at v3.4 996 lines 27 kB view raw
1/* 2 * pti.c - PTI driver for cJTAG data extration 3 * 4 * Copyright (C) Intel 2010 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 16 * 17 * The PTI (Parallel Trace Interface) driver directs trace data routed from 18 * various parts in the system out through the Intel Penwell PTI port and 19 * out of the mobile device for analysis with a debugging tool 20 * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7, 21 * compact JTAG, standard. 22 */ 23 24#include <linux/init.h> 25#include <linux/sched.h> 26#include <linux/interrupt.h> 27#include <linux/console.h> 28#include <linux/kernel.h> 29#include <linux/module.h> 30#include <linux/tty.h> 31#include <linux/tty_driver.h> 32#include <linux/pci.h> 33#include <linux/mutex.h> 34#include <linux/miscdevice.h> 35#include <linux/pti.h> 36#include <linux/slab.h> 37#include <linux/uaccess.h> 38 39#define DRIVERNAME "pti" 40#define PCINAME "pciPTI" 41#define TTYNAME "ttyPTI" 42#define CHARNAME "pti" 43#define PTITTY_MINOR_START 0 44#define PTITTY_MINOR_NUM 2 45#define MAX_APP_IDS 16 /* 128 channel ids / u8 bit size */ 46#define MAX_OS_IDS 16 /* 128 channel ids / u8 bit size */ 47#define MAX_MODEM_IDS 16 /* 128 channel ids / u8 bit size */ 48#define MODEM_BASE_ID 71 /* modem master ID address */ 49#define CONTROL_ID 72 /* control master ID address */ 50#define CONSOLE_ID 73 /* console master ID address */ 51#define OS_BASE_ID 74 /* base OS master ID address */ 52#define APP_BASE_ID 80 /* base App master ID address */ 53#define CONTROL_FRAME_LEN 32 /* PTI control frame maximum size */ 54#define USER_COPY_SIZE 8192 /* 8Kb buffer for user space copy */ 55#define APERTURE_14 0x3800000 /* offset to first OS write addr */ 56#define APERTURE_LEN 0x400000 /* address length */ 57 58struct pti_tty { 59 struct pti_masterchannel *mc; 60}; 61 62struct pti_dev { 63 struct tty_port port; 64 unsigned long pti_addr; 65 unsigned long aperture_base; 66 void __iomem *pti_ioaddr; 67 u8 ia_app[MAX_APP_IDS]; 68 u8 ia_os[MAX_OS_IDS]; 69 u8 ia_modem[MAX_MODEM_IDS]; 70}; 71 72/* 73 * This protects access to ia_app, ia_os, and ia_modem, 74 * which keeps track of channels allocated in 75 * an aperture write id. 76 */ 77static DEFINE_MUTEX(alloclock); 78 79static struct pci_device_id pci_ids[] __devinitconst = { 80 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)}, 81 {0} 82}; 83 84static struct tty_driver *pti_tty_driver; 85static struct pti_dev *drv_data; 86 87static unsigned int pti_console_channel; 88static unsigned int pti_control_channel; 89 90/** 91 * pti_write_to_aperture()- The private write function to PTI HW. 92 * 93 * @mc: The 'aperture'. It's part of a write address that holds 94 * a master and channel ID. 95 * @buf: Data being written to the HW that will ultimately be seen 96 * in a debugging tool (Fido, Lauterbach). 97 * @len: Size of buffer. 98 * 99 * Since each aperture is specified by a unique 100 * master/channel ID, no two processes will be writing 101 * to the same aperture at the same time so no lock is required. The 102 * PTI-Output agent will send these out in the order that they arrived, and 103 * thus, it will intermix these messages. The debug tool can then later 104 * regroup the appropriate message segments together reconstituting each 105 * message. 