at v3.4-rc3 6056 lines 176 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21/* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64#define pr_fmt(fmt) "TCP: " fmt 65 66#include <linux/mm.h> 67#include <linux/slab.h> 68#include <linux/module.h> 69#include <linux/sysctl.h> 70#include <linux/kernel.h> 71#include <net/dst.h> 72#include <net/tcp.h> 73#include <net/inet_common.h> 74#include <linux/ipsec.h> 75#include <asm/unaligned.h> 76#include <net/netdma.h> 77 78int sysctl_tcp_timestamps __read_mostly = 1; 79int sysctl_tcp_window_scaling __read_mostly = 1; 80int sysctl_tcp_sack __read_mostly = 1; 81int sysctl_tcp_fack __read_mostly = 1; 82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83EXPORT_SYMBOL(sysctl_tcp_reordering); 84int sysctl_tcp_ecn __read_mostly = 2; 85EXPORT_SYMBOL(sysctl_tcp_ecn); 86int sysctl_tcp_dsack __read_mostly = 1; 87int sysctl_tcp_app_win __read_mostly = 31; 88int sysctl_tcp_adv_win_scale __read_mostly = 2; 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91int sysctl_tcp_stdurg __read_mostly; 92int sysctl_tcp_rfc1337 __read_mostly; 93int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 94int sysctl_tcp_frto __read_mostly = 2; 95int sysctl_tcp_frto_response __read_mostly; 96int sysctl_tcp_nometrics_save __read_mostly; 97 98int sysctl_tcp_thin_dupack __read_mostly; 99 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 101int sysctl_tcp_abc __read_mostly; 102 103#define FLAG_DATA 0x01 /* Incoming frame contained data. */ 104#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 105#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 106#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 107#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 108#define FLAG_DATA_SACKED 0x20 /* New SACK. */ 109#define FLAG_ECE 0x40 /* ECE in this ACK */ 110#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 111#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 112#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 113#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 114#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 115#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 116 117#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 118#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 119#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 120#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 121#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 122 123#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 124#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 125 126/* Adapt the MSS value used to make delayed ack decision to the 127 * real world. 128 */ 129static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 130{ 131 struct inet_connection_sock *icsk = inet_csk(sk); 132 const unsigned int lss = icsk->icsk_ack.last_seg_size; 133 unsigned int len; 134 135 icsk->icsk_ack.last_seg_size = 0; 136 137 /* skb->len may jitter because of SACKs, even if peer 138 * sends good full-sized frames. 139 */ 140 len = skb_shinfo(skb)->gso_size ? : skb->len; 141 if (len >= icsk->icsk_ack.rcv_mss) { 142 icsk->icsk_ack.rcv_mss = len; 143 } else { 144 /* Otherwise, we make more careful check taking into account, 145 * that SACKs block is variable. 146 * 147 * "len" is invariant segment length, including TCP header. 148 */ 149 len += skb->data - skb_transport_header(skb); 150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 151 /* If PSH is not set, packet should be 152 * full sized, provided peer TCP is not badly broken. 153 * This observation (if it is correct 8)) allows 154 * to handle super-low mtu links fairly. 155 */ 156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 158 /* Subtract also invariant (if peer is RFC compliant), 159 * tcp header plus fixed timestamp option length. 160 * Resulting "len" is MSS free of SACK jitter. 161 */ 162 len -= tcp_sk(sk)->tcp_header_len; 163 icsk->icsk_ack.last_seg_size = len; 164 if (len == lss) { 165 icsk->icsk_ack.rcv_mss = len; 166 return; 167 } 168 } 169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 172 } 173} 174 175static void tcp_incr_quickack(struct sock *sk) 176{ 177 struct inet_connection_sock *icsk = inet_csk(sk); 178 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 179 180 if (quickacks == 0) 181 quickacks = 2; 182 if (quickacks > icsk->icsk_ack.quick) 183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 184} 185 186static void tcp_enter_quickack_mode(struct sock *sk) 187{ 188 struct inet_connection_sock *icsk = inet_csk(sk); 189 tcp_incr_quickack(sk); 190 icsk->icsk_ack.pingpong = 0; 191 icsk->icsk_ack.ato = TCP_ATO_MIN; 192} 193 194/* Send ACKs quickly, if "quick" count is not exhausted 195 * and the session is not interactive. 196 */ 197 198static inline int tcp_in_quickack_mode(const struct sock *sk) 199{ 200 const struct inet_connection_sock *icsk = inet_csk(sk); 201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 202} 203 204static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 205{ 206 if (tp->ecn_flags & TCP_ECN_OK) 207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 208} 209 210static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 211{ 212 if (tcp_hdr(skb)->cwr) 213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 214} 215 216static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 217{ 218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 219} 220 221static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 222{ 223 if (!(tp->ecn_flags & TCP_ECN_OK)) 224 return; 225 226 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 227 case INET_ECN_NOT_ECT: 228 /* Funny extension: if ECT is not set on a segment, 229 * and we already seen ECT on a previous segment, 230 * it is probably a retransmit. 231 */ 232 if (tp->ecn_flags & TCP_ECN_SEEN) 233 tcp_enter_quickack_mode((struct sock *)tp); 234 break; 235 case INET_ECN_CE: 236 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 237 /* fallinto */ 238 default: 239 tp->ecn_flags |= TCP_ECN_SEEN; 240 } 241} 242 243static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 244{ 245 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 246 tp->ecn_flags &= ~TCP_ECN_OK; 247} 248 249static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 250{ 251 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 252 tp->ecn_flags &= ~TCP_ECN_OK; 253} 254 255static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 256{ 257 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 258 return 1; 259 return 0; 260} 261 262/* Buffer size and advertised window tuning. 263 * 264 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 265 */ 266 267static void tcp_fixup_sndbuf(struct sock *sk) 268{ 269 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER); 270 271 sndmem *= TCP_INIT_CWND; 272 if (sk->sk_sndbuf < sndmem) 273 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 274} 275 276/* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 277 * 278 * All tcp_full_space() is split to two parts: "network" buffer, allocated 279 * forward and advertised in receiver window (tp->rcv_wnd) and 280 * "application buffer", required to isolate scheduling/application 281 * latencies from network. 282 * window_clamp is maximal advertised window. It can be less than 283 * tcp_full_space(), in this case tcp_full_space() - window_clamp 284 * is reserved for "application" buffer. The less window_clamp is 285 * the smoother our behaviour from viewpoint of network, but the lower 286 * throughput and the higher sensitivity of the connection to losses. 8) 287 * 288 * rcv_ssthresh is more strict window_clamp used at "slow start" 289 * phase to predict further behaviour of this connection. 290 * It is used for two goals: 291 * - to enforce header prediction at sender, even when application 292 * requires some significant "application buffer". It is check #1. 293 * - to prevent pruning of receive queue because of misprediction 294 * of receiver window. Check #2. 295 * 296 * The scheme does not work when sender sends good segments opening 297 * window and then starts to feed us spaghetti. But it should work 298 * in common situations. Otherwise, we have to rely on queue collapsing. 299 */ 300 301/* Slow part of check#2. */ 302static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 303{ 304 struct tcp_sock *tp = tcp_sk(sk); 305 /* Optimize this! */ 306 int truesize = tcp_win_from_space(skb->truesize) >> 1; 307 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 308 309 while (tp->rcv_ssthresh <= window) { 310 if (truesize <= skb->len) 311 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 312 313 truesize >>= 1; 314 window >>= 1; 315 } 316 return 0; 317} 318 319static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 320{ 321 struct tcp_sock *tp = tcp_sk(sk); 322 323 /* Check #1 */ 324 if (tp->rcv_ssthresh < tp->window_clamp && 325 (int)tp->rcv_ssthresh < tcp_space(sk) && 326 !sk_under_memory_pressure(sk)) { 327 int incr; 328 329 /* Check #2. Increase window, if skb with such overhead 330 * will fit to rcvbuf in future. 331 */ 332 if (tcp_win_from_space(skb->truesize) <= skb->len) 333 incr = 2 * tp->advmss; 334 else 335 incr = __tcp_grow_window(sk, skb); 336 337 if (incr) { 338 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 339 tp->window_clamp); 340 inet_csk(sk)->icsk_ack.quick |= 1; 341 } 342 } 343} 344 345/* 3. Tuning rcvbuf, when connection enters established state. */ 346 347static void tcp_fixup_rcvbuf(struct sock *sk) 348{ 349 u32 mss = tcp_sk(sk)->advmss; 350 u32 icwnd = TCP_DEFAULT_INIT_RCVWND; 351 int rcvmem; 352 353 /* Limit to 10 segments if mss <= 1460, 354 * or 14600/mss segments, with a minimum of two segments. 355 */ 356 if (mss > 1460) 357 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 358 359 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER); 360 while (tcp_win_from_space(rcvmem) < mss) 361 rcvmem += 128; 362 363 rcvmem *= icwnd; 364 365 if (sk->sk_rcvbuf < rcvmem) 366 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 367} 368 369/* 4. Try to fixup all. It is made immediately after connection enters 370 * established state. 