Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/if.h>
29#include <linux/if_ether.h>
30#include <linux/if_packet.h>
31#include <linux/if_link.h>
32
33#ifdef __KERNEL__
34#include <linux/pm_qos.h>
35#include <linux/timer.h>
36#include <linux/bug.h>
37#include <linux/delay.h>
38#include <linux/atomic.h>
39#include <asm/cache.h>
40#include <asm/byteorder.h>
41
42#include <linux/percpu.h>
43#include <linux/rculist.h>
44#include <linux/dmaengine.h>
45#include <linux/workqueue.h>
46#include <linux/dynamic_queue_limits.h>
47
48#include <linux/ethtool.h>
49#include <net/net_namespace.h>
50#include <net/dsa.h>
51#ifdef CONFIG_DCB
52#include <net/dcbnl.h>
53#endif
54#include <net/netprio_cgroup.h>
55
56#include <linux/netdev_features.h>
57
58struct netpoll_info;
59struct device;
60struct phy_device;
61/* 802.11 specific */
62struct wireless_dev;
63 /* source back-compat hooks */
64#define SET_ETHTOOL_OPS(netdev,ops) \
65 ( (netdev)->ethtool_ops = (ops) )
66
67/* hardware address assignment types */
68#define NET_ADDR_PERM 0 /* address is permanent (default) */
69#define NET_ADDR_RANDOM 1 /* address is generated randomly */
70#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
71
72/* Backlog congestion levels */
73#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
74#define NET_RX_DROP 1 /* packet dropped */
75
76/*
77 * Transmit return codes: transmit return codes originate from three different
78 * namespaces:
79 *
80 * - qdisc return codes
81 * - driver transmit return codes
82 * - errno values
83 *
84 * Drivers are allowed to return any one of those in their hard_start_xmit()
85 * function. Real network devices commonly used with qdiscs should only return
86 * the driver transmit return codes though - when qdiscs are used, the actual
87 * transmission happens asynchronously, so the value is not propagated to
88 * higher layers. Virtual network devices transmit synchronously, in this case
89 * the driver transmit return codes are consumed by dev_queue_xmit(), all
90 * others are propagated to higher layers.
91 */
92
93/* qdisc ->enqueue() return codes. */
94#define NET_XMIT_SUCCESS 0x00
95#define NET_XMIT_DROP 0x01 /* skb dropped */
96#define NET_XMIT_CN 0x02 /* congestion notification */
97#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
98#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
99
100/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101 * indicates that the device will soon be dropping packets, or already drops
102 * some packets of the same priority; prompting us to send less aggressively. */
103#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
104#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105
106/* Driver transmit return codes */
107#define NETDEV_TX_MASK 0xf0
108
109enum netdev_tx {
110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
111 NETDEV_TX_OK = 0x00, /* driver took care of packet */
112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
113 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
114};
115typedef enum netdev_tx netdev_tx_t;
116
117/*
118 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
119 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
120 */
121static inline bool dev_xmit_complete(int rc)
122{
123 /*
124 * Positive cases with an skb consumed by a driver:
125 * - successful transmission (rc == NETDEV_TX_OK)
126 * - error while transmitting (rc < 0)
127 * - error while queueing to a different device (rc & NET_XMIT_MASK)
128 */
129 if (likely(rc < NET_XMIT_MASK))
130 return true;
131
132 return false;
133}
134
135#endif
136
137#define MAX_ADDR_LEN 32 /* Largest hardware address length */
138
139/* Initial net device group. All devices belong to group 0 by default. */
140#define INIT_NETDEV_GROUP 0
141
142#ifdef __KERNEL__
143/*
144 * Compute the worst case header length according to the protocols
145 * used.
146 */
147
148#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
149# if defined(CONFIG_MAC80211_MESH)
150# define LL_MAX_HEADER 128
151# else
152# define LL_MAX_HEADER 96
153# endif
154#elif IS_ENABLED(CONFIG_TR)
155# define LL_MAX_HEADER 48
156#else
157# define LL_MAX_HEADER 32
158#endif
159
160#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
161 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
162#define MAX_HEADER LL_MAX_HEADER
163#else
164#define MAX_HEADER (LL_MAX_HEADER + 48)
165#endif
166
167/*
168 * Old network device statistics. Fields are native words
169 * (unsigned long) so they can be read and written atomically.
170 */
171
172struct net_device_stats {
173 unsigned long rx_packets;
174 unsigned long tx_packets;
175 unsigned long rx_bytes;
176 unsigned long tx_bytes;
177 unsigned long rx_errors;
178 unsigned long tx_errors;
179 unsigned long rx_dropped;
180 unsigned long tx_dropped;
181 unsigned long multicast;
182 unsigned long collisions;
183 unsigned long rx_length_errors;
184 unsigned long rx_over_errors;
185 unsigned long rx_crc_errors;
186 unsigned long rx_frame_errors;
187 unsigned long rx_fifo_errors;
188 unsigned long rx_missed_errors;
189 unsigned long tx_aborted_errors;
190 unsigned long tx_carrier_errors;
191 unsigned long tx_fifo_errors;
192 unsigned long tx_heartbeat_errors;
193 unsigned long tx_window_errors;
194 unsigned long rx_compressed;
195 unsigned long tx_compressed;
196};
197
198#endif /* __KERNEL__ */
199
200
201/* Media selection options. */
202enum {
203 IF_PORT_UNKNOWN = 0,
204 IF_PORT_10BASE2,
205 IF_PORT_10BASET,
206 IF_PORT_AUI,
207 IF_PORT_100BASET,
208 IF_PORT_100BASETX,
209 IF_PORT_100BASEFX
210};
211
212#ifdef __KERNEL__
213
214#include <linux/cache.h>
215#include <linux/skbuff.h>
216
217#ifdef CONFIG_RPS
218#include <linux/static_key.h>
219extern struct static_key rps_needed;
220#endif
221
222struct neighbour;
223struct neigh_parms;
224struct sk_buff;
225
226struct netdev_hw_addr {
227 struct list_head list;
228 unsigned char addr[MAX_ADDR_LEN];
229 unsigned char type;
230#define NETDEV_HW_ADDR_T_LAN 1
231#define NETDEV_HW_ADDR_T_SAN 2
232#define NETDEV_HW_ADDR_T_SLAVE 3
233#define NETDEV_HW_ADDR_T_UNICAST 4
234#define NETDEV_HW_ADDR_T_MULTICAST 5
235 bool synced;
236 bool global_use;
237 int refcount;
238 struct rcu_head rcu_head;
239};
240
241struct netdev_hw_addr_list {
242 struct list_head list;
243 int count;
244};
245
246#define netdev_hw_addr_list_count(l) ((l)->count)
247#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
248#define netdev_hw_addr_list_for_each(ha, l) \
249 list_for_each_entry(ha, &(l)->list, list)
250
251#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
252#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
253#define netdev_for_each_uc_addr(ha, dev) \
254 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
255
256#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
257#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
258#define netdev_for_each_mc_addr(ha, dev) \
259 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
260
261struct hh_cache {
262 u16 hh_len;
263 u16 __pad;
264 seqlock_t hh_lock;
265
266 /* cached hardware header; allow for machine alignment needs. */
267#define HH_DATA_MOD 16
268#define HH_DATA_OFF(__len) \
269 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
270#define HH_DATA_ALIGN(__len) \
271 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
272 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
273};
274
275/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
276 * Alternative is:
277 * dev->hard_header_len ? (dev->hard_header_len +
278 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
279 *
280 * We could use other alignment values, but we must maintain the
281 * relationship HH alignment <= LL alignment.
282 */
283#define LL_RESERVED_SPACE(dev) \
284 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
286 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
287
288struct header_ops {
289 int (*create) (struct sk_buff *skb, struct net_device *dev,
290 unsigned short type, const void *daddr,
291 const void *saddr, unsigned len);
292 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
293 int (*rebuild)(struct sk_buff *skb);
294 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
295 void (*cache_update)(struct hh_cache *hh,
296 const struct net_device *dev,
297 const unsigned char *haddr);
298};
299
300/* These flag bits are private to the generic network queueing
301 * layer, they may not be explicitly referenced by any other
302 * code.
303 */
304
305enum netdev_state_t {
306 __LINK_STATE_START,
307 __LINK_STATE_PRESENT,
308 __LINK_STATE_NOCARRIER,
309 __LINK_STATE_LINKWATCH_PENDING,
310 __LINK_STATE_DORMANT,
311};
312
313
314/*
315 * This structure holds at boot time configured netdevice settings. They
316 * are then used in the device probing.
317 */
318struct netdev_boot_setup {
319 char name[IFNAMSIZ];
320 struct ifmap map;
321};
322#define NETDEV_BOOT_SETUP_MAX 8
323
324extern int __init netdev_boot_setup(char *str);
325
326/*
327 * Structure for NAPI scheduling similar to tasklet but with weighting
328 */
329struct napi_struct {
330 /* The poll_list must only be managed by the entity which
331 * changes the state of the NAPI_STATE_SCHED bit. This means
332 * whoever atomically sets that bit can add this napi_struct
333 * to the per-cpu poll_list, and whoever clears that bit
334 * can remove from the list right before clearing the bit.
335 */
336 struct list_head poll_list;
337
338 unsigned long state;
339 int weight;
340 int (*poll)(struct napi_struct *, int);
341#ifdef CONFIG_NETPOLL
342 spinlock_t poll_lock;
343 int poll_owner;
344#endif
345
346 unsigned int gro_count;
347
348 struct net_device *dev;
349 struct list_head dev_list;
350 struct sk_buff *gro_list;
351 struct sk_buff *skb;
352};
353
354enum {
355 NAPI_STATE_SCHED, /* Poll is scheduled */
356 NAPI_STATE_DISABLE, /* Disable pending */
357 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
358};
359
360enum gro_result {
361 GRO_MERGED,
362 GRO_MERGED_FREE,
363 GRO_HELD,
364 GRO_NORMAL,
365 GRO_DROP,
366};
367typedef enum gro_result gro_result_t;
368
369/*
370 * enum rx_handler_result - Possible return values for rx_handlers.
371 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
372 * further.
373 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
374 * case skb->dev was changed by rx_handler.
375 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
376 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
377 *
378 * rx_handlers are functions called from inside __netif_receive_skb(), to do
379 * special processing of the skb, prior to delivery to protocol handlers.
380 *
381 * Currently, a net_device can only have a single rx_handler registered. Trying
382 * to register a second rx_handler will return -EBUSY.