106 */ 107static void pti_write_to_aperture(struct pti_masterchannel *mc, 108 u8 *buf, 109 int len) 110{ 111 int dwordcnt; 112 int final; 113 int i; 114 u32 ptiword; 115 u32 __iomem *aperture; 116 u8 *p = buf; 117 118 /* 119 * calculate the aperture offset from the base using the master and 120 * channel id's. 121 */ 122 aperture = drv_data->pti_ioaddr + (mc->master << 15) 123 + (mc->channel << 8); 124 125 dwordcnt = len >> 2; 126 final = len - (dwordcnt << 2); /* final = trailing bytes */ 127 if (final == 0 && dwordcnt != 0) { /* always need a final dword */ 128 final += 4; 129 dwordcnt--; 130 } 131 132 for (i = 0; i < dwordcnt; i++) { 133 ptiword = be32_to_cpu(*(u32 *)p); 134 p += 4; 135 iowrite32(ptiword, aperture); 136 } 137 138 aperture += PTI_LASTDWORD_DTS; /* adding DTS signals that is EOM */ 139 140 ptiword = 0; 141 for (i = 0; i < final; i++) 142 ptiword |= *p++ << (24-(8*i)); 143 144 iowrite32(ptiword, aperture); 145 return; 146} 147 148/** 149 * pti_control_frame_built_and_sent()- control frame build and send function. 150 * 151 * @mc: The master / channel structure on which the function 152 * built a control frame. 153 * @thread_name: The thread name associated with the master / channel or 154 * 'NULL' if using the 'current' global variable. 155 * 156 * To be able to post process the PTI contents on host side, a control frame 157 * is added before sending any PTI content. So the host side knows on 158 * each PTI frame the name of the thread using a dedicated master / channel. 159 * The thread name is retrieved from 'current' global variable if 'thread_name' 160 * is 'NULL', else it is retrieved from 'thread_name' parameter. 161 * This function builds this frame and sends it to a master ID CONTROL_ID. 162 * The overhead is only 32 bytes since the driver only writes to HW 163 * in 32 byte chunks. 164 */ 165static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc, 166 const char *thread_name) 167{ 168 /* 169 * Since we access the comm member in current's task_struct, we only 170 * need to be as large as what 'comm' in that structure is. 171 */ 172 char comm[TASK_COMM_LEN]; 173 struct pti_masterchannel mccontrol = {.master = CONTROL_ID, 174 .channel = 0}; 175 const char *thread_name_p; 176 const char *control_format = "%3d %3d %s"; 177 u8 control_frame[CONTROL_FRAME_LEN]; 178 179 if (!thread_name) { 180 if (!in_interrupt()) 181 get_task_comm(comm, current); 182 else 183 strncpy(comm, "Interrupt", TASK_COMM_LEN); 184 185 /* Absolutely ensure our buffer is zero terminated. */ 186 comm[TASK_COMM_LEN-1] = 0; 187 thread_name_p = comm; 188 } else { 189 thread_name_p = thread_name; 190 } 191 192 mccontrol.channel = pti_control_channel; 193 pti_control_channel = (pti_control_channel + 1) & 0x7f; 194 195 snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master, 196 mc->channel, thread_name_p); 197 pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame)); 198} 199 200/** 201 * pti_write_full_frame_to_aperture()- high level function to 202 * write to PTI. 203 * 204 * @mc: The 'aperture'. It's part of a write address that holds 205 * a master and channel ID. 206 * @buf: Data being written to the HW that will ultimately be seen 207 * in a debugging tool (Fido, Lauterbach). 208 * @len: Size of buffer. 209 * 210 * All threads sending data (either console, user space application, ...) 211 * are calling the high level function to write to PTI meaning that it is 212 * possible to add a control frame before sending the content. 213 */ 214static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc, 215 const unsigned char *buf, 216 int len) 217{ 218 pti_control_frame_built_and_sent(mc, NULL); 219 pti_write_to_aperture(mc, (u8 *)buf, len); 220} 221 222/** 223 * get_id()- Allocate a master and channel ID. 224 * 225 * @id_array: an array of bits representing what channel 226 * id's are allocated for writing. 