371 */ 372static void tcp_init_buffer_space(struct sock *sk) 373{ 374 struct tcp_sock *tp = tcp_sk(sk); 375 int maxwin; 376 377 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 378 tcp_fixup_rcvbuf(sk); 379 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 380 tcp_fixup_sndbuf(sk); 381 382 tp->rcvq_space.space = tp->rcv_wnd; 383 384 maxwin = tcp_full_space(sk); 385 386 if (tp->window_clamp >= maxwin) { 387 tp->window_clamp = maxwin; 388 389 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 390 tp->window_clamp = max(maxwin - 391 (maxwin >> sysctl_tcp_app_win), 392 4 * tp->advmss); 393 } 394 395 /* Force reservation of one segment. */ 396 if (sysctl_tcp_app_win && 397 tp->window_clamp > 2 * tp->advmss && 398 tp->window_clamp + tp->advmss > maxwin) 399 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 400 401 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 402 tp->snd_cwnd_stamp = tcp_time_stamp; 403} 404 405/* 5. Recalculate window clamp after socket hit its memory bounds. */ 406static void tcp_clamp_window(struct sock *sk) 407{ 408 struct tcp_sock *tp = tcp_sk(sk); 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 411 icsk->icsk_ack.quick = 0; 412 413 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 414 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 415 !sk_under_memory_pressure(sk) && 416 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 417 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 418 sysctl_tcp_rmem[2]); 419 } 420 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 421 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 422} 423 424/* Initialize RCV_MSS value. 425 * RCV_MSS is an our guess about MSS used by the peer. 426 * We haven't any direct information about the MSS. 427 * It's better to underestimate the RCV_MSS rather than overestimate. 428 * Overestimations make us ACKing less frequently than needed. 429 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 430 */ 431void tcp_initialize_rcv_mss(struct sock *sk) 432{ 433 const struct tcp_sock *tp = tcp_sk(sk); 434 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 435 436 hint = min(hint, tp->rcv_wnd / 2); 437 hint = min(hint, TCP_MSS_DEFAULT); 438 hint = max(hint, TCP_MIN_MSS); 439 440 inet_csk(sk)->icsk_ack.rcv_mss = hint; 441} 442EXPORT_SYMBOL(tcp_initialize_rcv_mss); 443 444/* Receiver "autotuning" code. 445 * 446 * The algorithm for RTT estimation w/o timestamps is based on 447 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 448 * <http://public.lanl.gov/radiant/pubs.html#DRS> 449 * 450 * More detail on this code can be found at 451 * <http://staff.psc.edu/jheffner/>, 452 * though this reference is out of date. A new paper 453 * is pending. 454 */ 455static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 456{ 457 u32 new_sample = tp->rcv_rtt_est.rtt; 458 long m = sample; 459 460 if (m == 0) 461 m = 1; 462 463 if (new_sample != 0) { 464 /* If we sample in larger samples in the non-timestamp 465 * case, we could grossly overestimate the RTT especially 466 * with chatty applications or bulk transfer apps which 467 * are stalled on filesystem I/O. 468 * 469 * Also, since we are only going for a minimum in the 470 * non-timestamp case, we do not smooth things out 471 * else with timestamps disabled convergence takes too 472 * long. 473 */ 474 if (!win_dep) { 475 m -= (new_sample >> 3); 476 new_sample += m; 477 } else { 478 m <<= 3; 479 if (m < new_sample) 480 new_sample = m; 481 } 482 } else { 483 /* No previous measure. */ 484 new_sample = m << 3; 485 } 486 487 if (tp->rcv_rtt_est.rtt != new_sample) 488 tp->rcv_rtt_est.rtt = new_sample; 489} 490 491static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 492{ 493 if (tp->rcv_rtt_est.time == 0) 494 goto new_measure; 495 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 496 return; 497 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 498 499new_measure: 500 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 501 tp->rcv_rtt_est.time = tcp_time_stamp; 502} 503 504static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 505 const struct sk_buff *skb) 506{ 507 struct tcp_sock *tp = tcp_sk(sk); 508 if (tp->rx_opt.rcv_tsecr && 509 (TCP_SKB_CB(skb)->end_seq - 510 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 511 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 512} 513 514/* 515 * This function should be called every time data is copied to user space. 516 * It calculates the appropriate TCP receive buffer space. 517 */ 518void tcp_rcv_space_adjust(struct sock *sk) 519{ 520 struct tcp_sock *tp = tcp_sk(sk); 521 int time; 522 int space; 523 524 if (tp->rcvq_space.time == 0) 525 goto new_measure; 526 527 time = tcp_time_stamp - tp->rcvq_space.time; 528 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 529 return; 530 531 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 532 533 space = max(tp->rcvq_space.space, space); 534 535 if (tp->rcvq_space.space != space) { 536 int rcvmem; 537 538 tp->rcvq_space.space = space; 539 540 if (sysctl_tcp_moderate_rcvbuf && 541 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 542 int new_clamp = space; 543 544 /* Receive space grows, normalize in order to 545 * take into account packet headers and sk_buff 546 * structure overhead. 547 */ 548 space /= tp->advmss; 549 if (!space) 550 space = 1; 551 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 552 while (tcp_win_from_space(rcvmem) < tp->advmss) 553 rcvmem += 128; 554 space *= rcvmem; 555 space = min(space, sysctl_tcp_rmem[2]); 556 if (space > sk->sk_rcvbuf) { 557 sk->sk_rcvbuf = space; 558 559 /* Make the window clamp follow along. */ 560 tp->window_clamp = new_clamp; 561 } 562 } 563 } 564 565new_measure: 566 tp->rcvq_space.seq = tp->copied_seq; 567 tp->rcvq_space.time = tcp_time_stamp; 568} 569 570/* There is something which you must keep in mind when you analyze the 571 * behavior of the tp->ato delayed ack timeout interval. When a 572 * connection starts up, we want to ack as quickly as possible. The 573 * problem is that "good" TCP's do slow start at the beginning of data 574 * transmission. The means that until we send the first few ACK's the 575 * sender will sit on his end and only queue most of his data, because 576 * he can only send snd_cwnd unacked packets at any given time. For 577 * each ACK we send, he increments snd_cwnd and transmits more of his 578 * queue. -DaveM 579 */ 580static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 581{ 582 struct tcp_sock *tp = tcp_sk(sk); 583 struct inet_connection_sock *icsk = inet_csk(sk); 584 u32 now; 585 586 inet_csk_schedule_ack(sk); 587 588 tcp_measure_rcv_mss(sk, skb); 589 590 tcp_rcv_rtt_measure(tp); 591 592 now = tcp_time_stamp; 593 594 if (!icsk->icsk_ack.ato) { 595 /* The _first_ data packet received, initialize 596 * delayed ACK engine. 597 */ 598 tcp_incr_quickack(sk); 599 icsk->icsk_ack.ato = TCP_ATO_MIN; 600 } else { 601 int m = now - icsk->icsk_ack.lrcvtime; 602 603 if (m <= TCP_ATO_MIN / 2) { 604 /* The fastest case is the first. */ 605 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 606 } else if (m < icsk->icsk_ack.ato) { 607 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 608 if (icsk->icsk_ack.ato > icsk->icsk_rto) 609 icsk->icsk_ack.ato = icsk->icsk_rto; 610 } else if (m > icsk->icsk_rto) { 611 /* Too long gap. Apparently sender failed to 612 * restart window, so that we send ACKs quickly. 613 */ 614 tcp_incr_quickack(sk); 615 sk_mem_reclaim(sk); 616 } 617 } 618 icsk->icsk_ack.lrcvtime = now; 619 620 TCP_ECN_check_ce(tp, skb); 621 622 if (skb->len >= 128) 623 tcp_grow_window(sk, skb); 624} 625 626/* Called to compute a smoothed rtt estimate. The data fed to this 627 * routine either comes from timestamps, or from segments that were 628 * known _not_ to have been retransmitted [see Karn/Partridge 629 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 630 * piece by Van Jacobson. 631 * NOTE: the next three routines used to be one big routine. 632 * To save cycles in the RFC 1323 implementation it was better to break 633 * it up into three procedures. -- erics 634 */ 635static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 636{ 637 struct tcp_sock *tp = tcp_sk(sk); 638 long m = mrtt; /* RTT */ 639 640 /* The following amusing code comes from Jacobson's 641 * article in SIGCOMM '88. Note that rtt and mdev 642 * are scaled versions of rtt and mean deviation. 643 * This is designed to be as fast as possible 644 * m stands for "measurement". 645 * 646 * On a 1990 paper the rto value is changed to: 647 * RTO = rtt + 4 * mdev 648 * 649 * Funny. This algorithm seems to be very broken. 650 * These formulae increase RTO, when it should be decreased, increase 651 * too slowly, when it should be increased quickly, decrease too quickly 652 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 653 * does not matter how to _calculate_ it. Seems, it was trap 654 * that VJ failed to avoid. 8) 655 */ 656 if (m == 0) 657 m = 1; 658 if (tp->srtt != 0) { 659 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 660 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 661 if (m < 0) { 662 m = -m; /* m is now abs(error) */ 663 m -= (tp->mdev >> 2); /* similar update on mdev */ 664 /* This is similar to one of Eifel findings. 665 * Eifel blocks mdev updates when rtt decreases. 666 * This solution is a bit different: we use finer gain 667 * for mdev in this case (alpha*beta). 668 * Like Eifel it also prevents growth of rto, 669 * but also it limits too fast rto decreases, 670 * happening in pure Eifel. 671 */ 672 if (m > 0) 673 m >>= 3; 674 } else { 675 m -= (tp->mdev >> 2); /* similar update on mdev */ 676 } 677 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 678 if (tp->mdev > tp->mdev_max) { 679 tp->mdev_max = tp->mdev; 680 if (tp->mdev_max > tp->rttvar) 681 tp->rttvar = tp->mdev_max; 682 } 683 if (after(tp->snd_una, tp->rtt_seq)) { 684 if (tp->mdev_max < tp->rttvar) 685 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 686 tp->rtt_seq = tp->snd_nxt; 687 tp->mdev_max = tcp_rto_min(sk); 688 } 689 } else { 690 /* no previous measure. */ 691 tp->srtt = m << 3; /* take the measured time to be rtt */ 692 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 693 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 694 tp->rtt_seq = tp->snd_nxt; 695 } 696} 697 698/* Calculate rto without backoff. This is the second half of Van Jacobson's 699 * routine referred to above. 700 */ 701static inline void tcp_set_rto(struct sock *sk) 702{ 703 const struct tcp_sock *tp = tcp_sk(sk); 704 /* Old crap is replaced with new one. 8) 705 * 706 * More seriously: 707 * 1. If rtt variance happened to be less 50msec, it is hallucination. 708 * It cannot be less due to utterly erratic ACK generation made 709 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 710 * to do with delayed acks, because at cwnd>2 true delack timeout 711 * is invisible. Actually, Linux-2.4 also generates erratic 712 * ACKs in some circumstances. 