Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/proc_fs.h>
101#include <linux/seq_file.h>
102#include <linux/stat.h>
103#include <net/dst.h>
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
106#include <net/xfrm.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/wext.h>
115#include <net/iw_handler.h>
116#include <asm/current.h>
117#include <linux/audit.h>
118#include <linux/dmaengine.h>
119#include <linux/err.h>
120#include <linux/ctype.h>
121#include <linux/if_arp.h>
122#include <linux/if_vlan.h>
123#include <linux/ip.h>
124#include <net/ip.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127#include <linux/jhash.h>
128#include <linux/random.h>
129#include <trace/events/napi.h>
130#include <trace/events/net.h>
131#include <trace/events/skb.h>
132#include <linux/pci.h>
133#include <linux/inetdevice.h>
134#include <linux/cpu_rmap.h>
135#include <linux/net_tstamp.h>
136#include <linux/static_key.h>
137#include <net/flow_keys.h>
138
139#include "net-sysfs.h"
140
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147/*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175#define PTYPE_HASH_SIZE (16)
176#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178static DEFINE_SPINLOCK(ptype_lock);
179static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180static struct list_head ptype_all __read_mostly; /* Taps */
181
182/*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201DEFINE_RWLOCK(dev_base_lock);
202EXPORT_SYMBOL(dev_base_lock);
203
204static inline void dev_base_seq_inc(struct net *net)
205{
206 while (++net->dev_base_seq == 0);
207}
208
209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210{
211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock(struct softnet_data *sd)
221{
222#ifdef CONFIG_RPS
223 spin_lock(&sd->input_pkt_queue.lock);
224#endif
225}
226
227static inline void rps_unlock(struct softnet_data *sd)
228{
229#ifdef CONFIG_RPS
230 spin_unlock(&sd->input_pkt_queue.lock);
231#endif
232}
233
234/* Device list insertion */
235static int list_netdevice(struct net_device *dev)
236{
237 struct net *net = dev_net(dev);
238
239 ASSERT_RTNL();
240
241 write_lock_bh(&dev_base_lock);
242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 hlist_add_head_rcu(&dev->index_hlist,
245 dev_index_hash(net, dev->ifindex));
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(net);
249
250 return 0;
251}
252
253/* Device list removal
254 * caller must respect a RCU grace period before freeing/reusing dev
255 */
256static void unlist_netdevice(struct net_device *dev)
257{
258 ASSERT_RTNL();
259
260 /* Unlink dev from the device chain */
261 write_lock_bh(&dev_base_lock);
262 list_del_rcu(&dev->dev_list);
263 hlist_del_rcu(&dev->name_hlist);
264 hlist_del_rcu(&dev->index_hlist);
265 write_unlock_bh(&dev_base_lock);
266
267 dev_base_seq_inc(dev_net(dev));
268}
269
270/*
271 * Our notifier list
272 */
273
274static RAW_NOTIFIER_HEAD(netdev_chain);
275
276/*
277 * Device drivers call our routines to queue packets here. We empty the
278 * queue in the local softnet handler.
279 */
280
281DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282EXPORT_PER_CPU_SYMBOL(softnet_data);
283
284#ifdef CONFIG_LOCKDEP
285/*
286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287 * according to dev->type
288 */
289static const unsigned short netdev_lock_type[] =
290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 ARPHRD_VOID, ARPHRD_NONE};
306
307static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 "_xmit_VOID", "_xmit_NONE"};
324
325static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327
328static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329{
330 int i;
331
332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 if (netdev_lock_type[i] == dev_type)
334 return i;
335 /* the last key is used by default */
336 return ARRAY_SIZE(netdev_lock_type) - 1;
337}
338
339static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 unsigned short dev_type)
341{
342 int i;
343
344 i = netdev_lock_pos(dev_type);
345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 netdev_lock_name[i]);
347}
348
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350{
351 int i;
352
353 i = netdev_lock_pos(dev->type);
354 lockdep_set_class_and_name(&dev->addr_list_lock,
355 &netdev_addr_lock_key[i],
356 netdev_lock_name[i]);
357}
358#else
359static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 unsigned short dev_type)
361{
362}
363static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364{
365}
366#endif
367
368/*******************************************************************************
369
370 Protocol management and registration routines
371
372*******************************************************************************/
373
374/*
375 * Add a protocol ID to the list. Now that the input handler is
376 * smarter we can dispense with all the messy stuff that used to be
377 * here.
378 *
379 * BEWARE!!! Protocol handlers, mangling input packets,
380 * MUST BE last in hash buckets and checking protocol handlers
381 * MUST start from promiscuous ptype_all chain in net_bh.
382 * It is true now, do not change it.
383 * Explanation follows: if protocol handler, mangling packet, will
384 * be the first on list, it is not able to sense, that packet
385 * is cloned and should be copied-on-write, so that it will
386 * change it and subsequent readers will get broken packet.
387 * --ANK (980803)
388 */
389
390static inline struct list_head *ptype_head(const struct packet_type *pt)
391{
392 if (pt->type == htons(ETH_P_ALL))
393 return &ptype_all;
394 else
395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396}
397
398/**
399 * dev_add_pack - add packet handler
400 * @pt: packet type declaration
401 *
402 * Add a protocol handler to the networking stack. The passed &packet_type
403 * is linked into kernel lists and may not be freed until it has been
404 * removed from the kernel lists.
405 *
406 * This call does not sleep therefore it can not
407 * guarantee all CPU's that are in middle of receiving packets
408 * will see the new packet type (until the next received packet).
409 */
410
411void dev_add_pack(struct packet_type *pt)
412{
413 struct list_head *head = ptype_head(pt);
414
415 spin_lock(&ptype_lock);
416 list_add_rcu(&pt->list, head);
417 spin_unlock(&ptype_lock);
418}
419EXPORT_SYMBOL(dev_add_pack);
420
421/**
422 * __dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
424 *
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
429 *
430 * The packet type might still be in use by receivers
431 * and must not be freed until after all the CPU's have gone
432 * through a quiescent state.
433 */
434void __dev_remove_pack(struct packet_type *pt)
435{
436 struct list_head *head = ptype_head(pt);
437 struct packet_type *pt1;
438
439 spin_lock(&ptype_lock);
440
441 list_for_each_entry(pt1, head, list) {
442 if (pt == pt1) {
443 list_del_rcu(&pt->list);
444 goto out;
445 }
446 }
447
448 pr_warn("dev_remove_pack: %p not found\n", pt);
449out:
450 spin_unlock(&ptype_lock);
451}
452EXPORT_SYMBOL(__dev_remove_pack);
453
454/**
455 * dev_remove_pack - remove packet handler
456 * @pt: packet type declaration
457 *
458 * Remove a protocol handler that was previously added to the kernel
459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
460 * from the kernel lists and can be freed or reused once this function
461 * returns.
462 *
463 * This call sleeps to guarantee that no CPU is looking at the packet
464 * type after return.
465 */
466void dev_remove_pack(struct packet_type *pt)
467{
468 __dev_remove_pack(pt);
469
470 synchronize_net();
471}
472EXPORT_SYMBOL(dev_remove_pack);
473
474/******************************************************************************
475
476 Device Boot-time Settings Routines
477
478*******************************************************************************/
479
480/* Boot time configuration table */
481static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482
483/**
484 * netdev_boot_setup_add - add new setup entry
485 * @name: name of the device
486 * @map: configured settings for the device
487 *
488 * Adds new setup entry to the dev_boot_setup list. The function
489 * returns 0 on error and 1 on success. This is a generic routine to
490 * all netdevices.
491 */
492static int netdev_boot_setup_add(char *name, struct ifmap *map)
493{
494 struct netdev_boot_setup *s;
495 int i;
496
497 s = dev_boot_setup;
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 memset(s[i].name, 0, sizeof(s[i].name));
501 strlcpy(s[i].name, name, IFNAMSIZ);
502 memcpy(&s[i].map, map, sizeof(s[i].map));
503 break;
504 }
505 }
506
507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508}
509
510/**
511 * netdev_boot_setup_check - check boot time settings
512 * @dev: the netdevice
513 *
514 * Check boot time settings for the device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found, 1 if they are.
518 */
519int netdev_boot_setup_check(struct net_device *dev)
520{
521 struct netdev_boot_setup *s = dev_boot_setup;
522 int i;
523
524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 !strcmp(dev->name, s[i].name)) {
527 dev->irq = s[i].map.irq;
528 dev->base_addr = s[i].map.base_addr;
529 dev->mem_start = s[i].map.mem_start;
530 dev->mem_end = s[i].map.mem_end;
531 return 1;
532 }
533 }
534 return 0;
535}
536EXPORT_SYMBOL(netdev_boot_setup_check);
537
538
539/**
540 * netdev_boot_base - get address from boot time settings
541 * @prefix: prefix for network device
542 * @unit: id for network device
543 *
544 * Check boot time settings for the base address of device.
545 * The found settings are set for the device to be used
546 * later in the device probing.
547 * Returns 0 if no settings found.
548 */
549unsigned long netdev_boot_base(const char *prefix, int unit)
550{
551 const struct netdev_boot_setup *s = dev_boot_setup;
552 char name[IFNAMSIZ];
553 int i;
554
555 sprintf(name, "%s%d", prefix, unit);
556
557 /*
558 * If device already registered then return base of 1
559 * to indicate not to probe for this interface
560 */
561 if (__dev_get_by_name(&init_net, name))
562 return 1;
563
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 if (!strcmp(name, s[i].name))
566 return s[i].map.base_addr;
567 return 0;
568}
569
570/*
571 * Saves at boot time configured settings for any netdevice.
572 */
573int __init netdev_boot_setup(char *str)
574{
575 int ints[5];
576 struct ifmap map;
577
578 str = get_options(str, ARRAY_SIZE(ints), ints);
579 if (!str || !*str)
580 return 0;
581
582 /* Save settings */
583 memset(&map, 0, sizeof(map));
584 if (ints[0] > 0)
585 map.irq = ints[1];
586 if (ints[0] > 1)
587 map.base_addr = ints[2];
588 if (ints[0] > 2)
589 map.mem_start = ints[3];
590 if (ints[0] > 3)
591 map.mem_end = ints[4];
592
593 /* Add new entry to the list */
594 return netdev_boot_setup_add(str, &map);
595}
596
597__setup("netdev=", netdev_boot_setup);
598
599/*******************************************************************************
600
601 Device Interface Subroutines
602
603*******************************************************************************/
604
605/**
606 * __dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
609 *
610 * Find an interface by name. Must be called under RTNL semaphore
611 * or @dev_base_lock. If the name is found a pointer to the device
612 * is returned. If the name is not found then %NULL is returned. The
613 * reference counters are not incremented so the caller must be
614 * careful with locks.
615 */
616
617struct net_device *__dev_get_by_name(struct net *net, const char *name)
618{
619 struct hlist_node *p;
620 struct net_device *dev;
621 struct hlist_head *head = dev_name_hash(net, name);
622
623 hlist_for_each_entry(dev, p, head, name_hlist)
624 if (!strncmp(dev->name, name, IFNAMSIZ))
625 return dev;
626
627 return NULL;
628}
629EXPORT_SYMBOL(__dev_get_by_name);
630
631/**
632 * dev_get_by_name_rcu - find a device by its name
633 * @net: the applicable net namespace
634 * @name: name to find
635 *
636 * Find an interface by name.
637 * If the name is found a pointer to the device is returned.
638 * If the name is not found then %NULL is returned.
639 * The reference counters are not incremented so the caller must be
640 * careful with locks. The caller must hold RCU lock.
641 */
642
643struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644{
645 struct hlist_node *p;
646 struct net_device *dev;
647 struct hlist_head *head = dev_name_hash(net, name);
648
649 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 if (!strncmp(dev->name, name, IFNAMSIZ))
651 return dev;
652
653 return NULL;
654}
655EXPORT_SYMBOL(dev_get_by_name_rcu);
656
657/**
658 * dev_get_by_name - find a device by its name
659 * @net: the applicable net namespace
660 * @name: name to find
661 *
662 * Find an interface by name. This can be called from any
663 * context and does its own locking. The returned handle has
664 * the usage count incremented and the caller must use dev_put() to
665 * release it when it is no longer needed. %NULL is returned if no
666 * matching device is found.
667 */
668
669struct net_device *dev_get_by_name(struct net *net, const char *name)
670{
671 struct net_device *dev;
672
673 rcu_read_lock();
674 dev = dev_get_by_name_rcu(net, name);
675 if (dev)
676 dev_hold(dev);
677 rcu_read_unlock();
678 return dev;
679}
680EXPORT_SYMBOL(dev_get_by_name);
681
682/**
683 * __dev_get_by_index - find a device by its ifindex
684 * @net: the applicable net namespace
685 * @ifindex: index of device
686 *
687 * Search for an interface by index. Returns %NULL if the device
688 * is not found or a pointer to the device. The device has not
689 * had its reference counter increased so the caller must be careful
690 * about locking. The caller must hold either the RTNL semaphore
691 * or @dev_base_lock.
692 */
693
694struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695{
696 struct hlist_node *p;
697 struct net_device *dev;
698 struct hlist_head *head = dev_index_hash(net, ifindex);
699
700 hlist_for_each_entry(dev, p, head, index_hlist)
701 if (dev->ifindex == ifindex)
702 return dev;
703
704 return NULL;
705}
706EXPORT_SYMBOL(__dev_get_by_index);
707
708/**
709 * dev_get_by_index_rcu - find a device by its ifindex
710 * @net: the applicable net namespace
711 * @ifindex: index of device
712 *
713 * Search for an interface by index. Returns %NULL if the device
714 * is not found or a pointer to the device. The device has not
715 * had its reference counter increased so the caller must be careful
716 * about locking. The caller must hold RCU lock.
717 */
718
719struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720{
721 struct hlist_node *p;
722 struct net_device *dev;
723 struct hlist_head *head = dev_index_hash(net, ifindex);
724
725 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 if (dev->ifindex == ifindex)
727 return dev;
728
729 return NULL;
730}
731EXPORT_SYMBOL(dev_get_by_index_rcu);
732
733
734/**
735 * dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns NULL if the device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
743 */
744
745struct net_device *dev_get_by_index(struct net *net, int ifindex)
746{
747 struct net_device *dev;
748
749 rcu_read_lock();
750 dev = dev_get_by_index_rcu(net, ifindex);
751 if (dev)
752 dev_hold(dev);
753 rcu_read_unlock();
754 return dev;
755}
756EXPORT_SYMBOL(dev_get_by_index);
757
758/**
759 * dev_getbyhwaddr_rcu - find a device by its hardware address
760 * @net: the applicable net namespace
761 * @type: media type of device
762 * @ha: hardware address
763 *
764 * Search for an interface by MAC address. Returns NULL if the device
765 * is not found or a pointer to the device.
766 * The caller must hold RCU or RTNL.
767 * The returned device has not had its ref count increased
768 * and the caller must therefore be careful about locking
769 *
770 */
771
772struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 const char *ha)
774{
775 struct net_device *dev;
776
777 for_each_netdev_rcu(net, dev)
778 if (dev->type == type &&
779 !memcmp(dev->dev_addr, ha, dev->addr_len))
780 return dev;
781
782 return NULL;
783}
784EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785
786struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787{
788 struct net_device *dev;
789
790 ASSERT_RTNL();
791 for_each_netdev(net, dev)
792 if (dev->type == type)
793 return dev;
794
795 return NULL;
796}
797EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798
799struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800{
801 struct net_device *dev, *ret = NULL;
802
803 rcu_read_lock();
804 for_each_netdev_rcu(net, dev)
805 if (dev->type == type) {
806 dev_hold(dev);
807 ret = dev;
808 break;
809 }
810 rcu_read_unlock();
811 return ret;
812}
813EXPORT_SYMBOL(dev_getfirstbyhwtype);
814
815/**
816 * dev_get_by_flags_rcu - find any device with given flags
817 * @net: the applicable net namespace
818 * @if_flags: IFF_* values
819 * @mask: bitmask of bits in if_flags to check
820 *
821 * Search for any interface with the given flags. Returns NULL if a device
822 * is not found or a pointer to the device. Must be called inside
823 * rcu_read_lock(), and result refcount is unchanged.
824 */
825
826struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 unsigned short mask)
828{
829 struct net_device *dev, *ret;
830
831 ret = NULL;
832 for_each_netdev_rcu(net, dev) {
833 if (((dev->flags ^ if_flags) & mask) == 0) {
834 ret = dev;
835 break;
836 }
837 }
838 return ret;
839}
840EXPORT_SYMBOL(dev_get_by_flags_rcu);
841
842/**
843 * dev_valid_name - check if name is okay for network device
844 * @name: name string
845 *
846 * Network device names need to be valid file names to
847 * to allow sysfs to work. We also disallow any kind of
848 * whitespace.
849 */
850bool dev_valid_name(const char *name)
851{
852 if (*name == '\0')
853 return false;
854 if (strlen(name) >= IFNAMSIZ)
855 return false;
856 if (!strcmp(name, ".") || !strcmp(name, ".."))
857 return false;
858
859 while (*name) {
860 if (*name == '/' || isspace(*name))
861 return false;
862 name++;
863 }
864 return true;
865}
866EXPORT_SYMBOL(dev_valid_name);
867
868/**
869 * __dev_alloc_name - allocate a name for a device
870 * @net: network namespace to allocate the device name in
871 * @name: name format string
872 * @buf: scratch buffer and result name string
873 *
874 * Passed a format string - eg "lt%d" it will try and find a suitable
875 * id. It scans list of devices to build up a free map, then chooses
876 * the first empty slot. The caller must hold the dev_base or rtnl lock
877 * while allocating the name and adding the device in order to avoid
878 * duplicates.
879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880 * Returns the number of the unit assigned or a negative errno code.
881 */
882
883static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884{
885 int i = 0;
886 const char *p;
887 const int max_netdevices = 8*PAGE_SIZE;
888 unsigned long *inuse;
889 struct net_device *d;
890
891 p = strnchr(name, IFNAMSIZ-1, '%');
892 if (p) {
893 /*
894 * Verify the string as this thing may have come from
895 * the user. There must be either one "%d" and no other "%"
896 * characters.
897 */
898 if (p[1] != 'd' || strchr(p + 2, '%'))
899 return -EINVAL;
900
901 /* Use one page as a bit array of possible slots */
902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 if (!inuse)
904 return -ENOMEM;
905
906 for_each_netdev(net, d) {
907 if (!sscanf(d->name, name, &i))
908 continue;
909 if (i < 0 || i >= max_netdevices)
910 continue;
911
912 /* avoid cases where sscanf is not exact inverse of printf */
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!strncmp(buf, d->name, IFNAMSIZ))
915 set_bit(i, inuse);
916 }
917
918 i = find_first_zero_bit(inuse, max_netdevices);
919 free_page((unsigned long) inuse);
920 }
921
922 if (buf != name)
923 snprintf(buf, IFNAMSIZ, name, i);
924 if (!__dev_get_by_name(net, buf))
925 return i;
926
927 /* It is possible to run out of possible slots
928 * when the name is long and there isn't enough space left
929 * for the digits, or if all bits are used.
930 */
931 return -ENFILE;
932}
933
934/**
935 * dev_alloc_name - allocate a name for a device
936 * @dev: device
937 * @name: name format string
938 *
939 * Passed a format string - eg "lt%d" it will try and find a suitable
940 * id. It scans list of devices to build up a free map, then chooses
941 * the first empty slot. The caller must hold the dev_base or rtnl lock
942 * while allocating the name and adding the device in order to avoid
943 * duplicates.
944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945 * Returns the number of the unit assigned or a negative errno code.
946 */
947
948int dev_alloc_name(struct net_device *dev, const char *name)
949{
950 char buf[IFNAMSIZ];
951 struct net *net;
952 int ret;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956 ret = __dev_alloc_name(net, name, buf);
957 if (ret >= 0)
958 strlcpy(dev->name, buf, IFNAMSIZ);
959 return ret;
960}
961EXPORT_SYMBOL(dev_alloc_name);
962
963static int dev_get_valid_name(struct net_device *dev, const char *name)
964{
965 struct net *net;
966
967 BUG_ON(!dev_net(dev));
968 net = dev_net(dev);
969
970 if (!dev_valid_name(name))
971 return -EINVAL;
972
973 if (strchr(name, '%'))
974 return dev_alloc_name(dev, name);
975 else if (__dev_get_by_name(net, name))
976 return -EEXIST;
977 else if (dev->name != name)
978 strlcpy(dev->name, name, IFNAMSIZ);
979
980 return 0;
981}
982
983/**
984 * dev_change_name - change name of a device
985 * @dev: device
986 * @newname: name (or format string) must be at least IFNAMSIZ
987 *
988 * Change name of a device, can pass format strings "eth%d".
989 * for wildcarding.
990 */
991int dev_change_name(struct net_device *dev, const char *newname)
992{
993 char oldname[IFNAMSIZ];
994 int err = 0;
995 int ret;
996 struct net *net;
997
998 ASSERT_RTNL();
999 BUG_ON(!dev_net(dev));
1000
1001 net = dev_net(dev);
1002 if (dev->flags & IFF_UP)
1003 return -EBUSY;
1004
1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 return 0;
1007
1008 memcpy(oldname, dev->name, IFNAMSIZ);
1009
1010 err = dev_get_valid_name(dev, newname);
1011 if (err < 0)
1012 return err;
1013
1014rollback:
1015 ret = device_rename(&dev->dev, dev->name);
1016 if (ret) {
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 return ret;
1019 }
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_del_rcu(&dev->name_hlist);
1023 write_unlock_bh(&dev_base_lock);
1024
1025 synchronize_rcu();
1026
1027 write_lock_bh(&dev_base_lock);
1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 write_unlock_bh(&dev_base_lock);
1030
1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 ret = notifier_to_errno(ret);
1033
1034 if (ret) {
1035 /* err >= 0 after dev_alloc_name() or stores the first errno */
1036 if (err >= 0) {
1037 err = ret;
1038 memcpy(dev->name, oldname, IFNAMSIZ);
1039 goto rollback;
1040 } else {
1041 pr_err("%s: name change rollback failed: %d\n",
1042 dev->name, ret);
1043 }
1044 }
1045
1046 return err;
1047}
1048
1049/**
1050 * dev_set_alias - change ifalias of a device
1051 * @dev: device
1052 * @alias: name up to IFALIASZ
1053 * @len: limit of bytes to copy from info
1054 *
1055 * Set ifalias for a device,
1056 */
1057int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058{
1059 ASSERT_RTNL();
1060
1061 if (len >= IFALIASZ)
1062 return -EINVAL;
1063
1064 if (!len) {
1065 if (dev->ifalias) {
1066 kfree(dev->ifalias);
1067 dev->ifalias = NULL;
1068 }
1069 return 0;
1070 }
1071
1072 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1073 if (!dev->ifalias)
1074 return -ENOMEM;
1075
1076 strlcpy(dev->ifalias, alias, len+1);
1077 return len;
1078}
1079
1080
1081/**
1082 * netdev_features_change - device changes features
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed features.