227 * @max_ids: The max amount of available write IDs to use. 228 * @base_id: The starting SW channel ID, based on the Intel 229 * PTI arch. 230 * @thread_name: The thread name associated with the master / channel or 231 * 'NULL' if using the 'current' global variable. 232 * 233 * Returns: 234 * pti_masterchannel struct with master, channel ID address 235 * 0 for error 236 * 237 * Each bit in the arrays ia_app and ia_os correspond to a master and 238 * channel id. The bit is one if the id is taken and 0 if free. For 239 * every master there are 128 channel id's. 240 */ 241static struct pti_masterchannel *get_id(u8 *id_array, 242 int max_ids, 243 int base_id, 244 const char *thread_name) 245{ 246 struct pti_masterchannel *mc; 247 int i, j, mask; 248 249 mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL); 250 if (mc == NULL) 251 return NULL; 252 253 /* look for a byte with a free bit */ 254 for (i = 0; i < max_ids; i++) 255 if (id_array[i] != 0xff) 256 break; 257 if (i == max_ids) { 258 kfree(mc); 259 return NULL; 260 } 261 /* find the bit in the 128 possible channel opportunities */ 262 mask = 0x80; 263 for (j = 0; j < 8; j++) { 264 if ((id_array[i] & mask) == 0) 265 break; 266 mask >>= 1; 267 } 268 269 /* grab it */ 270 id_array[i] |= mask; 271 mc->master = base_id; 272 mc->channel = ((i & 0xf)<<3) + j; 273 /* write new master Id / channel Id allocation to channel control */ 274 pti_control_frame_built_and_sent(mc, thread_name); 275 return mc; 276} 277 278/* 279 * The following three functions: 280 * pti_request_mastercahannel(), mipi_release_masterchannel() 281 * and pti_writedata() are an API for other kernel drivers to 282 * access PTI. 283 */ 284 285/** 286 * pti_request_masterchannel()- Kernel API function used to allocate 287 * a master, channel ID address 288 * to write to PTI HW. 289 * 290 * @type: 0- request Application master, channel aperture ID 291 * write address. 292 * 1- request OS master, channel aperture ID write 293 * address. 294 * 2- request Modem master, channel aperture ID 295 * write address. 296 * Other values, error. 297 * @thread_name: The thread name associated with the master / channel or 298 * 'NULL' if using the 'current' global variable. 299 * 300 * Returns: 301 * pti_masterchannel struct 302 * 0 for error 303 */ 304struct pti_masterchannel *pti_request_masterchannel(u8 type, 305 const char *thread_name) 306{ 307 struct pti_masterchannel *mc; 308 309 mutex_lock(&alloclock); 310 311 switch (type) { 312 313 case 0: 314 mc = get_id(drv_data->ia_app, MAX_APP_IDS, 315 APP_BASE_ID, thread_name); 316 break; 317 318 case 1: 319 mc = get_id(drv_data->ia_os, MAX_OS_IDS, 320 OS_BASE_ID, thread_name); 321 break; 322 323 case 2: 324 mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS, 325 MODEM_BASE_ID, thread_name); 326 break; 327 default: 328 mc = NULL; 329 } 330 331 mutex_unlock(&alloclock); 332 return mc; 333} 334EXPORT_SYMBOL_GPL(pti_request_masterchannel); 335 336/** 337 * pti_release_masterchannel()- Kernel API function used to release 338 * a master, channel ID address 339 * used to write to PTI HW. 340 * 341 * @mc: master, channel apeture ID address to be released. This 342 * will de-allocate the structure via kfree(). 