713 */ 714 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 715 716 /* 2. Fixups made earlier cannot be right. 717 * If we do not estimate RTO correctly without them, 718 * all the algo is pure shit and should be replaced 719 * with correct one. It is exactly, which we pretend to do. 720 */ 721 722 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 723 * guarantees that rto is higher. 724 */ 725 tcp_bound_rto(sk); 726} 727 728/* Save metrics learned by this TCP session. 729 This function is called only, when TCP finishes successfully 730 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 731 */ 732void tcp_update_metrics(struct sock *sk) 733{ 734 struct tcp_sock *tp = tcp_sk(sk); 735 struct dst_entry *dst = __sk_dst_get(sk); 736 737 if (sysctl_tcp_nometrics_save) 738 return; 739 740 dst_confirm(dst); 741 742 if (dst && (dst->flags & DST_HOST)) { 743 const struct inet_connection_sock *icsk = inet_csk(sk); 744 int m; 745 unsigned long rtt; 746 747 if (icsk->icsk_backoff || !tp->srtt) { 748 /* This session failed to estimate rtt. Why? 749 * Probably, no packets returned in time. 750 * Reset our results. 751 */ 752 if (!(dst_metric_locked(dst, RTAX_RTT))) 753 dst_metric_set(dst, RTAX_RTT, 0); 754 return; 755 } 756 757 rtt = dst_metric_rtt(dst, RTAX_RTT); 758 m = rtt - tp->srtt; 759 760 /* If newly calculated rtt larger than stored one, 761 * store new one. Otherwise, use EWMA. Remember, 762 * rtt overestimation is always better than underestimation. 763 */ 764 if (!(dst_metric_locked(dst, RTAX_RTT))) { 765 if (m <= 0) 766 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 767 else 768 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 769 } 770 771 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 772 unsigned long var; 773 if (m < 0) 774 m = -m; 775 776 /* Scale deviation to rttvar fixed point */ 777 m >>= 1; 778 if (m < tp->mdev) 779 m = tp->mdev; 780 781 var = dst_metric_rtt(dst, RTAX_RTTVAR); 782 if (m >= var) 783 var = m; 784 else 785 var -= (var - m) >> 2; 786 787 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 788 } 789 790 if (tcp_in_initial_slowstart(tp)) { 791 /* Slow start still did not finish. */ 792 if (dst_metric(dst, RTAX_SSTHRESH) && 793 !dst_metric_locked(dst, RTAX_SSTHRESH) && 794 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 795 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1); 796 if (!dst_metric_locked(dst, RTAX_CWND) && 797 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 798 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd); 799 } else if (tp->snd_cwnd > tp->snd_ssthresh && 800 icsk->icsk_ca_state == TCP_CA_Open) { 801 /* Cong. avoidance phase, cwnd is reliable. */ 802 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 803 dst_metric_set(dst, RTAX_SSTHRESH, 804 max(tp->snd_cwnd >> 1, tp->snd_ssthresh)); 805 if (!dst_metric_locked(dst, RTAX_CWND)) 806 dst_metric_set(dst, RTAX_CWND, 807 (dst_metric(dst, RTAX_CWND) + 808 tp->snd_cwnd) >> 1); 809 } else { 810 /* Else slow start did not finish, cwnd is non-sense, 811 ssthresh may be also invalid. 812 */ 813 if (!dst_metric_locked(dst, RTAX_CWND)) 814 dst_metric_set(dst, RTAX_CWND, 815 (dst_metric(dst, RTAX_CWND) + 816 tp->snd_ssthresh) >> 1); 817 if (dst_metric(dst, RTAX_SSTHRESH) && 818 !dst_metric_locked(dst, RTAX_SSTHRESH) && 819 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 820 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh); 821 } 822 823 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 824 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 825 tp->reordering != sysctl_tcp_reordering) 826 dst_metric_set(dst, RTAX_REORDERING, tp->reordering); 827 } 828 } 829} 830 831__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 832{ 833 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 834 835 if (!cwnd) 836 cwnd = TCP_INIT_CWND; 837 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 838} 839 840/* Set slow start threshold and cwnd not falling to slow start */ 841void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 842{ 843 struct tcp_sock *tp = tcp_sk(sk); 844 const struct inet_connection_sock *icsk = inet_csk(sk); 845 846 tp->prior_ssthresh = 0; 847 tp->bytes_acked = 0; 848 if (icsk->icsk_ca_state < TCP_CA_CWR) { 849 tp->undo_marker = 0; 850 if (set_ssthresh) 851 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 852 tp->snd_cwnd = min(tp->snd_cwnd, 853 tcp_packets_in_flight(tp) + 1U); 854 tp->snd_cwnd_cnt = 0; 855 tp->high_seq = tp->snd_nxt; 856 tp->snd_cwnd_stamp = tcp_time_stamp; 857 TCP_ECN_queue_cwr(tp); 858 859 tcp_set_ca_state(sk, TCP_CA_CWR); 860 } 861} 862 863/* 864 * Packet counting of FACK is based on in-order assumptions, therefore TCP 865 * disables it when reordering is detected 866 */ 867static void tcp_disable_fack(struct tcp_sock *tp) 868{ 869 /* RFC3517 uses different metric in lost marker => reset on change */ 870 if (tcp_is_fack(tp)) 871 tp->lost_skb_hint = NULL; 872 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 873} 874 875/* Take a notice that peer is sending D-SACKs */ 876static void tcp_dsack_seen(struct tcp_sock *tp) 877{ 878 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 879} 880 881/* Initialize metrics on socket. */ 882 883static void tcp_init_metrics(struct sock *sk) 884{ 885 struct tcp_sock *tp = tcp_sk(sk); 886 struct dst_entry *dst = __sk_dst_get(sk); 887 888 if (dst == NULL) 889 goto reset; 890 891 dst_confirm(dst); 892 893 if (dst_metric_locked(dst, RTAX_CWND)) 894 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 895 if (dst_metric(dst, RTAX_SSTHRESH)) { 896 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 897 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 898 tp->snd_ssthresh = tp->snd_cwnd_clamp; 899 } else { 900 /* ssthresh may have been reduced unnecessarily during. 901 * 3WHS. Restore it back to its initial default. 902 */ 903 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 904 } 905 if (dst_metric(dst, RTAX_REORDERING) && 906 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 907 tcp_disable_fack(tp); 908 tp->reordering = dst_metric(dst, RTAX_REORDERING); 909 } 910 911 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0) 912 goto reset; 913 914 /* Initial rtt is determined from SYN,SYN-ACK. 915 * The segment is small and rtt may appear much 916 * less than real one. Use per-dst memory 917 * to make it more realistic. 918 * 919 * A bit of theory. RTT is time passed after "normal" sized packet 920 * is sent until it is ACKed. In normal circumstances sending small 921 * packets force peer to delay ACKs and calculation is correct too. 922 * The algorithm is adaptive and, provided we follow specs, it 923 * NEVER underestimate RTT. BUT! If peer tries to make some clever 924 * tricks sort of "quick acks" for time long enough to decrease RTT 925 * to low value, and then abruptly stops to do it and starts to delay 926 * ACKs, wait for troubles. 927 */ 928 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 929 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 930 tp->rtt_seq = tp->snd_nxt; 931 } 932 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 933 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 934 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 935 } 936 tcp_set_rto(sk); 937reset: 938 if (tp->srtt == 0) { 939 /* RFC2988bis: We've failed to get a valid RTT sample from 940 * 3WHS. This is most likely due to retransmission, 941 * including spurious one. Reset the RTO back to 3secs 942 * from the more aggressive 1sec to avoid more spurious 943 * retransmission. 944 */ 945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK; 946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK; 947 } 948 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 949 * retransmitted. In light of RFC2988bis' more aggressive 1sec 950 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 951 * retransmission has occurred. 952 */ 953 if (tp->total_retrans > 1) 954 tp->snd_cwnd = 1; 955 else 956 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 957 tp->snd_cwnd_stamp = tcp_time_stamp; 958} 959 960static void tcp_update_reordering(struct sock *sk, const int metric, 961 const int ts) 962{ 963 struct tcp_sock *tp = tcp_sk(sk); 964 if (metric > tp->reordering) { 965 int mib_idx; 966 967 tp->reordering = min(TCP_MAX_REORDERING, metric); 968 969 /* This exciting event is worth to be remembered. 8) */ 970 if (ts) 971 mib_idx = LINUX_MIB_TCPTSREORDER; 972 else if (tcp_is_reno(tp)) 973 mib_idx = LINUX_MIB_TCPRENOREORDER; 974 else if (tcp_is_fack(tp)) 975 mib_idx = LINUX_MIB_TCPFACKREORDER; 976 else 977 mib_idx = LINUX_MIB_TCPSACKREORDER; 978 979 NET_INC_STATS_BH(sock_net(sk), mib_idx); 980#if FASTRETRANS_DEBUG > 1 981 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 982 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 983 tp->reordering, 984 tp->fackets_out, 985 tp->sacked_out, 986 tp->undo_marker ? tp->undo_retrans : 0); 987#endif 988 tcp_disable_fack(tp); 989 } 990} 991 992/* This must be called before lost_out is incremented */ 993static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 994{ 995 if ((tp->retransmit_skb_hint == NULL) || 996 before(TCP_SKB_CB(skb)->seq, 997 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 998 tp->retransmit_skb_hint = skb; 999 1000 if (!tp->lost_out || 1001 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 1002 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1003} 1004 1005static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 1006{ 1007 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1008 tcp_verify_retransmit_hint(tp, skb); 1009 1010 tp->lost_out += tcp_skb_pcount(skb); 1011 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1012 } 1013} 1014 1015static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 1016 struct sk_buff *skb) 1017{ 1018 tcp_verify_retransmit_hint(tp, skb); 1019 1020 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1021 tp->lost_out += tcp_skb_pcount(skb); 1022 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1023 } 1024} 1025 1026/* This procedure tags the retransmission queue when SACKs arrive. 1027 * 1028 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1029 * Packets in queue with these bits set are counted in variables 1030 * sacked_out, retrans_out and lost_out, correspondingly. 1031 * 1032 * Valid combinations are: 1033 * Tag InFlight Description 1034 * 0 1 - orig segment is in flight. 1035 * S 0 - nothing flies, orig reached receiver. 