at v3.4 371 lines 10 kB view raw
1/* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Derived from include/asm-i386/pgtable.h 5 * Licensed under the GPL 6 */ 7 8#ifndef __UM_PGTABLE_H 9#define __UM_PGTABLE_H 10 11#include <asm/fixmap.h> 12 13#define _PAGE_PRESENT 0x001 14#define _PAGE_NEWPAGE 0x002 15#define _PAGE_NEWPROT 0x004 16#define _PAGE_RW 0x020 17#define _PAGE_USER 0x040 18#define _PAGE_ACCESSED 0x080 19#define _PAGE_DIRTY 0x100 20/* If _PAGE_PRESENT is clear, we use these: */ 21#define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */ 22#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; 23 pte_present gives true */ 24 25#ifdef CONFIG_3_LEVEL_PGTABLES 26#include "asm/pgtable-3level.h" 27#else 28#include "asm/pgtable-2level.h" 29#endif 30 31extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 32 33/* zero page used for uninitialized stuff */ 34extern unsigned long *empty_zero_page; 35 36#define pgtable_cache_init() do ; while (0) 37 38/* Just any arbitrary offset to the start of the vmalloc VM area: the 39 * current 8MB value just means that there will be a 8MB "hole" after the 40 * physical memory until the kernel virtual memory starts. That means that 41 * any out-of-bounds memory accesses will hopefully be caught. 42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 43 * area for the same reason. ;) 44 */ 45 46extern unsigned long end_iomem; 47 48#define VMALLOC_OFFSET (__va_space) 49#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 50#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK) 51#ifdef CONFIG_HIGHMEM 52# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) 53#else 54# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) 55#endif 56#define MODULES_VADDR VMALLOC_START 57#define MODULES_END VMALLOC_END 58#define MODULES_LEN (MODULES_VADDR - MODULES_END) 59 60#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 61#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 62#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 63#define __PAGE_KERNEL_EXEC \ 64 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 65#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 66#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 67#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 68#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 69#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 70#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) 71 72#define io_remap_pfn_range remap_pfn_range 73 74/* 75 * The i386 can't do page protection for execute, and considers that the same 76 * are read. 77 * Also, write permissions imply read permissions. This is the closest we can 78 * get.. 79 */ 80#define __P000 PAGE_NONE 81#define __P001 PAGE_READONLY 82#define __P010 PAGE_COPY 83#define __P011 PAGE_COPY 84#define __P100 PAGE_READONLY 85#define __P101 PAGE_READONLY 86#define __P110 PAGE_COPY 87#define __P111 PAGE_COPY 88 89#define __S000 PAGE_NONE 90#define __S001 PAGE_READONLY 91#define __S010 PAGE_SHARED 92#define __S011 PAGE_SHARED 93#define __S100 PAGE_READONLY 94#define __S101 PAGE_READONLY 95#define __S110 PAGE_SHARED 96#define __S111 PAGE_SHARED 97 98/* 99 * ZERO_PAGE is a global shared page that is always zero: used 100 * for zero-mapped memory areas etc.. 101 */ 102#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 103 104#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE)) 105 106#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE)) 107#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 108 109#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 110#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) 111 112#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) 113#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) 114 115#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE) 116#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE) 117 118#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) 119 120#define pte_page(x) pfn_to_page(pte_pfn(x)) 121 122#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) 123 124/* 125 * ================================= 126 * Flags checking section. 127 * ================================= 128 */ 129 130static inline int pte_none(pte_t pte) 131{ 132 return pte_is_zero(pte); 133} 134 135/* 136 * The following only work if pte_present() is true. 137 * Undefined behaviour if not.. 138 */ 139static inline int pte_read(pte_t pte) 140{ 141 return((pte_get_bits(pte, _PAGE_USER)) && 142 !(pte_get_bits(pte, _PAGE_PROTNONE))); 143} 144 145static inline int pte_exec(pte_t pte){ 146 return((pte_get_bits(pte, _PAGE_USER)) && 147 !(pte_get_bits(pte, _PAGE_PROTNONE))); 148} 149 150static inline int pte_write(pte_t pte) 151{ 152 return((pte_get_bits(pte, _PAGE_RW)) && 153 !(pte_get_bits(pte, _PAGE_PROTNONE))); 154} 155 156/* 157 * The following only works if pte_present() is not true. 158 */ 159static inline int pte_file(pte_t pte) 160{ 161 return pte_get_bits(pte, _PAGE_FILE); 162} 163 164static inline int pte_dirty(pte_t pte) 165{ 166 return pte_get_bits(pte, _PAGE_DIRTY); 167} 168 169static inline int pte_young(pte_t pte) 170{ 171 return pte_get_bits(pte, _PAGE_ACCESSED); 172} 173 174static inline int pte_newpage(pte_t pte) 175{ 176 return pte_get_bits(pte, _PAGE_NEWPAGE); 177} 178 179static inline int pte_newprot(pte_t pte) 180{ 181 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT))); 182} 183 184static inline int pte_special(pte_t pte) 185{ 186 return 0; 187} 188 189/* 190 * ================================= 191 * Flags setting section. 