343 */ 344void pti_release_masterchannel(struct pti_masterchannel *mc) 345{ 346 u8 master, channel, i; 347 348 mutex_lock(&alloclock); 349 350 if (mc) { 351 master = mc->master; 352 channel = mc->channel; 353 354 if (master == APP_BASE_ID) { 355 i = channel >> 3; 356 drv_data->ia_app[i] &= ~(0x80>>(channel & 0x7)); 357 } else if (master == OS_BASE_ID) { 358 i = channel >> 3; 359 drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7)); 360 } else { 361 i = channel >> 3; 362 drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7)); 363 } 364 365 kfree(mc); 366 } 367 368 mutex_unlock(&alloclock); 369} 370EXPORT_SYMBOL_GPL(pti_release_masterchannel); 371 372/** 373 * pti_writedata()- Kernel API function used to write trace 374 * debugging data to PTI HW. 375 * 376 * @mc: Master, channel aperture ID address to write to. 377 * Null value will return with no write occurring. 378 * @buf: Trace debuging data to write to the PTI HW. 379 * Null value will return with no write occurring. 380 * @count: Size of buf. Value of 0 or a negative number will 381 * return with no write occuring. 382 */ 383void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count) 384{ 385 /* 386 * since this function is exported, this is treated like an 387 * API function, thus, all parameters should 388 * be checked for validity. 389 */ 390 if ((mc != NULL) && (buf != NULL) && (count > 0)) 391 pti_write_to_aperture(mc, buf, count); 392 return; 393} 394EXPORT_SYMBOL_GPL(pti_writedata); 395 396/** 397 * pti_pci_remove()- Driver exit method to remove PTI from 398 * PCI bus. 399 * @pdev: variable containing pci info of PTI. 400 */ 401static void __devexit pti_pci_remove(struct pci_dev *pdev) 402{ 403 struct pti_dev *drv_data; 404 405 drv_data = pci_get_drvdata(pdev); 406 if (drv_data != NULL) { 407 pci_iounmap(pdev, drv_data->pti_ioaddr); 408 pci_set_drvdata(pdev, NULL); 409 kfree(drv_data); 410 pci_release_region(pdev, 1); 411 pci_disable_device(pdev); 412 } 413} 414 415/* 416 * for the tty_driver_*() basic function descriptions, see tty_driver.h. 417 * Specific header comments made for PTI-related specifics. 418 */ 419 420/** 421 * pti_tty_driver_open()- Open an Application master, channel aperture 422 * ID to the PTI device via tty device. 423 * 424 * @tty: tty interface. 425 * @filp: filp interface pased to tty_port_open() call. 426 * 427 * Returns: 428 * int, 0 for success 429 * otherwise, fail value 430 * 431 * The main purpose of using the tty device interface is for 432 * each tty port to have a unique PTI write aperture. In an 433 * example use case, ttyPTI0 gets syslogd and an APP aperture 434 * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route 435 * modem messages into PTI. Modem trace data does not have to 436 * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct 437 * master IDs. These messages go through the PTI HW and out of 438 * the handheld platform and to the Fido/Lauterbach device. 439 */ 440static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp) 441{ 442 /* 443 * we actually want to allocate a new channel per open, per 444 * system arch. HW gives more than plenty channels for a single 445 * system task to have its own channel to write trace data. This 446 * also removes a locking requirement for the actual write 447 * procedure. 448 */ 449 return tty_port_open(&drv_data->port, tty, filp); 450} 451 452/** 453 * pti_tty_driver_close()- close tty device and release Application 454 * master, channel aperture ID to the PTI device via tty device. 455 * 456 * @tty: tty interface. 457 * @filp: filp interface pased to tty_port_close() call. 458 * 459 * The main purpose of using the tty device interface is to route 460 * syslog daemon messages to the PTI HW and out of the handheld platform 461 * and to the Fido/Lauterbach device. 462 */ 463static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp) 464{ 465 tty_port_close(&drv_data->port, tty, filp); 466} 467 468/** 469 * pti_tty_install()- Used to set up specific master-channels 470 * to tty ports for organizational purposes when 471 * tracing viewed from debuging tools. 