1086 */
1087void netdev_features_change(struct net_device *dev)
1088{
1089 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1090}
1091EXPORT_SYMBOL(netdev_features_change);
1092
1093/**
1094 * netdev_state_change - device changes state
1095 * @dev: device to cause notification
1096 *
1097 * Called to indicate a device has changed state. This function calls
1098 * the notifier chains for netdev_chain and sends a NEWLINK message
1099 * to the routing socket.
1100 */
1101void netdev_state_change(struct net_device *dev)
1102{
1103 if (dev->flags & IFF_UP) {
1104 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1105 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1106 }
1107}
1108EXPORT_SYMBOL(netdev_state_change);
1109
1110int netdev_bonding_change(struct net_device *dev, unsigned long event)
1111{
1112 return call_netdevice_notifiers(event, dev);
1113}
1114EXPORT_SYMBOL(netdev_bonding_change);
1115
1116/**
1117 * dev_load - load a network module
1118 * @net: the applicable net namespace
1119 * @name: name of interface
1120 *
1121 * If a network interface is not present and the process has suitable
1122 * privileges this function loads the module. If module loading is not
1123 * available in this kernel then it becomes a nop.
1124 */
1125
1126void dev_load(struct net *net, const char *name)
1127{
1128 struct net_device *dev;
1129 int no_module;
1130
1131 rcu_read_lock();
1132 dev = dev_get_by_name_rcu(net, name);
1133 rcu_read_unlock();
1134
1135 no_module = !dev;
1136 if (no_module && capable(CAP_NET_ADMIN))
1137 no_module = request_module("netdev-%s", name);
1138 if (no_module && capable(CAP_SYS_MODULE)) {
1139 if (!request_module("%s", name))
1140 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1141 name);
1142 }
1143}
1144EXPORT_SYMBOL(dev_load);
1145
1146static int __dev_open(struct net_device *dev)
1147{
1148 const struct net_device_ops *ops = dev->netdev_ops;
1149 int ret;
1150
1151 ASSERT_RTNL();
1152
1153 if (!netif_device_present(dev))
1154 return -ENODEV;
1155
1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 ret = notifier_to_errno(ret);
1158 if (ret)
1159 return ret;
1160
1161 set_bit(__LINK_STATE_START, &dev->state);
1162
1163 if (ops->ndo_validate_addr)
1164 ret = ops->ndo_validate_addr(dev);
1165
1166 if (!ret && ops->ndo_open)
1167 ret = ops->ndo_open(dev);
1168
1169 if (ret)
1170 clear_bit(__LINK_STATE_START, &dev->state);
1171 else {
1172 dev->flags |= IFF_UP;
1173 net_dmaengine_get();
1174 dev_set_rx_mode(dev);
1175 dev_activate(dev);
1176 }
1177
1178 return ret;
1179}
1180
1181/**
1182 * dev_open - prepare an interface for use.
1183 * @dev: device to open
1184 *
1185 * Takes a device from down to up state. The device's private open
1186 * function is invoked and then the multicast lists are loaded. Finally
1187 * the device is moved into the up state and a %NETDEV_UP message is
1188 * sent to the netdev notifier chain.
1189 *
1190 * Calling this function on an active interface is a nop. On a failure
1191 * a negative errno code is returned.
1192 */
1193int dev_open(struct net_device *dev)
1194{
1195 int ret;
1196
1197 if (dev->flags & IFF_UP)
1198 return 0;
1199
1200 ret = __dev_open(dev);
1201 if (ret < 0)
1202 return ret;
1203
1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 call_netdevice_notifiers(NETDEV_UP, dev);
1206
1207 return ret;
1208}
1209EXPORT_SYMBOL(dev_open);
1210
1211static int __dev_close_many(struct list_head *head)
1212{
1213 struct net_device *dev;
1214
1215 ASSERT_RTNL();
1216 might_sleep();
1217
1218 list_for_each_entry(dev, head, unreg_list) {
1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220
1221 clear_bit(__LINK_STATE_START, &dev->state);
1222
1223 /* Synchronize to scheduled poll. We cannot touch poll list, it
1224 * can be even on different cpu. So just clear netif_running().
1225 *
1226 * dev->stop() will invoke napi_disable() on all of it's
1227 * napi_struct instances on this device.
1228 */
1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230 }
1231
1232 dev_deactivate_many(head);
1233
1234 list_for_each_entry(dev, head, unreg_list) {
1235 const struct net_device_ops *ops = dev->netdev_ops;
1236
1237 /*
1238 * Call the device specific close. This cannot fail.
1239 * Only if device is UP
1240 *
1241 * We allow it to be called even after a DETACH hot-plug
1242 * event.
1243 */
1244 if (ops->ndo_stop)
1245 ops->ndo_stop(dev);
1246
1247 dev->flags &= ~IFF_UP;
1248 net_dmaengine_put();
1249 }
1250
1251 return 0;
1252}
1253
1254static int __dev_close(struct net_device *dev)
1255{
1256 int retval;
1257 LIST_HEAD(single);
1258
1259 list_add(&dev->unreg_list, &single);
1260 retval = __dev_close_many(&single);
1261 list_del(&single);
1262 return retval;
1263}
1264
1265static int dev_close_many(struct list_head *head)
1266{
1267 struct net_device *dev, *tmp;
1268 LIST_HEAD(tmp_list);
1269
1270 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 if (!(dev->flags & IFF_UP))
1272 list_move(&dev->unreg_list, &tmp_list);
1273
1274 __dev_close_many(head);
1275
1276 list_for_each_entry(dev, head, unreg_list) {
1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 call_netdevice_notifiers(NETDEV_DOWN, dev);
1279 }
1280
1281 /* rollback_registered_many needs the complete original list */
1282 list_splice(&tmp_list, head);
1283 return 0;
1284}
1285
1286/**
1287 * dev_close - shutdown an interface.
1288 * @dev: device to shutdown
1289 *
1290 * This function moves an active device into down state. A
1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293 * chain.
1294 */
1295int dev_close(struct net_device *dev)
1296{
1297 if (dev->flags & IFF_UP) {
1298 LIST_HEAD(single);
1299
1300 list_add(&dev->unreg_list, &single);
1301 dev_close_many(&single);
1302 list_del(&single);
1303 }
1304 return 0;
1305}
1306EXPORT_SYMBOL(dev_close);
1307
1308
1309/**
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1312 *
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1316 */
1317void dev_disable_lro(struct net_device *dev)
1318{
1319 /*
1320 * If we're trying to disable lro on a vlan device
1321 * use the underlying physical device instead
1322 */
1323 if (is_vlan_dev(dev))
1324 dev = vlan_dev_real_dev(dev);
1325
1326 dev->wanted_features &= ~NETIF_F_LRO;
1327 netdev_update_features(dev);
1328
1329 if (unlikely(dev->features & NETIF_F_LRO))
1330 netdev_WARN(dev, "failed to disable LRO!\n");
1331}
1332EXPORT_SYMBOL(dev_disable_lro);
1333
1334
1335static int dev_boot_phase = 1;
1336
1337/**
1338 * register_netdevice_notifier - register a network notifier block
1339 * @nb: notifier
1340 *
1341 * Register a notifier to be called when network device events occur.
1342 * The notifier passed is linked into the kernel structures and must
1343 * not be reused until it has been unregistered. A negative errno code
1344 * is returned on a failure.
1345 *
1346 * When registered all registration and up events are replayed
1347 * to the new notifier to allow device to have a race free
1348 * view of the network device list.
1349 */
1350
1351int register_netdevice_notifier(struct notifier_block *nb)
1352{
1353 struct net_device *dev;
1354 struct net_device *last;
1355 struct net *net;
1356 int err;
1357
1358 rtnl_lock();
1359 err = raw_notifier_chain_register(&netdev_chain, nb);
1360 if (err)
1361 goto unlock;
1362 if (dev_boot_phase)
1363 goto unlock;
1364 for_each_net(net) {
1365 for_each_netdev(net, dev) {
1366 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1367 err = notifier_to_errno(err);
1368 if (err)
1369 goto rollback;
1370
1371 if (!(dev->flags & IFF_UP))
1372 continue;
1373
1374 nb->notifier_call(nb, NETDEV_UP, dev);
1375 }
1376 }
1377
1378unlock:
1379 rtnl_unlock();
1380 return err;
1381
1382rollback:
1383 last = dev;
1384 for_each_net(net) {
1385 for_each_netdev(net, dev) {
1386 if (dev == last)
1387 goto outroll;
1388
1389 if (dev->flags & IFF_UP) {
1390 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1391 nb->notifier_call(nb, NETDEV_DOWN, dev);
1392 }
1393 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1394 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1395 }
1396 }
1397
1398outroll:
1399 raw_notifier_chain_unregister(&netdev_chain, nb);
1400 goto unlock;
1401}
1402EXPORT_SYMBOL(register_netdevice_notifier);
1403
1404/**
1405 * unregister_netdevice_notifier - unregister a network notifier block
1406 * @nb: notifier
1407 *
1408 * Unregister a notifier previously registered by
1409 * register_netdevice_notifier(). The notifier is unlinked into the
1410 * kernel structures and may then be reused. A negative errno code
1411 * is returned on a failure.
1412 *
1413 * After unregistering unregister and down device events are synthesized
1414 * for all devices on the device list to the removed notifier to remove
1415 * the need for special case cleanup code.
1416 */
1417
1418int unregister_netdevice_notifier(struct notifier_block *nb)
1419{
1420 struct net_device *dev;
1421 struct net *net;
1422 int err;
1423
1424 rtnl_lock();
1425 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1426 if (err)
1427 goto unlock;
1428
1429 for_each_net(net) {
1430 for_each_netdev(net, dev) {
1431 if (dev->flags & IFF_UP) {
1432 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1433 nb->notifier_call(nb, NETDEV_DOWN, dev);
1434 }
1435 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1436 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1437 }
1438 }
1439unlock:
1440 rtnl_unlock();
1441 return err;
1442}
1443EXPORT_SYMBOL(unregister_netdevice_notifier);
1444
1445/**
1446 * call_netdevice_notifiers - call all network notifier blocks
1447 * @val: value passed unmodified to notifier function
1448 * @dev: net_device pointer passed unmodified to notifier function
1449 *
1450 * Call all network notifier blocks. Parameters and return value
1451 * are as for raw_notifier_call_chain().
1452 */
1453
1454int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1455{
1456 ASSERT_RTNL();
1457 return raw_notifier_call_chain(&netdev_chain, val, dev);
1458}
1459EXPORT_SYMBOL(call_netdevice_notifiers);
1460
1461static struct static_key netstamp_needed __read_mostly;
1462#ifdef HAVE_JUMP_LABEL
1463/* We are not allowed to call static_key_slow_dec() from irq context
1464 * If net_disable_timestamp() is called from irq context, defer the
1465 * static_key_slow_dec() calls.
1466 */
1467static atomic_t netstamp_needed_deferred;
1468#endif
1469
1470void net_enable_timestamp(void)
1471{
1472#ifdef HAVE_JUMP_LABEL
1473 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1474
1475 if (deferred) {
1476 while (--deferred)
1477 static_key_slow_dec(&netstamp_needed);
1478 return;
1479 }
1480#endif
1481 WARN_ON(in_interrupt());
1482 static_key_slow_inc(&netstamp_needed);
1483}
1484EXPORT_SYMBOL(net_enable_timestamp);
1485
1486void net_disable_timestamp(void)
1487{
1488#ifdef HAVE_JUMP_LABEL
1489 if (in_interrupt()) {
1490 atomic_inc(&netstamp_needed_deferred);
1491 return;
1492 }
1493#endif
1494 static_key_slow_dec(&netstamp_needed);
1495}
1496EXPORT_SYMBOL(net_disable_timestamp);
1497
1498static inline void net_timestamp_set(struct sk_buff *skb)
1499{
1500 skb->tstamp.tv64 = 0;
1501 if (static_key_false(&netstamp_needed))
1502 __net_timestamp(skb);
1503}
1504
1505#define net_timestamp_check(COND, SKB) \
1506 if (static_key_false(&netstamp_needed)) { \
1507 if ((COND) && !(SKB)->tstamp.tv64) \
1508 __net_timestamp(SKB); \
1509 } \
1510
1511static int net_hwtstamp_validate(struct ifreq *ifr)
1512{
1513 struct hwtstamp_config cfg;
1514 enum hwtstamp_tx_types tx_type;
1515 enum hwtstamp_rx_filters rx_filter;
1516 int tx_type_valid = 0;
1517 int rx_filter_valid = 0;
1518
1519 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1520 return -EFAULT;
1521
1522 if (cfg.flags) /* reserved for future extensions */
1523 return -EINVAL;
1524
1525 tx_type = cfg.tx_type;
1526 rx_filter = cfg.rx_filter;
1527
1528 switch (tx_type) {
1529 case HWTSTAMP_TX_OFF:
1530 case HWTSTAMP_TX_ON:
1531 case HWTSTAMP_TX_ONESTEP_SYNC:
1532 tx_type_valid = 1;
1533 break;
1534 }
1535
1536 switch (rx_filter) {
1537 case HWTSTAMP_FILTER_NONE:
1538 case HWTSTAMP_FILTER_ALL:
1539 case HWTSTAMP_FILTER_SOME:
1540 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1541 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1542 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1543 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1552 rx_filter_valid = 1;
1553 break;
1554 }
1555
1556 if (!tx_type_valid || !rx_filter_valid)
1557 return -ERANGE;
1558
1559 return 0;
1560}
1561
1562static inline bool is_skb_forwardable(struct net_device *dev,
1563 struct sk_buff *skb)
1564{
1565 unsigned int len;
1566
1567 if (!(dev->flags & IFF_UP))
1568 return false;
1569
1570 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1571 if (skb->len <= len)
1572 return true;
1573
1574 /* if TSO is enabled, we don't care about the length as the packet
1575 * could be forwarded without being segmented before
1576 */
1577 if (skb_is_gso(skb))
1578 return true;
1579
1580 return false;
1581}
1582
1583/**
1584 * dev_forward_skb - loopback an skb to another netif
1585 *
1586 * @dev: destination network device
1587 * @skb: buffer to forward
1588 *
1589 * return values:
1590 * NET_RX_SUCCESS (no congestion)
1591 * NET_RX_DROP (packet was dropped, but freed)
1592 *
1593 * dev_forward_skb can be used for injecting an skb from the
1594 * start_xmit function of one device into the receive queue
1595 * of another device.
1596 *
1597 * The receiving device may be in another namespace, so
1598 * we have to clear all information in the skb that could
1599 * impact namespace isolation.
1600 */
1601int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1602{
1603 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1604 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1605 atomic_long_inc(&dev->rx_dropped);
1606 kfree_skb(skb);
1607 return NET_RX_DROP;
1608 }
1609 }
1610
1611 skb_orphan(skb);
1612 nf_reset(skb);
1613
1614 if (unlikely(!is_skb_forwardable(dev, skb))) {
1615 atomic_long_inc(&dev->rx_dropped);
1616 kfree_skb(skb);
1617 return NET_RX_DROP;
1618 }
1619 skb->skb_iif = 0;
1620 skb_set_dev(skb, dev);
1621 skb->tstamp.tv64 = 0;
1622 skb->pkt_type = PACKET_HOST;
1623 skb->protocol = eth_type_trans(skb, dev);
1624 return netif_rx(skb);
1625}
1626EXPORT_SYMBOL_GPL(dev_forward_skb);
1627
1628static inline int deliver_skb(struct sk_buff *skb,
1629 struct packet_type *pt_prev,
1630 struct net_device *orig_dev)
1631{
1632 atomic_inc(&skb->users);
1633 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1634}
1635
1636/*
1637 * Support routine. Sends outgoing frames to any network
1638 * taps currently in use.
1639 */
1640
1641static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1642{
1643 struct packet_type *ptype;
1644 struct sk_buff *skb2 = NULL;
1645 struct packet_type *pt_prev = NULL;
1646
1647 rcu_read_lock();
1648 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1649 /* Never send packets back to the socket
1650 * they originated from - MvS (miquels@drinkel.ow.org)
1651 */
1652 if ((ptype->dev == dev || !ptype->dev) &&
1653 (ptype->af_packet_priv == NULL ||
1654 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1655 if (pt_prev) {
1656 deliver_skb(skb2, pt_prev, skb->dev);
1657 pt_prev = ptype;
1658 continue;
1659 }
1660
1661 skb2 = skb_clone(skb, GFP_ATOMIC);
1662 if (!skb2)
1663 break;
1664
1665 net_timestamp_set(skb2);
1666
1667 /* skb->nh should be correctly
1668 set by sender, so that the second statement is
1669 just protection against buggy protocols.
1670 */
1671 skb_reset_mac_header(skb2);
1672
1673 if (skb_network_header(skb2) < skb2->data ||
1674 skb2->network_header > skb2->tail) {
1675 if (net_ratelimit())
1676 pr_crit("protocol %04x is buggy, dev %s\n",
1677 ntohs(skb2->protocol),
1678 dev->name);
1679 skb_reset_network_header(skb2);
1680 }
1681
1682 skb2->transport_header = skb2->network_header;
1683 skb2->pkt_type = PACKET_OUTGOING;
1684 pt_prev = ptype;
1685 }
1686 }
1687 if (pt_prev)
1688 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1689 rcu_read_unlock();
1690}
1691
1692/* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1693 * @dev: Network device
1694 * @txq: number of queues available
1695 *
1696 * If real_num_tx_queues is changed the tc mappings may no longer be
1697 * valid. To resolve this verify the tc mapping remains valid and if
1698 * not NULL the mapping. With no priorities mapping to this
1699 * offset/count pair it will no longer be used. In the worst case TC0
1700 * is invalid nothing can be done so disable priority mappings. If is
1701 * expected that drivers will fix this mapping if they can before
1702 * calling netif_set_real_num_tx_queues.
1703 */
1704static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1705{
1706 int i;
1707 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1708
1709 /* If TC0 is invalidated disable TC mapping */
1710 if (tc->offset + tc->count > txq) {
1711 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1712 dev->num_tc = 0;
1713 return;
1714 }
1715
1716 /* Invalidated prio to tc mappings set to TC0 */
1717 for (i = 1; i < TC_BITMASK + 1; i++) {
1718 int q = netdev_get_prio_tc_map(dev, i);
1719
1720 tc = &dev->tc_to_txq[q];
1721 if (tc->offset + tc->count > txq) {
1722 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1723 i, q);
1724 netdev_set_prio_tc_map(dev, i, 0);
1725 }
1726 }
1727}
1728
1729/*
1730 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1731 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1732 */
1733int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1734{
1735 int rc;
1736
1737 if (txq < 1 || txq > dev->num_tx_queues)
1738 return -EINVAL;
1739
1740 if (dev->reg_state == NETREG_REGISTERED ||
1741 dev->reg_state == NETREG_UNREGISTERING) {
1742 ASSERT_RTNL();
1743
1744 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1745 txq);
1746 if (rc)
1747 return rc;
1748
1749 if (dev->num_tc)
1750 netif_setup_tc(dev, txq);
1751
1752 if (txq < dev->real_num_tx_queues)
1753 qdisc_reset_all_tx_gt(dev, txq);
1754 }
1755
1756 dev->real_num_tx_queues = txq;
1757 return 0;
1758}
1759EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1760
1761#ifdef CONFIG_RPS
1762/**
1763 * netif_set_real_num_rx_queues - set actual number of RX queues used
1764 * @dev: Network device
1765 * @rxq: Actual number of RX queues
1766 *
1767 * This must be called either with the rtnl_lock held or before
1768 * registration of the net device. Returns 0 on success, or a
1769 * negative error code. If called before registration, it always
1770 * succeeds.
1771 */
1772int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1773{
1774 int rc;
1775
1776 if (rxq < 1 || rxq > dev->num_rx_queues)
1777 return -EINVAL;
1778
1779 if (dev->reg_state == NETREG_REGISTERED) {
1780 ASSERT_RTNL();
1781
1782 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1783 rxq);
1784 if (rc)
1785 return rc;
1786 }
1787
1788 dev->real_num_rx_queues = rxq;
1789 return 0;
1790}
1791EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1792#endif
1793
1794static inline void __netif_reschedule(struct Qdisc *q)
1795{
1796 struct softnet_data *sd;
1797 unsigned long flags;
1798
1799 local_irq_save(flags);
1800 sd = &__get_cpu_var(softnet_data);
1801 q->next_sched = NULL;
1802 *sd->output_queue_tailp = q;
1803 sd->output_queue_tailp = &q->next_sched;
1804 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1805 local_irq_restore(flags);
1806}
1807
1808void __netif_schedule(struct Qdisc *q)
1809{
1810 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1811 __netif_reschedule(q);
1812}
1813EXPORT_SYMBOL(__netif_schedule);
1814
1815void dev_kfree_skb_irq(struct sk_buff *skb)
1816{
1817 if (atomic_dec_and_test(&skb->users)) {
1818 struct softnet_data *sd;
1819 unsigned long flags;
1820
1821 local_irq_save(flags);
1822 sd = &__get_cpu_var(softnet_data);
1823 skb->next = sd->completion_queue;
1824 sd->completion_queue = skb;
1825 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1826 local_irq_restore(flags);
1827 }
1828}
1829EXPORT_SYMBOL(dev_kfree_skb_irq);
1830
1831void dev_kfree_skb_any(struct sk_buff *skb)
1832{
1833 if (in_irq() || irqs_disabled())
1834 dev_kfree_skb_irq(skb);
1835 else
1836 dev_kfree_skb(skb);
1837}
1838EXPORT_SYMBOL(dev_kfree_skb_any);
1839
1840
1841/**
1842 * netif_device_detach - mark device as removed
1843 * @dev: network device
1844 *
1845 * Mark device as removed from system and therefore no longer available.
1846 */
1847void netif_device_detach(struct net_device *dev)
1848{
1849 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1850 netif_running(dev)) {
1851 netif_tx_stop_all_queues(dev);
1852 }
1853}
1854EXPORT_SYMBOL(netif_device_detach);
1855
1856/**
1857 * netif_device_attach - mark device as attached
1858 * @dev: network device
1859 *
1860 * Mark device as attached from system and restart if needed.
1861 */
1862void netif_device_attach(struct net_device *dev)
1863{
1864 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1865 netif_running(dev)) {
1866 netif_tx_wake_all_queues(dev);
1867 __netdev_watchdog_up(dev);
1868 }
1869}
1870EXPORT_SYMBOL(netif_device_attach);
1871
1872/**
1873 * skb_dev_set -- assign a new device to a buffer
1874 * @skb: buffer for the new device
1875 * @dev: network device
1876 *
1877 * If an skb is owned by a device already, we have to reset
1878 * all data private to the namespace a device belongs to
1879 * before assigning it a new device.