1036 * L 0 - nothing flies, orig lost by net. 1037 * R 2 - both orig and retransmit are in flight. 1038 * L|R 1 - orig is lost, retransmit is in flight. 1039 * S|R 1 - orig reached receiver, retrans is still in flight. 1040 * (L|S|R is logically valid, it could occur when L|R is sacked, 1041 * but it is equivalent to plain S and code short-curcuits it to S. 1042 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1043 * 1044 * These 6 states form finite state machine, controlled by the following events: 1045 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1046 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1047 * 3. Loss detection event of two flavors: 1048 * A. Scoreboard estimator decided the packet is lost. 1049 * A'. Reno "three dupacks" marks head of queue lost. 1050 * A''. Its FACK modification, head until snd.fack is lost. 1051 * B. SACK arrives sacking SND.NXT at the moment, when the 1052 * segment was retransmitted. 1053 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1054 * 1055 * It is pleasant to note, that state diagram turns out to be commutative, 1056 * so that we are allowed not to be bothered by order of our actions, 1057 * when multiple events arrive simultaneously. (see the function below). 1058 * 1059 * Reordering detection. 1060 * -------------------- 1061 * Reordering metric is maximal distance, which a packet can be displaced 1062 * in packet stream. With SACKs we can estimate it: 1063 * 1064 * 1. SACK fills old hole and the corresponding segment was not 1065 * ever retransmitted -> reordering. Alas, we cannot use it 1066 * when segment was retransmitted. 1067 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1068 * for retransmitted and already SACKed segment -> reordering.. 1069 * Both of these heuristics are not used in Loss state, when we cannot 1070 * account for retransmits accurately. 1071 * 1072 * SACK block validation. 1073 * ---------------------- 1074 * 1075 * SACK block range validation checks that the received SACK block fits to 1076 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1077 * Note that SND.UNA is not included to the range though being valid because 1078 * it means that the receiver is rather inconsistent with itself reporting 1079 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1080 * perfectly valid, however, in light of RFC2018 which explicitly states 1081 * that "SACK block MUST reflect the newest segment. Even if the newest 1082 * segment is going to be discarded ...", not that it looks very clever 1083 * in case of head skb. Due to potentional receiver driven attacks, we 1084 * choose to avoid immediate execution of a walk in write queue due to 1085 * reneging and defer head skb's loss recovery to standard loss recovery 1086 * procedure that will eventually trigger (nothing forbids us doing this). 1087 * 1088 * Implements also blockage to start_seq wrap-around. Problem lies in the 1089 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1090 * there's no guarantee that it will be before snd_nxt (n). The problem 1091 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1092 * wrap (s_w): 1093 * 1094 * <- outs wnd -> <- wrapzone -> 1095 * u e n u_w e_w s n_w 1096 * | | | | | | | 1097 * |<------------+------+----- TCP seqno space --------------+---------->| 1098 * ...-- <2^31 ->| |<--------... 1099 * ...---- >2^31 ------>| |<--------... 1100 * 1101 * Current code wouldn't be vulnerable but it's better still to discard such 1102 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1103 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1104 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1105 * equal to the ideal case (infinite seqno space without wrap caused issues). 1106 * 1107 * With D-SACK the lower bound is extended to cover sequence space below 1108 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1109 * again, D-SACK block must not to go across snd_una (for the same reason as 1110 * for the normal SACK blocks, explained above). But there all simplicity 1111 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1112 * fully below undo_marker they do not affect behavior in anyway and can 1113 * therefore be safely ignored. In rare cases (which are more or less 1114 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1115 * fragmentation and packet reordering past skb's retransmission. To consider 1116 * them correctly, the acceptable range must be extended even more though 1117 * the exact amount is rather hard to quantify. However, tp->max_window can 1118 * be used as an exaggerated estimate. 1119 */ 1120static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1121 u32 start_seq, u32 end_seq) 1122{ 1123 /* Too far in future, or reversed (interpretation is ambiguous) */ 1124 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1125 return 0; 1126 1127 /* Nasty start_seq wrap-around check (see comments above) */ 1128 if (!before(start_seq, tp->snd_nxt)) 1129 return 0; 1130 1131 /* In outstanding window? ...This is valid exit for D-SACKs too. 1132 * start_seq == snd_una is non-sensical (see comments above) 1133 */ 1134 if (after(start_seq, tp->snd_una)) 1135 return 1; 1136 1137 if (!is_dsack || !tp->undo_marker) 1138 return 0; 1139 1140 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1141 if (after(end_seq, tp->snd_una)) 1142 return 0; 1143 1144 if (!before(start_seq, tp->undo_marker)) 1145 return 1; 1146 1147 /* Too old */ 1148 if (!after(end_seq, tp->undo_marker)) 1149 return 0; 1150 1151 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1152 * start_seq < undo_marker and end_seq >= undo_marker. 1153 */ 1154 return !before(start_seq, end_seq - tp->max_window); 1155} 1156 1157/* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1158 * Event "B". Later note: FACK people cheated me again 8), we have to account 1159 * for reordering! Ugly, but should help. 1160 * 1161 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1162 * less than what is now known to be received by the other end (derived from 1163 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1164 * retransmitted skbs to avoid some costly processing per ACKs. 1165 */ 1166static void tcp_mark_lost_retrans(struct sock *sk) 1167{ 1168 const struct inet_connection_sock *icsk = inet_csk(sk); 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 struct sk_buff *skb; 1171 int cnt = 0; 1172 u32 new_low_seq = tp->snd_nxt; 1173 u32 received_upto = tcp_highest_sack_seq(tp); 1174 1175 if (!tcp_is_fack(tp) || !tp->retrans_out || 1176 !after(received_upto, tp->lost_retrans_low) || 1177 icsk->icsk_ca_state != TCP_CA_Recovery) 1178 return; 1179 1180 tcp_for_write_queue(skb, sk) { 1181 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1182 1183 if (skb == tcp_send_head(sk)) 1184 break; 1185 if (cnt == tp->retrans_out) 1186 break; 1187 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1188 continue; 1189 1190 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1191 continue; 1192 1193 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1194 * constraint here (see above) but figuring out that at 1195 * least tp->reordering SACK blocks reside between ack_seq 1196 * and received_upto is not easy task to do cheaply with 1197 * the available datastructures. 1198 * 1199 * Whether FACK should check here for tp->reordering segs 1200 * in-between one could argue for either way (it would be 1201 * rather simple to implement as we could count fack_count 1202 * during the walk and do tp->fackets_out - fack_count). 1203 */ 1204 if (after(received_upto, ack_seq)) { 1205 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1206 tp->retrans_out -= tcp_skb_pcount(skb); 1207 1208 tcp_skb_mark_lost_uncond_verify(tp, skb); 1209 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1210 } else { 1211 if (before(ack_seq, new_low_seq)) 1212 new_low_seq = ack_seq; 1213 cnt += tcp_skb_pcount(skb); 1214 } 1215 } 1216 1217 if (tp->retrans_out) 1218 tp->lost_retrans_low = new_low_seq; 1219} 1220 1221static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1222 struct tcp_sack_block_wire *sp, int num_sacks, 1223 u32 prior_snd_una) 1224{ 1225 struct tcp_sock *tp = tcp_sk(sk); 1226 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1227 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1228 int dup_sack = 0; 1229 1230 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1231 dup_sack = 1; 1232 tcp_dsack_seen(tp); 1233 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1234 } else if (num_sacks > 1) { 1235 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1236 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1237 1238 if (!after(end_seq_0, end_seq_1) && 1239 !before(start_seq_0, start_seq_1)) { 1240 dup_sack = 1; 1241 tcp_dsack_seen(tp); 1242 NET_INC_STATS_BH(sock_net(sk), 1243 LINUX_MIB_TCPDSACKOFORECV); 1244 } 1245 } 1246 1247 /* D-SACK for already forgotten data... Do dumb counting. */ 1248 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1249 !after(end_seq_0, prior_snd_una) && 1250 after(end_seq_0, tp->undo_marker)) 1251 tp->undo_retrans--; 1252 1253 return dup_sack; 1254} 1255 1256struct tcp_sacktag_state { 1257 int reord; 1258 int fack_count; 1259 int flag; 1260}; 1261 1262/* Check if skb is fully within the SACK block. In presence of GSO skbs, 1263 * the incoming SACK may not exactly match but we can find smaller MSS 1264 * aligned portion of it that matches. Therefore we might need to fragment 1265 * which may fail and creates some hassle (caller must handle error case 1266 * returns). 1267 * 1268 * FIXME: this could be merged to shift decision code 1269 */ 1270static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1271 u32 start_seq, u32 end_seq) 1272{ 1273 int in_sack, err; 1274 unsigned int pkt_len; 1275 unsigned int mss; 1276 1277 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1278 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1279 1280 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1281 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1282 mss = tcp_skb_mss(skb); 1283 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1284 1285 if (!in_sack) { 1286 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1287 if (pkt_len < mss) 1288 pkt_len = mss; 1289 } else { 1290 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1291 if (pkt_len < mss) 1292 return -EINVAL; 1293 } 1294 1295 /* Round if necessary so that SACKs cover only full MSSes 1296 * and/or the remaining small portion (if present) 1297 */ 1298 if (pkt_len > mss) { 1299 unsigned int new_len = (pkt_len / mss) * mss; 1300 if (!in_sack && new_len < pkt_len) { 1301 new_len += mss; 1302 if (new_len > skb->len) 1303 return 0; 1304 } 1305 pkt_len = new_len; 1306 } 1307 err = tcp_fragment(sk, skb, pkt_len, mss); 1308 if (err < 0) 1309 return err; 1310 } 1311 1312 return in_sack; 1313} 1314 1315/* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1316static u8 tcp_sacktag_one(struct sock *sk, 1317 struct tcp_sacktag_state *state, u8 sacked, 1318 u32 start_seq, u32 end_seq, 1319 int dup_sack, int pcount) 1320{ 1321 struct tcp_sock *tp = tcp_sk(sk); 1322 int fack_count = state->fack_count; 1323 1324 /* Account D-SACK for retransmitted packet. */ 1325 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1326 if (tp->undo_marker && tp->undo_retrans && 1327 after(end_seq, tp->undo_marker)) 1328 tp->undo_retrans--; 1329 if (sacked & TCPCB_SACKED_ACKED) 1330 state->reord = min(fack_count, state->reord); 1331 } 1332 1333 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1334 if (!after(end_seq, tp->snd_una)) 1335 return sacked; 1336 1337 if (!