_desc rt2500usb_queue_tx = { 1868 .entry_num = 32, 1869 .data_size = DATA_FRAME_SIZE, 1870 .desc_size = TXD_DESC_SIZE, 1871 .priv_size = sizeof(struct queue_entry_priv_usb), 1872}; 1873 1874static const struct data_queue_desc rt2500usb_queue_bcn = { 1875 .entry_num = 1, 1876 .data_size = MGMT_FRAME_SIZE, 1877 .desc_size = TXD_DESC_SIZE, 1878 .priv_size = sizeof(struct queue_entry_priv_usb_bcn), 1879}; 1880 1881static const struct data_queue_desc rt2500usb_queue_atim = { 1882 .entry_num = 8, 1883 .data_size = DATA_FRAME_SIZE, 1884 .desc_size = TXD_DESC_SIZE, 1885 .priv_size = sizeof(struct queue_entry_priv_usb), 1886}; 1887 1888static const struct rt2x00_ops rt2500usb_ops = { 1889 .name = KBUILD_MODNAME, 1890 .max_sta_intf = 1, 1891 .max_ap_intf = 1, 1892 .eeprom_size = EEPROM_SIZE, 1893 .rf_size = RF_SIZE, 1894 .tx_queues = NUM_TX_QUEUES, 1895 .extra_tx_headroom = TXD_DESC_SIZE, 1896 .rx = &rt2500usb_queue_rx, 1897 .tx = &rt2500usb_queue_tx, 1898 .bcn = &rt2500usb_queue_bcn, 1899 .atim = &rt2500usb_queue_atim, 1900 .lib = &rt2500usb_rt2x00_ops, 1901 .hw = &rt2500usb_mac80211_ops, 1902#ifdef CONFIG_RT2X00_LIB_DEBUGFS 1903 .debugfs = &rt2500usb_rt2x00debug, 1904#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1905}; 1906 1907/* 1908 * rt2500usb module information. 1909 */ 1910static struct usb_device_id rt2500usb_device_table[] = { 1911 /* ASUS */ 1912 { USB_DEVICE(0x0b05, 0x1706) }, 1913 { USB_DEVICE(0x0b05, 0x1707) }, 1914 /* Belkin */ 1915 { USB_DEVICE(0x050d, 0x7050) }, 1916 { USB_DEVICE(0x050d, 0x7051) }, 1917 /* Cisco Systems */ 1918 { USB_DEVICE(0x13b1, 0x000d) }, 1919 { USB_DEVICE(0x13b1, 0x0011) }, 1920 { USB_DEVICE(0x13b1, 0x001a) }, 1921 /* Conceptronic */ 1922 { USB_DEVICE(0x14b2, 0x3c02) }, 1923 /* D-LINK */ 1924 { USB_DEVICE(0x2001, 0x3c00) }, 1925 /* Gigabyte */ 1926 { USB_DEVICE(0x1044, 0x8001) }, 1927 { USB_DEVICE(0x1044, 0x8007) }, 1928 /* Hercules */ 1929 { USB_DEVICE(0x06f8, 0xe000) }, 1930 /* Melco */ 1931 { USB_DEVICE(0x0411, 0x005e) }, 1932 { USB_DEVICE(0x0411, 0x0066) }, 1933 { USB_DEVICE(0x0411, 0x0067) }, 1934 { USB_DEVICE(0x0411, 0x008b) }, 1935 { USB_DEVICE(0x0411, 0x0097) }, 1936 /* MSI */ 1937 { USB_DEVICE(0x0db0, 0x6861) }, 1938 { USB_DEVICE(0x0db0, 0x6865) }, 1939 { USB_DEVICE(0x0db0, 0x6869) }, 1940 /* Ralink */ 1941 { USB_DEVICE(0x148f, 0x1706) }, 1942 { USB_DEVICE(0x148f, 0x2570) }, 1943 { USB_DEVICE(0x148f, 0x9020) }, 1944 /* Sagem */ 1945 { USB_DEVICE(0x079b, 0x004b) }, 1946 /* Siemens */ 1947 { USB_DEVICE(0x0681, 0x3c06) }, 1948 /* SMC */ 1949 { USB_DEVICE(0x0707, 0xee13) }, 1950 /* Spairon */ 1951 { USB_DEVICE(0x114b, 0x0110) }, 1952 /* SURECOM */ 1953 { USB_DEVICE(0x0769, 0x11f3) }, 1954 /* Trust */ 1955 { USB_DEVICE(0x0eb0, 0x9020) }, 1956 /* VTech */ 1957 { USB_DEVICE(0x0f88, 0x3012) }, 1958 /* Zinwell */ 1959 { USB_DEVICE(0x5a57, 0x0260) }, 1960 { 0, } 1961}; 1962 1963MODULE_AUTHOR(DRV_PROJECT); 1964MODULE_VERSION(DRV_VERSION); 1965MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver."); 1966MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards"); 1967MODULE_DEVICE_TABLE(usb, rt2500usb_device_table); 1968MODULE_LICENSE("GPL"); 1969 1970static int rt2500usb_probe(struct usb_interface *usb_intf, 1971 const struct usb_device_id *id) 1972{ 1973 return rt2x00usb_probe(usb_intf, &rt2500usb_ops); 1974} 1975 1976static struct usb_driver rt2500usb_driver = { 1977 .name = KBUILD_MODNAME, 1978 .id_table = rt2500usb_device_table, 1979 .probe = rt2500usb_probe, 1980 .disconnect = rt2x00usb_disconnect, 1981 .suspend = rt2x00usb_suspend, 1982 .resume = rt2x00usb_resume, 1983}; 1984 1985module_usb_driver(rt2500usb_driver);