472 * 473 * @driver: tty driver information. 474 * @tty: tty struct containing pti information. 475 * 476 * Returns: 477 * 0 for success 478 * otherwise, error 479 */ 480static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty) 481{ 482 int idx = tty->index; 483 struct pti_tty *pti_tty_data; 484 int ret = tty_standard_install(driver, tty); 485 486 if (ret == 0) { 487 pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL); 488 if (pti_tty_data == NULL) 489 return -ENOMEM; 490 491 if (idx == PTITTY_MINOR_START) 492 pti_tty_data->mc = pti_request_masterchannel(0, NULL); 493 else 494 pti_tty_data->mc = pti_request_masterchannel(2, NULL); 495 496 if (pti_tty_data->mc == NULL) { 497 kfree(pti_tty_data); 498 return -ENXIO; 499 } 500 tty->driver_data = pti_tty_data; 501 } 502 503 return ret; 504} 505 506/** 507 * pti_tty_cleanup()- Used to de-allocate master-channel resources 508 * tied to tty's of this driver. 509 * 510 * @tty: tty struct containing pti information. 511 */ 512static void pti_tty_cleanup(struct tty_struct *tty) 513{ 514 struct pti_tty *pti_tty_data = tty->driver_data; 515 if (pti_tty_data == NULL) 516 return; 517 pti_release_masterchannel(pti_tty_data->mc); 518 kfree(pti_tty_data); 519 tty->driver_data = NULL; 520} 521 522/** 523 * pti_tty_driver_write()- Write trace debugging data through the char 524 * interface to the PTI HW. Part of the misc device implementation. 525 * 526 * @filp: Contains private data which is used to obtain 527 * master, channel write ID. 528 * @data: trace data to be written. 529 * @len: # of byte to write. 530 * 531 * Returns: 532 * int, # of bytes written 533 * otherwise, error 534 */ 535static int pti_tty_driver_write(struct tty_struct *tty, 536 const unsigned char *buf, int len) 537{ 538 struct pti_tty *pti_tty_data = tty->driver_data; 539 if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) { 540 pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len); 541 return len; 542 } 543 /* 544 * we can't write to the pti hardware if the private driver_data 545 * and the mc address is not there. 546 */ 547 else 548 return -EFAULT; 549} 550 551/** 552 * pti_tty_write_room()- Always returns 2048. 553 * 554 * @tty: contains tty info of the pti driver. 555 */ 556static int pti_tty_write_room(struct tty_struct *tty) 557{ 558 return 2048; 559} 560 561/** 562 * pti_char_open()- Open an Application master, channel aperture 563 * ID to the PTI device. Part of the misc device implementation. 564 * 565 * @inode: not used. 566 * @filp: Output- will have a masterchannel struct set containing 567 * the allocated application PTI aperture write address. 568 * 569 * Returns: 570 * int, 0 for success 571 * otherwise, a fail value 572 */ 573static int pti_char_open(struct inode *inode, struct file *filp) 574{ 575 struct pti_masterchannel *mc; 576 577 /* 578 * We really do want to fail immediately if 579 * pti_request_masterchannel() fails, 580 * before assigning the value to filp->private_data. 581 * Slightly easier to debug if this driver needs debugging. 582 */ 583 mc = pti_request_masterchannel(0, NULL); 584 if (mc == NULL) 585 return -ENOMEM; 586 filp->private_data = mc; 587 return 0; 588} 589 590/** 591 * pti_char_release()- Close a char channel to the PTI device. Part 592 * of the misc device implementation. 593 * 594 * @inode: Not used in this implementaiton. 595 * @filp: Contains private_data that contains the master, channel 596 * ID to be released by the PTI device. 