(sacked & TCPCB_SACKED_ACKED)) { 1338 if (sacked & TCPCB_SACKED_RETRANS) { 1339 /* If the segment is not tagged as lost, 1340 * we do not clear RETRANS, believing 1341 * that retransmission is still in flight. 1342 */ 1343 if (sacked & TCPCB_LOST) { 1344 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1345 tp->lost_out -= pcount; 1346 tp->retrans_out -= pcount; 1347 } 1348 } else { 1349 if (!(sacked & TCPCB_RETRANS)) { 1350 /* New sack for not retransmitted frame, 1351 * which was in hole. It is reordering. 1352 */ 1353 if (before(start_seq, 1354 tcp_highest_sack_seq(tp))) 1355 state->reord = min(fack_count, 1356 state->reord); 1357 1358 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1359 if (!after(end_seq, tp->frto_highmark)) 1360 state->flag |= FLAG_ONLY_ORIG_SACKED; 1361 } 1362 1363 if (sacked & TCPCB_LOST) { 1364 sacked &= ~TCPCB_LOST; 1365 tp->lost_out -= pcount; 1366 } 1367 } 1368 1369 sacked |= TCPCB_SACKED_ACKED; 1370 state->flag |= FLAG_DATA_SACKED; 1371 tp->sacked_out += pcount; 1372 1373 fack_count += pcount; 1374 1375 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1376 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1377 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1378 tp->lost_cnt_hint += pcount; 1379 1380 if (fack_count > tp->fackets_out) 1381 tp->fackets_out = fack_count; 1382 } 1383 1384 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1385 * frames and clear it. undo_retrans is decreased above, L|R frames 1386 * are accounted above as well. 1387 */ 1388 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1389 sacked &= ~TCPCB_SACKED_RETRANS; 1390 tp->retrans_out -= pcount; 1391 } 1392 1393 return sacked; 1394} 1395 1396/* Shift newly-SACKed bytes from this skb to the immediately previous 1397 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1398 */ 1399static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1400 struct tcp_sacktag_state *state, 1401 unsigned int pcount, int shifted, int mss, 1402 int dup_sack) 1403{ 1404 struct tcp_sock *tp = tcp_sk(sk); 1405 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1406 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1407 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1408 1409 BUG_ON(!pcount); 1410 1411 /* Adjust counters and hints for the newly sacked sequence 1412 * range but discard the return value since prev is already 1413 * marked. We must tag the range first because the seq 1414 * advancement below implicitly advances 1415 * tcp_highest_sack_seq() when skb is highest_sack. 1416 */ 1417 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1418 start_seq, end_seq, dup_sack, pcount); 1419 1420 if (skb == tp->lost_skb_hint) 1421 tp->lost_cnt_hint += pcount; 1422 1423 TCP_SKB_CB(prev)->end_seq += shifted; 1424 TCP_SKB_CB(skb)->seq += shifted; 1425 1426 skb_shinfo(prev)->gso_segs += pcount; 1427 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1428 skb_shinfo(skb)->gso_segs -= pcount; 1429 1430 /* When we're adding to gso_segs == 1, gso_size will be zero, 1431 * in theory this shouldn't be necessary but as long as DSACK 1432 * code can come after this skb later on it's better to keep 1433 * setting gso_size to something. 1434 */ 1435 if (!skb_shinfo(prev)->gso_size) { 1436 skb_shinfo(prev)->gso_size = mss; 1437 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1438 } 1439 1440 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1441 if (skb_shinfo(skb)->gso_segs <= 1) { 1442 skb_shinfo(skb)->gso_size = 0; 1443 skb_shinfo(skb)->gso_type = 0; 1444 } 1445 1446 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1447 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1448 1449 if (skb->len > 0) { 1450 BUG_ON(!tcp_skb_pcount(skb)); 1451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1452 return 0; 1453 } 1454 1455 /* Whole SKB was eaten :-) */ 1456 1457 if (skb == tp->retransmit_skb_hint) 1458 tp->retransmit_skb_hint = prev; 1459 if (skb == tp->scoreboard_skb_hint) 1460 tp->scoreboard_skb_hint = prev; 1461 if (skb == tp->lost_skb_hint) { 1462 tp->lost_skb_hint = prev; 1463 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1464 } 1465 1466 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags; 1467 if (skb == tcp_highest_sack(sk)) 1468 tcp_advance_highest_sack(sk, skb); 1469 1470 tcp_unlink_write_queue(skb, sk); 1471 sk_wmem_free_skb(sk, skb); 1472 1473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1474 1475 return 1; 1476} 1477 1478/* I wish gso_size would have a bit more sane initialization than 1479 * something-or-zero which complicates things 1480 */ 1481static int tcp_skb_seglen(const struct sk_buff *skb) 1482{ 1483 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1484} 1485 1486/* Shifting pages past head area doesn't work */ 1487static int skb_can_shift(const struct sk_buff *skb) 1488{ 1489 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1490} 1491 1492/* Try collapsing SACK blocks spanning across multiple skbs to a single 1493 * skb. 1494 */ 1495static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1496 struct tcp_sacktag_state *state, 1497 u32 start_seq, u32 end_seq, 1498 int dup_sack) 1499{ 1500 struct tcp_sock *tp = tcp_sk(sk); 1501 struct sk_buff *prev; 1502 int mss; 1503 int pcount = 0; 1504 int len; 1505 int in_sack; 1506 1507 if (!sk_can_gso(sk)) 1508 goto fallback; 1509 1510 /* Normally R but no L won't result in plain S */ 1511 if (!dup_sack && 1512 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1513 goto fallback; 1514 if (!skb_can_shift(skb)) 1515 goto fallback; 1516 /* This frame is about to be dropped (was ACKed). */ 1517 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1518 goto fallback; 1519 1520 /* Can only happen with delayed DSACK + discard craziness */ 1521 if (unlikely(skb == tcp_write_queue_head(sk))) 1522 goto fallback; 1523 prev = tcp_write_queue_prev(sk, skb); 1524 1525 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1526 goto fallback; 1527 1528 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1529 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1530 1531 if (in_sack) { 1532 len = skb->len; 1533 pcount = tcp_skb_pcount(skb); 1534 mss = tcp_skb_seglen(skb); 1535 1536 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1537 * drop this restriction as unnecessary 1538 */ 1539 if (mss != tcp_skb_seglen(prev)) 1540 goto fallback; 1541 } else { 1542 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1543 goto noop; 1544 /* CHECKME: This is non-MSS split case only?, this will 1545 * cause skipped skbs due to advancing loop btw, original 1546 * has that feature too 1547 */ 1548 if (tcp_skb_pcount(skb) <= 1) 1549 goto noop; 1550 1551 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1552 if (!in_sack) { 1553 /* TODO: head merge to next could be attempted here 1554 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1555 * though it might not be worth of the additional hassle 1556 * 1557 * ...we can probably just fallback to what was done 1558 * previously. We could try merging non-SACKed ones 1559 * as well but it probably isn't going to buy off 1560 * because later SACKs might again split them, and 1561 * it would make skb timestamp tracking considerably 1562 * harder problem. 1563 */ 1564 goto fallback; 1565 } 1566 1567 len = end_seq - TCP_SKB_CB(skb)->seq; 1568 BUG_ON(len < 0); 1569 BUG_ON(len > skb->len); 1570 1571 /* MSS boundaries should be honoured or else pcount will 1572 * severely break even though it makes things bit trickier. 1573 * Optimize common case to avoid most of the divides 1574 */ 1575 mss = tcp_skb_mss(skb); 1576 1577 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1578 * drop this restriction as unnecessary 1579 */ 1580 if (mss != tcp_skb_seglen(prev)) 1581 goto fallback; 1582 1583 if (len == mss) { 1584 pcount = 1; 1585 } else if (len < mss) { 1586 goto noop; 1587 } else { 1588 pcount = len / mss; 1589 len = pcount * mss; 1590 } 1591 } 1592 1593 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1594 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1595 goto fallback; 1596 1597 if (!skb_shift(prev, skb, len)) 1598 goto fallback; 1599 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1600 goto out; 1601 1602 /* Hole filled allows collapsing with the next as well, this is very 1603 * useful when hole on every nth skb pattern happens 1604 */ 1605 if (prev == tcp_write_queue_tail(sk)) 1606 goto out; 1607 skb = tcp_write_queue_next(sk, prev); 1608 1609 if (!skb_can_shift(skb) || 1610 (skb == tcp_send_head(sk)) || 1611 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1612 (mss != tcp_skb_seglen(skb))) 1613 goto out; 1614 1615 len = skb->len; 1616 if (skb_shift(prev, skb, len)) { 1617 pcount += tcp_skb_pcount(skb); 1618 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1619 } 1620 1621out: 1622 state->fack_count += pcount; 1623 return prev; 1624 1625noop: 1626 return skb; 1627 1628fallback: 1629 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1630 return NULL; 1631} 1632 1633static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1634 struct tcp_sack_block *next_dup, 1635 struct tcp_sacktag_state *state, 1636 u32 start_seq, u32 end_seq, 1637 int dup_sack_in) 1638{ 1639 struct tcp_sock *tp = tcp_sk(sk); 1640 struct sk_buff *tmp; 1641 1642 tcp_for_write_queue_from(skb, sk) { 1643 int in_sack = 0; 1644 int dup_sack = dup_sack_in; 1645 1646 if (skb == tcp_send_head(sk)) 1647 break; 1648 1649 /* queue is in-order => we can short-circuit the walk early */ 1650 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1651 break; 1652 1653 if ((next_dup != NULL) && 1654 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1655 in_sack = tcp_match_skb_to_sack(sk, skb, 1656 next_dup->start_seq, 1657 next_dup->end_seq); 1658 if (in_sack > 0) 1659 dup_sack = 1; 1660 } 1661 1662 /* skb reference here is a bit tricky to get right, since 1663 * shifting can eat and free both this skb and the next, 1664 * so not even _safe variant of the loop is enough. 