383 *
384 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
385 * To unregister a rx_handler on a net_device, use
386 * netdev_rx_handler_unregister().
387 *
388 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
389 * do with the skb.
390 *
391 * If the rx_handler consumed to skb in some way, it should return
392 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
393 * the skb to be delivered in some other ways.
394 *
395 * If the rx_handler changed skb->dev, to divert the skb to another
396 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
397 * new device will be called if it exists.
398 *
399 * If the rx_handler consider the skb should be ignored, it should return
400 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
401 * are registred on exact device (ptype->dev == skb->dev).
402 *
403 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
404 * delivered, it should return RX_HANDLER_PASS.
405 *
406 * A device without a registered rx_handler will behave as if rx_handler
407 * returned RX_HANDLER_PASS.
408 */
409
410enum rx_handler_result {
411 RX_HANDLER_CONSUMED,
412 RX_HANDLER_ANOTHER,
413 RX_HANDLER_EXACT,
414 RX_HANDLER_PASS,
415};
416typedef enum rx_handler_result rx_handler_result_t;
417typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
418
419extern void __napi_schedule(struct napi_struct *n);
420
421static inline bool napi_disable_pending(struct napi_struct *n)
422{
423 return test_bit(NAPI_STATE_DISABLE, &n->state);
424}
425
426/**
427 * napi_schedule_prep - check if napi can be scheduled
428 * @n: napi context
429 *
430 * Test if NAPI routine is already running, and if not mark
431 * it as running. This is used as a condition variable
432 * insure only one NAPI poll instance runs. We also make
433 * sure there is no pending NAPI disable.
434 */
435static inline bool napi_schedule_prep(struct napi_struct *n)
436{
437 return !napi_disable_pending(n) &&
438 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
439}
440
441/**
442 * napi_schedule - schedule NAPI poll
443 * @n: napi context
444 *
445 * Schedule NAPI poll routine to be called if it is not already
446 * running.
447 */
448static inline void napi_schedule(struct napi_struct *n)
449{
450 if (napi_schedule_prep(n))
451 __napi_schedule(n);
452}
453
454/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
455static inline bool napi_reschedule(struct napi_struct *napi)
456{
457 if (napi_schedule_prep(napi)) {
458 __napi_schedule(napi);
459 return true;
460 }
461 return false;
462}
463
464/**
465 * napi_complete - NAPI processing complete
466 * @n: napi context
467 *
468 * Mark NAPI processing as complete.
469 */
470extern void __napi_complete(struct napi_struct *n);
471extern void napi_complete(struct napi_struct *n);
472
473/**
474 * napi_disable - prevent NAPI from scheduling
475 * @n: napi context
476 *
477 * Stop NAPI from being scheduled on this context.
478 * Waits till any outstanding processing completes.
479 */
480static inline void napi_disable(struct napi_struct *n)
481{
482 set_bit(NAPI_STATE_DISABLE, &n->state);
483 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
484 msleep(1);
485 clear_bit(NAPI_STATE_DISABLE, &n->state);
486}
487
488/**
489 * napi_enable - enable NAPI scheduling
490 * @n: napi context
491 *
492 * Resume NAPI from being scheduled on this context.
493 * Must be paired with napi_disable.
494 */
495static inline void napi_enable(struct napi_struct *n)
496{
497 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
498 smp_mb__before_clear_bit();
499 clear_bit(NAPI_STATE_SCHED, &n->state);
500}
501
502#ifdef CONFIG_SMP
503/**
504 * napi_synchronize - wait until NAPI is not running
505 * @n: napi context
506 *
507 * Wait until NAPI is done being scheduled on this context.
508 * Waits till any outstanding processing completes but
509 * does not disable future activations.
510 */
511static inline void napi_synchronize(const struct napi_struct *n)
512{
513 while (test_bit(NAPI_STATE_SCHED, &n->state))
514 msleep(1);
515}
516#else
517# define napi_synchronize(n) barrier()
518#endif
519
520enum netdev_queue_state_t {
521 __QUEUE_STATE_DRV_XOFF,
522 __QUEUE_STATE_STACK_XOFF,
523 __QUEUE_STATE_FROZEN,
524#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
525 (1 << __QUEUE_STATE_STACK_XOFF))
526#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
527 (1 << __QUEUE_STATE_FROZEN))
528};
529/*
530 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
531 * netif_tx_* functions below are used to manipulate this flag. The
532 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
533 * queue independently. The netif_xmit_*stopped functions below are called
534 * to check if the queue has been stopped by the driver or stack (either
535 * of the XOFF bits are set in the state). Drivers should not need to call
536 * netif_xmit*stopped functions, they should only be using netif_tx_*.
537 */
538
539struct netdev_queue {
540/*
541 * read mostly part
542 */
543 struct net_device *dev;
544 struct Qdisc *qdisc;
545 struct Qdisc *qdisc_sleeping;
546#ifdef CONFIG_SYSFS
547 struct kobject kobj;
548#endif
549#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
550 int numa_node;
551#endif
552/*
553 * write mostly part
554 */
555 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
556 int xmit_lock_owner;
557 /*
558 * please use this field instead of dev->trans_start
559 */
560 unsigned long trans_start;
561
562 /*
563 * Number of TX timeouts for this queue
564 * (/sys/class/net/DEV/Q/trans_timeout)
565 */
566 unsigned long trans_timeout;
567
568 unsigned long state;
569
570#ifdef CONFIG_BQL
571 struct dql dql;
572#endif
573} ____cacheline_aligned_in_smp;
574
575static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
576{
577#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
578 return q->numa_node;
579#else
580 return NUMA_NO_NODE;
581#endif
582}
583
584static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
585{
586#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
587 q->numa_node = node;
588#endif
589}
590
591#ifdef CONFIG_RPS
592/*
593 * This structure holds an RPS map which can be of variable length. The
594 * map is an array of CPUs.
595 */
596struct rps_map {
597 unsigned int len;
598 struct rcu_head rcu;
599 u16 cpus[0];
600};
601#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
602
603/*
604 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
605 * tail pointer for that CPU's input queue at the time of last enqueue, and
606 * a hardware filter index.
607 */
608struct rps_dev_flow {
609 u16 cpu;
610 u16 filter;
611 unsigned int last_qtail;
612};
613#define RPS_NO_FILTER 0xffff
614
615/*
616 * The rps_dev_flow_table structure contains a table of flow mappings.
617 */
618struct rps_dev_flow_table {
619 unsigned int mask;
620 struct rcu_head rcu;
621 struct work_struct free_work;
622 struct rps_dev_flow flows[0];
623};
624#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
625 ((_num) * sizeof(struct rps_dev_flow)))
626
627/*
628 * The rps_sock_flow_table contains mappings of flows to the last CPU
629 * on which they were processed by the application (set in recvmsg).
630 */
631struct rps_sock_flow_table {
632 unsigned int mask;
633 u16 ents[0];
634};
635#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
636 ((_num) * sizeof(u16)))
637
638#define RPS_NO_CPU 0xffff
639
640static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
641 u32 hash)
642{
643 if (table && hash) {
644 unsigned int cpu, index = hash & table->mask;
645
646 /* We only give a hint, preemption can change cpu under us */
647 cpu = raw_smp_processor_id();
648
649 if (table->ents[index] != cpu)
650 table->ents[index] = cpu;
651 }
652}
653
654static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
655 u32 hash)
656{
657 if (table && hash)
658 table->ents[hash & table->mask] = RPS_NO_CPU;
659}
660
661extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
662
663#ifdef CONFIG_RFS_ACCEL
664extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
665 u32 flow_id, u16 filter_id);
666#endif
667
668/* This structure contains an instance of an RX queue. */
669struct netdev_rx_queue {
670 struct rps_map __rcu *rps_map;
671 struct rps_dev_flow_table __rcu *rps_flow_table;
672 struct kobject kobj;
673 struct net_device *dev;
674} ____cacheline_aligned_in_smp;
675#endif /* CONFIG_RPS */
676
677#ifdef CONFIG_XPS
678/*
679 * This structure holds an XPS map which can be of variable length. The
680 * map is an array of queues.
681 */
682struct xps_map {
683 unsigned int len;
684 unsigned int alloc_len;
685 struct rcu_head rcu;
686 u16 queues[0];
687};
688#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
689#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
690 / sizeof(u16))
691
692/*
693 * This structure holds all XPS maps for device. Maps are indexed by CPU.
694 */
695struct xps_dev_maps {
696 struct rcu_head rcu;
697 struct xps_map __rcu *cpu_map[0];
698};
699#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
700 (nr_cpu_ids * sizeof(struct xps_map *)))
701#endif /* CONFIG_XPS */
702
703#define TC_MAX_QUEUE 16
704#define TC_BITMASK 15
705/* HW offloaded queuing disciplines txq count and offset maps */
706struct netdev_tc_txq {
707 u16 count;
708 u16 offset;
709};
710
711#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
712/*
713 * This structure is to hold information about the device
714 * configured to run FCoE protocol stack.
715 */
716struct netdev_fcoe_hbainfo {
717 char manufacturer[64];
718 char serial_number[64];
719 char hardware_version[64];
720 char driver_version[64];
721 char optionrom_version[64];
722 char firmware_version[64];
723 char model[256];
724 char model_description[256];
725};
726#endif
727
728/*
729 * This structure defines the management hooks for network devices.
730 * The following hooks can be defined; unless noted otherwise, they are
731 * optional and can be filled with a null pointer.
732 *
733 * int (*ndo_init)(struct net_device *dev);
734 * This function is called once when network device is registered.
735 * The network device can use this to any late stage initializaton
736 * or semantic validattion. It can fail with an error code which will
737 * be propogated back to register_netdev
738 *
739 * void (*ndo_uninit)(struct net_device *dev);
740 * This function is called when device is unregistered or when registration
741 * fails. It is not called if init fails.
742 *
743 * int (*ndo_open)(struct net_device *dev);
744 * This function is called when network device transistions to the up
745 * state.
746 *
747 * int (*ndo_stop)(struct net_device *dev);
748 * This function is called when network device transistions to the down
749 * state.
750 *
751 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
752 * struct net_device *dev);
753 * Called when a packet needs to be transmitted.
754 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
755 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
756 * Required can not be NULL.
757 *
758 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
759 * Called to decide which queue to when device supports multiple
760 * transmit queues.
761 *
762 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
763 * This function is called to allow device receiver to make
764 * changes to configuration when multicast or promiscious is enabled.