1880 */
1881#ifdef CONFIG_NET_NS
1882void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1883{
1884 skb_dst_drop(skb);
1885 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1886 secpath_reset(skb);
1887 nf_reset(skb);
1888 skb_init_secmark(skb);
1889 skb->mark = 0;
1890 skb->priority = 0;
1891 skb->nf_trace = 0;
1892 skb->ipvs_property = 0;
1893#ifdef CONFIG_NET_SCHED
1894 skb->tc_index = 0;
1895#endif
1896 }
1897 skb->dev = dev;
1898}
1899EXPORT_SYMBOL(skb_set_dev);
1900#endif /* CONFIG_NET_NS */
1901
1902static void skb_warn_bad_offload(const struct sk_buff *skb)
1903{
1904 static const netdev_features_t null_features = 0;
1905 struct net_device *dev = skb->dev;
1906 const char *driver = "";
1907
1908 if (dev && dev->dev.parent)
1909 driver = dev_driver_string(dev->dev.parent);
1910
1911 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1912 "gso_type=%d ip_summed=%d\n",
1913 driver, dev ? &dev->features : &null_features,
1914 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1915 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1916 skb_shinfo(skb)->gso_type, skb->ip_summed);
1917}
1918
1919/*
1920 * Invalidate hardware checksum when packet is to be mangled, and
1921 * complete checksum manually on outgoing path.
1922 */
1923int skb_checksum_help(struct sk_buff *skb)
1924{
1925 __wsum csum;
1926 int ret = 0, offset;
1927
1928 if (skb->ip_summed == CHECKSUM_COMPLETE)
1929 goto out_set_summed;
1930
1931 if (unlikely(skb_shinfo(skb)->gso_size)) {
1932 skb_warn_bad_offload(skb);
1933 return -EINVAL;
1934 }
1935
1936 offset = skb_checksum_start_offset(skb);
1937 BUG_ON(offset >= skb_headlen(skb));
1938 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1939
1940 offset += skb->csum_offset;
1941 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1942
1943 if (skb_cloned(skb) &&
1944 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1945 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1946 if (ret)
1947 goto out;
1948 }
1949
1950 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1951out_set_summed:
1952 skb->ip_summed = CHECKSUM_NONE;
1953out:
1954 return ret;
1955}
1956EXPORT_SYMBOL(skb_checksum_help);
1957
1958/**
1959 * skb_gso_segment - Perform segmentation on skb.
1960 * @skb: buffer to segment
1961 * @features: features for the output path (see dev->features)
1962 *
1963 * This function segments the given skb and returns a list of segments.
1964 *
1965 * It may return NULL if the skb requires no segmentation. This is
1966 * only possible when GSO is used for verifying header integrity.
1967 */
1968struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1969 netdev_features_t features)
1970{
1971 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1972 struct packet_type *ptype;
1973 __be16 type = skb->protocol;
1974 int vlan_depth = ETH_HLEN;
1975 int err;
1976
1977 while (type == htons(ETH_P_8021Q)) {
1978 struct vlan_hdr *vh;
1979
1980 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1981 return ERR_PTR(-EINVAL);
1982
1983 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1984 type = vh->h_vlan_encapsulated_proto;
1985 vlan_depth += VLAN_HLEN;
1986 }
1987
1988 skb_reset_mac_header(skb);
1989 skb->mac_len = skb->network_header - skb->mac_header;
1990 __skb_pull(skb, skb->mac_len);
1991
1992 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1993 skb_warn_bad_offload(skb);
1994
1995 if (skb_header_cloned(skb) &&
1996 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1997 return ERR_PTR(err);
1998 }
1999
2000 rcu_read_lock();
2001 list_for_each_entry_rcu(ptype,
2002 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2003 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2004 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2005 err = ptype->gso_send_check(skb);
2006 segs = ERR_PTR(err);
2007 if (err || skb_gso_ok(skb, features))
2008 break;
2009 __skb_push(skb, (skb->data -
2010 skb_network_header(skb)));
2011 }
2012 segs = ptype->gso_segment(skb, features);
2013 break;
2014 }
2015 }
2016 rcu_read_unlock();
2017
2018 __skb_push(skb, skb->data - skb_mac_header(skb));
2019
2020 return segs;
2021}
2022EXPORT_SYMBOL(skb_gso_segment);
2023
2024/* Take action when hardware reception checksum errors are detected. */
2025#ifdef CONFIG_BUG
2026void netdev_rx_csum_fault(struct net_device *dev)
2027{
2028 if (net_ratelimit()) {
2029 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2030 dump_stack();
2031 }
2032}
2033EXPORT_SYMBOL(netdev_rx_csum_fault);
2034#endif
2035
2036/* Actually, we should eliminate this check as soon as we know, that:
2037 * 1. IOMMU is present and allows to map all the memory.
2038 * 2. No high memory really exists on this machine.
2039 */
2040
2041static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2042{
2043#ifdef CONFIG_HIGHMEM
2044 int i;
2045 if (!(dev->features & NETIF_F_HIGHDMA)) {
2046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048 if (PageHighMem(skb_frag_page(frag)))
2049 return 1;
2050 }
2051 }
2052
2053 if (PCI_DMA_BUS_IS_PHYS) {
2054 struct device *pdev = dev->dev.parent;
2055
2056 if (!pdev)
2057 return 0;
2058 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2059 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2060 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2061 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2062 return 1;
2063 }
2064 }
2065#endif
2066 return 0;
2067}
2068
2069struct dev_gso_cb {
2070 void (*destructor)(struct sk_buff *skb);
2071};
2072
2073#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2074
2075static void dev_gso_skb_destructor(struct sk_buff *skb)
2076{
2077 struct dev_gso_cb *cb;
2078
2079 do {
2080 struct sk_buff *nskb = skb->next;
2081
2082 skb->next = nskb->next;
2083 nskb->next = NULL;
2084 kfree_skb(nskb);
2085 } while (skb->next);
2086
2087 cb = DEV_GSO_CB(skb);
2088 if (cb->destructor)
2089 cb->destructor(skb);
2090}
2091
2092/**
2093 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2094 * @skb: buffer to segment
2095 * @features: device features as applicable to this skb
2096 *
2097 * This function segments the given skb and stores the list of segments
2098 * in skb->next.
2099 */
2100static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2101{
2102 struct sk_buff *segs;
2103
2104 segs = skb_gso_segment(skb, features);
2105
2106 /* Verifying header integrity only. */
2107 if (!segs)
2108 return 0;
2109
2110 if (IS_ERR(segs))
2111 return PTR_ERR(segs);
2112
2113 skb->next = segs;
2114 DEV_GSO_CB(skb)->destructor = skb->destructor;
2115 skb->destructor = dev_gso_skb_destructor;
2116
2117 return 0;
2118}
2119
2120/*
2121 * Try to orphan skb early, right before transmission by the device.
2122 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2123 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2124 */
2125static inline void skb_orphan_try(struct sk_buff *skb)
2126{
2127 struct sock *sk = skb->sk;
2128
2129 if (sk && !skb_shinfo(skb)->tx_flags) {
2130 /* skb_tx_hash() wont be able to get sk.
2131 * We copy sk_hash into skb->rxhash
2132 */
2133 if (!skb->rxhash)
2134 skb->rxhash = sk->sk_hash;
2135 skb_orphan(skb);
2136 }
2137}
2138
2139static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2140{
2141 return ((features & NETIF_F_GEN_CSUM) ||
2142 ((features & NETIF_F_V4_CSUM) &&
2143 protocol == htons(ETH_P_IP)) ||
2144 ((features & NETIF_F_V6_CSUM) &&
2145 protocol == htons(ETH_P_IPV6)) ||
2146 ((features & NETIF_F_FCOE_CRC) &&
2147 protocol == htons(ETH_P_FCOE)));
2148}
2149
2150static netdev_features_t harmonize_features(struct sk_buff *skb,
2151 __be16 protocol, netdev_features_t features)
2152{
2153 if (!can_checksum_protocol(features, protocol)) {
2154 features &= ~NETIF_F_ALL_CSUM;
2155 features &= ~NETIF_F_SG;
2156 } else if (illegal_highdma(skb->dev, skb)) {
2157 features &= ~NETIF_F_SG;
2158 }
2159
2160 return features;
2161}
2162
2163netdev_features_t netif_skb_features(struct sk_buff *skb)
2164{
2165 __be16 protocol = skb->protocol;
2166 netdev_features_t features = skb->dev->features;
2167
2168 if (protocol == htons(ETH_P_8021Q)) {
2169 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2170 protocol = veh->h_vlan_encapsulated_proto;
2171 } else if (!vlan_tx_tag_present(skb)) {
2172 return harmonize_features(skb, protocol, features);
2173 }
2174
2175 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2176
2177 if (protocol != htons(ETH_P_8021Q)) {
2178 return harmonize_features(skb, protocol, features);
2179 } else {
2180 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2181 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2182 return harmonize_features(skb, protocol, features);
2183 }
2184}
2185EXPORT_SYMBOL(netif_skb_features);
2186
2187/*
2188 * Returns true if either:
2189 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2190 * 2. skb is fragmented and the device does not support SG, or if
2191 * at least one of fragments is in highmem and device does not
2192 * support DMA from it.
2193 */
2194static inline int skb_needs_linearize(struct sk_buff *skb,
2195 int features)
2196{
2197 return skb_is_nonlinear(skb) &&
2198 ((skb_has_frag_list(skb) &&
2199 !(features & NETIF_F_FRAGLIST)) ||
2200 (skb_shinfo(skb)->nr_frags &&
2201 !(features & NETIF_F_SG)));
2202}
2203
2204int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2205 struct netdev_queue *txq)
2206{
2207 const struct net_device_ops *ops = dev->netdev_ops;
2208 int rc = NETDEV_TX_OK;
2209 unsigned int skb_len;
2210
2211 if (likely(!skb->next)) {
2212 netdev_features_t features;
2213
2214 /*
2215 * If device doesn't need skb->dst, release it right now while
2216 * its hot in this cpu cache
2217 */
2218 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2219 skb_dst_drop(skb);
2220
2221 if (!list_empty(&ptype_all))
2222 dev_queue_xmit_nit(skb, dev);
2223
2224 skb_orphan_try(skb);
2225
2226 features = netif_skb_features(skb);
2227
2228 if (vlan_tx_tag_present(skb) &&
2229 !(features & NETIF_F_HW_VLAN_TX)) {
2230 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2231 if (unlikely(!skb))
2232 goto out;
2233
2234 skb->vlan_tci = 0;
2235 }
2236
2237 if (netif_needs_gso(skb, features)) {
2238 if (unlikely(dev_gso_segment(skb, features)))
2239 goto out_kfree_skb;
2240 if (skb->next)
2241 goto gso;
2242 } else {
2243 if (skb_needs_linearize(skb, features) &&
2244 __skb_linearize(skb))
2245 goto out_kfree_skb;
2246
2247 /* If packet is not checksummed and device does not
2248 * support checksumming for this protocol, complete
2249 * checksumming here.
2250 */
2251 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2252 skb_set_transport_header(skb,
2253 skb_checksum_start_offset(skb));
2254 if (!(features & NETIF_F_ALL_CSUM) &&
2255 skb_checksum_help(skb))
2256 goto out_kfree_skb;
2257 }
2258 }
2259
2260 skb_len = skb->len;
2261 rc = ops->ndo_start_xmit(skb, dev);
2262 trace_net_dev_xmit(skb, rc, dev, skb_len);
2263 if (rc == NETDEV_TX_OK)
2264 txq_trans_update(txq);
2265 return rc;
2266 }
2267
2268gso:
2269 do {
2270 struct sk_buff *nskb = skb->next;
2271
2272 skb->next = nskb->next;
2273 nskb->next = NULL;
2274
2275 /*
2276 * If device doesn't need nskb->dst, release it right now while
2277 * its hot in this cpu cache
2278 */
2279 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2280 skb_dst_drop(nskb);
2281
2282 skb_len = nskb->len;
2283 rc = ops->ndo_start_xmit(nskb, dev);
2284 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2285 if (unlikely(rc != NETDEV_TX_OK)) {
2286 if (rc & ~NETDEV_TX_MASK)
2287 goto out_kfree_gso_skb;
2288 nskb->next = skb->next;
2289 skb->next = nskb;
2290 return rc;
2291 }
2292 txq_trans_update(txq);
2293 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2294 return NETDEV_TX_BUSY;
2295 } while (skb->next);
2296
2297out_kfree_gso_skb:
2298 if (likely(skb->next == NULL))
2299 skb->destructor = DEV_GSO_CB(skb)->destructor;
2300out_kfree_skb:
2301 kfree_skb(skb);
2302out:
2303 return rc;
2304}
2305
2306static u32 hashrnd __read_mostly;
2307
2308/*
2309 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2310 * to be used as a distribution range.
2311 */
2312u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2313 unsigned int num_tx_queues)
2314{
2315 u32 hash;
2316 u16 qoffset = 0;
2317 u16 qcount = num_tx_queues;
2318
2319 if (skb_rx_queue_recorded(skb)) {
2320 hash = skb_get_rx_queue(skb);
2321 while (unlikely(hash >= num_tx_queues))
2322 hash -= num_tx_queues;
2323 return hash;
2324 }
2325
2326 if (dev->num_tc) {
2327 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2328 qoffset = dev->tc_to_txq[tc].offset;
2329 qcount = dev->tc_to_txq[tc].count;
2330 }
2331
2332 if (skb->sk && skb->sk->sk_hash)
2333 hash = skb->sk->sk_hash;
2334 else
2335 hash = (__force u16) skb->protocol ^ skb->rxhash;
2336 hash = jhash_1word(hash, hashrnd);
2337
2338 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2339}
2340EXPORT_SYMBOL(__skb_tx_hash);
2341
2342static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2343{
2344 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2345 if (net_ratelimit()) {
2346 pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n",
2347 dev->name, queue_index,
2348 dev->real_num_tx_queues);
2349 }
2350 return 0;
2351 }
2352 return queue_index;
2353}
2354
2355static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2356{
2357#ifdef CONFIG_XPS
2358 struct xps_dev_maps *dev_maps;
2359 struct xps_map *map;
2360 int queue_index = -1;
2361
2362 rcu_read_lock();
2363 dev_maps = rcu_dereference(dev->xps_maps);
2364 if (dev_maps) {
2365 map = rcu_dereference(
2366 dev_maps->cpu_map[raw_smp_processor_id()]);
2367 if (map) {
2368 if (map->len == 1)
2369 queue_index = map->queues[0];
2370 else {
2371 u32 hash;
2372 if (skb->sk && skb->sk->sk_hash)
2373 hash = skb->sk->sk_hash;
2374 else
2375 hash = (__force u16) skb->protocol ^
2376 skb->rxhash;
2377 hash = jhash_1word(hash, hashrnd);
2378 queue_index = map->queues[
2379 ((u64)hash * map->len) >> 32];
2380 }
2381 if (unlikely(queue_index >= dev->real_num_tx_queues))
2382 queue_index = -1;
2383 }
2384 }
2385 rcu_read_unlock();
2386
2387 return queue_index;
2388#else
2389 return -1;
2390#endif
2391}
2392
2393static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2394 struct sk_buff *skb)
2395{
2396 int queue_index;
2397 const struct net_device_ops *ops = dev->netdev_ops;
2398
2399 if (dev->real_num_tx_queues == 1)
2400 queue_index = 0;
2401 else if (ops->ndo_select_queue) {
2402 queue_index = ops->ndo_select_queue(dev, skb);
2403 queue_index = dev_cap_txqueue(dev, queue_index);
2404 } else {
2405 struct sock *sk = skb->sk;
2406 queue_index = sk_tx_queue_get(sk);
2407
2408 if (queue_index < 0 || skb->ooo_okay ||
2409 queue_index >= dev->real_num_tx_queues) {
2410 int old_index = queue_index;
2411
2412 queue_index = get_xps_queue(dev, skb);
2413 if (queue_index < 0)
2414 queue_index = skb_tx_hash(dev, skb);
2415
2416 if (queue_index != old_index && sk) {
2417 struct dst_entry *dst =
2418 rcu_dereference_check(sk->sk_dst_cache, 1);
2419
2420 if (dst && skb_dst(skb) == dst)
2421 sk_tx_queue_set(sk, queue_index);
2422 }
2423 }
2424 }
2425
2426 skb_set_queue_mapping(skb, queue_index);
2427 return netdev_get_tx_queue(dev, queue_index);
2428}
2429
2430static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2431 struct net_device *dev,
2432 struct netdev_queue *txq)
2433{
2434 spinlock_t *root_lock = qdisc_lock(q);
2435 bool contended;
2436 int rc;
2437
2438 qdisc_skb_cb(skb)->pkt_len = skb->len;
2439 qdisc_calculate_pkt_len(skb, q);
2440 /*
2441 * Heuristic to force contended enqueues to serialize on a
2442 * separate lock before trying to get qdisc main lock.
2443 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2444 * and dequeue packets faster.
2445 */
2446 contended = qdisc_is_running(q);
2447 if (unlikely(contended))
2448 spin_lock(&q->busylock);
2449
2450 spin_lock(root_lock);
2451 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2452 kfree_skb(skb);
2453 rc = NET_XMIT_DROP;
2454 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2455 qdisc_run_begin(q)) {
2456 /*
2457 * This is a work-conserving queue; there are no old skbs
2458 * waiting to be sent out; and the qdisc is not running -
2459 * xmit the skb directly.
2460 */
2461 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2462 skb_dst_force(skb);
2463
2464 qdisc_bstats_update(q, skb);
2465
2466 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2467 if (unlikely(contended)) {
2468 spin_unlock(&q->busylock);
2469 contended = false;
2470 }
2471 __qdisc_run(q);
2472 } else
2473 qdisc_run_end(q);
2474
2475 rc = NET_XMIT_SUCCESS;
2476 } else {
2477 skb_dst_force(skb);
2478 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2479 if (qdisc_run_begin(q)) {
2480 if (unlikely(contended)) {
2481 spin_unlock(&q->busylock);
2482 contended = false;
2483 }
2484 __qdisc_run(q);
2485 }
2486 }
2487 spin_unlock(root_lock);
2488 if (unlikely(contended))
2489 spin_unlock(&q->busylock);
2490 return rc;
2491}
2492
2493#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2494static void skb_update_prio(struct sk_buff *skb)
2495{
2496 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2497
2498 if ((!skb->priority) && (skb->sk) && map)
2499 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2500}
2501#else
2502#define skb_update_prio(skb)
2503#endif
2504
2505static DEFINE_PER_CPU(int, xmit_recursion);
2506#define RECURSION_LIMIT 10
2507
2508/**
2509 * dev_queue_xmit - transmit a buffer
2510 * @skb: buffer to transmit
2511 *
2512 * Queue a buffer for transmission to a network device. The caller must
2513 * have set the device and priority and built the buffer before calling
2514 * this function. The function can be called from an interrupt.
2515 *
2516 * A negative errno code is returned on a failure. A success does not
2517 * guarantee the frame will be transmitted as it may be dropped due
2518 * to congestion or traffic shaping.
2519 *
2520 * -----------------------------------------------------------------------------------
2521 * I notice this method can also return errors from the queue disciplines,
2522 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2523 * be positive.
2524 *
2525 * Regardless of the return value, the skb is consumed, so it is currently
2526 * difficult to retry a send to this method. (You can bump the ref count
2527 * before sending to hold a reference for retry if you are careful.)
2528 *
2529 * When calling this method, interrupts MUST be enabled. This is because
2530 * the BH enable code must have IRQs enabled so that it will not deadlock.
2531 * --BLG
2532 */
2533int dev_queue_xmit(struct sk_buff *skb)
2534{
2535 struct net_device *dev = skb->dev;
2536 struct netdev_queue *txq;
2537 struct Qdisc *q;
2538 int rc = -ENOMEM;
2539
2540 /* Disable soft irqs for various locks below. Also
2541 * stops preemption for RCU.
2542 */
2543 rcu_read_lock_bh();
2544
2545 skb_update_prio(skb);
2546
2547 txq = dev_pick_tx(dev, skb);
2548 q = rcu_dereference_bh(txq->qdisc);
2549
2550#ifdef CONFIG_NET_CLS_ACT
2551 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2552#endif
2553 trace_net_dev_queue(skb);
2554 if (q->enqueue) {
2555 rc = __dev_xmit_skb(skb, q, dev, txq);
2556 goto out;
2557 }
2558
2559 /* The device has no queue. Common case for software devices:
2560 loopback, all the sorts of tunnels...
2561
2562 Really, it is unlikely that netif_tx_lock protection is necessary
2563 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2564 counters.)
2565 However, it is possible, that they rely on protection
2566 made by us here.
2567
2568 Check this and shot the lock. It is not prone from deadlocks.
2569 Either shot noqueue qdisc, it is even simpler 8)
2570 */
2571 if (dev->flags & IFF_UP) {
2572 int cpu = smp_processor_id(); /* ok because BHs are off */
2573
2574 if (txq->xmit_lock_owner != cpu) {
2575
2576 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2577 goto recursion_alert;
2578
2579 HARD_TX_LOCK(dev, txq, cpu);
2580
2581 if (!netif_xmit_stopped(txq)) {
2582 __this_cpu_inc(xmit_recursion);
2583 rc = dev_hard_start_xmit(skb, dev, txq);
2584 __this_cpu_dec(xmit_recursion);
2585 if (dev_xmit_complete(rc)) {
2586 HARD_TX_UNLOCK(dev, txq);
2587 goto out;
2588 }
2589 }
2590 HARD_TX_UNLOCK(dev, txq);
2591 if (net_ratelimit())
2592 pr_crit("Virtual device %s asks to queue packet!\n",
2593 dev->name);
2594 } else {
2595 /* Recursion is detected! It is possible,
2596 * unfortunately
2597 */
2598recursion_alert:
2599 if (net_ratelimit())
2600 pr_crit("Dead loop on virtual device %s, fix it urgently!\n",
2601 dev->name);
2602 }
2603 }
2604
2605 rc = -ENETDOWN;
2606 rcu_read_unlock_bh();
2607
2608 kfree_skb(skb);
2609 return rc;
2610out:
2611 rcu_read_unlock_bh();
2612 return rc;
2613}
2614EXPORT_SYMBOL(dev_queue_xmit);
2615
2616
2617/*=======================================================================
2618 Receiver routines
2619 =======================================================================*/
2620
2621int netdev_max_backlog __read_mostly = 1000;
2622int netdev_tstamp_prequeue __read_mostly = 1;
2623int netdev_budget __read_mostly = 300;
2624int weight_p __read_mostly = 64; /* old backlog weight */
2625
2626/* Called with irq disabled */
2627static inline void ____napi_schedule(struct softnet_data *sd,
2628 struct napi_struct *napi)
2629{
2630 list_add_tail(&napi->poll_list, &sd->poll_list);
2631 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2632}
2633
2634/*
2635 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2636 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2637 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2638 * if hash is a canonical 4-tuple hash over transport ports.