1665 */ 1666 if (in_sack <= 0) { 1667 tmp = tcp_shift_skb_data(sk, skb, state, 1668 start_seq, end_seq, dup_sack); 1669 if (tmp != NULL) { 1670 if (tmp != skb) { 1671 skb = tmp; 1672 continue; 1673 } 1674 1675 in_sack = 0; 1676 } else { 1677 in_sack = tcp_match_skb_to_sack(sk, skb, 1678 start_seq, 1679 end_seq); 1680 } 1681 } 1682 1683 if (unlikely(in_sack < 0)) 1684 break; 1685 1686 if (in_sack) { 1687 TCP_SKB_CB(skb)->sacked = 1688 tcp_sacktag_one(sk, 1689 state, 1690 TCP_SKB_CB(skb)->sacked, 1691 TCP_SKB_CB(skb)->seq, 1692 TCP_SKB_CB(skb)->end_seq, 1693 dup_sack, 1694 tcp_skb_pcount(skb)); 1695 1696 if (!before(TCP_SKB_CB(skb)->seq, 1697 tcp_highest_sack_seq(tp))) 1698 tcp_advance_highest_sack(sk, skb); 1699 } 1700 1701 state->fack_count += tcp_skb_pcount(skb); 1702 } 1703 return skb; 1704} 1705 1706/* Avoid all extra work that is being done by sacktag while walking in 1707 * a normal way 1708 */ 1709static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1710 struct tcp_sacktag_state *state, 1711 u32 skip_to_seq) 1712{ 1713 tcp_for_write_queue_from(skb, sk) { 1714 if (skb == tcp_send_head(sk)) 1715 break; 1716 1717 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1718 break; 1719 1720 state->fack_count += tcp_skb_pcount(skb); 1721 } 1722 return skb; 1723} 1724 1725static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1726 struct sock *sk, 1727 struct tcp_sack_block *next_dup, 1728 struct tcp_sacktag_state *state, 1729 u32 skip_to_seq) 1730{ 1731 if (next_dup == NULL) 1732 return skb; 1733 1734 if (before(next_dup->start_seq, skip_to_seq)) { 1735 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1736 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1737 next_dup->start_seq, next_dup->end_seq, 1738 1); 1739 } 1740 1741 return skb; 1742} 1743 1744static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1745{ 1746 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1747} 1748 1749static int 1750tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1751 u32 prior_snd_una) 1752{ 1753 const struct inet_connection_sock *icsk = inet_csk(sk); 1754 struct tcp_sock *tp = tcp_sk(sk); 1755 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1756 TCP_SKB_CB(ack_skb)->sacked); 1757 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1758 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1759 struct tcp_sack_block *cache; 1760 struct tcp_sacktag_state state; 1761 struct sk_buff *skb; 1762 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1763 int used_sacks; 1764 int found_dup_sack = 0; 1765 int i, j; 1766 int first_sack_index; 1767 1768 state.flag = 0; 1769 state.reord = tp->packets_out; 1770 1771 if (!tp->sacked_out) { 1772 if (WARN_ON(tp->fackets_out)) 1773 tp->fackets_out = 0; 1774 tcp_highest_sack_reset(sk); 1775 } 1776 1777 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1778 num_sacks, prior_snd_una); 1779 if (found_dup_sack) 1780 state.flag |= FLAG_DSACKING_ACK; 1781 1782 /* Eliminate too old ACKs, but take into 1783 * account more or less fresh ones, they can 1784 * contain valid SACK info. 1785 */ 1786 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1787 return 0; 1788 1789 if (!tp->packets_out) 1790 goto out; 1791 1792 used_sacks = 0; 1793 first_sack_index = 0; 1794 for (i = 0; i < num_sacks; i++) { 1795 int dup_sack = !i && found_dup_sack; 1796 1797 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1798 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1799 1800 if (!tcp_is_sackblock_valid(tp, dup_sack, 1801 sp[used_sacks].start_seq, 1802 sp[used_sacks].end_seq)) { 1803 int mib_idx; 1804 1805 if (dup_sack) { 1806 if (!tp->undo_marker) 1807 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1808 else 1809 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1810 } else { 1811 /* Don't count olds caused by ACK reordering */ 1812 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1813 !after(sp[used_sacks].end_seq, tp->snd_una)) 1814 continue; 1815 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1816 } 1817 1818 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1819 if (i == 0) 1820 first_sack_index = -1; 1821 continue; 1822 } 1823 1824 /* Ignore very old stuff early */ 1825 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1826 continue; 1827 1828 used_sacks++; 1829 } 1830 1831 /* order SACK blocks to allow in order walk of the retrans queue */ 1832 for (i = used_sacks - 1; i > 0; i--) { 1833 for (j = 0; j < i; j++) { 1834 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1835 swap(sp[j], sp[j + 1]); 1836 1837 /* Track where the first SACK block goes to */ 1838 if (j == first_sack_index) 1839 first_sack_index = j + 1; 1840 } 1841 } 1842 } 1843 1844 skb = tcp_write_queue_head(sk); 1845 state.fack_count = 0; 1846 i = 0; 1847 1848 if (!tp->sacked_out) { 1849 /* It's already past, so skip checking against it */ 1850 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1851 } else { 1852 cache = tp->recv_sack_cache; 1853 /* Skip empty blocks in at head of the cache */ 1854 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1855 !cache->end_seq) 1856 cache++; 1857 } 1858 1859 while (i < used_sacks) { 1860 u32 start_seq = sp[i].start_seq; 1861 u32 end_seq = sp[i].end_seq; 1862 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1863 struct tcp_sack_block *next_dup = NULL; 1864 1865 if (found_dup_sack && ((i + 1) == first_sack_index)) 1866 next_dup = &sp[i + 1]; 1867 1868 /* Skip too early cached blocks */ 1869 while (tcp_sack_cache_ok(tp, cache) && 1870 !before(start_seq, cache->end_seq)) 1871 cache++; 1872 1873 /* Can skip some work by looking recv_sack_cache? */ 1874 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1875 after(end_seq, cache->start_seq)) { 1876 1877 /* Head todo? */ 1878 if (before(start_seq, cache->start_seq)) { 1879 skb = tcp_sacktag_skip(skb, sk, &state, 1880 start_seq); 1881 skb = tcp_sacktag_walk(skb, sk, next_dup, 1882 &state, 1883 start_seq, 1884 cache->start_seq, 1885 dup_sack); 1886 } 1887 1888 /* Rest of the block already fully processed? */ 1889 if (!after(end_seq, cache->end_seq)) 1890 goto advance_sp; 1891 1892 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1893 &state, 1894 cache->end_seq); 1895 1896 /* ...tail remains todo... */ 1897 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1898 /* ...but better entrypoint exists! */ 1899 skb = tcp_highest_sack(sk); 1900 if (skb == NULL) 1901 break; 1902 state.fack_count = tp->fackets_out; 1903 cache++; 1904 goto walk; 1905 } 1906 1907 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1908 /* Check overlap against next cached too (past this one already) */ 1909 cache++; 1910 continue; 1911 } 1912 1913 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1914 skb = tcp_highest_sack(sk); 1915 if (skb == NULL) 1916 break; 1917 state.fack_count = tp->fackets_out; 1918 } 1919 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1920 1921walk: 1922 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1923 start_seq, end_seq, dup_sack); 1924 1925advance_sp: 1926 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1927 * due to in-order walk 1928 */ 1929 if (after(end_seq, tp->frto_highmark)) 1930 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1931 1932 i++; 1933 } 1934 1935 /* Clear the head of the cache sack blocks so we can skip it next time */ 1936 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1937 tp->recv_sack_cache[i].start_seq = 0; 1938 tp->recv_sack_cache[i].end_seq = 0; 1939 } 1940 for (j = 0; j < used_sacks; j++) 1941 tp->recv_sack_cache[i++] = sp[j]; 1942 1943 tcp_mark_lost_retrans(sk); 1944 1945 tcp_verify_left_out(tp); 1946 1947 if ((state.reord < tp->fackets_out) && 1948 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1949 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1950 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1951 1952out: 1953 1954#if FASTRETRANS_DEBUG > 0 1955 WARN_ON((int)tp->sacked_out < 0); 1956 WARN_ON((int)tp->lost_out < 0); 1957 WARN_ON((int)tp->retrans_out < 0); 1958 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1959#endif 1960 return state.flag; 1961} 1962 1963/* Limits sacked_out so that sum with lost_out isn't ever larger than 1964 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1965 */ 1966static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1967{ 1968 u32 holes; 1969 1970 holes = max(tp->lost_out, 1U); 1971 holes = min(holes, tp->packets_out); 1972 1973 if ((tp->sacked_out + holes) > tp->packets_out) { 1974 tp->sacked_out = tp->packets_out - holes; 1975 return 1; 1976 } 1977 return 0; 1978} 1979 1980/* If we receive more dupacks than we expected counting segments 1981 * in assumption of absent reordering, interpret this as reordering. 