765 *
766 * void (*ndo_set_rx_mode)(struct net_device *dev);
767 * This function is called device changes address list filtering.
768 * If driver handles unicast address filtering, it should set
769 * IFF_UNICAST_FLT to its priv_flags.
770 *
771 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
772 * This function is called when the Media Access Control address
773 * needs to be changed. If this interface is not defined, the
774 * mac address can not be changed.
775 *
776 * int (*ndo_validate_addr)(struct net_device *dev);
777 * Test if Media Access Control address is valid for the device.
778 *
779 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
780 * Called when a user request an ioctl which can't be handled by
781 * the generic interface code. If not defined ioctl's return
782 * not supported error code.
783 *
784 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
785 * Used to set network devices bus interface parameters. This interface
786 * is retained for legacy reason, new devices should use the bus
787 * interface (PCI) for low level management.
788 *
789 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
790 * Called when a user wants to change the Maximum Transfer Unit
791 * of a device. If not defined, any request to change MTU will
792 * will return an error.
793 *
794 * void (*ndo_tx_timeout)(struct net_device *dev);
795 * Callback uses when the transmitter has not made any progress
796 * for dev->watchdog ticks.
797 *
798 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
799 * struct rtnl_link_stats64 *storage);
800 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
801 * Called when a user wants to get the network device usage
802 * statistics. Drivers must do one of the following:
803 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
804 * rtnl_link_stats64 structure passed by the caller.
805 * 2. Define @ndo_get_stats to update a net_device_stats structure
806 * (which should normally be dev->stats) and return a pointer to
807 * it. The structure may be changed asynchronously only if each
808 * field is written atomically.
809 * 3. Update dev->stats asynchronously and atomically, and define
810 * neither operation.
811 *
812 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
813 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
814 * this function is called when a VLAN id is registered.
815 *
816 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
817 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
818 * this function is called when a VLAN id is unregistered.
819 *
820 * void (*ndo_poll_controller)(struct net_device *dev);
821 *
822 * SR-IOV management functions.
823 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
824 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
825 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
826 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
827 * int (*ndo_get_vf_config)(struct net_device *dev,
828 * int vf, struct ifla_vf_info *ivf);
829 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
830 * struct nlattr *port[]);
831 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
832 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
833 * Called to setup 'tc' number of traffic classes in the net device. This
834 * is always called from the stack with the rtnl lock held and netif tx
835 * queues stopped. This allows the netdevice to perform queue management
836 * safely.
837 *
838 * Fiber Channel over Ethernet (FCoE) offload functions.
839 * int (*ndo_fcoe_enable)(struct net_device *dev);
840 * Called when the FCoE protocol stack wants to start using LLD for FCoE
841 * so the underlying device can perform whatever needed configuration or
842 * initialization to support acceleration of FCoE traffic.
843 *
844 * int (*ndo_fcoe_disable)(struct net_device *dev);
845 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
846 * so the underlying device can perform whatever needed clean-ups to
847 * stop supporting acceleration of FCoE traffic.
848 *
849 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
850 * struct scatterlist *sgl, unsigned int sgc);
851 * Called when the FCoE Initiator wants to initialize an I/O that
852 * is a possible candidate for Direct Data Placement (DDP). The LLD can
853 * perform necessary setup and returns 1 to indicate the device is set up
854 * successfully to perform DDP on this I/O, otherwise this returns 0.
855 *
856 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
857 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
858 * indicated by the FC exchange id 'xid', so the underlying device can
859 * clean up and reuse resources for later DDP requests.
860 *
861 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
862 * struct scatterlist *sgl, unsigned int sgc);
863 * Called when the FCoE Target wants to initialize an I/O that
864 * is a possible candidate for Direct Data Placement (DDP). The LLD can
865 * perform necessary setup and returns 1 to indicate the device is set up
866 * successfully to perform DDP on this I/O, otherwise this returns 0.
867 *
868 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
869 * struct netdev_fcoe_hbainfo *hbainfo);
870 * Called when the FCoE Protocol stack wants information on the underlying
871 * device. This information is utilized by the FCoE protocol stack to
872 * register attributes with Fiber Channel management service as per the
873 * FC-GS Fabric Device Management Information(FDMI) specification.
874 *
875 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
876 * Called when the underlying device wants to override default World Wide
877 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
878 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
879 * protocol stack to use.
880 *
881 * RFS acceleration.
882 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
883 * u16 rxq_index, u32 flow_id);
884 * Set hardware filter for RFS. rxq_index is the target queue index;
885 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
886 * Return the filter ID on success, or a negative error code.
887 *
888 * Slave management functions (for bridge, bonding, etc). User should
889 * call netdev_set_master() to set dev->master properly.
890 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
891 * Called to make another netdev an underling.
892 *
893 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
894 * Called to release previously enslaved netdev.
895 *
896 * Feature/offload setting functions.
897 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
898 * netdev_features_t features);
899 * Adjusts the requested feature flags according to device-specific
900 * constraints, and returns the resulting flags. Must not modify
901 * the device state.
902 *
903 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
904 * Called to update device configuration to new features. Passed
905 * feature set might be less than what was returned by ndo_fix_features()).
906 * Must return >0 or -errno if it changed dev->features itself.
907 *
908 */
909struct net_device_ops {
910 int (*ndo_init)(struct net_device *dev);
911 void (*ndo_uninit)(struct net_device *dev);
912 int (*ndo_open)(struct net_device *dev);
913 int (*ndo_stop)(struct net_device *dev);
914 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
915 struct net_device *dev);
916 u16 (*ndo_select_queue)(struct net_device *dev,
917 struct sk_buff *skb);
918 void (*ndo_change_rx_flags)(struct net_device *dev,
919 int flags);
920 void (*ndo_set_rx_mode)(struct net_device *dev);
921 int (*ndo_set_mac_address)(struct net_device *dev,
922 void *addr);
923 int (*ndo_validate_addr)(struct net_device *dev);
924 int (*ndo_do_ioctl)(struct net_device *dev,
925 struct ifreq *ifr, int cmd);
926 int (*ndo_set_config)(struct net_device *dev,
927 struct ifmap *map);
928 int (*ndo_change_mtu)(struct net_device *dev,
929 int new_mtu);
930 int (*ndo_neigh_setup)(struct net_device *dev,
931 struct neigh_parms *);
932 void (*ndo_tx_timeout) (struct net_device *dev);
933
934 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
935 struct rtnl_link_stats64 *storage);
936 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
937
938 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
939 unsigned short vid);
940 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
941 unsigned short vid);
942#ifdef CONFIG_NET_POLL_CONTROLLER
943 void (*ndo_poll_controller)(struct net_device *dev);
944 int (*ndo_netpoll_setup)(struct net_device *dev,
945 struct netpoll_info *info);
946 void (*ndo_netpoll_cleanup)(struct net_device *dev);
947#endif
948 int (*ndo_set_vf_mac)(struct net_device *dev,
949 int queue, u8 *mac);
950 int (*ndo_set_vf_vlan)(struct net_device *dev,
951 int queue, u16 vlan, u8 qos);
952 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
953 int vf, int rate);
954 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
955 int vf, bool setting);
956 int (*ndo_get_vf_config)(struct net_device *dev,
957 int vf,
958 struct ifla_vf_info *ivf);
959 int (*ndo_set_vf_port)(struct net_device *dev,
960 int vf,
961 struct nlattr *port[]);
962 int (*ndo_get_vf_port)(struct net_device *dev,
963 int vf, struct sk_buff *skb);
964 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
965#if IS_ENABLED(CONFIG_FCOE)
966 int (*ndo_fcoe_enable)(struct net_device *dev);
967 int (*ndo_fcoe_disable)(struct net_device *dev);
968 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
969 u16 xid,
970 struct scatterlist *sgl,
971 unsigned int sgc);
972 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
973 u16 xid);
974 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
975 u16 xid,
976 struct scatterlist *sgl,
977 unsigned int sgc);
978 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
979 struct netdev_fcoe_hbainfo *hbainfo);
980#endif
981
982#if IS_ENABLED(CONFIG_LIBFCOE)
983#define NETDEV_FCOE_WWNN 0
984#define NETDEV_FCOE_WWPN 1
985 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
986 u64 *wwn, int type);
987#endif
988
989#ifdef CONFIG_RFS_ACCEL
990 int (*ndo_rx_flow_steer)(struct net_device *dev,
991 const struct sk_buff *skb,
992 u16 rxq_index,
993 u32 flow_id);
994#endif
995 int (*ndo_add_slave)(struct net_device *dev,
996 struct net_device *slave_dev);
997 int (*ndo_del_slave)(struct net_device *dev,
998 struct net_device *slave_dev);
999 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1000 netdev_features_t features);
1001 int (*ndo_set_features)(struct net_device *dev,
1002 netdev_features_t features);
1003 int (*ndo_neigh_construct)(struct neighbour *n);
1004 void (*ndo_neigh_destroy)(struct neighbour *n);
1005};
1006
1007/*
1008 * The DEVICE structure.
1009 * Actually, this whole structure is a big mistake. It mixes I/O
1010 * data with strictly "high-level" data, and it has to know about
1011 * almost every data structure used in the INET module.
1012 *
1013 * FIXME: cleanup struct net_device such that network protocol info
1014 * moves out.
1015 */
1016
1017struct net_device {
1018
1019 /*
1020 * This is the first field of the "visible" part of this structure
1021 * (i.e. as seen by users in the "Space.c" file). It is the name
1022 * of the interface.
1023 */
1024 char name[IFNAMSIZ];
1025
1026 struct pm_qos_request pm_qos_req;
1027
1028 /* device name hash chain */
1029 struct hlist_node name_hlist;
1030 /* snmp alias */
1031 char *ifalias;
1032
1033 /*
1034 * I/O specific fields
1035 * FIXME: Merge these and struct ifmap into one
1036 */
1037 unsigned long mem_end; /* shared mem end */
1038 unsigned long mem_start; /* shared mem start */
1039 unsigned long base_addr; /* device I/O address */
1040 unsigned int irq; /* device IRQ number */
1041
1042 /*
1043 * Some hardware also needs these fields, but they are not
1044 * part of the usual set specified in Space.c.