2639 */
2640void __skb_get_rxhash(struct sk_buff *skb)
2641{
2642 struct flow_keys keys;
2643 u32 hash;
2644
2645 if (!skb_flow_dissect(skb, &keys))
2646 return;
2647
2648 if (keys.ports) {
2649 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2650 swap(keys.port16[0], keys.port16[1]);
2651 skb->l4_rxhash = 1;
2652 }
2653
2654 /* get a consistent hash (same value on both flow directions) */
2655 if ((__force u32)keys.dst < (__force u32)keys.src)
2656 swap(keys.dst, keys.src);
2657
2658 hash = jhash_3words((__force u32)keys.dst,
2659 (__force u32)keys.src,
2660 (__force u32)keys.ports, hashrnd);
2661 if (!hash)
2662 hash = 1;
2663
2664 skb->rxhash = hash;
2665}
2666EXPORT_SYMBOL(__skb_get_rxhash);
2667
2668#ifdef CONFIG_RPS
2669
2670/* One global table that all flow-based protocols share. */
2671struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2672EXPORT_SYMBOL(rps_sock_flow_table);
2673
2674struct static_key rps_needed __read_mostly;
2675
2676static struct rps_dev_flow *
2677set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2678 struct rps_dev_flow *rflow, u16 next_cpu)
2679{
2680 if (next_cpu != RPS_NO_CPU) {
2681#ifdef CONFIG_RFS_ACCEL
2682 struct netdev_rx_queue *rxqueue;
2683 struct rps_dev_flow_table *flow_table;
2684 struct rps_dev_flow *old_rflow;
2685 u32 flow_id;
2686 u16 rxq_index;
2687 int rc;
2688
2689 /* Should we steer this flow to a different hardware queue? */
2690 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2691 !(dev->features & NETIF_F_NTUPLE))
2692 goto out;
2693 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2694 if (rxq_index == skb_get_rx_queue(skb))
2695 goto out;
2696
2697 rxqueue = dev->_rx + rxq_index;
2698 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2699 if (!flow_table)
2700 goto out;
2701 flow_id = skb->rxhash & flow_table->mask;
2702 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2703 rxq_index, flow_id);
2704 if (rc < 0)
2705 goto out;
2706 old_rflow = rflow;
2707 rflow = &flow_table->flows[flow_id];
2708 rflow->filter = rc;
2709 if (old_rflow->filter == rflow->filter)
2710 old_rflow->filter = RPS_NO_FILTER;
2711 out:
2712#endif
2713 rflow->last_qtail =
2714 per_cpu(softnet_data, next_cpu).input_queue_head;
2715 }
2716
2717 rflow->cpu = next_cpu;
2718 return rflow;
2719}
2720
2721/*
2722 * get_rps_cpu is called from netif_receive_skb and returns the target
2723 * CPU from the RPS map of the receiving queue for a given skb.
2724 * rcu_read_lock must be held on entry.
2725 */
2726static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2727 struct rps_dev_flow **rflowp)
2728{
2729 struct netdev_rx_queue *rxqueue;
2730 struct rps_map *map;
2731 struct rps_dev_flow_table *flow_table;
2732 struct rps_sock_flow_table *sock_flow_table;
2733 int cpu = -1;
2734 u16 tcpu;
2735
2736 if (skb_rx_queue_recorded(skb)) {
2737 u16 index = skb_get_rx_queue(skb);
2738 if (unlikely(index >= dev->real_num_rx_queues)) {
2739 WARN_ONCE(dev->real_num_rx_queues > 1,
2740 "%s received packet on queue %u, but number "
2741 "of RX queues is %u\n",
2742 dev->name, index, dev->real_num_rx_queues);
2743 goto done;
2744 }
2745 rxqueue = dev->_rx + index;
2746 } else
2747 rxqueue = dev->_rx;
2748
2749 map = rcu_dereference(rxqueue->rps_map);
2750 if (map) {
2751 if (map->len == 1 &&
2752 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2753 tcpu = map->cpus[0];
2754 if (cpu_online(tcpu))
2755 cpu = tcpu;
2756 goto done;
2757 }
2758 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2759 goto done;
2760 }
2761
2762 skb_reset_network_header(skb);
2763 if (!skb_get_rxhash(skb))
2764 goto done;
2765
2766 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2767 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2768 if (flow_table && sock_flow_table) {
2769 u16 next_cpu;
2770 struct rps_dev_flow *rflow;
2771
2772 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2773 tcpu = rflow->cpu;
2774
2775 next_cpu = sock_flow_table->ents[skb->rxhash &
2776 sock_flow_table->mask];
2777
2778 /*
2779 * If the desired CPU (where last recvmsg was done) is
2780 * different from current CPU (one in the rx-queue flow
2781 * table entry), switch if one of the following holds:
2782 * - Current CPU is unset (equal to RPS_NO_CPU).
2783 * - Current CPU is offline.
2784 * - The current CPU's queue tail has advanced beyond the
2785 * last packet that was enqueued using this table entry.
2786 * This guarantees that all previous packets for the flow
2787 * have been dequeued, thus preserving in order delivery.
2788 */
2789 if (unlikely(tcpu != next_cpu) &&
2790 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2791 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2792 rflow->last_qtail)) >= 0))
2793 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2794
2795 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2796 *rflowp = rflow;
2797 cpu = tcpu;
2798 goto done;
2799 }
2800 }
2801
2802 if (map) {
2803 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2804
2805 if (cpu_online(tcpu)) {
2806 cpu = tcpu;
2807 goto done;
2808 }
2809 }
2810
2811done:
2812 return cpu;
2813}
2814
2815#ifdef CONFIG_RFS_ACCEL
2816
2817/**
2818 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2819 * @dev: Device on which the filter was set
2820 * @rxq_index: RX queue index
2821 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2822 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2823 *
2824 * Drivers that implement ndo_rx_flow_steer() should periodically call
2825 * this function for each installed filter and remove the filters for
2826 * which it returns %true.
2827 */
2828bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2829 u32 flow_id, u16 filter_id)
2830{
2831 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2832 struct rps_dev_flow_table *flow_table;
2833 struct rps_dev_flow *rflow;
2834 bool expire = true;
2835 int cpu;
2836
2837 rcu_read_lock();
2838 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2839 if (flow_table && flow_id <= flow_table->mask) {
2840 rflow = &flow_table->flows[flow_id];
2841 cpu = ACCESS_ONCE(rflow->cpu);
2842 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2843 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2844 rflow->last_qtail) <
2845 (int)(10 * flow_table->mask)))
2846 expire = false;
2847 }
2848 rcu_read_unlock();
2849 return expire;
2850}
2851EXPORT_SYMBOL(rps_may_expire_flow);
2852
2853#endif /* CONFIG_RFS_ACCEL */
2854
2855/* Called from hardirq (IPI) context */
2856static void rps_trigger_softirq(void *data)
2857{
2858 struct softnet_data *sd = data;
2859
2860 ____napi_schedule(sd, &sd->backlog);
2861 sd->received_rps++;
2862}
2863
2864#endif /* CONFIG_RPS */
2865
2866/*
2867 * Check if this softnet_data structure is another cpu one
2868 * If yes, queue it to our IPI list and return 1
2869 * If no, return 0
2870 */
2871static int rps_ipi_queued(struct softnet_data *sd)
2872{
2873#ifdef CONFIG_RPS
2874 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2875
2876 if (sd != mysd) {
2877 sd->rps_ipi_next = mysd->rps_ipi_list;
2878 mysd->rps_ipi_list = sd;
2879
2880 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2881 return 1;
2882 }
2883#endif /* CONFIG_RPS */
2884 return 0;
2885}
2886
2887/*
2888 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2889 * queue (may be a remote CPU queue).
2890 */
2891static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2892 unsigned int *qtail)
2893{
2894 struct softnet_data *sd;
2895 unsigned long flags;
2896
2897 sd = &per_cpu(softnet_data, cpu);
2898
2899 local_irq_save(flags);
2900
2901 rps_lock(sd);
2902 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2903 if (skb_queue_len(&sd->input_pkt_queue)) {
2904enqueue:
2905 __skb_queue_tail(&sd->input_pkt_queue, skb);
2906 input_queue_tail_incr_save(sd, qtail);
2907 rps_unlock(sd);
2908 local_irq_restore(flags);
2909 return NET_RX_SUCCESS;
2910 }
2911
2912 /* Schedule NAPI for backlog device
2913 * We can use non atomic operation since we own the queue lock
2914 */
2915 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2916 if (!rps_ipi_queued(sd))
2917 ____napi_schedule(sd, &sd->backlog);
2918 }
2919 goto enqueue;
2920 }
2921
2922 sd->dropped++;
2923 rps_unlock(sd);
2924
2925 local_irq_restore(flags);
2926
2927 atomic_long_inc(&skb->dev->rx_dropped);
2928 kfree_skb(skb);
2929 return NET_RX_DROP;
2930}
2931
2932/**
2933 * netif_rx - post buffer to the network code
2934 * @skb: buffer to post
2935 *
2936 * This function receives a packet from a device driver and queues it for
2937 * the upper (protocol) levels to process. It always succeeds. The buffer
2938 * may be dropped during processing for congestion control or by the
2939 * protocol layers.
2940 *
2941 * return values:
2942 * NET_RX_SUCCESS (no congestion)
2943 * NET_RX_DROP (packet was dropped)
2944 *
2945 */
2946
2947int netif_rx(struct sk_buff *skb)
2948{
2949 int ret;
2950
2951 /* if netpoll wants it, pretend we never saw it */
2952 if (netpoll_rx(skb))
2953 return NET_RX_DROP;
2954
2955 net_timestamp_check(netdev_tstamp_prequeue, skb);
2956
2957 trace_netif_rx(skb);
2958#ifdef CONFIG_RPS
2959 if (static_key_false(&rps_needed)) {
2960 struct rps_dev_flow voidflow, *rflow = &voidflow;
2961 int cpu;
2962
2963 preempt_disable();
2964 rcu_read_lock();
2965
2966 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2967 if (cpu < 0)
2968 cpu = smp_processor_id();
2969
2970 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2971
2972 rcu_read_unlock();
2973 preempt_enable();
2974 } else
2975#endif
2976 {
2977 unsigned int qtail;
2978 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2979 put_cpu();
2980 }
2981 return ret;
2982}
2983EXPORT_SYMBOL(netif_rx);
2984
2985int netif_rx_ni(struct sk_buff *skb)
2986{
2987 int err;
2988
2989 preempt_disable();
2990 err = netif_rx(skb);
2991 if (local_softirq_pending())
2992 do_softirq();
2993 preempt_enable();
2994
2995 return err;
2996}
2997EXPORT_SYMBOL(netif_rx_ni);
2998
2999static void net_tx_action(struct softirq_action *h)
3000{
3001 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3002
3003 if (sd->completion_queue) {
3004 struct sk_buff *clist;
3005
3006 local_irq_disable();
3007 clist = sd->completion_queue;
3008 sd->completion_queue = NULL;
3009 local_irq_enable();
3010
3011 while (clist) {
3012 struct sk_buff *skb = clist;
3013 clist = clist->next;
3014
3015 WARN_ON(atomic_read(&skb->users));
3016 trace_kfree_skb(skb, net_tx_action);
3017 __kfree_skb(skb);
3018 }
3019 }
3020
3021 if (sd->output_queue) {
3022 struct Qdisc *head;
3023
3024 local_irq_disable();
3025 head = sd->output_queue;
3026 sd->output_queue = NULL;
3027 sd->output_queue_tailp = &sd->output_queue;
3028 local_irq_enable();
3029
3030 while (head) {
3031 struct Qdisc *q = head;
3032 spinlock_t *root_lock;
3033
3034 head = head->next_sched;
3035
3036 root_lock = qdisc_lock(q);
3037 if (spin_trylock(root_lock)) {
3038 smp_mb__before_clear_bit();
3039 clear_bit(__QDISC_STATE_SCHED,
3040 &q->state);
3041 qdisc_run(q);
3042 spin_unlock(root_lock);
3043 } else {
3044 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3045 &q->state)) {
3046 __netif_reschedule(q);
3047 } else {
3048 smp_mb__before_clear_bit();
3049 clear_bit(__QDISC_STATE_SCHED,
3050 &q->state);
3051 }
3052 }
3053 }
3054 }
3055}
3056
3057#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3058 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3059/* This hook is defined here for ATM LANE */
3060int (*br_fdb_test_addr_hook)(struct net_device *dev,
3061 unsigned char *addr) __read_mostly;
3062EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3063#endif
3064
3065#ifdef CONFIG_NET_CLS_ACT
3066/* TODO: Maybe we should just force sch_ingress to be compiled in
3067 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3068 * a compare and 2 stores extra right now if we dont have it on
3069 * but have CONFIG_NET_CLS_ACT
3070 * NOTE: This doesn't stop any functionality; if you dont have
3071 * the ingress scheduler, you just can't add policies on ingress.
3072 *
3073 */
3074static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3075{
3076 struct net_device *dev = skb->dev;
3077 u32 ttl = G_TC_RTTL(skb->tc_verd);
3078 int result = TC_ACT_OK;
3079 struct Qdisc *q;
3080
3081 if (unlikely(MAX_RED_LOOP < ttl++)) {
3082 if (net_ratelimit())
3083 pr_warn("Redir loop detected Dropping packet (%d->%d)\n",
3084 skb->skb_iif, dev->ifindex);
3085 return TC_ACT_SHOT;
3086 }
3087
3088 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3089 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3090
3091 q = rxq->qdisc;
3092 if (q != &noop_qdisc) {
3093 spin_lock(qdisc_lock(q));
3094 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3095 result = qdisc_enqueue_root(skb, q);
3096 spin_unlock(qdisc_lock(q));
3097 }
3098
3099 return result;
3100}
3101
3102static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3103 struct packet_type **pt_prev,
3104 int *ret, struct net_device *orig_dev)
3105{
3106 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3107
3108 if (!rxq || rxq->qdisc == &noop_qdisc)
3109 goto out;
3110
3111 if (*pt_prev) {
3112 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3113 *pt_prev = NULL;
3114 }
3115
3116 switch (ing_filter(skb, rxq)) {
3117 case TC_ACT_SHOT:
3118 case TC_ACT_STOLEN:
3119 kfree_skb(skb);
3120 return NULL;
3121 }
3122
3123out:
3124 skb->tc_verd = 0;
3125 return skb;
3126}
3127#endif
3128
3129/**
3130 * netdev_rx_handler_register - register receive handler
3131 * @dev: device to register a handler for
3132 * @rx_handler: receive handler to register
3133 * @rx_handler_data: data pointer that is used by rx handler
3134 *
3135 * Register a receive hander for a device. This handler will then be
3136 * called from __netif_receive_skb. A negative errno code is returned
3137 * on a failure.
3138 *
3139 * The caller must hold the rtnl_mutex.
3140 *
3141 * For a general description of rx_handler, see enum rx_handler_result.
3142 */
3143int netdev_rx_handler_register(struct net_device *dev,
3144 rx_handler_func_t *rx_handler,
3145 void *rx_handler_data)
3146{
3147 ASSERT_RTNL();
3148
3149 if (dev->rx_handler)
3150 return -EBUSY;
3151
3152 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3153 rcu_assign_pointer(dev->rx_handler, rx_handler);
3154
3155 return 0;
3156}
3157EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3158
3159/**
3160 * netdev_rx_handler_unregister - unregister receive handler
3161 * @dev: device to unregister a handler from
3162 *
3163 * Unregister a receive hander from a device.
3164 *
3165 * The caller must hold the rtnl_mutex.
3166 */
3167void netdev_rx_handler_unregister(struct net_device *dev)
3168{
3169
3170 ASSERT_RTNL();
3171 RCU_INIT_POINTER(dev->rx_handler, NULL);
3172 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3173}
3174EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3175
3176static int __netif_receive_skb(struct sk_buff *skb)
3177{
3178 struct packet_type *ptype, *pt_prev;
3179 rx_handler_func_t *rx_handler;
3180 struct net_device *orig_dev;
3181 struct net_device *null_or_dev;
3182 bool deliver_exact = false;
3183 int ret = NET_RX_DROP;
3184 __be16 type;
3185
3186 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3187
3188 trace_netif_receive_skb(skb);
3189
3190 /* if we've gotten here through NAPI, check netpoll */
3191 if (netpoll_receive_skb(skb))
3192 return NET_RX_DROP;
3193
3194 if (!skb->skb_iif)
3195 skb->skb_iif = skb->dev->ifindex;
3196 orig_dev = skb->dev;
3197
3198 skb_reset_network_header(skb);
3199 skb_reset_transport_header(skb);
3200 skb_reset_mac_len(skb);
3201
3202 pt_prev = NULL;
3203
3204 rcu_read_lock();
3205
3206another_round:
3207
3208 __this_cpu_inc(softnet_data.processed);
3209
3210 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3211 skb = vlan_untag(skb);
3212 if (unlikely(!skb))
3213 goto out;
3214 }
3215
3216#ifdef CONFIG_NET_CLS_ACT
3217 if (skb->tc_verd & TC_NCLS) {
3218 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3219 goto ncls;
3220 }
3221#endif
3222
3223 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3224 if (!ptype->dev || ptype->dev == skb->dev) {
3225 if (pt_prev)
3226 ret = deliver_skb(skb, pt_prev, orig_dev);
3227 pt_prev = ptype;
3228 }
3229 }
3230
3231#ifdef CONFIG_NET_CLS_ACT
3232 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3233 if (!skb)
3234 goto out;
3235ncls:
3236#endif
3237
3238 rx_handler = rcu_dereference(skb->dev->rx_handler);
3239 if (vlan_tx_tag_present(skb)) {
3240 if (pt_prev) {
3241 ret = deliver_skb(skb, pt_prev, orig_dev);
3242 pt_prev = NULL;
3243 }
3244 if (vlan_do_receive(&skb, !rx_handler))
3245 goto another_round;
3246 else if (unlikely(!skb))
3247 goto out;
3248 }
3249
3250 if (rx_handler) {
3251 if (pt_prev) {
3252 ret = deliver_skb(skb, pt_prev, orig_dev);
3253 pt_prev = NULL;
3254 }
3255 switch (rx_handler(&skb)) {
3256 case RX_HANDLER_CONSUMED:
3257 goto out;
3258 case RX_HANDLER_ANOTHER:
3259 goto another_round;
3260 case RX_HANDLER_EXACT:
3261 deliver_exact = true;
3262 case RX_HANDLER_PASS:
3263 break;
3264 default:
3265 BUG();
3266 }
3267 }
3268
3269 /* deliver only exact match when indicated */
3270 null_or_dev = deliver_exact ? skb->dev : NULL;
3271
3272 type = skb->protocol;
3273 list_for_each_entry_rcu(ptype,
3274 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3275 if (ptype->type == type &&
3276 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3277 ptype->dev == orig_dev)) {
3278 if (pt_prev)
3279 ret = deliver_skb(skb, pt_prev, orig_dev);
3280 pt_prev = ptype;
3281 }
3282 }
3283
3284 if (pt_prev) {
3285 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3286 } else {
3287 atomic_long_inc(&skb->dev->rx_dropped);
3288 kfree_skb(skb);
3289 /* Jamal, now you will not able to escape explaining
3290 * me how you were going to use this. :-)
3291 */
3292 ret = NET_RX_DROP;
3293 }
3294
3295out:
3296 rcu_read_unlock();
3297 return ret;
3298}
3299
3300/**
3301 * netif_receive_skb - process receive buffer from network
3302 * @skb: buffer to process
3303 *
3304 * netif_receive_skb() is the main receive data processing function.
3305 * It always succeeds. The buffer may be dropped during processing
3306 * for congestion control or by the protocol layers.
3307 *
3308 * This function may only be called from softirq context and interrupts
3309 * should be enabled.
3310 *
3311 * Return values (usually ignored):
3312 * NET_RX_SUCCESS: no congestion
3313 * NET_RX_DROP: packet was dropped
3314 */
3315int netif_receive_skb(struct sk_buff *skb)
3316{
3317 net_timestamp_check(netdev_tstamp_prequeue, skb);
3318
3319 if (skb_defer_rx_timestamp(skb))
3320 return NET_RX_SUCCESS;
3321
3322#ifdef CONFIG_RPS
3323 if (static_key_false(&rps_needed)) {
3324 struct rps_dev_flow voidflow, *rflow = &voidflow;
3325 int cpu, ret;
3326
3327 rcu_read_lock();
3328
3329 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3330
3331 if (cpu >= 0) {
3332 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3333 rcu_read_unlock();
3334 return ret;
3335 }
3336 rcu_read_unlock();
3337 }
3338#endif
3339 return __netif_receive_skb(skb);
3340}
3341EXPORT_SYMBOL(netif_receive_skb);
3342
3343/* Network device is going away, flush any packets still pending
3344 * Called with irqs disabled.