192 * ================================= 193 */ 194 195static inline pte_t pte_mknewprot(pte_t pte) 196{ 197 pte_set_bits(pte, _PAGE_NEWPROT); 198 return(pte); 199} 200 201static inline pte_t pte_mkclean(pte_t pte) 202{ 203 pte_clear_bits(pte, _PAGE_DIRTY); 204 return(pte); 205} 206 207static inline pte_t pte_mkold(pte_t pte) 208{ 209 pte_clear_bits(pte, _PAGE_ACCESSED); 210 return(pte); 211} 212 213static inline pte_t pte_wrprotect(pte_t pte) 214{ 215 pte_clear_bits(pte, _PAGE_RW); 216 return(pte_mknewprot(pte)); 217} 218 219static inline pte_t pte_mkread(pte_t pte) 220{ 221 pte_set_bits(pte, _PAGE_USER); 222 return(pte_mknewprot(pte)); 223} 224 225static inline pte_t pte_mkdirty(pte_t pte) 226{ 227 pte_set_bits(pte, _PAGE_DIRTY); 228 return(pte); 229} 230 231static inline pte_t pte_mkyoung(pte_t pte) 232{ 233 pte_set_bits(pte, _PAGE_ACCESSED); 234 return(pte); 235} 236 237static inline pte_t pte_mkwrite(pte_t pte) 238{ 239 pte_set_bits(pte, _PAGE_RW); 240 return(pte_mknewprot(pte)); 241} 242 243static inline pte_t pte_mkuptodate(pte_t pte) 244{ 245 pte_clear_bits(pte, _PAGE_NEWPAGE); 246 if(pte_present(pte)) 247 pte_clear_bits(pte, _PAGE_NEWPROT); 248 return(pte); 249} 250 251static inline pte_t pte_mknewpage(pte_t pte) 252{ 253 pte_set_bits(pte, _PAGE_NEWPAGE); 254 return(pte); 255} 256 257static inline pte_t pte_mkspecial(pte_t pte) 258{ 259 return(pte); 260} 261 262static inline void set_pte(pte_t *pteptr, pte_t pteval) 263{ 264 pte_copy(*pteptr, pteval); 265 266 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so 267 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to 268 * mapped pages. 269 */ 270 271 *pteptr = pte_mknewpage(*pteptr); 272 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); 273} 274#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 275 276/* 277 * Conversion functions: convert a page and protection to a page entry, 278 * and a page entry and page directory to the page they refer to. 279 */ 280 281#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys)) 282#define __virt_to_page(virt) phys_to_page(__pa(virt)) 283#define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page)) 284#define virt_to_page(addr) __virt_to_page((const unsigned long) addr) 285 286#define mk_pte(page, pgprot) \ 287 ({ pte_t pte; \ 288 \ 289 pte_set_val(pte, page_to_phys(page), (pgprot)); \ 290 if (pte_present(pte)) \ 291 pte_mknewprot(pte_mknewpage(pte)); \ 292 pte;}) 293 294static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 295{ 296 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); 297 return pte; 298} 299 300/* 301 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 302 * 303 * this macro returns the index of the entry in the pgd page which would 304 * control the given virtual address 305 */ 306#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 307 308/* 309 * pgd_offset() returns a (pgd_t *) 310 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 311 */ 312#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 313 314/* 315 * a shortcut which implies the use of the kernel's pgd, instead 316 * of a process's 317 */ 318#define pgd_offset_k(address) pgd_offset(&init_mm, address) 319 320/* 321 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 322 * 323 * this macro returns the index of the entry in the pmd page which would 324 * control the given virtual address 325 */ 326#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 327#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 328 329#define pmd_page_vaddr(pmd) \ 330 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 331 332/* 333 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 334 * 335 * this macro returns the index of the entry in the pte page which would 336 * control the given virtual address 337 */ 338#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 339#define pte_offset_kernel(dir, address) \ 340 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) 341#define pte_offset_map(dir, address) \ 342 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) 343#define pte_unmap(pte) do { } while (0) 344 345struct mm_struct; 346extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); 347 348#define update_mmu_cache(vma,address,ptep) do ; while (0) 349 350/* Encode and de-code a swap entry */ 351#define __swp_type(x) (((x).val >> 4) & 0x3f) 352#define __swp_offset(x) ((x).val >> 11) 353 354#define __swp_entry(type, offset) \ 355 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) }) 356#define __pte_to_swp_entry(pte) \ 357 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) 358#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 359 360#define kern_addr_valid(addr) (1) 361 362#include <asm-generic/pgtable.h> 363 364/* Clear a kernel PTE and flush it from the TLB */ 365#define kpte_clear_flush(ptep, vaddr) \ 366do { \ 367 pte_clear(&init_mm, (vaddr), (ptep)); \ 368 __flush_tlb_one((vaddr)); \ 369} while (0) 370 371#endif