1045 */
1046
1047 unsigned long state;
1048
1049 struct list_head dev_list;
1050 struct list_head napi_list;
1051 struct list_head unreg_list;
1052
1053 /* currently active device features */
1054 netdev_features_t features;
1055 /* user-changeable features */
1056 netdev_features_t hw_features;
1057 /* user-requested features */
1058 netdev_features_t wanted_features;
1059 /* mask of features inheritable by VLAN devices */
1060 netdev_features_t vlan_features;
1061
1062 /* Interface index. Unique device identifier */
1063 int ifindex;
1064 int iflink;
1065
1066 struct net_device_stats stats;
1067 atomic_long_t rx_dropped; /* dropped packets by core network
1068 * Do not use this in drivers.
1069 */
1070
1071#ifdef CONFIG_WIRELESS_EXT
1072 /* List of functions to handle Wireless Extensions (instead of ioctl).
1073 * See <net/iw_handler.h> for details. Jean II */
1074 const struct iw_handler_def * wireless_handlers;
1075 /* Instance data managed by the core of Wireless Extensions. */
1076 struct iw_public_data * wireless_data;
1077#endif
1078 /* Management operations */
1079 const struct net_device_ops *netdev_ops;
1080 const struct ethtool_ops *ethtool_ops;
1081
1082 /* Hardware header description */
1083 const struct header_ops *header_ops;
1084
1085 unsigned int flags; /* interface flags (a la BSD) */
1086 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1087 * See if.h for definitions. */
1088 unsigned short gflags;
1089 unsigned short padded; /* How much padding added by alloc_netdev() */
1090
1091 unsigned char operstate; /* RFC2863 operstate */
1092 unsigned char link_mode; /* mapping policy to operstate */
1093
1094 unsigned char if_port; /* Selectable AUI, TP,..*/
1095 unsigned char dma; /* DMA channel */
1096
1097 unsigned int mtu; /* interface MTU value */
1098 unsigned short type; /* interface hardware type */
1099 unsigned short hard_header_len; /* hardware hdr length */
1100
1101 /* extra head- and tailroom the hardware may need, but not in all cases
1102 * can this be guaranteed, especially tailroom. Some cases also use
1103 * LL_MAX_HEADER instead to allocate the skb.
1104 */
1105 unsigned short needed_headroom;
1106 unsigned short needed_tailroom;
1107
1108 /* Interface address info. */
1109 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1110 unsigned char addr_assign_type; /* hw address assignment type */
1111 unsigned char addr_len; /* hardware address length */
1112 unsigned char neigh_priv_len;
1113 unsigned short dev_id; /* for shared network cards */
1114
1115 spinlock_t addr_list_lock;
1116 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1117 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1118 bool uc_promisc;
1119 unsigned int promiscuity;
1120 unsigned int allmulti;
1121
1122
1123 /* Protocol specific pointers */
1124
1125#if IS_ENABLED(CONFIG_VLAN_8021Q)
1126 struct vlan_info __rcu *vlan_info; /* VLAN info */
1127#endif
1128#if IS_ENABLED(CONFIG_NET_DSA)
1129 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1130#endif
1131 void *atalk_ptr; /* AppleTalk link */
1132 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1133 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1134 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1135 void *ec_ptr; /* Econet specific data */
1136 void *ax25_ptr; /* AX.25 specific data */
1137 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1138 assign before registering */
1139
1140/*
1141 * Cache lines mostly used on receive path (including eth_type_trans())
1142 */
1143 unsigned long last_rx; /* Time of last Rx
1144 * This should not be set in
1145 * drivers, unless really needed,
1146 * because network stack (bonding)
1147 * use it if/when necessary, to
1148 * avoid dirtying this cache line.
1149 */
1150
1151 struct net_device *master; /* Pointer to master device of a group,
1152 * which this device is member of.
1153 */
1154
1155 /* Interface address info used in eth_type_trans() */
1156 unsigned char *dev_addr; /* hw address, (before bcast
1157 because most packets are
1158 unicast) */
1159
1160 struct netdev_hw_addr_list dev_addrs; /* list of device
1161 hw addresses */
1162
1163 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1164
1165#ifdef CONFIG_SYSFS
1166 struct kset *queues_kset;
1167#endif
1168
1169#ifdef CONFIG_RPS
1170 struct netdev_rx_queue *_rx;
1171
1172 /* Number of RX queues allocated at register_netdev() time */
1173 unsigned int num_rx_queues;
1174
1175 /* Number of RX queues currently active in device */
1176 unsigned int real_num_rx_queues;
1177
1178#ifdef CONFIG_RFS_ACCEL
1179 /* CPU reverse-mapping for RX completion interrupts, indexed
1180 * by RX queue number. Assigned by driver. This must only be
1181 * set if the ndo_rx_flow_steer operation is defined. */
1182 struct cpu_rmap *rx_cpu_rmap;
1183#endif
1184#endif
1185
1186 rx_handler_func_t __rcu *rx_handler;
1187 void __rcu *rx_handler_data;
1188
1189 struct netdev_queue __rcu *ingress_queue;
1190
1191/*
1192 * Cache lines mostly used on transmit path
1193 */
1194 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1195
1196 /* Number of TX queues allocated at alloc_netdev_mq() time */
1197 unsigned int num_tx_queues;
1198
1199 /* Number of TX queues currently active in device */
1200 unsigned int real_num_tx_queues;
1201
1202 /* root qdisc from userspace point of view */
1203 struct Qdisc *qdisc;
1204
1205 unsigned long tx_queue_len; /* Max frames per queue allowed */
1206 spinlock_t tx_global_lock;
1207
1208#ifdef CONFIG_XPS
1209 struct xps_dev_maps __rcu *xps_maps;
1210#endif
1211
1212 /* These may be needed for future network-power-down code. */
1213
1214 /*
1215 * trans_start here is expensive for high speed devices on SMP,
1216 * please use netdev_queue->trans_start instead.
1217 */
1218 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1219
1220 int watchdog_timeo; /* used by dev_watchdog() */
1221 struct timer_list watchdog_timer;
1222
1223 /* Number of references to this device */
1224 int __percpu *pcpu_refcnt;
1225
1226 /* delayed register/unregister */
1227 struct list_head todo_list;
1228 /* device index hash chain */
1229 struct hlist_node index_hlist;
1230
1231 struct list_head link_watch_list;
1232
1233 /* register/unregister state machine */
1234 enum { NETREG_UNINITIALIZED=0,
1235 NETREG_REGISTERED, /* completed register_netdevice */
1236 NETREG_UNREGISTERING, /* called unregister_netdevice */
1237 NETREG_UNREGISTERED, /* completed unregister todo */
1238 NETREG_RELEASED, /* called free_netdev */
1239 NETREG_DUMMY, /* dummy device for NAPI poll */
1240 } reg_state:8;
1241
1242 bool dismantle; /* device is going do be freed */
1243
1244 enum {
1245 RTNL_LINK_INITIALIZED,
1246 RTNL_LINK_INITIALIZING,
1247 } rtnl_link_state:16;
1248
1249 /* Called from unregister, can be used to call free_netdev */
1250 void (*destructor)(struct net_device *dev);
1251
1252#ifdef CONFIG_NETPOLL
1253 struct netpoll_info *npinfo;
1254#endif
1255
1256#ifdef CONFIG_NET_NS
1257 /* Network namespace this network device is inside */
1258 struct net *nd_net;
1259#endif
1260
1261 /* mid-layer private */
1262 union {
1263 void *ml_priv;
1264 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1265 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1266 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1267 };
1268 /* GARP */
1269 struct garp_port __rcu *garp_port;
1270
1271 /* class/net/name entry */
1272 struct device dev;
1273 /* space for optional device, statistics, and wireless sysfs groups */
1274 const struct attribute_group *sysfs_groups[4];
1275
1276 /* rtnetlink link ops */
1277 const struct rtnl_link_ops *rtnl_link_ops;
1278
1279 /* for setting kernel sock attribute on TCP connection setup */
1280#define GSO_MAX_SIZE 65536
1281 unsigned int gso_max_size;
1282
1283#ifdef CONFIG_DCB
1284 /* Data Center Bridging netlink ops */
1285 const struct dcbnl_rtnl_ops *dcbnl_ops;
1286#endif
1287 u8 num_tc;
1288 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1289 u8 prio_tc_map[TC_BITMASK + 1];
1290
1291#if IS_ENABLED(CONFIG_FCOE)
1292 /* max exchange id for FCoE LRO by ddp */
1293 unsigned int fcoe_ddp_xid;
1294#endif
1295#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1296 struct netprio_map __rcu *priomap;
1297#endif
1298 /* phy device may attach itself for hardware timestamping */
1299 struct phy_device *phydev;
1300
1301 /* group the device belongs to */
1302 int group;
1303};
1304#define to_net_dev(d) container_of(d, struct net_device, dev)
1305
1306#define NETDEV_ALIGN 32
1307
1308static inline
1309int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1310{
1311 return dev->prio_tc_map[prio & TC_BITMASK];
1312}
1313
1314static inline
1315int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1316{
1317 if (tc >= dev->num_tc)
1318 return -EINVAL;
1319
1320 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1321 return 0;
1322}
1323
1324static inline
1325void netdev_reset_tc(struct net_device *dev)
1326{
1327 dev->num_tc = 0;
1328 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1329 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1330}
1331
1332static inline
1333int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1334{
1335 if (tc >= dev->num_tc)
1336 return -EINVAL;
1337
1338 dev->tc_to_txq[tc].count = count;
1339 dev->tc_to_txq[tc].offset = offset;
1340 return 0;
1341}
1342
1343static inline
1344int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1345{
1346 if (num_tc > TC_MAX_QUEUE)
1347 return -EINVAL;
1348
1349 dev->num_tc = num_tc;
1350 return 0;
1351}
1352
1353static inline
1354int netdev_get_num_tc(struct net_device *dev)
1355{
1356 return dev->num_tc;
1357}
1358
1359static inline
1360struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1361 unsigned int index)
1362{
1363 return &dev->_tx[index];
1364}
1365
1366static inline void netdev_for_each_tx_queue(struct net_device *dev,
1367 void (*f)(struct net_device *,
1368 struct netdev_queue *,
1369 void *),
1370 void *arg)
1371{
1372 unsigned int i;
1373
1374 for (i = 0; i < dev->num_tx_queues; i++)
1375 f(dev, &dev->_tx[i], arg);
1376}
1377
1378/*
1379 * Net namespace inlines
1380 */
1381static inline
1382struct net *dev_net(const struct net_device *dev)
1383{
1384 return read_pnet(&dev->nd_net);
1385}
1386
1387static inline
1388void dev_net_set(struct net_device *dev, struct net *net)
1389{
1390#ifdef CONFIG_NET_NS
1391 release_net(dev->nd_net);
1392 dev->nd_net = hold_net(net);
1393#endif
1394}
1395
1396static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1397{
1398#ifdef CONFIG_NET_DSA_TAG_DSA
1399 if (dev->dsa_ptr != NULL)
1400 return dsa_uses_dsa_tags(dev->dsa_ptr);
1401#endif
1402
1403 return 0;
1404}
1405
1406static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1407{
1408#ifdef CONFIG_NET_DSA_TAG_TRAILER
1409 if (dev->dsa_ptr != NULL)
1410 return dsa_uses_trailer_tags(dev->dsa_ptr);
1411#endif
1412
1413 return 0;
1414}
1415
1416/**
1417 * netdev_priv - access network device private data
1418 * @dev: network device
1419 *
1420 * Get network device private data
1421 */
1422static inline void *netdev_priv(const struct net_device *dev)
1423{
1424 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1425}
1426
1427/* Set the sysfs physical device reference for the network logical device
1428 * if set prior to registration will cause a symlink during initialization.