3345 */
3346static void flush_backlog(void *arg)
3347{
3348 struct net_device *dev = arg;
3349 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3350 struct sk_buff *skb, *tmp;
3351
3352 rps_lock(sd);
3353 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3354 if (skb->dev == dev) {
3355 __skb_unlink(skb, &sd->input_pkt_queue);
3356 kfree_skb(skb);
3357 input_queue_head_incr(sd);
3358 }
3359 }
3360 rps_unlock(sd);
3361
3362 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3363 if (skb->dev == dev) {
3364 __skb_unlink(skb, &sd->process_queue);
3365 kfree_skb(skb);
3366 input_queue_head_incr(sd);
3367 }
3368 }
3369}
3370
3371static int napi_gro_complete(struct sk_buff *skb)
3372{
3373 struct packet_type *ptype;
3374 __be16 type = skb->protocol;
3375 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3376 int err = -ENOENT;
3377
3378 if (NAPI_GRO_CB(skb)->count == 1) {
3379 skb_shinfo(skb)->gso_size = 0;
3380 goto out;
3381 }
3382
3383 rcu_read_lock();
3384 list_for_each_entry_rcu(ptype, head, list) {
3385 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3386 continue;
3387
3388 err = ptype->gro_complete(skb);
3389 break;
3390 }
3391 rcu_read_unlock();
3392
3393 if (err) {
3394 WARN_ON(&ptype->list == head);
3395 kfree_skb(skb);
3396 return NET_RX_SUCCESS;
3397 }
3398
3399out:
3400 return netif_receive_skb(skb);
3401}
3402
3403inline void napi_gro_flush(struct napi_struct *napi)
3404{
3405 struct sk_buff *skb, *next;
3406
3407 for (skb = napi->gro_list; skb; skb = next) {
3408 next = skb->next;
3409 skb->next = NULL;
3410 napi_gro_complete(skb);
3411 }
3412
3413 napi->gro_count = 0;
3414 napi->gro_list = NULL;
3415}
3416EXPORT_SYMBOL(napi_gro_flush);
3417
3418enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3419{
3420 struct sk_buff **pp = NULL;
3421 struct packet_type *ptype;
3422 __be16 type = skb->protocol;
3423 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3424 int same_flow;
3425 int mac_len;
3426 enum gro_result ret;
3427
3428 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3429 goto normal;
3430
3431 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3432 goto normal;
3433
3434 rcu_read_lock();
3435 list_for_each_entry_rcu(ptype, head, list) {
3436 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3437 continue;
3438
3439 skb_set_network_header(skb, skb_gro_offset(skb));
3440 mac_len = skb->network_header - skb->mac_header;
3441 skb->mac_len = mac_len;
3442 NAPI_GRO_CB(skb)->same_flow = 0;
3443 NAPI_GRO_CB(skb)->flush = 0;
3444 NAPI_GRO_CB(skb)->free = 0;
3445
3446 pp = ptype->gro_receive(&napi->gro_list, skb);
3447 break;
3448 }
3449 rcu_read_unlock();
3450
3451 if (&ptype->list == head)
3452 goto normal;
3453
3454 same_flow = NAPI_GRO_CB(skb)->same_flow;
3455 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3456
3457 if (pp) {
3458 struct sk_buff *nskb = *pp;
3459
3460 *pp = nskb->next;
3461 nskb->next = NULL;
3462 napi_gro_complete(nskb);
3463 napi->gro_count--;
3464 }
3465
3466 if (same_flow)
3467 goto ok;
3468
3469 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3470 goto normal;
3471
3472 napi->gro_count++;
3473 NAPI_GRO_CB(skb)->count = 1;
3474 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3475 skb->next = napi->gro_list;
3476 napi->gro_list = skb;
3477 ret = GRO_HELD;
3478
3479pull:
3480 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3481 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3482
3483 BUG_ON(skb->end - skb->tail < grow);
3484
3485 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3486
3487 skb->tail += grow;
3488 skb->data_len -= grow;
3489
3490 skb_shinfo(skb)->frags[0].page_offset += grow;
3491 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3492
3493 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3494 skb_frag_unref(skb, 0);
3495 memmove(skb_shinfo(skb)->frags,
3496 skb_shinfo(skb)->frags + 1,
3497 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3498 }
3499 }
3500
3501ok:
3502 return ret;
3503
3504normal:
3505 ret = GRO_NORMAL;
3506 goto pull;
3507}
3508EXPORT_SYMBOL(dev_gro_receive);
3509
3510static inline gro_result_t
3511__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3512{
3513 struct sk_buff *p;
3514 unsigned int maclen = skb->dev->hard_header_len;
3515
3516 for (p = napi->gro_list; p; p = p->next) {
3517 unsigned long diffs;
3518
3519 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3520 diffs |= p->vlan_tci ^ skb->vlan_tci;
3521 if (maclen == ETH_HLEN)
3522 diffs |= compare_ether_header(skb_mac_header(p),
3523 skb_gro_mac_header(skb));
3524 else if (!diffs)
3525 diffs = memcmp(skb_mac_header(p),
3526 skb_gro_mac_header(skb),
3527 maclen);
3528 NAPI_GRO_CB(p)->same_flow = !diffs;
3529 NAPI_GRO_CB(p)->flush = 0;
3530 }
3531
3532 return dev_gro_receive(napi, skb);
3533}
3534
3535gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3536{
3537 switch (ret) {
3538 case GRO_NORMAL:
3539 if (netif_receive_skb(skb))
3540 ret = GRO_DROP;
3541 break;
3542
3543 case GRO_DROP:
3544 case GRO_MERGED_FREE:
3545 kfree_skb(skb);
3546 break;
3547
3548 case GRO_HELD:
3549 case GRO_MERGED:
3550 break;
3551 }
3552
3553 return ret;
3554}
3555EXPORT_SYMBOL(napi_skb_finish);
3556
3557void skb_gro_reset_offset(struct sk_buff *skb)
3558{
3559 NAPI_GRO_CB(skb)->data_offset = 0;
3560 NAPI_GRO_CB(skb)->frag0 = NULL;
3561 NAPI_GRO_CB(skb)->frag0_len = 0;
3562
3563 if (skb->mac_header == skb->tail &&
3564 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3565 NAPI_GRO_CB(skb)->frag0 =
3566 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3567 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3568 }
3569}
3570EXPORT_SYMBOL(skb_gro_reset_offset);
3571
3572gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3573{
3574 skb_gro_reset_offset(skb);
3575
3576 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3577}
3578EXPORT_SYMBOL(napi_gro_receive);
3579
3580static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3581{
3582 __skb_pull(skb, skb_headlen(skb));
3583 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3584 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3585 skb->vlan_tci = 0;
3586 skb->dev = napi->dev;
3587 skb->skb_iif = 0;
3588
3589 napi->skb = skb;
3590}
3591
3592struct sk_buff *napi_get_frags(struct napi_struct *napi)
3593{
3594 struct sk_buff *skb = napi->skb;
3595
3596 if (!skb) {
3597 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3598 if (skb)
3599 napi->skb = skb;
3600 }
3601 return skb;
3602}
3603EXPORT_SYMBOL(napi_get_frags);
3604
3605gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3606 gro_result_t ret)
3607{
3608 switch (ret) {
3609 case GRO_NORMAL:
3610 case GRO_HELD:
3611 skb->protocol = eth_type_trans(skb, skb->dev);
3612
3613 if (ret == GRO_HELD)
3614 skb_gro_pull(skb, -ETH_HLEN);
3615 else if (netif_receive_skb(skb))
3616 ret = GRO_DROP;
3617 break;
3618
3619 case GRO_DROP:
3620 case GRO_MERGED_FREE:
3621 napi_reuse_skb(napi, skb);
3622 break;
3623
3624 case GRO_MERGED:
3625 break;
3626 }
3627
3628 return ret;
3629}
3630EXPORT_SYMBOL(napi_frags_finish);
3631
3632struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3633{
3634 struct sk_buff *skb = napi->skb;
3635 struct ethhdr *eth;
3636 unsigned int hlen;
3637 unsigned int off;
3638
3639 napi->skb = NULL;
3640
3641 skb_reset_mac_header(skb);
3642 skb_gro_reset_offset(skb);
3643
3644 off = skb_gro_offset(skb);
3645 hlen = off + sizeof(*eth);
3646 eth = skb_gro_header_fast(skb, off);
3647 if (skb_gro_header_hard(skb, hlen)) {
3648 eth = skb_gro_header_slow(skb, hlen, off);
3649 if (unlikely(!eth)) {
3650 napi_reuse_skb(napi, skb);
3651 skb = NULL;
3652 goto out;
3653 }
3654 }
3655
3656 skb_gro_pull(skb, sizeof(*eth));
3657
3658 /*
3659 * This works because the only protocols we care about don't require
3660 * special handling. We'll fix it up properly at the end.
3661 */
3662 skb->protocol = eth->h_proto;
3663
3664out:
3665 return skb;
3666}
3667EXPORT_SYMBOL(napi_frags_skb);
3668
3669gro_result_t napi_gro_frags(struct napi_struct *napi)
3670{
3671 struct sk_buff *skb = napi_frags_skb(napi);
3672
3673 if (!skb)
3674 return GRO_DROP;
3675
3676 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3677}
3678EXPORT_SYMBOL(napi_gro_frags);
3679
3680/*
3681 * net_rps_action sends any pending IPI's for rps.
3682 * Note: called with local irq disabled, but exits with local irq enabled.
3683 */
3684static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3685{
3686#ifdef CONFIG_RPS
3687 struct softnet_data *remsd = sd->rps_ipi_list;
3688
3689 if (remsd) {
3690 sd->rps_ipi_list = NULL;
3691
3692 local_irq_enable();
3693
3694 /* Send pending IPI's to kick RPS processing on remote cpus. */
3695 while (remsd) {
3696 struct softnet_data *next = remsd->rps_ipi_next;
3697
3698 if (cpu_online(remsd->cpu))
3699 __smp_call_function_single(remsd->cpu,
3700 &remsd->csd, 0);
3701 remsd = next;
3702 }
3703 } else
3704#endif
3705 local_irq_enable();
3706}
3707
3708static int process_backlog(struct napi_struct *napi, int quota)
3709{
3710 int work = 0;
3711 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3712
3713#ifdef CONFIG_RPS
3714 /* Check if we have pending ipi, its better to send them now,
3715 * not waiting net_rx_action() end.
3716 */
3717 if (sd->rps_ipi_list) {
3718 local_irq_disable();
3719 net_rps_action_and_irq_enable(sd);
3720 }
3721#endif
3722 napi->weight = weight_p;
3723 local_irq_disable();
3724 while (work < quota) {
3725 struct sk_buff *skb;
3726 unsigned int qlen;
3727
3728 while ((skb = __skb_dequeue(&sd->process_queue))) {
3729 local_irq_enable();
3730 __netif_receive_skb(skb);
3731 local_irq_disable();
3732 input_queue_head_incr(sd);
3733 if (++work >= quota) {
3734 local_irq_enable();
3735 return work;
3736 }
3737 }
3738
3739 rps_lock(sd);
3740 qlen = skb_queue_len(&sd->input_pkt_queue);
3741 if (qlen)
3742 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3743 &sd->process_queue);
3744
3745 if (qlen < quota - work) {
3746 /*
3747 * Inline a custom version of __napi_complete().
3748 * only current cpu owns and manipulates this napi,
3749 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3750 * we can use a plain write instead of clear_bit(),
3751 * and we dont need an smp_mb() memory barrier.
3752 */
3753 list_del(&napi->poll_list);
3754 napi->state = 0;
3755
3756 quota = work + qlen;
3757 }
3758 rps_unlock(sd);
3759 }
3760 local_irq_enable();
3761
3762 return work;
3763}
3764
3765/**
3766 * __napi_schedule - schedule for receive
3767 * @n: entry to schedule
3768 *
3769 * The entry's receive function will be scheduled to run
3770 */
3771void __napi_schedule(struct napi_struct *n)
3772{
3773 unsigned long flags;
3774
3775 local_irq_save(flags);
3776 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3777 local_irq_restore(flags);
3778}
3779EXPORT_SYMBOL(__napi_schedule);
3780
3781void __napi_complete(struct napi_struct *n)
3782{
3783 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3784 BUG_ON(n->gro_list);
3785
3786 list_del(&n->poll_list);
3787 smp_mb__before_clear_bit();
3788 clear_bit(NAPI_STATE_SCHED, &n->state);
3789}
3790EXPORT_SYMBOL(__napi_complete);
3791
3792void napi_complete(struct napi_struct *n)
3793{
3794 unsigned long flags;
3795
3796 /*
3797 * don't let napi dequeue from the cpu poll list
3798 * just in case its running on a different cpu
3799 */
3800 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3801 return;
3802
3803 napi_gro_flush(n);
3804 local_irq_save(flags);
3805 __napi_complete(n);
3806 local_irq_restore(flags);
3807}
3808EXPORT_SYMBOL(napi_complete);
3809
3810void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3811 int (*poll)(struct napi_struct *, int), int weight)
3812{
3813 INIT_LIST_HEAD(&napi->poll_list);
3814 napi->gro_count = 0;
3815 napi->gro_list = NULL;
3816 napi->skb = NULL;
3817 napi->poll = poll;
3818 napi->weight = weight;
3819 list_add(&napi->dev_list, &dev->napi_list);
3820 napi->dev = dev;
3821#ifdef CONFIG_NETPOLL
3822 spin_lock_init(&napi->poll_lock);
3823 napi->poll_owner = -1;
3824#endif
3825 set_bit(NAPI_STATE_SCHED, &napi->state);
3826}
3827EXPORT_SYMBOL(netif_napi_add);
3828
3829void netif_napi_del(struct napi_struct *napi)
3830{
3831 struct sk_buff *skb, *next;
3832
3833 list_del_init(&napi->dev_list);
3834 napi_free_frags(napi);
3835
3836 for (skb = napi->gro_list; skb; skb = next) {
3837 next = skb->next;
3838 skb->next = NULL;
3839 kfree_skb(skb);
3840 }
3841
3842 napi->gro_list = NULL;
3843 napi->gro_count = 0;
3844}
3845EXPORT_SYMBOL(netif_napi_del);
3846
3847static void net_rx_action(struct softirq_action *h)
3848{
3849 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3850 unsigned long time_limit = jiffies + 2;
3851 int budget = netdev_budget;
3852 void *have;
3853
3854 local_irq_disable();
3855
3856 while (!list_empty(&sd->poll_list)) {
3857 struct napi_struct *n;
3858 int work, weight;
3859
3860 /* If softirq window is exhuasted then punt.
3861 * Allow this to run for 2 jiffies since which will allow
3862 * an average latency of 1.5/HZ.
3863 */
3864 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3865 goto softnet_break;
3866
3867 local_irq_enable();
3868
3869 /* Even though interrupts have been re-enabled, this
3870 * access is safe because interrupts can only add new
3871 * entries to the tail of this list, and only ->poll()
3872 * calls can remove this head entry from the list.
3873 */
3874 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3875
3876 have = netpoll_poll_lock(n);
3877
3878 weight = n->weight;
3879
3880 /* This NAPI_STATE_SCHED test is for avoiding a race
3881 * with netpoll's poll_napi(). Only the entity which
3882 * obtains the lock and sees NAPI_STATE_SCHED set will
3883 * actually make the ->poll() call. Therefore we avoid
3884 * accidentally calling ->poll() when NAPI is not scheduled.
3885 */
3886 work = 0;
3887 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3888 work = n->poll(n, weight);
3889 trace_napi_poll(n);
3890 }
3891
3892 WARN_ON_ONCE(work > weight);
3893
3894 budget -= work;
3895
3896 local_irq_disable();
3897
3898 /* Drivers must not modify the NAPI state if they
3899 * consume the entire weight. In such cases this code
3900 * still "owns" the NAPI instance and therefore can
3901 * move the instance around on the list at-will.
3902 */
3903 if (unlikely(work == weight)) {
3904 if (unlikely(napi_disable_pending(n))) {
3905 local_irq_enable();
3906 napi_complete(n);
3907 local_irq_disable();
3908 } else
3909 list_move_tail(&n->poll_list, &sd->poll_list);
3910 }
3911
3912 netpoll_poll_unlock(have);
3913 }
3914out:
3915 net_rps_action_and_irq_enable(sd);
3916
3917#ifdef CONFIG_NET_DMA
3918 /*
3919 * There may not be any more sk_buffs coming right now, so push
3920 * any pending DMA copies to hardware
3921 */
3922 dma_issue_pending_all();
3923#endif
3924
3925 return;
3926
3927softnet_break:
3928 sd->time_squeeze++;
3929 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3930 goto out;
3931}
3932
3933static gifconf_func_t *gifconf_list[NPROTO];
3934
3935/**
3936 * register_gifconf - register a SIOCGIF handler
3937 * @family: Address family
3938 * @gifconf: Function handler
3939 *
3940 * Register protocol dependent address dumping routines. The handler
3941 * that is passed must not be freed or reused until it has been replaced
3942 * by another handler.
3943 */
3944int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3945{
3946 if (family >= NPROTO)
3947 return -EINVAL;
3948 gifconf_list[family] = gifconf;
3949 return 0;
3950}
3951EXPORT_SYMBOL(register_gifconf);
3952
3953
3954/*
3955 * Map an interface index to its name (SIOCGIFNAME)
3956 */
3957
3958/*
3959 * We need this ioctl for efficient implementation of the
3960 * if_indextoname() function required by the IPv6 API. Without
3961 * it, we would have to search all the interfaces to find a
3962 * match. --pb
3963 */
3964
3965static int dev_ifname(struct net *net, struct ifreq __user *arg)
3966{
3967 struct net_device *dev;
3968 struct ifreq ifr;
3969
3970 /*
3971 * Fetch the caller's info block.
3972 */
3973
3974 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3975 return -EFAULT;
3976
3977 rcu_read_lock();
3978 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3979 if (!dev) {
3980 rcu_read_unlock();
3981 return -ENODEV;
3982 }
3983
3984 strcpy(ifr.ifr_name, dev->name);
3985 rcu_read_unlock();
3986
3987 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3988 return -EFAULT;
3989 return 0;
3990}
3991
3992/*
3993 * Perform a SIOCGIFCONF call. This structure will change
3994 * size eventually, and there is nothing I can do about it.
3995 * Thus we will need a 'compatibility mode'.
3996 */
3997
3998static int dev_ifconf(struct net *net, char __user *arg)
3999{
4000 struct ifconf ifc;
4001 struct net_device *dev;
4002 char __user *pos;
4003 int len;
4004 int total;
4005 int i;
4006
4007 /*
4008 * Fetch the caller's info block.
4009 */
4010
4011 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4012 return -EFAULT;
4013
4014 pos = ifc.ifc_buf;
4015 len = ifc.ifc_len;
4016
4017 /*
4018 * Loop over the interfaces, and write an info block for each.
4019 */
4020
4021 total = 0;
4022 for_each_netdev(net, dev) {
4023 for (i = 0; i < NPROTO; i++) {
4024 if (gifconf_list[i]) {
4025 int done;
4026 if (!pos)
4027 done = gifconf_list[i](dev, NULL, 0);
4028 else
4029 done = gifconf_list[i](dev, pos + total,
4030 len - total);
4031 if (done < 0)
4032 return -EFAULT;
4033 total += done;
4034 }
4035 }
4036 }
4037
4038 /*
4039 * All done. Write the updated control block back to the caller.
4040 */
4041 ifc.ifc_len = total;
4042
4043 /*
4044 * Both BSD and Solaris return 0 here, so we do too.
4045 */
4046 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4047}
4048
4049#ifdef CONFIG_PROC_FS
4050
4051#define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4052
4053#define get_bucket(x) ((x) >> BUCKET_SPACE)
4054#define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4055#define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4056
4057static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4058{
4059 struct net *net = seq_file_net(seq);
4060 struct net_device *dev;
4061 struct hlist_node *p;
4062 struct hlist_head *h;
4063 unsigned int count = 0, offset = get_offset(*pos);
4064
4065 h = &net->dev_name_head[get_bucket(*pos)];
4066 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4067 if (++count == offset)
4068 return dev;
4069 }
4070
4071 return NULL;
4072}
4073
4074static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4075{
4076 struct net_device *dev;
4077 unsigned int bucket;
4078
4079 do {
4080 dev = dev_from_same_bucket(seq, pos);
4081 if (dev)
4082 return dev;
4083
4084 bucket = get_bucket(*pos) + 1;
4085 *pos = set_bucket_offset(bucket, 1);
4086 } while (bucket < NETDEV_HASHENTRIES);
4087
4088 return NULL;
4089}
4090
4091/*
4092 * This is invoked by the /proc filesystem handler to display a device
4093 * in detail.
4094 */
4095void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4096 __acquires(RCU)
4097{
4098 rcu_read_lock();
4099 if (!*pos)
4100 return SEQ_START_TOKEN;
4101
4102 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4103 return NULL;
4104
4105 return dev_from_bucket(seq, pos);
4106}
4107
4108void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4109{
4110 ++*pos;
4111 return dev_from_bucket(seq, pos);
4112}
4113
4114void dev_seq_stop(struct seq_file *seq, void *v)
4115 __releases(RCU)
4116{
4117 rcu_read_unlock();
4118}
4119
4120static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4121{
4122 struct rtnl_link_stats64 temp;
4123 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4124
4125 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4126 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4127 dev->name, stats->rx_bytes, stats->rx_packets,
4128 stats->rx_errors,
4129 stats->rx_dropped + stats->rx_missed_errors,
4130 stats->rx_fifo_errors,
4131 stats->rx_length_errors + stats->rx_over_errors +
4132 stats->rx_crc_errors + stats->rx_frame_errors,
4133 stats->rx_compressed, stats->multicast,
4134 stats->tx_bytes, stats->tx_packets,
4135 stats->tx_errors, stats->tx_dropped,
4136 stats->tx_fifo_errors, stats->collisions,
4137 stats->tx_carrier_errors +
4138 stats->tx_aborted_errors +
4139 stats->tx_window_errors +
4140 stats->tx_heartbeat_errors,
4141 stats->tx_compressed);
4142}
4143
4144/*
4145 * Called from the PROCfs module. This now uses the new arbitrary sized
4146 * /proc/net interface to create /proc/net/dev
4147 */
4148static int dev_seq_show(struct seq_file *seq, void *v)
4149{
4150 if (v == SEQ_START_TOKEN)
4151 seq_puts(seq, "Inter-| Receive "
4152 " | Transmit\n"
4153 " face |bytes packets errs drop fifo frame "
4154 "compressed multicast|bytes packets errs "
4155 "drop fifo colls carrier compressed\n");
4156 else
4157 dev_seq_printf_stats(seq, v);
4158 return 0;
4159}
4160
4161static struct softnet_data *softnet_get_online(loff_t *pos)
4162{
4163 struct softnet_data *sd = NULL;
4164
4165 while (*pos < nr_cpu_ids)
4166 if (cpu_online(*pos)) {
4167 sd = &per_cpu(softnet_data, *pos);
4168 break;
4169 } else
4170 ++*pos;
4171 return sd;
4172}
4173
4174static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4175{
4176 return softnet_get_online(pos);
4177}
4178
4179static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4180{
4181 ++*pos;
4182 return softnet_get_online(pos);
4183}
4184
4185static void softnet_seq_stop(struct seq_file *seq, void *v)
4186{
4187}
4188
4189static int softnet_seq_show(struct seq_file *seq, void *v)
4190{
4191 struct softnet_data *sd = v;
4192
4193 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4194 sd->processed, sd->dropped, sd->time_squeeze, 0,
4195 0, 0, 0, 0, /* was fastroute */
4196 sd->cpu_collision, sd->received_rps);
4197 return 0;
4198}
4199
4200static const struct seq_operations dev_seq_ops = {
4201 .start = dev_seq_start,
4202 .next = dev_seq_next,
4203 .stop = dev_seq_stop,
4204 .show = dev_seq_show,
4205};
4206
4207static int dev_seq_open(struct inode *inode, struct file *file)
4208{
4209 return seq_open_net(inode, file, &dev_seq_ops,
4210 sizeof(struct seq_net_private));
4211}
4212
4213static const struct file_operations dev_seq_fops = {
4214 .owner = THIS_MODULE,
4215 .open = dev_seq_open,
4216 .read = seq_read,
4217 .llseek = seq_lseek,
4218 .release = seq_release_net,
4219};
4220
4221static const struct seq_operations softnet_seq_ops = {
4222 .start = softnet_seq_start,
4223 .next = softnet_seq_next,
4224 .stop = softnet_seq_stop,
4225 .show = softnet_seq_show,
4226};
4227
4228static int softnet_seq_open(struct inode *inode, struct file *file)
4229{
4230 return seq_open(file, &softnet_seq_ops);
4231}
4232
4233static const struct file_operations softnet_seq_fops = {
4234 .owner = THIS_MODULE,
4235 .open = softnet_seq_open,
4236 .read = seq_read,
4237 .llseek = seq_lseek,
4238 .release = seq_release,
4239};
4240
4241static void *ptype_get_idx(loff_t pos)
4242{
4243 struct packet_type *pt = NULL;
4244 loff_t i = 0;
4245 int t;
4246
4247 list_for_each_entry_rcu(pt, &ptype_all, list) {
4248 if (i == pos)
4249 return pt;
4250 ++i;
4251 }
4252
4253 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4254 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4255 if (i == pos)
4256 return pt;
4257 ++i;
4258 }
4259 }
4260 return NULL;
4261}
4262
4263static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4264 __acquires(RCU)
4265{
4266 rcu_read_lock();
4267 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4268}
4269
4270static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4271{
4272 struct packet_type *pt;
4273 struct list_head *nxt;
4274 int hash;
4275
4276 ++*pos;
4277 if (v == SEQ_START_TOKEN)
4278 return ptype_get_idx(0);
4279
4280 pt = v;
4281 nxt = pt->list.next;
4282 if (pt->type == htons(ETH_P_ALL)) {
4283 if (nxt != &ptype_all)
4284 goto found;
4285 hash = 0;
4286 nxt = ptype_base[0].next;
4287 } else
4288 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4289
4290 while (nxt == &ptype_base[hash]) {
4291 if (++hash >= PTYPE_HASH_SIZE)
4292 return NULL;
4293 nxt = ptype_base[hash].next;
4294 }
4295found:
4296 return list_entry(nxt, struct packet_type, list);
4297}
4298
4299static void ptype_seq_stop(struct seq_file *seq, void *v)
4300 __releases(RCU)
4301{
4302 rcu_read_unlock();
4303}
4304
4305static int ptype_seq_show(struct seq_file *seq, void *v)
4306{
4307 struct packet_type *pt = v;
4308
4309 if (v == SEQ_START_TOKEN)
4310 seq_puts(seq, "Type Device Function\n");
4311 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4312 if (pt->type == htons(ETH_P_ALL))
4313 seq_puts(seq, "ALL ");
4314 else
4315 seq_printf(seq, "%04x", ntohs(pt->type));
4316
4317 seq_printf(seq, " %-8s %pF\n",
4318 pt->dev ? pt->dev->name : "", pt->func);
4319 }
4320
4321 return 0;
4322}
4323
4324static const struct seq_operations ptype_seq_ops = {
4325 .start = ptype_seq_start,
4326 .next = ptype_seq_next,
4327 .stop = ptype_seq_stop,
4328 .show = ptype_seq_show,
4329};
4330
4331static int ptype_seq_open(struct inode *inode, struct file *file)
4332{
4333 return seq_open_net(inode, file, &ptype_seq_ops,
4334 sizeof(struct seq_net_private));
4335}
4336
4337static const struct file_operations ptype_seq_fops = {
4338 .owner = THIS_MODULE,
4339 .open = ptype_seq_open,
4340 .read = seq_read,
4341 .llseek = seq_lseek,
4342 .release = seq_release_net,
4343};
4344
4345
4346static int __net_init dev_proc_net_init(struct net *net)
4347{
4348 int rc = -ENOMEM;
4349
4350 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4351 goto out;
4352 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4353 goto out_dev;
4354 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4355 goto out_softnet;
4356
4357 if (wext_proc_init(net))
4358 goto out_ptype;
4359 rc = 0;
4360out:
4361 return rc;
4362out_ptype:
4363 proc_net_remove(net, "ptype");
4364out_softnet:
4365 proc_net_remove(net, "softnet_stat");
4366out_dev:
4367 proc_net_remove(net, "dev");
4368 goto out;
4369}
4370
4371static void __net_exit dev_proc_net_exit(struct net *net)
4372{
4373 wext_proc_exit(net);
4374
4375 proc_net_remove(net, "ptype");
4376 proc_net_remove(net, "softnet_stat");
4377 proc_net_remove(net, "dev");
4378}
4379
4380static struct pernet_operations __net_initdata dev_proc_ops = {
4381 .init = dev_proc_net_init,
4382 .exit = dev_proc_net_exit,
4383};
4384
4385static int __init dev_proc_init(void)
4386{
4387 return register_pernet_subsys(&dev_proc_ops);
4388}
4389#else
4390#define dev_proc_init() 0
4391#endif /* CONFIG_PROC_FS */
4392
4393
4394/**
4395 * netdev_set_master - set up master pointer
4396 * @slave: slave device
4397 * @master: new master device
4398 *
4399 * Changes the master device of the slave. Pass %NULL to break the
4400 * bonding. The caller must hold the RTNL semaphore. On a failure
4401 * a negative errno code is returned. On success the reference counts
4402 * are adjusted and the function returns zero.