597 * 598 * Returns: 599 * always 0 600 */ 601static int pti_char_release(struct inode *inode, struct file *filp) 602{ 603 pti_release_masterchannel(filp->private_data); 604 filp->private_data = NULL; 605 return 0; 606} 607 608/** 609 * pti_char_write()- Write trace debugging data through the char 610 * interface to the PTI HW. Part of the misc device implementation. 611 * 612 * @filp: Contains private data which is used to obtain 613 * master, channel write ID. 614 * @data: trace data to be written. 615 * @len: # of byte to write. 616 * @ppose: Not used in this function implementation. 617 * 618 * Returns: 619 * int, # of bytes written 620 * otherwise, error value 621 * 622 * Notes: From side discussions with Alan Cox and experimenting 623 * with PTI debug HW like Nokia's Fido box and Lauterbach 624 * devices, 8192 byte write buffer used by USER_COPY_SIZE was 625 * deemed an appropriate size for this type of usage with 626 * debugging HW. 627 */ 628static ssize_t pti_char_write(struct file *filp, const char __user *data, 629 size_t len, loff_t *ppose) 630{ 631 struct pti_masterchannel *mc; 632 void *kbuf; 633 const char __user *tmp; 634 size_t size = USER_COPY_SIZE; 635 size_t n = 0; 636 637 tmp = data; 638 mc = filp->private_data; 639 640 kbuf = kmalloc(size, GFP_KERNEL); 641 if (kbuf == NULL) { 642 pr_err("%s(%d): buf allocation failed\n", 643 __func__, __LINE__); 644 return -ENOMEM; 645 } 646 647 do { 648 if (len - n > USER_COPY_SIZE) 649 size = USER_COPY_SIZE; 650 else 651 size = len - n; 652 653 if (copy_from_user(kbuf, tmp, size)) { 654 kfree(kbuf); 655 return n ? n : -EFAULT; 656 } 657 658 pti_write_to_aperture(mc, kbuf, size); 659 n += size; 660 tmp += size; 661 662 } while (len > n); 663 664 kfree(kbuf); 665 return len; 666} 667 668static const struct tty_operations pti_tty_driver_ops = { 669 .open = pti_tty_driver_open, 670 .close = pti_tty_driver_close, 671 .write = pti_tty_driver_write, 672 .write_room = pti_tty_write_room, 673 .install = pti_tty_install, 674 .cleanup = pti_tty_cleanup 675}; 676 677static const struct file_operations pti_char_driver_ops = { 678 .owner = THIS_MODULE, 679 .write = pti_char_write, 680 .open = pti_char_open, 681 .release = pti_char_release, 682}; 683 684static struct miscdevice pti_char_driver = { 685 .minor = MISC_DYNAMIC_MINOR, 686 .name = CHARNAME, 687 .fops = &pti_char_driver_ops 688}; 689 690/** 691 * pti_console_write()- Write to the console that has been acquired. 692 * 693 * @c: Not used in this implementaiton. 694 * @buf: Data to be written. 695 * @len: Length of buf. 696 */ 697static void pti_console_write(struct console *c, const char *buf, unsigned len) 698{ 699 static struct pti_masterchannel mc = {.master = CONSOLE_ID, 700 .channel = 0}; 701 702 mc.channel = pti_console_channel; 703 pti_console_channel = (pti_console_channel + 1) & 0x7f; 704 705 pti_write_full_frame_to_aperture(&mc, buf, len); 706} 707 708/** 709 * pti_console_device()- Return the driver tty structure and set the 710 * associated index implementation. 711 * 712 * @c: Console device of the driver. 713 * @index: index associated with c. 714 * 715 * Returns: 716 * always value of pti_tty_driver structure when this function 717 * is called. 718 */ 719static struct tty_driver *pti_console_device(struct console *c, int *index) 720{ 721 *index = c->index; 722 return pti_tty_driver; 723} 724 725/** 726 * pti_console_setup()- Initialize console variables used by the driver. 727 * 728 * @c: Not used. 729 * @opts: Not used. 730 * 731 * Returns: 732 * always 0. 