1429 */
1430#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1431
1432/* Set the sysfs device type for the network logical device to allow
1433 * fin grained indentification of different network device types. For
1434 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1435 */
1436#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1437
1438/**
1439 * netif_napi_add - initialize a napi context
1440 * @dev: network device
1441 * @napi: napi context
1442 * @poll: polling function
1443 * @weight: default weight
1444 *
1445 * netif_napi_add() must be used to initialize a napi context prior to calling
1446 * *any* of the other napi related functions.
1447 */
1448void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1449 int (*poll)(struct napi_struct *, int), int weight);
1450
1451/**
1452 * netif_napi_del - remove a napi context
1453 * @napi: napi context
1454 *
1455 * netif_napi_del() removes a napi context from the network device napi list
1456 */
1457void netif_napi_del(struct napi_struct *napi);
1458
1459struct napi_gro_cb {
1460 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1461 void *frag0;
1462
1463 /* Length of frag0. */
1464 unsigned int frag0_len;
1465
1466 /* This indicates where we are processing relative to skb->data. */
1467 int data_offset;
1468
1469 /* This is non-zero if the packet may be of the same flow. */
1470 int same_flow;
1471
1472 /* This is non-zero if the packet cannot be merged with the new skb. */
1473 int flush;
1474
1475 /* Number of segments aggregated. */
1476 int count;
1477
1478 /* Free the skb? */
1479 int free;
1480};
1481
1482#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1483
1484struct packet_type {
1485 __be16 type; /* This is really htons(ether_type). */
1486 struct net_device *dev; /* NULL is wildcarded here */
1487 int (*func) (struct sk_buff *,
1488 struct net_device *,
1489 struct packet_type *,
1490 struct net_device *);
1491 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1492 netdev_features_t features);
1493 int (*gso_send_check)(struct sk_buff *skb);
1494 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1495 struct sk_buff *skb);
1496 int (*gro_complete)(struct sk_buff *skb);
1497 void *af_packet_priv;
1498 struct list_head list;
1499};
1500
1501#include <linux/notifier.h>
1502
1503/* netdevice notifier chain. Please remember to update the rtnetlink
1504 * notification exclusion list in rtnetlink_event() when adding new
1505 * types.
1506 */
1507#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1508#define NETDEV_DOWN 0x0002
1509#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1510 detected a hardware crash and restarted
1511 - we can use this eg to kick tcp sessions
1512 once done */
1513#define NETDEV_CHANGE 0x0004 /* Notify device state change */
1514#define NETDEV_REGISTER 0x0005
1515#define NETDEV_UNREGISTER 0x0006
1516#define NETDEV_CHANGEMTU 0x0007
1517#define NETDEV_CHANGEADDR 0x0008
1518#define NETDEV_GOING_DOWN 0x0009
1519#define NETDEV_CHANGENAME 0x000A
1520#define NETDEV_FEAT_CHANGE 0x000B
1521#define NETDEV_BONDING_FAILOVER 0x000C
1522#define NETDEV_PRE_UP 0x000D
1523#define NETDEV_PRE_TYPE_CHANGE 0x000E
1524#define NETDEV_POST_TYPE_CHANGE 0x000F
1525#define NETDEV_POST_INIT 0x0010
1526#define NETDEV_UNREGISTER_BATCH 0x0011
1527#define NETDEV_RELEASE 0x0012
1528#define NETDEV_NOTIFY_PEERS 0x0013
1529#define NETDEV_JOIN 0x0014
1530
1531extern int register_netdevice_notifier(struct notifier_block *nb);
1532extern int unregister_netdevice_notifier(struct notifier_block *nb);
1533extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1534
1535
1536extern rwlock_t dev_base_lock; /* Device list lock */
1537
1538
1539#define for_each_netdev(net, d) \
1540 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1541#define for_each_netdev_reverse(net, d) \
1542 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1543#define for_each_netdev_rcu(net, d) \
1544 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1545#define for_each_netdev_safe(net, d, n) \
1546 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1547#define for_each_netdev_continue(net, d) \
1548 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1549#define for_each_netdev_continue_rcu(net, d) \
1550 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1551#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1552
1553static inline struct net_device *next_net_device(struct net_device *dev)
1554{
1555 struct list_head *lh;
1556 struct net *net;
1557
1558 net = dev_net(dev);
1559 lh = dev->dev_list.next;
1560 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1561}
1562
1563static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1564{
1565 struct list_head *lh;
1566 struct net *net;
1567
1568 net = dev_net(dev);
1569 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1570 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1571}
1572
1573static inline struct net_device *first_net_device(struct net *net)
1574{
1575 return list_empty(&net->dev_base_head) ? NULL :
1576 net_device_entry(net->dev_base_head.next);
1577}
1578
1579static inline struct net_device *first_net_device_rcu(struct net *net)
1580{
1581 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1582
1583 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1584}
1585
1586extern int netdev_boot_setup_check(struct net_device *dev);
1587extern unsigned long netdev_boot_base(const char *prefix, int unit);
1588extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1589 const char *hwaddr);
1590extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1591extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1592extern void dev_add_pack(struct packet_type *pt);
1593extern void dev_remove_pack(struct packet_type *pt);
1594extern void __dev_remove_pack(struct packet_type *pt);
1595
1596extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1597 unsigned short mask);
1598extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1599extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1600extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1601extern int dev_alloc_name(struct net_device *dev, const char *name);
1602extern int dev_open(struct net_device *dev);
1603extern int dev_close(struct net_device *dev);
1604extern void dev_disable_lro(struct net_device *dev);
1605extern int dev_queue_xmit(struct sk_buff *skb);
1606extern int register_netdevice(struct net_device *dev);
1607extern void unregister_netdevice_queue(struct net_device *dev,
1608 struct list_head *head);
1609extern void unregister_netdevice_many(struct list_head *head);
1610static inline void unregister_netdevice(struct net_device *dev)
1611{
1612 unregister_netdevice_queue(dev, NULL);
1613}
1614
1615extern int netdev_refcnt_read(const struct net_device *dev);
1616extern void free_netdev(struct net_device *dev);
1617extern void synchronize_net(void);
1618extern int init_dummy_netdev(struct net_device *dev);
1619extern void netdev_resync_ops(struct net_device *dev);
1620
1621extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1622extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1623extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1624extern int dev_restart(struct net_device *dev);
1625#ifdef CONFIG_NETPOLL_TRAP
1626extern int netpoll_trap(void);
1627#endif
1628extern int skb_gro_receive(struct sk_buff **head,
1629 struct sk_buff *skb);
1630extern void skb_gro_reset_offset(struct sk_buff *skb);
1631
1632static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1633{
1634 return NAPI_GRO_CB(skb)->data_offset;
1635}
1636
1637static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1638{
1639 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1640}
1641
1642static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1643{
1644 NAPI_GRO_CB(skb)->data_offset += len;
1645}
1646
1647static inline void *skb_gro_header_fast(struct sk_buff *skb,
1648 unsigned int offset)
1649{
1650 return NAPI_GRO_CB(skb)->frag0 + offset;
1651}
1652
1653static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1654{
1655 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1656}
1657
1658static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1659 unsigned int offset)
1660{
1661 if (!pskb_may_pull(skb, hlen))
1662 return NULL;
1663
1664 NAPI_GRO_CB(skb)->frag0 = NULL;
1665 NAPI_GRO_CB(skb)->frag0_len = 0;
1666 return skb->data + offset;
1667}
1668
1669static inline void *skb_gro_mac_header(struct sk_buff *skb)
1670{
1671 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1672}
1673
1674static inline void *skb_gro_network_header(struct sk_buff *skb)
1675{
1676 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1677 skb_network_offset(skb);
1678}
1679
1680static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1681 unsigned short type,
1682 const void *daddr, const void *saddr,
1683 unsigned len)
1684{
1685 if (!dev->header_ops || !dev->header_ops->create)
1686 return 0;
1687
1688 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1689}
1690
1691static inline int dev_parse_header(const struct sk_buff *skb,
1692 unsigned char *haddr)
1693{
1694 const struct net_device *dev = skb->dev;
1695
1696 if (!dev->header_ops || !dev->header_ops->parse)
1697 return 0;
1698 return dev->header_ops->parse(skb, haddr);
1699}
1700
1701typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1702extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1703static inline int unregister_gifconf(unsigned int family)
1704{
1705 return register_gifconf(family, NULL);
1706}
1707
1708/*
1709 * Incoming packets are placed on per-cpu queues
1710 */
1711struct softnet_data {
1712 struct Qdisc *output_queue;
1713 struct Qdisc **output_queue_tailp;
1714 struct list_head poll_list;
1715 struct sk_buff *completion_queue;
1716 struct sk_buff_head process_queue;
1717
1718 /* stats */
1719 unsigned int processed;
1720 unsigned int time_squeeze;
1721 unsigned int cpu_collision;
1722 unsigned int received_rps;
1723
1724#ifdef CONFIG_RPS
1725 struct softnet_data *rps_ipi_list;
1726
1727 /* Elements below can be accessed between CPUs for RPS */
1728 struct call_single_data csd ____cacheline_aligned_in_smp;
1729 struct softnet_data *rps_ipi_next;
1730 unsigned int cpu;
1731 unsigned int input_queue_head;
1732 unsigned int input_queue_tail;
1733#endif
1734 unsigned dropped;
1735 struct sk_buff_head input_pkt_queue;
1736 struct napi_struct backlog;
1737};
1738
1739static inline void input_queue_head_incr(struct softnet_data *sd)
1740{
1741#ifdef CONFIG_RPS
1742 sd->input_queue_head++;
1743#endif
1744}
1745
1746static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1747 unsigned int *qtail)
1748{
1749#ifdef CONFIG_RPS
1750 *qtail = ++sd->input_queue_tail;
1751#endif
1752}
1753
1754DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1755
1756extern void __netif_schedule(struct Qdisc *q);
1757
1758static inline void netif_schedule_queue(struct netdev_queue *txq)
1759{
1760 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1761 __netif_schedule(txq->qdisc);
1762}
1763
1764static inline void netif_tx_schedule_all(struct net_device *dev)
1765{
1766 unsigned int i;
1767
1768 for (i = 0; i < dev->num_tx_queues; i++)
1769 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1770}
1771
1772static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1773{
1774 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1775}
1776
1777/**
1778 * netif_start_queue - allow transmit
1779 * @dev: network device
1780 *
1781 * Allow upper layers to call the device hard_start_xmit routine.