4403 */
4404int netdev_set_master(struct net_device *slave, struct net_device *master)
4405{
4406 struct net_device *old = slave->master;
4407
4408 ASSERT_RTNL();
4409
4410 if (master) {
4411 if (old)
4412 return -EBUSY;
4413 dev_hold(master);
4414 }
4415
4416 slave->master = master;
4417
4418 if (old)
4419 dev_put(old);
4420 return 0;
4421}
4422EXPORT_SYMBOL(netdev_set_master);
4423
4424/**
4425 * netdev_set_bond_master - set up bonding master/slave pair
4426 * @slave: slave device
4427 * @master: new master device
4428 *
4429 * Changes the master device of the slave. Pass %NULL to break the
4430 * bonding. The caller must hold the RTNL semaphore. On a failure
4431 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4432 * to the routing socket and the function returns zero.
4433 */
4434int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4435{
4436 int err;
4437
4438 ASSERT_RTNL();
4439
4440 err = netdev_set_master(slave, master);
4441 if (err)
4442 return err;
4443 if (master)
4444 slave->flags |= IFF_SLAVE;
4445 else
4446 slave->flags &= ~IFF_SLAVE;
4447
4448 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4449 return 0;
4450}
4451EXPORT_SYMBOL(netdev_set_bond_master);
4452
4453static void dev_change_rx_flags(struct net_device *dev, int flags)
4454{
4455 const struct net_device_ops *ops = dev->netdev_ops;
4456
4457 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4458 ops->ndo_change_rx_flags(dev, flags);
4459}
4460
4461static int __dev_set_promiscuity(struct net_device *dev, int inc)
4462{
4463 unsigned int old_flags = dev->flags;
4464 uid_t uid;
4465 gid_t gid;
4466
4467 ASSERT_RTNL();
4468
4469 dev->flags |= IFF_PROMISC;
4470 dev->promiscuity += inc;
4471 if (dev->promiscuity == 0) {
4472 /*
4473 * Avoid overflow.
4474 * If inc causes overflow, untouch promisc and return error.
4475 */
4476 if (inc < 0)
4477 dev->flags &= ~IFF_PROMISC;
4478 else {
4479 dev->promiscuity -= inc;
4480 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4481 dev->name);
4482 return -EOVERFLOW;
4483 }
4484 }
4485 if (dev->flags != old_flags) {
4486 pr_info("device %s %s promiscuous mode\n",
4487 dev->name,
4488 dev->flags & IFF_PROMISC ? "entered" : "left");
4489 if (audit_enabled) {
4490 current_uid_gid(&uid, &gid);
4491 audit_log(current->audit_context, GFP_ATOMIC,
4492 AUDIT_ANOM_PROMISCUOUS,
4493 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4494 dev->name, (dev->flags & IFF_PROMISC),
4495 (old_flags & IFF_PROMISC),
4496 audit_get_loginuid(current),
4497 uid, gid,
4498 audit_get_sessionid(current));
4499 }
4500
4501 dev_change_rx_flags(dev, IFF_PROMISC);
4502 }
4503 return 0;
4504}
4505
4506/**
4507 * dev_set_promiscuity - update promiscuity count on a device
4508 * @dev: device
4509 * @inc: modifier
4510 *
4511 * Add or remove promiscuity from a device. While the count in the device
4512 * remains above zero the interface remains promiscuous. Once it hits zero
4513 * the device reverts back to normal filtering operation. A negative inc
4514 * value is used to drop promiscuity on the device.
4515 * Return 0 if successful or a negative errno code on error.
4516 */
4517int dev_set_promiscuity(struct net_device *dev, int inc)
4518{
4519 unsigned int old_flags = dev->flags;
4520 int err;
4521
4522 err = __dev_set_promiscuity(dev, inc);
4523 if (err < 0)
4524 return err;
4525 if (dev->flags != old_flags)
4526 dev_set_rx_mode(dev);
4527 return err;
4528}
4529EXPORT_SYMBOL(dev_set_promiscuity);
4530
4531/**
4532 * dev_set_allmulti - update allmulti count on a device
4533 * @dev: device
4534 * @inc: modifier
4535 *
4536 * Add or remove reception of all multicast frames to a device. While the
4537 * count in the device remains above zero the interface remains listening
4538 * to all interfaces. Once it hits zero the device reverts back to normal
4539 * filtering operation. A negative @inc value is used to drop the counter
4540 * when releasing a resource needing all multicasts.
4541 * Return 0 if successful or a negative errno code on error.
4542 */
4543
4544int dev_set_allmulti(struct net_device *dev, int inc)
4545{
4546 unsigned int old_flags = dev->flags;
4547
4548 ASSERT_RTNL();
4549
4550 dev->flags |= IFF_ALLMULTI;
4551 dev->allmulti += inc;
4552 if (dev->allmulti == 0) {
4553 /*
4554 * Avoid overflow.
4555 * If inc causes overflow, untouch allmulti and return error.
4556 */
4557 if (inc < 0)
4558 dev->flags &= ~IFF_ALLMULTI;
4559 else {
4560 dev->allmulti -= inc;
4561 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4562 dev->name);
4563 return -EOVERFLOW;
4564 }
4565 }
4566 if (dev->flags ^ old_flags) {
4567 dev_change_rx_flags(dev, IFF_ALLMULTI);
4568 dev_set_rx_mode(dev);
4569 }
4570 return 0;
4571}
4572EXPORT_SYMBOL(dev_set_allmulti);
4573
4574/*
4575 * Upload unicast and multicast address lists to device and
4576 * configure RX filtering. When the device doesn't support unicast
4577 * filtering it is put in promiscuous mode while unicast addresses
4578 * are present.
4579 */
4580void __dev_set_rx_mode(struct net_device *dev)
4581{
4582 const struct net_device_ops *ops = dev->netdev_ops;
4583
4584 /* dev_open will call this function so the list will stay sane. */
4585 if (!(dev->flags&IFF_UP))
4586 return;
4587
4588 if (!netif_device_present(dev))
4589 return;
4590
4591 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4592 /* Unicast addresses changes may only happen under the rtnl,
4593 * therefore calling __dev_set_promiscuity here is safe.
4594 */
4595 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4596 __dev_set_promiscuity(dev, 1);
4597 dev->uc_promisc = true;
4598 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4599 __dev_set_promiscuity(dev, -1);
4600 dev->uc_promisc = false;
4601 }
4602 }
4603
4604 if (ops->ndo_set_rx_mode)
4605 ops->ndo_set_rx_mode(dev);
4606}
4607
4608void dev_set_rx_mode(struct net_device *dev)
4609{
4610 netif_addr_lock_bh(dev);
4611 __dev_set_rx_mode(dev);
4612 netif_addr_unlock_bh(dev);
4613}
4614
4615/**
4616 * dev_get_flags - get flags reported to userspace
4617 * @dev: device
4618 *
4619 * Get the combination of flag bits exported through APIs to userspace.
4620 */
4621unsigned dev_get_flags(const struct net_device *dev)
4622{
4623 unsigned flags;
4624
4625 flags = (dev->flags & ~(IFF_PROMISC |
4626 IFF_ALLMULTI |
4627 IFF_RUNNING |
4628 IFF_LOWER_UP |
4629 IFF_DORMANT)) |
4630 (dev->gflags & (IFF_PROMISC |
4631 IFF_ALLMULTI));
4632
4633 if (netif_running(dev)) {
4634 if (netif_oper_up(dev))
4635 flags |= IFF_RUNNING;
4636 if (netif_carrier_ok(dev))
4637 flags |= IFF_LOWER_UP;
4638 if (netif_dormant(dev))
4639 flags |= IFF_DORMANT;
4640 }
4641
4642 return flags;
4643}
4644EXPORT_SYMBOL(dev_get_flags);
4645
4646int __dev_change_flags(struct net_device *dev, unsigned int flags)
4647{
4648 unsigned int old_flags = dev->flags;
4649 int ret;
4650
4651 ASSERT_RTNL();
4652
4653 /*
4654 * Set the flags on our device.
4655 */
4656
4657 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4658 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4659 IFF_AUTOMEDIA)) |
4660 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4661 IFF_ALLMULTI));
4662
4663 /*
4664 * Load in the correct multicast list now the flags have changed.
4665 */
4666
4667 if ((old_flags ^ flags) & IFF_MULTICAST)
4668 dev_change_rx_flags(dev, IFF_MULTICAST);
4669
4670 dev_set_rx_mode(dev);
4671
4672 /*
4673 * Have we downed the interface. We handle IFF_UP ourselves
4674 * according to user attempts to set it, rather than blindly
4675 * setting it.
4676 */
4677
4678 ret = 0;
4679 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4680 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4681
4682 if (!ret)
4683 dev_set_rx_mode(dev);
4684 }
4685
4686 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4687 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4688
4689 dev->gflags ^= IFF_PROMISC;
4690 dev_set_promiscuity(dev, inc);
4691 }
4692
4693 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4694 is important. Some (broken) drivers set IFF_PROMISC, when
4695 IFF_ALLMULTI is requested not asking us and not reporting.
4696 */
4697 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4698 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4699
4700 dev->gflags ^= IFF_ALLMULTI;
4701 dev_set_allmulti(dev, inc);
4702 }
4703
4704 return ret;
4705}
4706
4707void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4708{
4709 unsigned int changes = dev->flags ^ old_flags;
4710
4711 if (changes & IFF_UP) {
4712 if (dev->flags & IFF_UP)
4713 call_netdevice_notifiers(NETDEV_UP, dev);
4714 else
4715 call_netdevice_notifiers(NETDEV_DOWN, dev);
4716 }
4717
4718 if (dev->flags & IFF_UP &&
4719 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4720 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4721}
4722
4723/**
4724 * dev_change_flags - change device settings
4725 * @dev: device
4726 * @flags: device state flags
4727 *
4728 * Change settings on device based state flags. The flags are
4729 * in the userspace exported format.
4730 */
4731int dev_change_flags(struct net_device *dev, unsigned int flags)
4732{
4733 int ret;
4734 unsigned int changes, old_flags = dev->flags;
4735
4736 ret = __dev_change_flags(dev, flags);
4737 if (ret < 0)
4738 return ret;
4739
4740 changes = old_flags ^ dev->flags;
4741 if (changes)
4742 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4743
4744 __dev_notify_flags(dev, old_flags);
4745 return ret;
4746}
4747EXPORT_SYMBOL(dev_change_flags);
4748
4749/**
4750 * dev_set_mtu - Change maximum transfer unit
4751 * @dev: device
4752 * @new_mtu: new transfer unit
4753 *
4754 * Change the maximum transfer size of the network device.
4755 */
4756int dev_set_mtu(struct net_device *dev, int new_mtu)
4757{
4758 const struct net_device_ops *ops = dev->netdev_ops;
4759 int err;
4760
4761 if (new_mtu == dev->mtu)
4762 return 0;
4763
4764 /* MTU must be positive. */
4765 if (new_mtu < 0)
4766 return -EINVAL;
4767
4768 if (!netif_device_present(dev))
4769 return -ENODEV;
4770
4771 err = 0;
4772 if (ops->ndo_change_mtu)
4773 err = ops->ndo_change_mtu(dev, new_mtu);
4774 else
4775 dev->mtu = new_mtu;
4776
4777 if (!err && dev->flags & IFF_UP)
4778 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4779 return err;
4780}
4781EXPORT_SYMBOL(dev_set_mtu);
4782
4783/**
4784 * dev_set_group - Change group this device belongs to
4785 * @dev: device
4786 * @new_group: group this device should belong to
4787 */
4788void dev_set_group(struct net_device *dev, int new_group)
4789{
4790 dev->group = new_group;
4791}
4792EXPORT_SYMBOL(dev_set_group);
4793
4794/**
4795 * dev_set_mac_address - Change Media Access Control Address
4796 * @dev: device
4797 * @sa: new address
4798 *
4799 * Change the hardware (MAC) address of the device
4800 */
4801int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4802{
4803 const struct net_device_ops *ops = dev->netdev_ops;
4804 int err;
4805
4806 if (!ops->ndo_set_mac_address)
4807 return -EOPNOTSUPP;
4808 if (sa->sa_family != dev->type)
4809 return -EINVAL;
4810 if (!netif_device_present(dev))
4811 return -ENODEV;
4812 err = ops->ndo_set_mac_address(dev, sa);
4813 if (!err)
4814 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4815 return err;
4816}
4817EXPORT_SYMBOL(dev_set_mac_address);
4818
4819/*
4820 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4821 */
4822static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4823{
4824 int err;
4825 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4826
4827 if (!dev)
4828 return -ENODEV;
4829
4830 switch (cmd) {
4831 case SIOCGIFFLAGS: /* Get interface flags */
4832 ifr->ifr_flags = (short) dev_get_flags(dev);
4833 return 0;
4834
4835 case SIOCGIFMETRIC: /* Get the metric on the interface
4836 (currently unused) */
4837 ifr->ifr_metric = 0;
4838 return 0;
4839
4840 case SIOCGIFMTU: /* Get the MTU of a device */
4841 ifr->ifr_mtu = dev->mtu;
4842 return 0;
4843
4844 case SIOCGIFHWADDR:
4845 if (!dev->addr_len)
4846 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4847 else
4848 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4849 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4850 ifr->ifr_hwaddr.sa_family = dev->type;
4851 return 0;
4852
4853 case SIOCGIFSLAVE:
4854 err = -EINVAL;
4855 break;
4856
4857 case SIOCGIFMAP:
4858 ifr->ifr_map.mem_start = dev->mem_start;
4859 ifr->ifr_map.mem_end = dev->mem_end;
4860 ifr->ifr_map.base_addr = dev->base_addr;
4861 ifr->ifr_map.irq = dev->irq;
4862 ifr->ifr_map.dma = dev->dma;
4863 ifr->ifr_map.port = dev->if_port;
4864 return 0;
4865
4866 case SIOCGIFINDEX:
4867 ifr->ifr_ifindex = dev->ifindex;
4868 return 0;
4869
4870 case SIOCGIFTXQLEN:
4871 ifr->ifr_qlen = dev->tx_queue_len;
4872 return 0;
4873
4874 default:
4875 /* dev_ioctl() should ensure this case
4876 * is never reached
4877 */
4878 WARN_ON(1);
4879 err = -ENOTTY;
4880 break;
4881
4882 }
4883 return err;
4884}
4885
4886/*
4887 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4888 */
4889static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4890{
4891 int err;
4892 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4893 const struct net_device_ops *ops;
4894
4895 if (!dev)
4896 return -ENODEV;
4897
4898 ops = dev->netdev_ops;
4899
4900 switch (cmd) {
4901 case SIOCSIFFLAGS: /* Set interface flags */
4902 return dev_change_flags(dev, ifr->ifr_flags);
4903
4904 case SIOCSIFMETRIC: /* Set the metric on the interface
4905 (currently unused) */
4906 return -EOPNOTSUPP;
4907
4908 case SIOCSIFMTU: /* Set the MTU of a device */
4909 return dev_set_mtu(dev, ifr->ifr_mtu);
4910
4911 case SIOCSIFHWADDR:
4912 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4913
4914 case SIOCSIFHWBROADCAST:
4915 if (ifr->ifr_hwaddr.sa_family != dev->type)
4916 return -EINVAL;
4917 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4918 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4919 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4920 return 0;
4921
4922 case SIOCSIFMAP:
4923 if (ops->ndo_set_config) {
4924 if (!netif_device_present(dev))
4925 return -ENODEV;
4926 return ops->ndo_set_config(dev, &ifr->ifr_map);
4927 }
4928 return -EOPNOTSUPP;
4929
4930 case SIOCADDMULTI:
4931 if (!ops->ndo_set_rx_mode ||
4932 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4933 return -EINVAL;
4934 if (!netif_device_present(dev))
4935 return -ENODEV;
4936 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4937
4938 case SIOCDELMULTI:
4939 if (!ops->ndo_set_rx_mode ||
4940 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4941 return -EINVAL;
4942 if (!netif_device_present(dev))
4943 return -ENODEV;
4944 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4945
4946 case SIOCSIFTXQLEN:
4947 if (ifr->ifr_qlen < 0)
4948 return -EINVAL;
4949 dev->tx_queue_len = ifr->ifr_qlen;
4950 return 0;
4951
4952 case SIOCSIFNAME:
4953 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4954 return dev_change_name(dev, ifr->ifr_newname);
4955
4956 case SIOCSHWTSTAMP:
4957 err = net_hwtstamp_validate(ifr);
4958 if (err)
4959 return err;
4960 /* fall through */
4961
4962 /*
4963 * Unknown or private ioctl
4964 */
4965 default:
4966 if ((cmd >= SIOCDEVPRIVATE &&
4967 cmd <= SIOCDEVPRIVATE + 15) ||
4968 cmd == SIOCBONDENSLAVE ||
4969 cmd == SIOCBONDRELEASE ||
4970 cmd == SIOCBONDSETHWADDR ||
4971 cmd == SIOCBONDSLAVEINFOQUERY ||
4972 cmd == SIOCBONDINFOQUERY ||
4973 cmd == SIOCBONDCHANGEACTIVE ||
4974 cmd == SIOCGMIIPHY ||
4975 cmd == SIOCGMIIREG ||
4976 cmd == SIOCSMIIREG ||
4977 cmd == SIOCBRADDIF ||
4978 cmd == SIOCBRDELIF ||
4979 cmd == SIOCSHWTSTAMP ||
4980 cmd == SIOCWANDEV) {
4981 err = -EOPNOTSUPP;
4982 if (ops->ndo_do_ioctl) {
4983 if (netif_device_present(dev))
4984 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4985 else
4986 err = -ENODEV;
4987 }
4988 } else
4989 err = -EINVAL;
4990
4991 }
4992 return err;
4993}
4994
4995/*
4996 * This function handles all "interface"-type I/O control requests. The actual
4997 * 'doing' part of this is dev_ifsioc above.
4998 */
4999
5000/**
5001 * dev_ioctl - network device ioctl
5002 * @net: the applicable net namespace
5003 * @cmd: command to issue
5004 * @arg: pointer to a struct ifreq in user space
5005 *
5006 * Issue ioctl functions to devices. This is normally called by the
5007 * user space syscall interfaces but can sometimes be useful for
5008 * other purposes. The return value is the return from the syscall if
5009 * positive or a negative errno code on error.
5010 */
5011
5012int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5013{
5014 struct ifreq ifr;
5015 int ret;
5016 char *colon;
5017
5018 /* One special case: SIOCGIFCONF takes ifconf argument
5019 and requires shared lock, because it sleeps writing
5020 to user space.
5021 */
5022
5023 if (cmd == SIOCGIFCONF) {
5024 rtnl_lock();
5025 ret = dev_ifconf(net, (char __user *) arg);
5026 rtnl_unlock();
5027 return ret;
5028 }
5029 if (cmd == SIOCGIFNAME)
5030 return dev_ifname(net, (struct ifreq __user *)arg);
5031
5032 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5033 return -EFAULT;
5034
5035 ifr.ifr_name[IFNAMSIZ-1] = 0;
5036
5037 colon = strchr(ifr.ifr_name, ':');
5038 if (colon)
5039 *colon = 0;
5040
5041 /*
5042 * See which interface the caller is talking about.
5043 */
5044
5045 switch (cmd) {
5046 /*
5047 * These ioctl calls:
5048 * - can be done by all.
5049 * - atomic and do not require locking.