1982 * The only another reason could be bug in receiver TCP. 1983 */ 1984static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1985{ 1986 struct tcp_sock *tp = tcp_sk(sk); 1987 if (tcp_limit_reno_sacked(tp)) 1988 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1989} 1990 1991/* Emulate SACKs for SACKless connection: account for a new dupack. */ 1992 1993static void tcp_add_reno_sack(struct sock *sk) 1994{ 1995 struct tcp_sock *tp = tcp_sk(sk); 1996 tp->sacked_out++; 1997 tcp_check_reno_reordering(sk, 0); 1998 tcp_verify_left_out(tp); 1999} 2000 2001/* Account for ACK, ACKing some data in Reno Recovery phase. */ 2002 2003static void tcp_remove_reno_sacks(struct sock *sk, int acked) 2004{ 2005 struct tcp_sock *tp = tcp_sk(sk); 2006 2007 if (acked > 0) { 2008 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2009 if (acked - 1 >= tp->sacked_out) 2010 tp->sacked_out = 0; 2011 else 2012 tp->sacked_out -= acked - 1; 2013 } 2014 tcp_check_reno_reordering(sk, acked); 2015 tcp_verify_left_out(tp); 2016} 2017 2018static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2019{ 2020 tp->sacked_out = 0; 2021} 2022 2023static int tcp_is_sackfrto(const struct tcp_sock *tp) 2024{ 2025 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 2026} 2027 2028/* F-RTO can only be used if TCP has never retransmitted anything other than 2029 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 2030 */ 2031int tcp_use_frto(struct sock *sk) 2032{ 2033 const struct tcp_sock *tp = tcp_sk(sk); 2034 const struct inet_connection_sock *icsk = inet_csk(sk); 2035 struct sk_buff *skb; 2036 2037 if (!sysctl_tcp_frto) 2038 return 0; 2039 2040 /* MTU probe and F-RTO won't really play nicely along currently */ 2041 if (icsk->icsk_mtup.probe_size) 2042 return 0; 2043 2044 if (tcp_is_sackfrto(tp)) 2045 return 1; 2046 2047 /* Avoid expensive walking of rexmit queue if possible */ 2048 if (tp->retrans_out > 1) 2049 return 0; 2050 2051 skb = tcp_write_queue_head(sk); 2052 if (tcp_skb_is_last(sk, skb)) 2053 return 1; 2054 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2055 tcp_for_write_queue_from(skb, sk) { 2056 if (skb == tcp_send_head(sk)) 2057 break; 2058 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2059 return 0; 2060 /* Short-circuit when first non-SACKed skb has been checked */ 2061 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2062 break; 2063 } 2064 return 1; 2065} 2066 2067/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2068 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2069 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2070 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2071 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2072 * bits are handled if the Loss state is really to be entered (in 2073 * tcp_enter_frto_loss). 2074 * 2075 * Do like tcp_enter_loss() would; when RTO expires the second time it 2076 * does: 2077 * "Reduce ssthresh if it has not yet been made inside this window." 2078 */ 2079void tcp_enter_frto(struct sock *sk) 2080{ 2081 const struct inet_connection_sock *icsk = inet_csk(sk); 2082 struct tcp_sock *tp = tcp_sk(sk); 2083 struct sk_buff *skb; 2084 2085 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2086 tp->snd_una == tp->high_seq || 2087 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2088 !icsk->icsk_retransmits)) { 2089 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2090 /* Our state is too optimistic in ssthresh() call because cwnd 2091 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2092 * recovery has not yet completed. Pattern would be this: RTO, 2093 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2094 * up here twice). 2095 * RFC4138 should be more specific on what to do, even though 2096 * RTO is quite unlikely to occur after the first Cumulative ACK 2097 * due to back-off and complexity of triggering events ... 2098 */ 2099 if (tp->frto_counter) { 2100 u32 stored_cwnd; 2101 stored_cwnd = tp->snd_cwnd; 2102 tp->snd_cwnd = 2; 2103 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2104 tp->snd_cwnd = stored_cwnd; 2105 } else { 2106 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2107 } 2108 /* ... in theory, cong.control module could do "any tricks" in 2109 * ssthresh(), which means that ca_state, lost bits and lost_out 2110 * counter would have to be faked before the call occurs. We 2111 * consider that too expensive, unlikely and hacky, so modules 2112 * using these in ssthresh() must deal these incompatibility 2113 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2114 */ 2115 tcp_ca_event(sk, CA_EVENT_FRTO); 2116 } 2117 2118 tp->undo_marker = tp->snd_una; 2119 tp->undo_retrans = 0; 2120 2121 skb = tcp_write_queue_head(sk); 2122 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2123 tp->undo_marker = 0; 2124 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2125 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2126 tp->retrans_out -= tcp_skb_pcount(skb); 2127 } 2128 tcp_verify_left_out(tp); 2129 2130 /* Too bad if TCP was application limited */ 2131 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2132 2133 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2134 * The last condition is necessary at least in tp->frto_counter case. 2135 */ 2136 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2137 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2138 after(tp->high_seq, tp->snd_una)) { 2139 tp->frto_highmark = tp->high_seq; 2140 } else { 2141 tp->frto_highmark = tp->snd_nxt; 2142 } 2143 tcp_set_ca_state(sk, TCP_CA_Disorder); 2144 tp->high_seq = tp->snd_nxt; 2145 tp->frto_counter = 1; 2146} 2147 2148/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2149 * which indicates that we should follow the traditional RTO recovery, 2150 * i.e. mark everything lost and do go-back-N retransmission. 2151 */ 2152static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2153{ 2154 struct tcp_sock *tp = tcp_sk(sk); 2155 struct sk_buff *skb; 2156 2157 tp->lost_out = 0; 2158 tp->retrans_out = 0; 2159 if (tcp_is_reno(tp)) 2160 tcp_reset_reno_sack(tp); 2161 2162 tcp_for_write_queue(skb, sk) { 2163 if (skb == tcp_send_head(sk)) 2164 break; 2165 2166 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2167 /* 2168 * Count the retransmission made on RTO correctly (only when 2169 * waiting for the first ACK and did not get it)... 2170 */ 2171 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2172 /* For some reason this R-bit might get cleared? */ 2173 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2174 tp->retrans_out += tcp_skb_pcount(skb); 2175 /* ...enter this if branch just for the first segment */ 2176 flag |= FLAG_DATA_ACKED; 2177 } else { 2178 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2179 tp->undo_marker = 0; 2180 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2181 } 2182 2183 /* Marking forward transmissions that were made after RTO lost 2184 * can cause unnecessary retransmissions in some scenarios, 2185 * SACK blocks will mitigate that in some but not in all cases. 2186 * We used to not mark them but it was causing break-ups with 2187 * receivers that do only in-order receival. 2188 * 2189 * TODO: we could detect presence of such receiver and select 2190 * different behavior per flow. 2191 */ 2192 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2193 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2194 tp->lost_out += tcp_skb_pcount(skb); 2195 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2196 } 2197 } 2198 tcp_verify_left_out(tp); 2199 2200 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2201 tp->snd_cwnd_cnt = 0; 2202 tp->snd_cwnd_stamp = tcp_time_stamp; 2203 tp->frto_counter = 0; 2204 tp->bytes_acked = 0; 2205 2206 tp->reordering = min_t(unsigned int, tp->reordering, 2207 sysctl_tcp_reordering); 2208 tcp_set_ca_state(sk, TCP_CA_Loss); 2209 tp->high_seq = tp->snd_nxt; 2210 TCP_ECN_queue_cwr(tp); 2211 2212 tcp_clear_all_retrans_hints(tp); 2213} 2214 2215static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2216{ 2217 tp->retrans_out = 0; 2218 tp->lost_out = 0; 2219 2220 tp->undo_marker = 0; 2221 tp->undo_retrans = 0; 2222} 2223 2224void tcp_clear_retrans(struct tcp_sock *tp) 2225{ 2226 tcp_clear_retrans_partial(tp); 2227 2228 tp->fackets_out = 0; 2229 tp->sacked_out = 0; 2230} 2231 2232/* Enter Loss state. If "how" is not zero, forget all SACK information 2233 * and reset tags completely, otherwise preserve SACKs. If receiver 2234 * dropped its ofo queue, we will know this due to reneging detection. 2235 */ 2236void tcp_enter_loss(struct sock *sk, int how) 2237{ 2238 const struct inet_connection_sock *icsk = inet_csk(sk); 2239 struct tcp_sock *tp = tcp_sk(sk); 2240 struct sk_buff *skb; 2241 2242 /* Reduce ssthresh if it has not yet been made inside this window. */ 2243 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2244 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2245 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2246 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2247 tcp_ca_event(sk, CA_EVENT_LOSS); 2248 } 2249 tp->snd_cwnd = 1; 2250 tp->snd_cwnd_cnt = 0; 2251 tp->snd_cwnd_stamp = tcp_time_stamp; 2252 2253 tp->bytes_acked = 0; 2254 tcp_clear_retrans_partial(tp); 2255 2256 if (tcp_is_reno(tp)) 2257 tcp_reset_reno_sack(tp); 2258 2259 if (!how) { 2260 /* Push undo marker, if it was plain RTO and nothing 2261 * was retransmitted. */ 2262 tp->undo_marker = tp->snd_una; 2263 } else { 2264 tp->sacked_out = 0; 2265 tp->fackets_out = 0; 2266 } 2267 tcp_clear_all_retrans_hints(tp); 2268 2269 tcp_for_write_queue(skb, sk) { 2270 if (skb == tcp_send_head(sk)) 2271 break; 2272 2273 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2274 tp->undo_marker = 0; 2275 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2276 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2277 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2278 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2279 tp->lost_out += tcp_skb_pcount(skb); 2280 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2281 } 2282 } 2283 tcp_verify_left_out(tp); 2284 2285 tp->reordering = min_t(unsigned int, tp->reordering, 2286 sysctl_tcp_reordering); 2287 tcp_set_ca_state(sk, TCP_CA_Loss); 2288 tp->high_seq = tp->snd_nxt; 2289 TCP_ECN_queue_cwr(tp); 2290 /* Abort F-RTO algorithm if one is in progress */ 2291 tp->frto_counter = 0; 2292} 2293 2294/* If ACK arrived pointing to a remembered SACK, it means that our 2295 * remembered SACKs do not reflect real state of receiver i.e. 2296 * receiver _host_ is heavily congested (or buggy). 2297 * 2298 * Do processing similar to RTO timeout. 2299 */ 2300static int tcp_check_sack_reneging(struct sock *sk, int flag) 2301{ 2302 if (flag & FLAG_SACK_RENEGING) { 2303 struct inet_connection_sock *icsk = inet_csk(sk); 2304 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2305 2306 tcp_enter_loss(sk, 1); 2307 icsk->icsk_retransmits++; 2308 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2309 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2310 icsk->icsk_rto, TCP_RTO_MAX); 2311 return 1; 2312 } 2313 return 0; 2314} 2315 2316static inline int tcp_fackets_out(const struct tcp_sock *tp) 2317{ 2318 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2319} 2320 2321/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2322 * counter when SACK is enabled (without SACK, sacked_out is used for 2323 * that purpose). 