733 */ 734static int pti_console_setup(struct console *c, char *opts) 735{ 736 pti_console_channel = 0; 737 pti_control_channel = 0; 738 return 0; 739} 740 741/* 742 * pti_console struct, used to capture OS printk()'s and shift 743 * out to the PTI device for debugging. This cannot be 744 * enabled upon boot because of the possibility of eating 745 * any serial console printk's (race condition discovered). 746 * The console should be enabled upon when the tty port is 747 * used for the first time. Since the primary purpose for 748 * the tty port is to hook up syslog to it, the tty port 749 * will be open for a really long time. 750 */ 751static struct console pti_console = { 752 .name = TTYNAME, 753 .write = pti_console_write, 754 .device = pti_console_device, 755 .setup = pti_console_setup, 756 .flags = CON_PRINTBUFFER, 757 .index = 0, 758}; 759 760/** 761 * pti_port_activate()- Used to start/initialize any items upon 762 * first opening of tty_port(). 763 * 764 * @port- The tty port number of the PTI device. 765 * @tty- The tty struct associated with this device. 766 * 767 * Returns: 768 * always returns 0 769 * 770 * Notes: The primary purpose of the PTI tty port 0 is to hook 771 * the syslog daemon to it; thus this port will be open for a 772 * very long time. 773 */ 774static int pti_port_activate(struct tty_port *port, struct tty_struct *tty) 775{ 776 if (port->tty->index == PTITTY_MINOR_START) 777 console_start(&pti_console); 778 return 0; 779} 780 781/** 782 * pti_port_shutdown()- Used to stop/shutdown any items upon the 783 * last tty port close. 784 * 785 * @port- The tty port number of the PTI device. 786 * 787 * Notes: The primary purpose of the PTI tty port 0 is to hook 788 * the syslog daemon to it; thus this port will be open for a 789 * very long time. 790 */ 791static void pti_port_shutdown(struct tty_port *port) 792{ 793 if (port->tty->index == PTITTY_MINOR_START) 794 console_stop(&pti_console); 795} 796 797static const struct tty_port_operations tty_port_ops = { 798 .activate = pti_port_activate, 799 .shutdown = pti_port_shutdown, 800}; 801 802/* 803 * Note the _probe() call sets everything up and ties the char and tty 804 * to successfully detecting the PTI device on the pci bus. 805 */ 806 807/** 808 * pti_pci_probe()- Used to detect pti on the pci bus and set 809 * things up in the driver. 810 * 811 * @pdev- pci_dev struct values for pti. 812 * @ent- pci_device_id struct for pti driver. 813 * 814 * Returns: 815 * 0 for success 816 * otherwise, error 817 */ 818static int __devinit pti_pci_probe(struct pci_dev *pdev, 819 const struct pci_device_id *ent) 820{ 821 int retval = -EINVAL; 822 int pci_bar = 1; 823 824 dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__, 825 __func__, __LINE__, pdev->vendor, pdev->device); 826 827 retval = misc_register(&pti_char_driver); 828 if (retval) { 829 pr_err("%s(%d): CHAR registration failed of pti driver\n", 830 __func__, __LINE__); 831 pr_err("%s(%d): Error value returned: %d\n", 832 __func__, __LINE__, retval); 833 return retval; 834 } 835 836 retval = pci_enable_device(pdev); 837 if (retval != 0) { 838 dev_err(&pdev->dev, 839 "%s: pci_enable_device() returned error %d\n", 840 __func__, retval); 841 return retval; 842 } 843 844 drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL); 845 846 if (drv_data == NULL) { 847 retval = -ENOMEM; 848 dev_err(&pdev->dev, 849 "%s(%d): kmalloc() returned NULL memory.