1782 */
1783static inline void netif_start_queue(struct net_device *dev)
1784{
1785 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1786}
1787
1788static inline void netif_tx_start_all_queues(struct net_device *dev)
1789{
1790 unsigned int i;
1791
1792 for (i = 0; i < dev->num_tx_queues; i++) {
1793 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1794 netif_tx_start_queue(txq);
1795 }
1796}
1797
1798static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1799{
1800#ifdef CONFIG_NETPOLL_TRAP
1801 if (netpoll_trap()) {
1802 netif_tx_start_queue(dev_queue);
1803 return;
1804 }
1805#endif
1806 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1807 __netif_schedule(dev_queue->qdisc);
1808}
1809
1810/**
1811 * netif_wake_queue - restart transmit
1812 * @dev: network device
1813 *
1814 * Allow upper layers to call the device hard_start_xmit routine.
1815 * Used for flow control when transmit resources are available.
1816 */
1817static inline void netif_wake_queue(struct net_device *dev)
1818{
1819 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1820}
1821
1822static inline void netif_tx_wake_all_queues(struct net_device *dev)
1823{
1824 unsigned int i;
1825
1826 for (i = 0; i < dev->num_tx_queues; i++) {
1827 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1828 netif_tx_wake_queue(txq);
1829 }
1830}
1831
1832static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1833{
1834 if (WARN_ON(!dev_queue)) {
1835 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1836 return;
1837 }
1838 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1839}
1840
1841/**
1842 * netif_stop_queue - stop transmitted packets
1843 * @dev: network device
1844 *
1845 * Stop upper layers calling the device hard_start_xmit routine.
1846 * Used for flow control when transmit resources are unavailable.
1847 */
1848static inline void netif_stop_queue(struct net_device *dev)
1849{
1850 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1851}
1852
1853static inline void netif_tx_stop_all_queues(struct net_device *dev)
1854{
1855 unsigned int i;
1856
1857 for (i = 0; i < dev->num_tx_queues; i++) {
1858 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1859 netif_tx_stop_queue(txq);
1860 }
1861}
1862
1863static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1864{
1865 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1866}
1867
1868/**
1869 * netif_queue_stopped - test if transmit queue is flowblocked
1870 * @dev: network device
1871 *
1872 * Test if transmit queue on device is currently unable to send.
1873 */
1874static inline bool netif_queue_stopped(const struct net_device *dev)
1875{
1876 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1877}
1878
1879static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1880{
1881 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1882}
1883
1884static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1885{
1886 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1887}
1888
1889static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1890 unsigned int bytes)
1891{
1892#ifdef CONFIG_BQL
1893 dql_queued(&dev_queue->dql, bytes);
1894
1895 if (likely(dql_avail(&dev_queue->dql) >= 0))
1896 return;
1897
1898 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1899
1900 /*
1901 * The XOFF flag must be set before checking the dql_avail below,
1902 * because in netdev_tx_completed_queue we update the dql_completed
1903 * before checking the XOFF flag.
1904 */
1905 smp_mb();
1906
1907 /* check again in case another CPU has just made room avail */
1908 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1909 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1910#endif
1911}
1912
1913static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1914{
1915 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1916}
1917
1918static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1919 unsigned pkts, unsigned bytes)
1920{
1921#ifdef CONFIG_BQL
1922 if (unlikely(!bytes))
1923 return;
1924
1925 dql_completed(&dev_queue->dql, bytes);
1926
1927 /*
1928 * Without the memory barrier there is a small possiblity that
1929 * netdev_tx_sent_queue will miss the update and cause the queue to
1930 * be stopped forever
1931 */
1932 smp_mb();
1933
1934 if (dql_avail(&dev_queue->dql) < 0)
1935 return;
1936
1937 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1938 netif_schedule_queue(dev_queue);
1939#endif
1940}
1941
1942static inline void netdev_completed_queue(struct net_device *dev,
1943 unsigned pkts, unsigned bytes)
1944{
1945 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1946}
1947
1948static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1949{
1950#ifdef CONFIG_BQL
1951 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1952 dql_reset(&q->dql);
1953#endif
1954}
1955
1956static inline void netdev_reset_queue(struct net_device *dev_queue)
1957{
1958 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1959}
1960
1961/**
1962 * netif_running - test if up
1963 * @dev: network device
1964 *
1965 * Test if the device has been brought up.
1966 */
1967static inline bool netif_running(const struct net_device *dev)
1968{
1969 return test_bit(__LINK_STATE_START, &dev->state);
1970}
1971
1972/*
1973 * Routines to manage the subqueues on a device. We only need start
1974 * stop, and a check if it's stopped. All other device management is
1975 * done at the overall netdevice level.
1976 * Also test the device if we're multiqueue.
1977 */
1978
1979/**
1980 * netif_start_subqueue - allow sending packets on subqueue
1981 * @dev: network device
1982 * @queue_index: sub queue index
1983 *
1984 * Start individual transmit queue of a device with multiple transmit queues.
1985 */
1986static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1987{
1988 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1989
1990 netif_tx_start_queue(txq);
1991}
1992
1993/**
1994 * netif_stop_subqueue - stop sending packets on subqueue
1995 * @dev: network device
1996 * @queue_index: sub queue index
1997 *
1998 * Stop individual transmit queue of a device with multiple transmit queues.
1999 */
2000static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2001{
2002 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2003#ifdef CONFIG_NETPOLL_TRAP
2004 if (netpoll_trap())
2005 return;
2006#endif
2007 netif_tx_stop_queue(txq);
2008}
2009
2010/**
2011 * netif_subqueue_stopped - test status of subqueue
2012 * @dev: network device
2013 * @queue_index: sub queue index
2014 *
2015 * Check individual transmit queue of a device with multiple transmit queues.
2016 */
2017static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2018 u16 queue_index)
2019{
2020 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2021
2022 return netif_tx_queue_stopped(txq);
2023}
2024
2025static inline bool netif_subqueue_stopped(const struct net_device *dev,
2026 struct sk_buff *skb)
2027{
2028 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2029}
2030
2031/**
2032 * netif_wake_subqueue - allow sending packets on subqueue
2033 * @dev: network device
2034 * @queue_index: sub queue index
2035 *
2036 * Resume individual transmit queue of a device with multiple transmit queues.
2037 */
2038static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2039{
2040 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2041#ifdef CONFIG_NETPOLL_TRAP
2042 if (netpoll_trap())
2043 return;
2044#endif
2045 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2046 __netif_schedule(txq->qdisc);
2047}
2048
2049/*
2050 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2051 * as a distribution range limit for the returned value.
2052 */
2053static inline u16 skb_tx_hash(const struct net_device *dev,
2054 const struct sk_buff *skb)
2055{
2056 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2057}
2058
2059/**
2060 * netif_is_multiqueue - test if device has multiple transmit queues
2061 * @dev: network device
2062 *
2063 * Check if device has multiple transmit queues
2064 */
2065static inline bool netif_is_multiqueue(const struct net_device *dev)
2066{
2067 return dev->num_tx_queues > 1;
2068}
2069
2070extern int netif_set_real_num_tx_queues(struct net_device *dev,
2071 unsigned int txq);
2072
2073#ifdef CONFIG_RPS
2074extern int netif_set_real_num_rx_queues(struct net_device *dev,
2075 unsigned int rxq);
2076#else
2077static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2078 unsigned int rxq)
2079{
2080 return 0;
2081}
2082#endif
2083
2084static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2085 const struct net_device *from_dev)
2086{
2087 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2088#ifdef CONFIG_RPS
2089 return netif_set_real_num_rx_queues(to_dev,
2090 from_dev->real_num_rx_queues);
2091#else
2092 return 0;
2093#endif
2094}
2095
2096/* Use this variant when it is known for sure that it
2097 * is executing from hardware interrupt context or with hardware interrupts
2098 * disabled.
2099 */
2100extern void dev_kfree_skb_irq(struct sk_buff *skb);
2101
2102/* Use this variant in places where it could be invoked
2103 * from either hardware interrupt or other context, with hardware interrupts
2104 * either disabled or enabled.
2105 */
2106extern void dev_kfree_skb_any(struct sk_buff *skb);
2107
2108extern int netif_rx(struct sk_buff *skb);
2109extern int netif_rx_ni(struct sk_buff *skb);
2110extern int netif_receive_skb(struct sk_buff *skb);
2111extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2112 struct sk_buff *skb);
2113extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2114extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2115 struct sk_buff *skb);
2116extern void napi_gro_flush(struct napi_struct *napi);
2117extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2118extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2119 struct sk_buff *skb,
2120 gro_result_t ret);
2121extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2122extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2123
2124static inline void napi_free_frags(struct napi_struct *napi)
2125{
2126 kfree_skb(napi->skb);
2127 napi->skb = NULL;
2128}
2129
2130extern int netdev_rx_handler_register(struct net_device *dev,
2131 rx_handler_func_t *rx_handler,
2132 void *rx_handler_data);
2133extern void netdev_rx_handler_unregister(struct net_device *dev);
2134
2135extern bool dev_valid_name(const char *name);
2136extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2137extern int dev_ethtool(struct net *net, struct ifreq *);
2138extern unsigned dev_get_flags(const struct net_device *);
2139extern int __dev_change_flags(struct net_device *, unsigned int flags);
2140extern int dev_change_flags(struct net_device *, unsigned);
2141extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2142extern int dev_change_name(struct net_device *, const char *);
2143extern int dev_set_alias(struct net_device *, const char *, size_t);
2144extern int dev_change_net_namespace(struct net_device *,
2145 struct net *, const char *);
2146extern int dev_set_mtu(struct net_device *, int);
2147extern void dev_set_group(struct net_device *, int);
2148extern int dev_set_mac_address(struct net_device *,
2149 struct sockaddr *);
2150extern int dev_hard_start_xmit(struct sk_buff *skb,
2151 struct net_device *dev,
2152 struct netdev_queue *txq);
2153extern int dev_forward_skb(struct net_device *dev,
2154 struct sk_buff *skb);
2155
2156extern int netdev_budget;
2157
2158/* Called by rtnetlink.c:rtnl_unlock() */
2159extern void netdev_run_todo(void);
2160
2161/**
2162 * dev_put - release reference to device
2163 * @dev: network device
2164 *
2165 * Release reference to device to allow it to be freed.