5050 * - return a value
5051 */
5052 case SIOCGIFFLAGS:
5053 case SIOCGIFMETRIC:
5054 case SIOCGIFMTU:
5055 case SIOCGIFHWADDR:
5056 case SIOCGIFSLAVE:
5057 case SIOCGIFMAP:
5058 case SIOCGIFINDEX:
5059 case SIOCGIFTXQLEN:
5060 dev_load(net, ifr.ifr_name);
5061 rcu_read_lock();
5062 ret = dev_ifsioc_locked(net, &ifr, cmd);
5063 rcu_read_unlock();
5064 if (!ret) {
5065 if (colon)
5066 *colon = ':';
5067 if (copy_to_user(arg, &ifr,
5068 sizeof(struct ifreq)))
5069 ret = -EFAULT;
5070 }
5071 return ret;
5072
5073 case SIOCETHTOOL:
5074 dev_load(net, ifr.ifr_name);
5075 rtnl_lock();
5076 ret = dev_ethtool(net, &ifr);
5077 rtnl_unlock();
5078 if (!ret) {
5079 if (colon)
5080 *colon = ':';
5081 if (copy_to_user(arg, &ifr,
5082 sizeof(struct ifreq)))
5083 ret = -EFAULT;
5084 }
5085 return ret;
5086
5087 /*
5088 * These ioctl calls:
5089 * - require superuser power.
5090 * - require strict serialization.
5091 * - return a value
5092 */
5093 case SIOCGMIIPHY:
5094 case SIOCGMIIREG:
5095 case SIOCSIFNAME:
5096 if (!capable(CAP_NET_ADMIN))
5097 return -EPERM;
5098 dev_load(net, ifr.ifr_name);
5099 rtnl_lock();
5100 ret = dev_ifsioc(net, &ifr, cmd);
5101 rtnl_unlock();
5102 if (!ret) {
5103 if (colon)
5104 *colon = ':';
5105 if (copy_to_user(arg, &ifr,
5106 sizeof(struct ifreq)))
5107 ret = -EFAULT;
5108 }
5109 return ret;
5110
5111 /*
5112 * These ioctl calls:
5113 * - require superuser power.
5114 * - require strict serialization.
5115 * - do not return a value
5116 */
5117 case SIOCSIFFLAGS:
5118 case SIOCSIFMETRIC:
5119 case SIOCSIFMTU:
5120 case SIOCSIFMAP:
5121 case SIOCSIFHWADDR:
5122 case SIOCSIFSLAVE:
5123 case SIOCADDMULTI:
5124 case SIOCDELMULTI:
5125 case SIOCSIFHWBROADCAST:
5126 case SIOCSIFTXQLEN:
5127 case SIOCSMIIREG:
5128 case SIOCBONDENSLAVE:
5129 case SIOCBONDRELEASE:
5130 case SIOCBONDSETHWADDR:
5131 case SIOCBONDCHANGEACTIVE:
5132 case SIOCBRADDIF:
5133 case SIOCBRDELIF:
5134 case SIOCSHWTSTAMP:
5135 if (!capable(CAP_NET_ADMIN))
5136 return -EPERM;
5137 /* fall through */
5138 case SIOCBONDSLAVEINFOQUERY:
5139 case SIOCBONDINFOQUERY:
5140 dev_load(net, ifr.ifr_name);
5141 rtnl_lock();
5142 ret = dev_ifsioc(net, &ifr, cmd);
5143 rtnl_unlock();
5144 return ret;
5145
5146 case SIOCGIFMEM:
5147 /* Get the per device memory space. We can add this but
5148 * currently do not support it */
5149 case SIOCSIFMEM:
5150 /* Set the per device memory buffer space.
5151 * Not applicable in our case */
5152 case SIOCSIFLINK:
5153 return -ENOTTY;
5154
5155 /*
5156 * Unknown or private ioctl.
5157 */
5158 default:
5159 if (cmd == SIOCWANDEV ||
5160 (cmd >= SIOCDEVPRIVATE &&
5161 cmd <= SIOCDEVPRIVATE + 15)) {
5162 dev_load(net, ifr.ifr_name);
5163 rtnl_lock();
5164 ret = dev_ifsioc(net, &ifr, cmd);
5165 rtnl_unlock();
5166 if (!ret && copy_to_user(arg, &ifr,
5167 sizeof(struct ifreq)))
5168 ret = -EFAULT;
5169 return ret;
5170 }
5171 /* Take care of Wireless Extensions */
5172 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5173 return wext_handle_ioctl(net, &ifr, cmd, arg);
5174 return -ENOTTY;
5175 }
5176}
5177
5178
5179/**
5180 * dev_new_index - allocate an ifindex
5181 * @net: the applicable net namespace
5182 *
5183 * Returns a suitable unique value for a new device interface
5184 * number. The caller must hold the rtnl semaphore or the
5185 * dev_base_lock to be sure it remains unique.
5186 */
5187static int dev_new_index(struct net *net)
5188{
5189 static int ifindex;
5190 for (;;) {
5191 if (++ifindex <= 0)
5192 ifindex = 1;
5193 if (!__dev_get_by_index(net, ifindex))
5194 return ifindex;
5195 }
5196}
5197
5198/* Delayed registration/unregisteration */
5199static LIST_HEAD(net_todo_list);
5200
5201static void net_set_todo(struct net_device *dev)
5202{
5203 list_add_tail(&dev->todo_list, &net_todo_list);
5204}
5205
5206static void rollback_registered_many(struct list_head *head)
5207{
5208 struct net_device *dev, *tmp;
5209
5210 BUG_ON(dev_boot_phase);
5211 ASSERT_RTNL();
5212
5213 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5214 /* Some devices call without registering
5215 * for initialization unwind. Remove those
5216 * devices and proceed with the remaining.
5217 */
5218 if (dev->reg_state == NETREG_UNINITIALIZED) {
5219 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5220 dev->name, dev);
5221
5222 WARN_ON(1);
5223 list_del(&dev->unreg_list);
5224 continue;
5225 }
5226 dev->dismantle = true;
5227 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5228 }
5229
5230 /* If device is running, close it first. */
5231 dev_close_many(head);
5232
5233 list_for_each_entry(dev, head, unreg_list) {
5234 /* And unlink it from device chain. */
5235 unlist_netdevice(dev);
5236
5237 dev->reg_state = NETREG_UNREGISTERING;
5238 }
5239
5240 synchronize_net();
5241
5242 list_for_each_entry(dev, head, unreg_list) {
5243 /* Shutdown queueing discipline. */
5244 dev_shutdown(dev);
5245
5246
5247 /* Notify protocols, that we are about to destroy
5248 this device. They should clean all the things.
5249 */
5250 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5251
5252 if (!dev->rtnl_link_ops ||
5253 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5254 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5255
5256 /*
5257 * Flush the unicast and multicast chains
5258 */
5259 dev_uc_flush(dev);
5260 dev_mc_flush(dev);
5261
5262 if (dev->netdev_ops->ndo_uninit)
5263 dev->netdev_ops->ndo_uninit(dev);
5264
5265 /* Notifier chain MUST detach us from master device. */
5266 WARN_ON(dev->master);
5267
5268 /* Remove entries from kobject tree */
5269 netdev_unregister_kobject(dev);
5270 }
5271
5272 /* Process any work delayed until the end of the batch */
5273 dev = list_first_entry(head, struct net_device, unreg_list);
5274 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5275
5276 synchronize_net();
5277
5278 list_for_each_entry(dev, head, unreg_list)
5279 dev_put(dev);
5280}
5281
5282static void rollback_registered(struct net_device *dev)
5283{
5284 LIST_HEAD(single);
5285
5286 list_add(&dev->unreg_list, &single);
5287 rollback_registered_many(&single);
5288 list_del(&single);
5289}
5290
5291static netdev_features_t netdev_fix_features(struct net_device *dev,
5292 netdev_features_t features)
5293{
5294 /* Fix illegal checksum combinations */
5295 if ((features & NETIF_F_HW_CSUM) &&
5296 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5297 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5298 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5299 }
5300
5301 /* Fix illegal SG+CSUM combinations. */
5302 if ((features & NETIF_F_SG) &&
5303 !(features & NETIF_F_ALL_CSUM)) {
5304 netdev_dbg(dev,
5305 "Dropping NETIF_F_SG since no checksum feature.\n");
5306 features &= ~NETIF_F_SG;
5307 }
5308
5309 /* TSO requires that SG is present as well. */
5310 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5311 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5312 features &= ~NETIF_F_ALL_TSO;
5313 }
5314
5315 /* TSO ECN requires that TSO is present as well. */
5316 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5317 features &= ~NETIF_F_TSO_ECN;
5318
5319 /* Software GSO depends on SG. */
5320 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5321 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5322 features &= ~NETIF_F_GSO;
5323 }
5324
5325 /* UFO needs SG and checksumming */
5326 if (features & NETIF_F_UFO) {
5327 /* maybe split UFO into V4 and V6? */
5328 if (!((features & NETIF_F_GEN_CSUM) ||
5329 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5330 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5331 netdev_dbg(dev,
5332 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5333 features &= ~NETIF_F_UFO;
5334 }
5335
5336 if (!(features & NETIF_F_SG)) {
5337 netdev_dbg(dev,
5338 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5339 features &= ~NETIF_F_UFO;
5340 }
5341 }
5342
5343 return features;
5344}
5345
5346int __netdev_update_features(struct net_device *dev)
5347{
5348 netdev_features_t features;
5349 int err = 0;
5350
5351 ASSERT_RTNL();
5352
5353 features = netdev_get_wanted_features(dev);
5354
5355 if (dev->netdev_ops->ndo_fix_features)
5356 features = dev->netdev_ops->ndo_fix_features(dev, features);
5357
5358 /* driver might be less strict about feature dependencies */
5359 features = netdev_fix_features(dev, features);
5360
5361 if (dev->features == features)
5362 return 0;
5363
5364 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5365 &dev->features, &features);
5366
5367 if (dev->netdev_ops->ndo_set_features)
5368 err = dev->netdev_ops->ndo_set_features(dev, features);
5369
5370 if (unlikely(err < 0)) {
5371 netdev_err(dev,
5372 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5373 err, &features, &dev->features);
5374 return -1;
5375 }
5376
5377 if (!err)
5378 dev->features = features;
5379
5380 return 1;
5381}
5382
5383/**
5384 * netdev_update_features - recalculate device features
5385 * @dev: the device to check
5386 *
5387 * Recalculate dev->features set and send notifications if it
5388 * has changed. Should be called after driver or hardware dependent
5389 * conditions might have changed that influence the features.
5390 */
5391void netdev_update_features(struct net_device *dev)
5392{
5393 if (__netdev_update_features(dev))
5394 netdev_features_change(dev);
5395}
5396EXPORT_SYMBOL(netdev_update_features);
5397
5398/**
5399 * netdev_change_features - recalculate device features
5400 * @dev: the device to check
5401 *
5402 * Recalculate dev->features set and send notifications even
5403 * if they have not changed. Should be called instead of
5404 * netdev_update_features() if also dev->vlan_features might
5405 * have changed to allow the changes to be propagated to stacked
5406 * VLAN devices.
5407 */
5408void netdev_change_features(struct net_device *dev)
5409{
5410 __netdev_update_features(dev);
5411 netdev_features_change(dev);
5412}
5413EXPORT_SYMBOL(netdev_change_features);
5414
5415/**
5416 * netif_stacked_transfer_operstate - transfer operstate
5417 * @rootdev: the root or lower level device to transfer state from
5418 * @dev: the device to transfer operstate to
5419 *
5420 * Transfer operational state from root to device. This is normally
5421 * called when a stacking relationship exists between the root
5422 * device and the device(a leaf device).
5423 */
5424void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5425 struct net_device *dev)
5426{
5427 if (rootdev->operstate == IF_OPER_DORMANT)
5428 netif_dormant_on(dev);
5429 else
5430 netif_dormant_off(dev);
5431
5432 if (netif_carrier_ok(rootdev)) {
5433 if (!netif_carrier_ok(dev))
5434 netif_carrier_on(dev);
5435 } else {
5436 if (netif_carrier_ok(dev))
5437 netif_carrier_off(dev);
5438 }
5439}
5440EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5441
5442#ifdef CONFIG_RPS
5443static int netif_alloc_rx_queues(struct net_device *dev)
5444{
5445 unsigned int i, count = dev->num_rx_queues;
5446 struct netdev_rx_queue *rx;
5447
5448 BUG_ON(count < 1);
5449
5450 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5451 if (!rx) {
5452 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5453 return -ENOMEM;
5454 }
5455 dev->_rx = rx;
5456
5457 for (i = 0; i < count; i++)
5458 rx[i].dev = dev;
5459 return 0;
5460}
5461#endif
5462
5463static void netdev_init_one_queue(struct net_device *dev,
5464 struct netdev_queue *queue, void *_unused)
5465{
5466 /* Initialize queue lock */
5467 spin_lock_init(&queue->_xmit_lock);
5468 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5469 queue->xmit_lock_owner = -1;
5470 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5471 queue->dev = dev;
5472#ifdef CONFIG_BQL
5473 dql_init(&queue->dql, HZ);
5474#endif
5475}
5476
5477static int netif_alloc_netdev_queues(struct net_device *dev)
5478{
5479 unsigned int count = dev->num_tx_queues;
5480 struct netdev_queue *tx;
5481
5482 BUG_ON(count < 1);
5483
5484 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5485 if (!tx) {
5486 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5487 return -ENOMEM;
5488 }
5489 dev->_tx = tx;
5490
5491 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5492 spin_lock_init(&dev->tx_global_lock);
5493
5494 return 0;
5495}
5496
5497/**
5498 * register_netdevice - register a network device
5499 * @dev: device to register
5500 *
5501 * Take a completed network device structure and add it to the kernel
5502 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5503 * chain. 0 is returned on success. A negative errno code is returned
5504 * on a failure to set up the device, or if the name is a duplicate.
5505 *
5506 * Callers must hold the rtnl semaphore. You may want
5507 * register_netdev() instead of this.
5508 *
5509 * BUGS:
5510 * The locking appears insufficient to guarantee two parallel registers
5511 * will not get the same name.
5512 */
5513
5514int register_netdevice(struct net_device *dev)
5515{
5516 int ret;
5517 struct net *net = dev_net(dev);
5518
5519 BUG_ON(dev_boot_phase);
5520 ASSERT_RTNL();
5521
5522 might_sleep();
5523
5524 /* When net_device's are persistent, this will be fatal. */
5525 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5526 BUG_ON(!net);
5527
5528 spin_lock_init(&dev->addr_list_lock);
5529 netdev_set_addr_lockdep_class(dev);
5530
5531 dev->iflink = -1;
5532
5533 ret = dev_get_valid_name(dev, dev->name);
5534 if (ret < 0)
5535 goto out;
5536
5537 /* Init, if this function is available */
5538 if (dev->netdev_ops->ndo_init) {
5539 ret = dev->netdev_ops->ndo_init(dev);
5540 if (ret) {
5541 if (ret > 0)
5542 ret = -EIO;
5543 goto out;
5544 }
5545 }
5546
5547 dev->ifindex = dev_new_index(net);
5548 if (dev->iflink == -1)
5549 dev->iflink = dev->ifindex;
5550
5551 /* Transfer changeable features to wanted_features and enable
5552 * software offloads (GSO and GRO).
5553 */
5554 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5555 dev->features |= NETIF_F_SOFT_FEATURES;
5556 dev->wanted_features = dev->features & dev->hw_features;
5557
5558 /* Turn on no cache copy if HW is doing checksum */
5559 if (!(dev->flags & IFF_LOOPBACK)) {
5560 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5561 if (dev->features & NETIF_F_ALL_CSUM) {
5562 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5563 dev->features |= NETIF_F_NOCACHE_COPY;
5564 }
5565 }
5566
5567 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5568 */
5569 dev->vlan_features |= NETIF_F_HIGHDMA;
5570
5571 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5572 ret = notifier_to_errno(ret);
5573 if (ret)
5574 goto err_uninit;
5575
5576 ret = netdev_register_kobject(dev);
5577 if (ret)
5578 goto err_uninit;
5579 dev->reg_state = NETREG_REGISTERED;
5580
5581 __netdev_update_features(dev);
5582
5583 /*
5584 * Default initial state at registry is that the
5585 * device is present.
5586 */
5587
5588 set_bit(__LINK_STATE_PRESENT, &dev->state);
5589
5590 dev_init_scheduler(dev);
5591 dev_hold(dev);
5592 list_netdevice(dev);
5593
5594 /* Notify protocols, that a new device appeared. */
5595 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5596 ret = notifier_to_errno(ret);
5597 if (ret) {
5598 rollback_registered(dev);
5599 dev->reg_state = NETREG_UNREGISTERED;
5600 }
5601 /*
5602 * Prevent userspace races by waiting until the network
5603 * device is fully setup before sending notifications.
5604 */
5605 if (!dev->rtnl_link_ops ||
5606 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5607 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5608
5609out:
5610 return ret;
5611
5612err_uninit:
5613 if (dev->netdev_ops->ndo_uninit)
5614 dev->netdev_ops->ndo_uninit(dev);
5615 goto out;
5616}
5617EXPORT_SYMBOL(register_netdevice);
5618
5619/**
5620 * init_dummy_netdev - init a dummy network device for NAPI
5621 * @dev: device to init
5622 *
5623 * This takes a network device structure and initialize the minimum
5624 * amount of fields so it can be used to schedule NAPI polls without
5625 * registering a full blown interface. This is to be used by drivers
5626 * that need to tie several hardware interfaces to a single NAPI
5627 * poll scheduler due to HW limitations.
5628 */
5629int init_dummy_netdev(struct net_device *dev)
5630{
5631 /* Clear everything. Note we don't initialize spinlocks
5632 * are they aren't supposed to be taken by any of the
5633 * NAPI code and this dummy netdev is supposed to be
5634 * only ever used for NAPI polls
5635 */
5636 memset(dev, 0, sizeof(struct net_device));
5637
5638 /* make sure we BUG if trying to hit standard
5639 * register/unregister code path
5640 */
5641 dev->reg_state = NETREG_DUMMY;
5642
5643 /* NAPI wants this */
5644 INIT_LIST_HEAD(&dev->napi_list);
5645
5646 /* a dummy interface is started by default */
5647 set_bit(__LINK_STATE_PRESENT, &dev->state);
5648 set_bit(__LINK_STATE_START, &dev->state);
5649
5650 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5651 * because users of this 'device' dont need to change
5652 * its refcount.
5653 */
5654
5655 return 0;
5656}
5657EXPORT_SYMBOL_GPL(init_dummy_netdev);
5658
5659
5660/**
5661 * register_netdev - register a network device
5662 * @dev: device to register
5663 *
5664 * Take a completed network device structure and add it to the kernel
5665 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5666 * chain. 0 is returned on success. A negative errno code is returned
5667 * on a failure to set up the device, or if the name is a duplicate.
5668 *
5669 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5670 * and expands the device name if you passed a format string to
5671 * alloc_netdev.
5672 */
5673int register_netdev(struct net_device *dev)
5674{
5675 int err;
5676
5677 rtnl_lock();
5678 err = register_netdevice(dev);
5679 rtnl_unlock();
5680 return err;
5681}
5682EXPORT_SYMBOL(register_netdev);
5683
5684int netdev_refcnt_read(const struct net_device *dev)
5685{
5686 int i, refcnt = 0;
5687
5688 for_each_possible_cpu(i)
5689 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5690 return refcnt;
5691}
5692EXPORT_SYMBOL(netdev_refcnt_read);
5693
5694/*
5695 * netdev_wait_allrefs - wait until all references are gone.
5696 *
5697 * This is called when unregistering network devices.
5698 *
5699 * Any protocol or device that holds a reference should register
5700 * for netdevice notification, and cleanup and put back the
5701 * reference if they receive an UNREGISTER event.
5702 * We can get stuck here if buggy protocols don't correctly
5703 * call dev_put.
5704 */
5705static void netdev_wait_allrefs(struct net_device *dev)
5706{
5707 unsigned long rebroadcast_time, warning_time;
5708 int refcnt;
5709
5710 linkwatch_forget_dev(dev);
5711
5712 rebroadcast_time = warning_time = jiffies;
5713 refcnt = netdev_refcnt_read(dev);
5714
5715 while (refcnt != 0) {
5716 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5717 rtnl_lock();
5718
5719 /* Rebroadcast unregister notification */
5720 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5721 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5722 * should have already handle it the first time */
5723
5724 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5725 &dev->state)) {
5726 /* We must not have linkwatch events
5727 * pending on unregister. If this
5728 * happens, we simply run the queue
5729 * unscheduled, resulting in a noop
5730 * for this device.
5731 */
5732 linkwatch_run_queue();
5733 }
5734
5735 __rtnl_unlock();
5736
5737 rebroadcast_time = jiffies;
5738 }
5739
5740 msleep(250);
5741
5742 refcnt = netdev_refcnt_read(dev);
5743
5744 if (time_after(jiffies, warning_time + 10 * HZ)) {
5745 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5746 dev->name, refcnt);
5747 warning_time = jiffies;
5748 }
5749 }
5750}
5751
5752/* The sequence is:
5753 *
5754 * rtnl_lock();
5755 * ...
5756 * register_netdevice(x1);
5757 * register_netdevice(x2);
5758 * ...
5759 * unregister_netdevice(y1);
5760 * unregister_netdevice(y2);
5761 * ...
5762 * rtnl_unlock();
5763 * free_netdev(y1);
5764 * free_netdev(y2);
5765 *
5766 * We are invoked by rtnl_unlock().
5767 * This allows us to deal with problems:
5768 * 1) We can delete sysfs objects which invoke hotplug
5769 * without deadlocking with linkwatch via keventd.
5770 * 2) Since we run with the RTNL semaphore not held, we can sleep
5771 * safely in order to wait for the netdev refcnt to drop to zero.
5772 *
5773 * We must not return until all unregister events added during
5774 * the interval the lock was held have been completed.
5775 */
5776void netdev_run_todo(void)
5777{
5778 struct list_head list;
5779
5780 /* Snapshot list, allow later requests */
5781 list_replace_init(&net_todo_list, &list);
5782
5783 __rtnl_unlock();
5784
5785 /* Wait for rcu callbacks to finish before attempting to drain
5786 * the device list. This usually avoids a 250ms wait.
5787 */
5788 if (!list_empty(&list))
5789 rcu_barrier();
5790
5791 while (!list_empty(&list)) {
5792 struct net_device *dev
5793 = list_first_entry(&list, struct net_device, todo_list);
5794 list_del(&dev->todo_list);
5795
5796 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5797 pr_err("network todo '%s' but state %d\n",
5798 dev->name, dev->reg_state);
5799 dump_stack();
5800 continue;
5801 }
5802
5803 dev->reg_state = NETREG_UNREGISTERED;
5804
5805 on_each_cpu(flush_backlog, dev, 1);
5806
5807 netdev_wait_allrefs(dev);
5808
5809 /* paranoia */
5810 BUG_ON(netdev_refcnt_read(dev));
5811 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5812 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5813 WARN_ON(dev->dn_ptr);
5814
5815 if (dev->destructor)
5816 dev->destructor(dev);
5817
5818 /* Free network device */
5819 kobject_put(&dev->dev.kobj);
5820 }
5821}
5822
5823/* Convert net_device_stats to rtnl_link_stats64. They have the same
5824 * fields in the same order, with only the type differing.