\n", 850 __func__, __LINE__); 851 return retval; 852 } 853 drv_data->pti_addr = pci_resource_start(pdev, pci_bar); 854 855 retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev)); 856 if (retval != 0) { 857 dev_err(&pdev->dev, 858 "%s(%d): pci_request_region() returned error %d\n", 859 __func__, __LINE__, retval); 860 kfree(drv_data); 861 return retval; 862 } 863 drv_data->aperture_base = drv_data->pti_addr+APERTURE_14; 864 drv_data->pti_ioaddr = 865 ioremap_nocache((u32)drv_data->aperture_base, 866 APERTURE_LEN); 867 if (!drv_data->pti_ioaddr) { 868 pci_release_region(pdev, pci_bar); 869 retval = -ENOMEM; 870 kfree(drv_data); 871 return retval; 872 } 873 874 pci_set_drvdata(pdev, drv_data); 875 876 tty_port_init(&drv_data->port); 877 drv_data->port.ops = &tty_port_ops; 878 879 tty_register_device(pti_tty_driver, 0, &pdev->dev); 880 tty_register_device(pti_tty_driver, 1, &pdev->dev); 881 882 register_console(&pti_console); 883 884 return retval; 885} 886 887static struct pci_driver pti_pci_driver = { 888 .name = PCINAME, 889 .id_table = pci_ids, 890 .probe = pti_pci_probe, 891 .remove = pti_pci_remove, 892}; 893 894/** 895 * 896 * pti_init()- Overall entry/init call to the pti driver. 897 * It starts the registration process with the kernel. 898 * 899 * Returns: 900 * int __init, 0 for success 901 * otherwise value is an error 902 * 903 */ 904static int __init pti_init(void) 905{ 906 int retval = -EINVAL; 907 908 /* First register module as tty device */ 909 910 pti_tty_driver = alloc_tty_driver(PTITTY_MINOR_NUM); 911 if (pti_tty_driver == NULL) { 912 pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n", 913 __func__, __LINE__); 914 return -ENOMEM; 915 } 916 917 pti_tty_driver->driver_name = DRIVERNAME; 918 pti_tty_driver->name = TTYNAME; 919 pti_tty_driver->major = 0; 920 pti_tty_driver->minor_start = PTITTY_MINOR_START; 921 pti_tty_driver->type = TTY_DRIVER_TYPE_SYSTEM; 922 pti_tty_driver->subtype = SYSTEM_TYPE_SYSCONS; 923 pti_tty_driver->flags = TTY_DRIVER_REAL_RAW | 924 TTY_DRIVER_DYNAMIC_DEV; 925 pti_tty_driver->init_termios = tty_std_termios; 926 927 tty_set_operations(pti_tty_driver, &pti_tty_driver_ops); 928 929 retval = tty_register_driver(pti_tty_driver); 930 if (retval) { 931 pr_err("%s(%d): TTY registration failed of pti driver\n", 932 __func__, __LINE__); 933 pr_err("%s(%d): Error value returned: %d\n", 934 __func__, __LINE__, retval); 935 936 pti_tty_driver = NULL; 937 return retval; 938 } 939 940 retval = pci_register_driver(&pti_pci_driver); 941 942 if (retval) { 943 pr_err("%s(%d): PCI registration failed of pti driver\n", 944 __func__, __LINE__); 945 pr_err("%s(%d): Error value returned: %d\n", 946 __func__, __LINE__, retval); 947 948 tty_unregister_driver(pti_tty_driver); 949 pr_err("%s(%d): Unregistering TTY part of pti driver\n", 950 __func__, __LINE__); 951 pti_tty_driver = NULL; 952 return retval; 953 } 954 955 return retval; 956} 957 958/** 959 * pti_exit()- Unregisters this module as a tty and pci driver. 960 */ 961static void __exit pti_exit(void) 962{ 963 int retval; 964 965 tty_unregister_device(pti_tty_driver, 0); 966 tty_unregister_device(pti_tty_driver, 1); 967 968 retval = tty_unregister_driver(pti_tty_driver); 969 if (retval) { 970 pr_err("%s(%d): TTY unregistration failed of pti driver\n", 971 __func__, __LINE__); 972 pr_err("%s(%d): Error value returned: %d\n", 973 __func__, __LINE__, retval); 974 } 975 976 pci_unregister_driver(&pti_pci_driver); 977 978 retval = misc_deregister(&pti_char_driver); 979 if (retval) { 980 pr_err("%s(%d): CHAR unregistration failed of pti driver\n", 981 __func__, __LINE__); 982 pr_err("%s(%d): Error value returned: %d\n", 983 __func__, __LINE__, retval); 984 } 985 986 unregister_console(&pti_console); 987 return; 988} 989 990module_init(pti_init); 991module_exit(pti_exit); 992 993MODULE_LICENSE("GPL"); 994MODULE_AUTHOR("Ken Mills, Jay Freyensee"); 995MODULE_DESCRIPTION("PTI Driver"); 996