2166 */
2167static inline void dev_put(struct net_device *dev)
2168{
2169 this_cpu_dec(*dev->pcpu_refcnt);
2170}
2171
2172/**
2173 * dev_hold - get reference to device
2174 * @dev: network device
2175 *
2176 * Hold reference to device to keep it from being freed.
2177 */
2178static inline void dev_hold(struct net_device *dev)
2179{
2180 this_cpu_inc(*dev->pcpu_refcnt);
2181}
2182
2183/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2184 * and _off may be called from IRQ context, but it is caller
2185 * who is responsible for serialization of these calls.
2186 *
2187 * The name carrier is inappropriate, these functions should really be
2188 * called netif_lowerlayer_*() because they represent the state of any
2189 * kind of lower layer not just hardware media.
2190 */
2191
2192extern void linkwatch_fire_event(struct net_device *dev);
2193extern void linkwatch_forget_dev(struct net_device *dev);
2194
2195/**
2196 * netif_carrier_ok - test if carrier present
2197 * @dev: network device
2198 *
2199 * Check if carrier is present on device
2200 */
2201static inline bool netif_carrier_ok(const struct net_device *dev)
2202{
2203 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2204}
2205
2206extern unsigned long dev_trans_start(struct net_device *dev);
2207
2208extern void __netdev_watchdog_up(struct net_device *dev);
2209
2210extern void netif_carrier_on(struct net_device *dev);
2211
2212extern void netif_carrier_off(struct net_device *dev);
2213
2214extern void netif_notify_peers(struct net_device *dev);
2215
2216/**
2217 * netif_dormant_on - mark device as dormant.
2218 * @dev: network device
2219 *
2220 * Mark device as dormant (as per RFC2863).
2221 *
2222 * The dormant state indicates that the relevant interface is not
2223 * actually in a condition to pass packets (i.e., it is not 'up') but is
2224 * in a "pending" state, waiting for some external event. For "on-
2225 * demand" interfaces, this new state identifies the situation where the
2226 * interface is waiting for events to place it in the up state.
2227 *
2228 */
2229static inline void netif_dormant_on(struct net_device *dev)
2230{
2231 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2232 linkwatch_fire_event(dev);
2233}
2234
2235/**
2236 * netif_dormant_off - set device as not dormant.
2237 * @dev: network device
2238 *
2239 * Device is not in dormant state.
2240 */
2241static inline void netif_dormant_off(struct net_device *dev)
2242{
2243 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2244 linkwatch_fire_event(dev);
2245}
2246
2247/**
2248 * netif_dormant - test if carrier present
2249 * @dev: network device
2250 *
2251 * Check if carrier is present on device
2252 */
2253static inline bool netif_dormant(const struct net_device *dev)
2254{
2255 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2256}
2257
2258
2259/**
2260 * netif_oper_up - test if device is operational
2261 * @dev: network device
2262 *
2263 * Check if carrier is operational
2264 */
2265static inline bool netif_oper_up(const struct net_device *dev)
2266{
2267 return (dev->operstate == IF_OPER_UP ||
2268 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2269}
2270
2271/**
2272 * netif_device_present - is device available or removed
2273 * @dev: network device
2274 *
2275 * Check if device has not been removed from system.
2276 */
2277static inline bool netif_device_present(struct net_device *dev)
2278{
2279 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2280}
2281
2282extern void netif_device_detach(struct net_device *dev);
2283
2284extern void netif_device_attach(struct net_device *dev);
2285
2286/*
2287 * Network interface message level settings
2288 */
2289
2290enum {
2291 NETIF_MSG_DRV = 0x0001,
2292 NETIF_MSG_PROBE = 0x0002,
2293 NETIF_MSG_LINK = 0x0004,
2294 NETIF_MSG_TIMER = 0x0008,
2295 NETIF_MSG_IFDOWN = 0x0010,
2296 NETIF_MSG_IFUP = 0x0020,
2297 NETIF_MSG_RX_ERR = 0x0040,
2298 NETIF_MSG_TX_ERR = 0x0080,
2299 NETIF_MSG_TX_QUEUED = 0x0100,
2300 NETIF_MSG_INTR = 0x0200,
2301 NETIF_MSG_TX_DONE = 0x0400,
2302 NETIF_MSG_RX_STATUS = 0x0800,
2303 NETIF_MSG_PKTDATA = 0x1000,
2304 NETIF_MSG_HW = 0x2000,
2305 NETIF_MSG_WOL = 0x4000,
2306};
2307
2308#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2309#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2310#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2311#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2312#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2313#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2314#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2315#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2316#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2317#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2318#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2319#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2320#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2321#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2322#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2323
2324static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2325{
2326 /* use default */
2327 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2328 return default_msg_enable_bits;
2329 if (debug_value == 0) /* no output */
2330 return 0;
2331 /* set low N bits */
2332 return (1 << debug_value) - 1;
2333}
2334
2335static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2336{
2337 spin_lock(&txq->_xmit_lock);
2338 txq->xmit_lock_owner = cpu;
2339}
2340
2341static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2342{
2343 spin_lock_bh(&txq->_xmit_lock);
2344 txq->xmit_lock_owner = smp_processor_id();
2345}
2346
2347static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2348{
2349 bool ok = spin_trylock(&txq->_xmit_lock);
2350 if (likely(ok))
2351 txq->xmit_lock_owner = smp_processor_id();
2352 return ok;
2353}
2354
2355static inline void __netif_tx_unlock(struct netdev_queue *txq)
2356{
2357 txq->xmit_lock_owner = -1;
2358 spin_unlock(&txq->_xmit_lock);
2359}
2360
2361static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2362{
2363 txq->xmit_lock_owner = -1;
2364 spin_unlock_bh(&txq->_xmit_lock);
2365}
2366
2367static inline void txq_trans_update(struct netdev_queue *txq)
2368{
2369 if (txq->xmit_lock_owner != -1)
2370 txq->trans_start = jiffies;
2371}
2372
2373/**
2374 * netif_tx_lock - grab network device transmit lock
2375 * @dev: network device
2376 *
2377 * Get network device transmit lock
2378 */
2379static inline void netif_tx_lock(struct net_device *dev)
2380{
2381 unsigned int i;
2382 int cpu;
2383
2384 spin_lock(&dev->tx_global_lock);
2385 cpu = smp_processor_id();
2386 for (i = 0; i < dev->num_tx_queues; i++) {
2387 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2388
2389 /* We are the only thread of execution doing a
2390 * freeze, but we have to grab the _xmit_lock in
2391 * order to synchronize with threads which are in
2392 * the ->hard_start_xmit() handler and already
2393 * checked the frozen bit.
2394 */
2395 __netif_tx_lock(txq, cpu);
2396 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2397 __netif_tx_unlock(txq);
2398 }
2399}
2400
2401static inline void netif_tx_lock_bh(struct net_device *dev)
2402{
2403 local_bh_disable();
2404 netif_tx_lock(dev);
2405}
2406
2407static inline void netif_tx_unlock(struct net_device *dev)
2408{
2409 unsigned int i;
2410
2411 for (i = 0; i < dev->num_tx_queues; i++) {
2412 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2413
2414 /* No need to grab the _xmit_lock here. If the
2415 * queue is not stopped for another reason, we
2416 * force a schedule.
2417 */
2418 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2419 netif_schedule_queue(txq);
2420 }
2421 spin_unlock(&dev->tx_global_lock);
2422}
2423
2424static inline void netif_tx_unlock_bh(struct net_device *dev)
2425{
2426 netif_tx_unlock(dev);
2427 local_bh_enable();
2428}
2429
2430#define HARD_TX_LOCK(dev, txq, cpu) { \
2431 if ((dev->features & NETIF_F_LLTX) == 0) { \
2432 __netif_tx_lock(txq, cpu); \
2433 } \
2434}
2435
2436#define HARD_TX_UNLOCK(dev, txq) { \
2437 if ((dev->features & NETIF_F_LLTX) == 0) { \
2438 __netif_tx_unlock(txq); \
2439 } \
2440}
2441
2442static inline void netif_tx_disable(struct net_device *dev)
2443{
2444 unsigned int i;
2445 int cpu;
2446
2447 local_bh_disable();
2448 cpu = smp_processor_id();
2449 for (i = 0; i < dev->num_tx_queues; i++) {
2450 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2451
2452 __netif_tx_lock(txq, cpu);
2453 netif_tx_stop_queue(txq);
2454 __netif_tx_unlock(txq);
2455 }
2456 local_bh_enable();
2457}
2458
2459static inline void netif_addr_lock(struct net_device *dev)
2460{
2461 spin_lock(&dev->addr_list_lock);
2462}
2463
2464static inline void netif_addr_lock_nested(struct net_device *dev)
2465{
2466 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2467}
2468
2469static inline void netif_addr_lock_bh(struct net_device *dev)
2470{
2471 spin_lock_bh(&dev->addr_list_lock);
2472}
2473
2474static inline void netif_addr_unlock(struct net_device *dev)
2475{
2476 spin_unlock(&dev->addr_list_lock);
2477}
2478
2479static inline void netif_addr_unlock_bh(struct net_device *dev)
2480{
2481 spin_unlock_bh(&dev->addr_list_lock);
2482}
2483
2484/*
2485 * dev_addrs walker. Should be used only for read access. Call with
2486 * rcu_read_lock held.