5825 */
5826void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5827 const struct net_device_stats *netdev_stats)
5828{
5829#if BITS_PER_LONG == 64
5830 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5831 memcpy(stats64, netdev_stats, sizeof(*stats64));
5832#else
5833 size_t i, n = sizeof(*stats64) / sizeof(u64);
5834 const unsigned long *src = (const unsigned long *)netdev_stats;
5835 u64 *dst = (u64 *)stats64;
5836
5837 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5838 sizeof(*stats64) / sizeof(u64));
5839 for (i = 0; i < n; i++)
5840 dst[i] = src[i];
5841#endif
5842}
5843EXPORT_SYMBOL(netdev_stats_to_stats64);
5844
5845/**
5846 * dev_get_stats - get network device statistics
5847 * @dev: device to get statistics from
5848 * @storage: place to store stats
5849 *
5850 * Get network statistics from device. Return @storage.
5851 * The device driver may provide its own method by setting
5852 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5853 * otherwise the internal statistics structure is used.
5854 */
5855struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5856 struct rtnl_link_stats64 *storage)
5857{
5858 const struct net_device_ops *ops = dev->netdev_ops;
5859
5860 if (ops->ndo_get_stats64) {
5861 memset(storage, 0, sizeof(*storage));
5862 ops->ndo_get_stats64(dev, storage);
5863 } else if (ops->ndo_get_stats) {
5864 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5865 } else {
5866 netdev_stats_to_stats64(storage, &dev->stats);
5867 }
5868 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5869 return storage;
5870}
5871EXPORT_SYMBOL(dev_get_stats);
5872
5873struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5874{
5875 struct netdev_queue *queue = dev_ingress_queue(dev);
5876
5877#ifdef CONFIG_NET_CLS_ACT
5878 if (queue)
5879 return queue;
5880 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5881 if (!queue)
5882 return NULL;
5883 netdev_init_one_queue(dev, queue, NULL);
5884 queue->qdisc = &noop_qdisc;
5885 queue->qdisc_sleeping = &noop_qdisc;
5886 rcu_assign_pointer(dev->ingress_queue, queue);
5887#endif
5888 return queue;
5889}
5890
5891/**
5892 * alloc_netdev_mqs - allocate network device
5893 * @sizeof_priv: size of private data to allocate space for
5894 * @name: device name format string
5895 * @setup: callback to initialize device
5896 * @txqs: the number of TX subqueues to allocate
5897 * @rxqs: the number of RX subqueues to allocate
5898 *
5899 * Allocates a struct net_device with private data area for driver use
5900 * and performs basic initialization. Also allocates subquue structs
5901 * for each queue on the device.
5902 */
5903struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5904 void (*setup)(struct net_device *),
5905 unsigned int txqs, unsigned int rxqs)
5906{
5907 struct net_device *dev;
5908 size_t alloc_size;
5909 struct net_device *p;
5910
5911 BUG_ON(strlen(name) >= sizeof(dev->name));
5912
5913 if (txqs < 1) {
5914 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5915 return NULL;
5916 }
5917
5918#ifdef CONFIG_RPS
5919 if (rxqs < 1) {
5920 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5921 return NULL;
5922 }
5923#endif
5924
5925 alloc_size = sizeof(struct net_device);
5926 if (sizeof_priv) {
5927 /* ensure 32-byte alignment of private area */
5928 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5929 alloc_size += sizeof_priv;
5930 }
5931 /* ensure 32-byte alignment of whole construct */
5932 alloc_size += NETDEV_ALIGN - 1;
5933
5934 p = kzalloc(alloc_size, GFP_KERNEL);
5935 if (!p) {
5936 pr_err("alloc_netdev: Unable to allocate device\n");
5937 return NULL;
5938 }
5939
5940 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5941 dev->padded = (char *)dev - (char *)p;
5942
5943 dev->pcpu_refcnt = alloc_percpu(int);
5944 if (!dev->pcpu_refcnt)
5945 goto free_p;
5946
5947 if (dev_addr_init(dev))
5948 goto free_pcpu;
5949
5950 dev_mc_init(dev);
5951 dev_uc_init(dev);
5952
5953 dev_net_set(dev, &init_net);
5954
5955 dev->gso_max_size = GSO_MAX_SIZE;
5956
5957 INIT_LIST_HEAD(&dev->napi_list);
5958 INIT_LIST_HEAD(&dev->unreg_list);
5959 INIT_LIST_HEAD(&dev->link_watch_list);
5960 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5961 setup(dev);
5962
5963 dev->num_tx_queues = txqs;
5964 dev->real_num_tx_queues = txqs;
5965 if (netif_alloc_netdev_queues(dev))
5966 goto free_all;
5967
5968#ifdef CONFIG_RPS
5969 dev->num_rx_queues = rxqs;
5970 dev->real_num_rx_queues = rxqs;
5971 if (netif_alloc_rx_queues(dev))
5972 goto free_all;
5973#endif
5974
5975 strcpy(dev->name, name);
5976 dev->group = INIT_NETDEV_GROUP;
5977 return dev;
5978
5979free_all:
5980 free_netdev(dev);
5981 return NULL;
5982
5983free_pcpu:
5984 free_percpu(dev->pcpu_refcnt);
5985 kfree(dev->_tx);
5986#ifdef CONFIG_RPS
5987 kfree(dev->_rx);
5988#endif
5989
5990free_p:
5991 kfree(p);
5992 return NULL;
5993}
5994EXPORT_SYMBOL(alloc_netdev_mqs);
5995
5996/**
5997 * free_netdev - free network device
5998 * @dev: device
5999 *
6000 * This function does the last stage of destroying an allocated device
6001 * interface. The reference to the device object is released.
6002 * If this is the last reference then it will be freed.
6003 */
6004void free_netdev(struct net_device *dev)
6005{
6006 struct napi_struct *p, *n;
6007
6008 release_net(dev_net(dev));
6009
6010 kfree(dev->_tx);
6011#ifdef CONFIG_RPS
6012 kfree(dev->_rx);
6013#endif
6014
6015 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6016
6017 /* Flush device addresses */
6018 dev_addr_flush(dev);
6019
6020 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6021 netif_napi_del(p);
6022
6023 free_percpu(dev->pcpu_refcnt);
6024 dev->pcpu_refcnt = NULL;
6025
6026 /* Compatibility with error handling in drivers */
6027 if (dev->reg_state == NETREG_UNINITIALIZED) {
6028 kfree((char *)dev - dev->padded);
6029 return;
6030 }
6031
6032 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6033 dev->reg_state = NETREG_RELEASED;
6034
6035 /* will free via device release */
6036 put_device(&dev->dev);
6037}
6038EXPORT_SYMBOL(free_netdev);
6039
6040/**
6041 * synchronize_net - Synchronize with packet receive processing
6042 *
6043 * Wait for packets currently being received to be done.
6044 * Does not block later packets from starting.
6045 */
6046void synchronize_net(void)
6047{
6048 might_sleep();
6049 if (rtnl_is_locked())
6050 synchronize_rcu_expedited();
6051 else
6052 synchronize_rcu();
6053}
6054EXPORT_SYMBOL(synchronize_net);
6055
6056/**
6057 * unregister_netdevice_queue - remove device from the kernel
6058 * @dev: device
6059 * @head: list
6060 *
6061 * This function shuts down a device interface and removes it
6062 * from the kernel tables.
6063 * If head not NULL, device is queued to be unregistered later.
6064 *
6065 * Callers must hold the rtnl semaphore. You may want
6066 * unregister_netdev() instead of this.
6067 */
6068
6069void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6070{
6071 ASSERT_RTNL();
6072
6073 if (head) {
6074 list_move_tail(&dev->unreg_list, head);
6075 } else {
6076 rollback_registered(dev);
6077 /* Finish processing unregister after unlock */
6078 net_set_todo(dev);
6079 }
6080}
6081EXPORT_SYMBOL(unregister_netdevice_queue);
6082
6083/**
6084 * unregister_netdevice_many - unregister many devices
6085 * @head: list of devices
6086 */
6087void unregister_netdevice_many(struct list_head *head)
6088{
6089 struct net_device *dev;
6090
6091 if (!list_empty(head)) {
6092 rollback_registered_many(head);
6093 list_for_each_entry(dev, head, unreg_list)
6094 net_set_todo(dev);
6095 }
6096}
6097EXPORT_SYMBOL(unregister_netdevice_many);
6098
6099/**
6100 * unregister_netdev - remove device from the kernel
6101 * @dev: device
6102 *
6103 * This function shuts down a device interface and removes it
6104 * from the kernel tables.
6105 *
6106 * This is just a wrapper for unregister_netdevice that takes
6107 * the rtnl semaphore. In general you want to use this and not
6108 * unregister_netdevice.
6109 */
6110void unregister_netdev(struct net_device *dev)
6111{
6112 rtnl_lock();
6113 unregister_netdevice(dev);
6114 rtnl_unlock();
6115}
6116EXPORT_SYMBOL(unregister_netdev);
6117
6118/**
6119 * dev_change_net_namespace - move device to different nethost namespace
6120 * @dev: device
6121 * @net: network namespace
6122 * @pat: If not NULL name pattern to try if the current device name
6123 * is already taken in the destination network namespace.
6124 *
6125 * This function shuts down a device interface and moves it
6126 * to a new network namespace. On success 0 is returned, on
6127 * a failure a netagive errno code is returned.
6128 *
6129 * Callers must hold the rtnl semaphore.
6130 */
6131
6132int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6133{
6134 int err;
6135
6136 ASSERT_RTNL();
6137
6138 /* Don't allow namespace local devices to be moved. */
6139 err = -EINVAL;
6140 if (dev->features & NETIF_F_NETNS_LOCAL)
6141 goto out;
6142
6143 /* Ensure the device has been registrered */
6144 err = -EINVAL;
6145 if (dev->reg_state != NETREG_REGISTERED)
6146 goto out;
6147
6148 /* Get out if there is nothing todo */
6149 err = 0;
6150 if (net_eq(dev_net(dev), net))
6151 goto out;
6152
6153 /* Pick the destination device name, and ensure
6154 * we can use it in the destination network namespace.
6155 */
6156 err = -EEXIST;
6157 if (__dev_get_by_name(net, dev->name)) {
6158 /* We get here if we can't use the current device name */
6159 if (!pat)
6160 goto out;
6161 if (dev_get_valid_name(dev, pat) < 0)
6162 goto out;
6163 }
6164
6165 /*
6166 * And now a mini version of register_netdevice unregister_netdevice.
6167 */
6168
6169 /* If device is running close it first. */
6170 dev_close(dev);
6171
6172 /* And unlink it from device chain */
6173 err = -ENODEV;
6174 unlist_netdevice(dev);
6175
6176 synchronize_net();
6177
6178 /* Shutdown queueing discipline. */
6179 dev_shutdown(dev);
6180
6181 /* Notify protocols, that we are about to destroy
6182 this device. They should clean all the things.
6183
6184 Note that dev->reg_state stays at NETREG_REGISTERED.
6185 This is wanted because this way 8021q and macvlan know
6186 the device is just moving and can keep their slaves up.
6187 */
6188 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6189 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6190 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6191
6192 /*
6193 * Flush the unicast and multicast chains
6194 */
6195 dev_uc_flush(dev);
6196 dev_mc_flush(dev);
6197
6198 /* Actually switch the network namespace */
6199 dev_net_set(dev, net);
6200
6201 /* If there is an ifindex conflict assign a new one */
6202 if (__dev_get_by_index(net, dev->ifindex)) {
6203 int iflink = (dev->iflink == dev->ifindex);
6204 dev->ifindex = dev_new_index(net);
6205 if (iflink)
6206 dev->iflink = dev->ifindex;
6207 }
6208
6209 /* Fixup kobjects */
6210 err = device_rename(&dev->dev, dev->name);
6211 WARN_ON(err);
6212
6213 /* Add the device back in the hashes */
6214 list_netdevice(dev);
6215
6216 /* Notify protocols, that a new device appeared. */
6217 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6218
6219 /*
6220 * Prevent userspace races by waiting until the network
6221 * device is fully setup before sending notifications.
6222 */
6223 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6224
6225 synchronize_net();
6226 err = 0;
6227out:
6228 return err;
6229}
6230EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6231
6232static int dev_cpu_callback(struct notifier_block *nfb,
6233 unsigned long action,
6234 void *ocpu)
6235{
6236 struct sk_buff **list_skb;
6237 struct sk_buff *skb;
6238 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6239 struct softnet_data *sd, *oldsd;
6240
6241 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6242 return NOTIFY_OK;
6243
6244 local_irq_disable();
6245 cpu = smp_processor_id();
6246 sd = &per_cpu(softnet_data, cpu);
6247 oldsd = &per_cpu(softnet_data, oldcpu);
6248
6249 /* Find end of our completion_queue. */
6250 list_skb = &sd->completion_queue;
6251 while (*list_skb)
6252 list_skb = &(*list_skb)->next;
6253 /* Append completion queue from offline CPU. */
6254 *list_skb = oldsd->completion_queue;
6255 oldsd->completion_queue = NULL;
6256
6257 /* Append output queue from offline CPU. */
6258 if (oldsd->output_queue) {
6259 *sd->output_queue_tailp = oldsd->output_queue;
6260 sd->output_queue_tailp = oldsd->output_queue_tailp;
6261 oldsd->output_queue = NULL;
6262 oldsd->output_queue_tailp = &oldsd->output_queue;
6263 }
6264 /* Append NAPI poll list from offline CPU. */
6265 if (!list_empty(&oldsd->poll_list)) {
6266 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6267 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6268 }
6269
6270 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6271 local_irq_enable();
6272
6273 /* Process offline CPU's input_pkt_queue */
6274 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6275 netif_rx(skb);
6276 input_queue_head_incr(oldsd);
6277 }
6278 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6279 netif_rx(skb);
6280 input_queue_head_incr(oldsd);
6281 }
6282
6283 return NOTIFY_OK;
6284}
6285
6286
6287/**
6288 * netdev_increment_features - increment feature set by one
6289 * @all: current feature set
6290 * @one: new feature set
6291 * @mask: mask feature set
6292 *
6293 * Computes a new feature set after adding a device with feature set
6294 * @one to the master device with current feature set @all. Will not
6295 * enable anything that is off in @mask. Returns the new feature set.
6296 */
6297netdev_features_t netdev_increment_features(netdev_features_t all,
6298 netdev_features_t one, netdev_features_t mask)
6299{
6300 if (mask & NETIF_F_GEN_CSUM)
6301 mask |= NETIF_F_ALL_CSUM;
6302 mask |= NETIF_F_VLAN_CHALLENGED;
6303
6304 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6305 all &= one | ~NETIF_F_ALL_FOR_ALL;
6306
6307 /* If one device supports hw checksumming, set for all. */
6308 if (all & NETIF_F_GEN_CSUM)
6309 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6310
6311 return all;
6312}
6313EXPORT_SYMBOL(netdev_increment_features);
6314
6315static struct hlist_head *netdev_create_hash(void)
6316{
6317 int i;
6318 struct hlist_head *hash;
6319
6320 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6321 if (hash != NULL)
6322 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6323 INIT_HLIST_HEAD(&hash[i]);
6324
6325 return hash;
6326}
6327
6328/* Initialize per network namespace state */
6329static int __net_init netdev_init(struct net *net)
6330{
6331 INIT_LIST_HEAD(&net->dev_base_head);
6332
6333 net->dev_name_head = netdev_create_hash();
6334 if (net->dev_name_head == NULL)
6335 goto err_name;
6336
6337 net->dev_index_head = netdev_create_hash();
6338 if (net->dev_index_head == NULL)
6339 goto err_idx;
6340
6341 return 0;
6342
6343err_idx:
6344 kfree(net->dev_name_head);
6345err_name:
6346 return -ENOMEM;
6347}
6348
6349/**
6350 * netdev_drivername - network driver for the device
6351 * @dev: network device
6352 *
6353 * Determine network driver for device.
6354 */
6355const char *netdev_drivername(const struct net_device *dev)
6356{
6357 const struct device_driver *driver;
6358 const struct device *parent;
6359 const char *empty = "";
6360
6361 parent = dev->dev.parent;
6362 if (!parent)
6363 return empty;
6364
6365 driver = parent->driver;
6366 if (driver && driver->name)
6367 return driver->name;
6368 return empty;
6369}
6370
6371int __netdev_printk(const char *level, const struct net_device *dev,
6372 struct va_format *vaf)
6373{
6374 int r;
6375
6376 if (dev && dev->dev.parent)
6377 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6378 netdev_name(dev), vaf);
6379 else if (dev)
6380 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6381 else
6382 r = printk("%s(NULL net_device): %pV", level, vaf);
6383
6384 return r;
6385}
6386EXPORT_SYMBOL(__netdev_printk);
6387
6388int netdev_printk(const char *level, const struct net_device *dev,
6389 const char *format, ...)
6390{
6391 struct va_format vaf;
6392 va_list args;
6393 int r;
6394
6395 va_start(args, format);
6396
6397 vaf.fmt = format;
6398 vaf.va = &args;
6399
6400 r = __netdev_printk(level, dev, &vaf);
6401 va_end(args);
6402
6403 return r;
6404}
6405EXPORT_SYMBOL(netdev_printk);
6406
6407#define define_netdev_printk_level(func, level) \
6408int func(const struct net_device *dev, const char *fmt, ...) \
6409{ \
6410 int r; \
6411 struct va_format vaf; \
6412 va_list args; \
6413 \
6414 va_start(args, fmt); \
6415 \
6416 vaf.fmt = fmt; \
6417 vaf.va = &args; \
6418 \
6419 r = __netdev_printk(level, dev, &vaf); \
6420 va_end(args); \
6421 \
6422 return r; \
6423} \
6424EXPORT_SYMBOL(func);
6425
6426define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6427define_netdev_printk_level(netdev_alert, KERN_ALERT);
6428define_netdev_printk_level(netdev_crit, KERN_CRIT);
6429define_netdev_printk_level(netdev_err, KERN_ERR);
6430define_netdev_printk_level(netdev_warn, KERN_WARNING);
6431define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6432define_netdev_printk_level(netdev_info, KERN_INFO);
6433
6434static void __net_exit netdev_exit(struct net *net)
6435{
6436 kfree(net->dev_name_head);
6437 kfree(net->dev_index_head);
6438}
6439
6440static struct pernet_operations __net_initdata netdev_net_ops = {
6441 .init = netdev_init,
6442 .exit = netdev_exit,
6443};
6444
6445static void __net_exit default_device_exit(struct net *net)
6446{
6447 struct net_device *dev, *aux;
6448 /*
6449 * Push all migratable network devices back to the
6450 * initial network namespace
6451 */
6452 rtnl_lock();
6453 for_each_netdev_safe(net, dev, aux) {
6454 int err;
6455 char fb_name[IFNAMSIZ];
6456
6457 /* Ignore unmoveable devices (i.e. loopback) */
6458 if (dev->features & NETIF_F_NETNS_LOCAL)
6459 continue;
6460
6461 /* Leave virtual devices for the generic cleanup */
6462 if (dev->rtnl_link_ops)
6463 continue;
6464
6465 /* Push remaining network devices to init_net */
6466 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6467 err = dev_change_net_namespace(dev, &init_net, fb_name);
6468 if (err) {
6469 pr_emerg("%s: failed to move %s to init_net: %d\n",
6470 __func__, dev->name, err);
6471 BUG();
6472 }
6473 }
6474 rtnl_unlock();
6475}
6476
6477static void __net_exit default_device_exit_batch(struct list_head *net_list)
6478{
6479 /* At exit all network devices most be removed from a network
6480 * namespace. Do this in the reverse order of registration.
6481 * Do this across as many network namespaces as possible to
6482 * improve batching efficiency.
6483 */
6484 struct net_device *dev;
6485 struct net *net;
6486 LIST_HEAD(dev_kill_list);
6487
6488 rtnl_lock();
6489 list_for_each_entry(net, net_list, exit_list) {
6490 for_each_netdev_reverse(net, dev) {
6491 if (dev->rtnl_link_ops)
6492 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6493 else
6494 unregister_netdevice_queue(dev, &dev_kill_list);
6495 }
6496 }
6497 unregister_netdevice_many(&dev_kill_list);
6498 list_del(&dev_kill_list);
6499 rtnl_unlock();
6500}
6501
6502static struct pernet_operations __net_initdata default_device_ops = {
6503 .exit = default_device_exit,
6504 .exit_batch = default_device_exit_batch,
6505};
6506
6507/*
6508 * Initialize the DEV module. At boot time this walks the device list and
6509 * unhooks any devices that fail to initialise (normally hardware not
6510 * present) and leaves us with a valid list of present and active devices.
6511 *
6512 */
6513
6514/*
6515 * This is called single threaded during boot, so no need
6516 * to take the rtnl semaphore.
6517 */
6518static int __init net_dev_init(void)
6519{
6520 int i, rc = -ENOMEM;
6521
6522 BUG_ON(!dev_boot_phase);
6523
6524 if (dev_proc_init())
6525 goto out;
6526
6527 if (netdev_kobject_init())
6528 goto out;
6529
6530 INIT_LIST_HEAD(&ptype_all);
6531 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6532 INIT_LIST_HEAD(&ptype_base[i]);
6533
6534 if (register_pernet_subsys(&netdev_net_ops))
6535 goto out;
6536
6537 /*
6538 * Initialise the packet receive queues.
6539 */
6540
6541 for_each_possible_cpu(i) {
6542 struct softnet_data *sd = &per_cpu(softnet_data, i);
6543
6544 memset(sd, 0, sizeof(*sd));
6545 skb_queue_head_init(&sd->input_pkt_queue);
6546 skb_queue_head_init(&sd->process_queue);
6547 sd->completion_queue = NULL;
6548 INIT_LIST_HEAD(&sd->poll_list);
6549 sd->output_queue = NULL;
6550 sd->output_queue_tailp = &sd->output_queue;
6551#ifdef CONFIG_RPS
6552 sd->csd.func = rps_trigger_softirq;
6553 sd->csd.info = sd;
6554 sd->csd.flags = 0;
6555 sd->cpu = i;
6556#endif
6557
6558 sd->backlog.poll = process_backlog;
6559 sd->backlog.weight = weight_p;
6560 sd->backlog.gro_list = NULL;
6561 sd->backlog.gro_count = 0;
6562 }
6563
6564 dev_boot_phase = 0;
6565
6566 /* The loopback device is special if any other network devices
6567 * is present in a network namespace the loopback device must
6568 * be present. Since we now dynamically allocate and free the
6569 * loopback device ensure this invariant is maintained by
6570 * keeping the loopback device as the first device on the
6571 * list of network devices. Ensuring the loopback devices
6572 * is the first device that appears and the last network device
6573 * that disappears.
6574 */
6575 if (register_pernet_device(&loopback_net_ops))
6576 goto out;
6577
6578 if (register_pernet_device(&default_device_ops))
6579 goto out;
6580
6581 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6582 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6583
6584 hotcpu_notifier(dev_cpu_callback, 0);
6585 dst_init();
6586 dev_mcast_init();
6587 rc = 0;
6588out:
6589 return rc;
6590}
6591
6592subsys_initcall(net_dev_init);
6593
6594static int __init initialize_hashrnd(void)
6595{
6596 get_random_bytes(&hashrnd, sizeof(hashrnd));
6597 return 0;
6598}
6599
6600late_initcall_sync(initialize_hashrnd);
6601