2487 */
2488#define for_each_dev_addr(dev, ha) \
2489 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2490
2491/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2492
2493extern void ether_setup(struct net_device *dev);
2494
2495/* Support for loadable net-drivers */
2496extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2497 void (*setup)(struct net_device *),
2498 unsigned int txqs, unsigned int rxqs);
2499#define alloc_netdev(sizeof_priv, name, setup) \
2500 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2501
2502#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2503 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2504
2505extern int register_netdev(struct net_device *dev);
2506extern void unregister_netdev(struct net_device *dev);
2507
2508/* General hardware address lists handling functions */
2509extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2510 struct netdev_hw_addr_list *from_list,
2511 int addr_len, unsigned char addr_type);
2512extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2513 struct netdev_hw_addr_list *from_list,
2514 int addr_len, unsigned char addr_type);
2515extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2516 struct netdev_hw_addr_list *from_list,
2517 int addr_len);
2518extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2519 struct netdev_hw_addr_list *from_list,
2520 int addr_len);
2521extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2522extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2523
2524/* Functions used for device addresses handling */
2525extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2526 unsigned char addr_type);
2527extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2528 unsigned char addr_type);
2529extern int dev_addr_add_multiple(struct net_device *to_dev,
2530 struct net_device *from_dev,
2531 unsigned char addr_type);
2532extern int dev_addr_del_multiple(struct net_device *to_dev,
2533 struct net_device *from_dev,
2534 unsigned char addr_type);
2535extern void dev_addr_flush(struct net_device *dev);
2536extern int dev_addr_init(struct net_device *dev);
2537
2538/* Functions used for unicast addresses handling */
2539extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2540extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2541extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2542extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2543extern void dev_uc_flush(struct net_device *dev);
2544extern void dev_uc_init(struct net_device *dev);
2545
2546/* Functions used for multicast addresses handling */
2547extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2548extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2549extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2550extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2551extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2552extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2553extern void dev_mc_flush(struct net_device *dev);
2554extern void dev_mc_init(struct net_device *dev);
2555
2556/* Functions used for secondary unicast and multicast support */
2557extern void dev_set_rx_mode(struct net_device *dev);
2558extern void __dev_set_rx_mode(struct net_device *dev);
2559extern int dev_set_promiscuity(struct net_device *dev, int inc);
2560extern int dev_set_allmulti(struct net_device *dev, int inc);
2561extern void netdev_state_change(struct net_device *dev);
2562extern int netdev_bonding_change(struct net_device *dev,
2563 unsigned long event);
2564extern void netdev_features_change(struct net_device *dev);
2565/* Load a device via the kmod */
2566extern void dev_load(struct net *net, const char *name);
2567extern void dev_mcast_init(void);
2568extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2569 struct rtnl_link_stats64 *storage);
2570extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2571 const struct net_device_stats *netdev_stats);
2572
2573extern int netdev_max_backlog;
2574extern int netdev_tstamp_prequeue;
2575extern int weight_p;
2576extern int bpf_jit_enable;
2577extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2578extern int netdev_set_bond_master(struct net_device *dev,
2579 struct net_device *master);
2580extern int skb_checksum_help(struct sk_buff *skb);
2581extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2582 netdev_features_t features);
2583#ifdef CONFIG_BUG
2584extern void netdev_rx_csum_fault(struct net_device *dev);
2585#else
2586static inline void netdev_rx_csum_fault(struct net_device *dev)
2587{
2588}
2589#endif
2590/* rx skb timestamps */
2591extern void net_enable_timestamp(void);
2592extern void net_disable_timestamp(void);
2593
2594#ifdef CONFIG_PROC_FS
2595extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2596extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2597extern void dev_seq_stop(struct seq_file *seq, void *v);
2598#endif
2599
2600extern int netdev_class_create_file(struct class_attribute *class_attr);
2601extern void netdev_class_remove_file(struct class_attribute *class_attr);
2602
2603extern struct kobj_ns_type_operations net_ns_type_operations;
2604
2605extern const char *netdev_drivername(const struct net_device *dev);
2606
2607extern void linkwatch_run_queue(void);
2608
2609static inline netdev_features_t netdev_get_wanted_features(
2610 struct net_device *dev)
2611{
2612 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2613}
2614netdev_features_t netdev_increment_features(netdev_features_t all,
2615 netdev_features_t one, netdev_features_t mask);
2616int __netdev_update_features(struct net_device *dev);
2617void netdev_update_features(struct net_device *dev);
2618void netdev_change_features(struct net_device *dev);
2619
2620void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2621 struct net_device *dev);
2622
2623netdev_features_t netif_skb_features(struct sk_buff *skb);
2624
2625static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2626{
2627 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2628
2629 /* check flags correspondence */
2630 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2631 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2632 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2633 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2634 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2635 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2636
2637 return (features & feature) == feature;
2638}
2639
2640static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2641{
2642 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2643 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2644}
2645
2646static inline bool netif_needs_gso(struct sk_buff *skb,
2647 netdev_features_t features)
2648{
2649 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2650 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2651 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2652}
2653
2654static inline void netif_set_gso_max_size(struct net_device *dev,
2655 unsigned int size)
2656{
2657 dev->gso_max_size = size;
2658}
2659
2660static inline bool netif_is_bond_slave(struct net_device *dev)
2661{
2662 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2663}
2664
2665static inline bool netif_supports_nofcs(struct net_device *dev)
2666{
2667 return dev->priv_flags & IFF_SUPP_NOFCS;
2668}
2669
2670extern struct pernet_operations __net_initdata loopback_net_ops;
2671
2672/* Logging, debugging and troubleshooting/diagnostic helpers. */
2673
2674/* netdev_printk helpers, similar to dev_printk */
2675
2676static inline const char *netdev_name(const struct net_device *dev)
2677{
2678 if (dev->reg_state != NETREG_REGISTERED)
2679 return "(unregistered net_device)";
2680 return dev->name;
2681}
2682
2683extern int __netdev_printk(const char *level, const struct net_device *dev,
2684 struct va_format *vaf);
2685
2686extern __printf(3, 4)
2687int netdev_printk(const char *level, const struct net_device *dev,
2688 const char *format, ...);
2689extern __printf(2, 3)
2690int netdev_emerg(const struct net_device *dev, const char *format, ...);
2691extern __printf(2, 3)
2692int netdev_alert(const struct net_device *dev, const char *format, ...);
2693extern __printf(2, 3)
2694int netdev_crit(const struct net_device *dev, const char *format, ...);
2695extern __printf(2, 3)
2696int netdev_err(const struct net_device *dev, const char *format, ...);
2697extern __printf(2, 3)
2698int netdev_warn(const struct net_device *dev, const char *format, ...);
2699extern __printf(2, 3)
2700int netdev_notice(const struct net_device *dev, const char *format, ...);
2701extern __printf(2, 3)
2702int netdev_info(const struct net_device *dev, const char *format, ...);
2703
2704#define MODULE_ALIAS_NETDEV(device) \
2705 MODULE_ALIAS("netdev-" device)
2706
2707#if defined(CONFIG_DYNAMIC_DEBUG)
2708#define netdev_dbg(__dev, format, args...) \
2709do { \
2710 dynamic_netdev_dbg(__dev, format, ##args); \
2711} while (0)
2712#elif defined(DEBUG)
2713#define netdev_dbg(__dev, format, args...) \
2714 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2715#else
2716#define netdev_dbg(__dev, format, args...) \
2717({ \
2718 if (0) \
2719 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2720 0; \
2721})
2722#endif
2723
2724#if defined(VERBOSE_DEBUG)
2725#define netdev_vdbg netdev_dbg
2726#else
2727
2728#define netdev_vdbg(dev, format, args...) \
2729({ \
2730 if (0) \
2731 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2732 0; \
2733})
2734#endif
2735
2736/*
2737 * netdev_WARN() acts like dev_printk(), but with the key difference
2738 * of using a WARN/WARN_ON to get the message out, including the
2739 * file/line information and a backtrace.
2740 */
2741#define netdev_WARN(dev, format, args...) \
2742 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2743
2744/* netif printk helpers, similar to netdev_printk */
2745
2746#define netif_printk(priv, type, level, dev, fmt, args...) \
2747do { \
2748 if (netif_msg_##type(priv)) \
2749 netdev_printk(level, (dev), fmt, ##args); \
2750} while (0)
2751
2752#define netif_level(level, priv, type, dev, fmt, args...) \
2753do { \
2754 if (netif_msg_##type(priv)) \
2755 netdev_##level(dev, fmt, ##args); \
2756} while (0)
2757
2758#define netif_emerg(priv, type, dev, fmt, args...) \
2759 netif_level(emerg, priv, type, dev, fmt, ##args)
2760#define netif_alert(priv, type, dev, fmt, args...) \
2761 netif_level(alert, priv, type, dev, fmt, ##args)
2762#define netif_crit(priv, type, dev, fmt, args...) \
2763 netif_level(crit, priv, type, dev, fmt, ##args)
2764#define netif_err(priv, type, dev, fmt, args...) \
2765 netif_level(err, priv, type, dev, fmt, ##args)
2766#define netif_warn(priv, type, dev, fmt, args...) \
2767 netif_level(warn, priv, type, dev, fmt, ##args)
2768#define netif_notice(priv, type, dev, fmt, args...) \
2769 netif_level(notice, priv, type, dev, fmt, ##args)
2770#define netif_info(priv, type, dev, fmt, args...) \
2771 netif_level(info, priv, type, dev, fmt, ##args)
2772
2773#if defined(DEBUG)
2774#define netif_dbg(priv, type, dev, format, args...) \
2775 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2776#elif defined(CONFIG_DYNAMIC_DEBUG)
2777#define netif_dbg(priv, type, netdev, format, args...) \
2778do { \
2779 if (netif_msg_##type(priv)) \
2780 dynamic_netdev_dbg(netdev, format, ##args); \
2781} while (0)
2782#else
2783#define netif_dbg(priv, type, dev, format, args...) \
2784({ \
2785 if (0) \
2786 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2787 0; \
2788})
2789#endif
2790
2791#if defined(VERBOSE_DEBUG)
2792#define netif_vdbg netif_dbg
2793#else
2794#define netif_vdbg(priv, type, dev, format, args...) \
2795({ \
2796 if (0) \
2797 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2798 0; \
2799})
2800#endif
2801
2802#endif /* __KERNEL__ */
2803
2804#endif /* _LINUX_NETDEVICE_H */