2324 * 2325 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2326 * segments up to the highest received SACK block so far and holes in 2327 * between them. 2328 * 2329 * With reordering, holes may still be in flight, so RFC3517 recovery 2330 * uses pure sacked_out (total number of SACKed segments) even though 2331 * it violates the RFC that uses duplicate ACKs, often these are equal 2332 * but when e.g. out-of-window ACKs or packet duplication occurs, 2333 * they differ. Since neither occurs due to loss, TCP should really 2334 * ignore them. 2335 */ 2336static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2337{ 2338 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2339} 2340 2341static inline int tcp_skb_timedout(const struct sock *sk, 2342 const struct sk_buff *skb) 2343{ 2344 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 2345} 2346 2347static inline int tcp_head_timedout(const struct sock *sk) 2348{ 2349 const struct tcp_sock *tp = tcp_sk(sk); 2350 2351 return tp->packets_out && 2352 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2353} 2354 2355/* Linux NewReno/SACK/FACK/ECN state machine. 2356 * -------------------------------------- 2357 * 2358 * "Open" Normal state, no dubious events, fast path. 2359 * "Disorder" In all the respects it is "Open", 2360 * but requires a bit more attention. It is entered when 2361 * we see some SACKs or dupacks. It is split of "Open" 2362 * mainly to move some processing from fast path to slow one. 2363 * "CWR" CWND was reduced due to some Congestion Notification event. 2364 * It can be ECN, ICMP source quench, local device congestion. 2365 * "Recovery" CWND was reduced, we are fast-retransmitting. 2366 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2367 * 2368 * tcp_fastretrans_alert() is entered: 2369 * - each incoming ACK, if state is not "Open" 2370 * - when arrived ACK is unusual, namely: 2371 * * SACK 2372 * * Duplicate ACK. 2373 * * ECN ECE. 2374 * 2375 * Counting packets in flight is pretty simple. 2376 * 2377 * in_flight = packets_out - left_out + retrans_out 2378 * 2379 * packets_out is SND.NXT-SND.UNA counted in packets. 2380 * 2381 * retrans_out is number of retransmitted segments. 2382 * 2383 * left_out is number of segments left network, but not ACKed yet. 2384 * 2385 * left_out = sacked_out + lost_out 2386 * 2387 * sacked_out: Packets, which arrived to receiver out of order 2388 * and hence not ACKed. With SACKs this number is simply 2389 * amount of SACKed data. Even without SACKs 2390 * it is easy to give pretty reliable estimate of this number, 2391 * counting duplicate ACKs. 2392 * 2393 * lost_out: Packets lost by network. TCP has no explicit 2394 * "loss notification" feedback from network (for now). 2395 * It means that this number can be only _guessed_. 2396 * Actually, it is the heuristics to predict lossage that 2397 * distinguishes different algorithms. 2398 * 2399 * F.e. after RTO, when all the queue is considered as lost, 2400 * lost_out = packets_out and in_flight = retrans_out. 2401 * 2402 * Essentially, we have now two algorithms counting 2403 * lost packets. 2404 * 2405 * FACK: It is the simplest heuristics. As soon as we decided 2406 * that something is lost, we decide that _all_ not SACKed 2407 * packets until the most forward SACK are lost. I.e. 2408 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2409 * It is absolutely correct estimate, if network does not reorder 2410 * packets. And it loses any connection to reality when reordering 2411 * takes place. We use FACK by default until reordering 2412 * is suspected on the path to this destination. 2413 * 2414 * NewReno: when Recovery is entered, we assume that one segment 2415 * is lost (classic Reno). While we are in Recovery and 2416 * a partial ACK arrives, we assume that one more packet 2417 * is lost (NewReno). This heuristics are the same in NewReno 2418 * and SACK. 2419 * 2420 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2421 * deflation etc. CWND is real congestion window, never inflated, changes 2422 * only according to classic VJ rules. 2423 * 2424 * Really tricky (and requiring careful tuning) part of algorithm 2425 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2426 * The first determines the moment _when_ we should reduce CWND and, 2427 * hence, slow down forward transmission. In fact, it determines the moment 2428 * when we decide that hole is caused by loss, rather than by a reorder. 2429 * 2430 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2431 * holes, caused by lost packets. 2432 * 2433 * And the most logically complicated part of algorithm is undo 2434 * heuristics. We detect false retransmits due to both too early 2435 * fast retransmit (reordering) and underestimated RTO, analyzing 2436 * timestamps and D-SACKs. When we detect that some segments were 2437 * retransmitted by mistake and CWND reduction was wrong, we undo 2438 * window reduction and abort recovery phase. This logic is hidden 2439 * inside several functions named tcp_try_undo_<something>. 2440 */ 2441 2442/* This function decides, when we should leave Disordered state 2443 * and enter Recovery phase, reducing congestion window. 2444 * 2445 * Main question: may we further continue forward transmission 2446 * with the same cwnd? 2447 */ 2448static int tcp_time_to_recover(struct sock *sk) 2449{ 2450 struct tcp_sock *tp = tcp_sk(sk); 2451 __u32 packets_out; 2452 2453 /* Do not perform any recovery during F-RTO algorithm */ 2454 if (tp->frto_counter) 2455 return 0; 2456 2457 /* Trick#1: The loss is proven. */ 2458 if (tp->lost_out) 2459 return 1; 2460 2461 /* Not-A-Trick#2 : Classic rule... */ 2462 if (tcp_dupack_heuristics(tp) > tp->reordering) 2463 return 1; 2464 2465 /* Trick#3 : when we use RFC2988 timer restart, fast 2466 * retransmit can be triggered by timeout of queue head. 2467 */ 2468 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2469 return 1; 2470 2471 /* Trick#4: It is still not OK... But will it be useful to delay 2472 * recovery more? 2473 */ 2474 packets_out = tp->packets_out; 2475 if (packets_out <= tp->reordering && 2476 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2477 !tcp_may_send_now(sk)) { 2478 /* We have nothing to send. This connection is limited 2479 * either by receiver window or by application. 2480 */ 2481 return 1; 2482 } 2483 2484 /* If a thin stream is detected, retransmit after first 2485 * received dupack. Employ only if SACK is supported in order 2486 * to avoid possible corner-case series of spurious retransmissions 2487 * Use only if there are no unsent data. 2488 */ 2489 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2490 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2491 tcp_is_sack(tp) && !tcp_send_head(sk)) 2492 return 1; 2493 2494 return 0; 2495} 2496 2497/* New heuristics: it is possible only after we switched to restart timer 2498 * each time when something is ACKed. Hence, we can detect timed out packets 2499 * during fast retransmit without falling to slow start. 2500 * 2501 * Usefulness of this as is very questionable, since we should know which of 2502 * the segments is the next to timeout which is relatively expensive to find 2503 * in general case unless we add some data structure just for that. The 2504 * current approach certainly won't find the right one too often and when it 2505 * finally does find _something_ it usually marks large part of the window 2506 * right away (because a retransmission with a larger timestamp blocks the 2507 * loop from advancing). -ij 2508 */ 2509static void tcp_timeout_skbs(struct sock *sk) 2510{ 2511 struct tcp_sock *tp = tcp_sk(sk); 2512 struct sk_buff *skb; 2513 2514 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2515 return; 2516 2517 skb = tp->scoreboard_skb_hint; 2518 if (tp->scoreboard_skb_hint == NULL) 2519 skb = tcp_write_queue_head(sk); 2520 2521 tcp_for_write_queue_from(skb, sk) { 2522 if (skb == tcp_send_head(sk)) 2523 break; 2524 if (!tcp_skb_timedout(sk, skb)) 2525 break; 2526 2527 tcp_skb_mark_lost(tp, skb); 2528 } 2529 2530 tp->scoreboard_skb_hint = skb; 2531 2532 tcp_verify_left_out(tp); 2533} 2534 2535/* Detect loss in event "A" above by marking head of queue up as lost. 2536 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2537 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2538 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2539 * the maximum SACKed segments to pass before reaching this limit. 2540 */ 2541static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2542{ 2543 struct tcp_sock *tp = tcp_sk(sk); 2544 struct sk_buff *skb; 2545 int cnt, oldcnt; 2546 int err; 2547 unsigned int mss; 2548 /* Use SACK to deduce losses of new sequences sent during recovery */ 2549 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2550 2551 WARN_ON(packets > tp->packets_out); 2552 if (tp->lost_skb_hint) { 2553 skb = tp->lost_skb_hint; 2554 cnt = tp->lost_cnt_hint; 2555 /* Head already handled? */ 2556 if (mark_head && skb != tcp_write_queue_head(sk)) 2557 return; 2558 } else { 2559 skb = tcp_write_queue_head(sk); 2560 cnt = 0; 2561 } 2562 2563 tcp_for_write_queue_from(skb, sk) { 2564 if (skb == tcp_send_head(sk)) 2565 break; 2566 /* TODO: do this better */ 2567 /* this is not the most efficient way to do this... */ 2568 tp->lost_skb_hint = skb; 2569 tp->lost_cnt_hint = cnt; 2570 2571 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2572 break; 2573 2574 oldcnt = cnt; 2575 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2576 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2577 cnt += tcp_skb_pcount(skb); 2578 2579 if (cnt > packets) { 2580 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2581 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2582 (oldcnt >= packets)) 2583 break; 2584 2585 mss = skb_shinfo(skb)->gso_size; 2586 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2587 if (err < 0) 2588 break; 2589 cnt = packets; 2590 } 2591 2592 tcp_skb_mark_lost(tp, skb); 2593 2594 if (mark_head) 2595 break; 2596 } 2597 tcp_verify_left_out(tp); 2598} 2599 2600/* Account newly detected lost packet(s) */ 2601 2602static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2603{ 2604 struct tcp_sock *tp = tcp_sk(sk); 2605 2606 if (tcp_is_reno(tp)) { 2607 tcp_mark_head_lost(sk, 1, 1); 2608 } else if (tcp_is_fack(tp)) { 2609 int lost = tp->fackets_out - tp->reordering; 2610 if (lost <= 0) 2611 lost = 1; 2612 tcp_mark_head_lost(sk, lost, 0); 2613 } else { 2614 int sacked_upto = tp->sacked_out - tp->reordering; 2615 if (sacked_upto >= 0) 2616 tcp_mark_head_lost(sk, sacked_upto, 0); 2617 else if (fast_rexmit) 2618 tcp_mark_head_lost(sk, 1, 1); 2619 } 2620 2621 tcp_timeout_skbs(sk); 2622} 2623 2624/* CWND moderation, preventing bursts due to too big ACKs 2625 * in dubious situations. 2626 */ 2627static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2628{ 2629 tp->snd_cwnd = min(tp->snd_cwnd, 2630 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2631 tp->snd_cwnd_stamp = tcp_time_stamp; 2632} 2633 2634/* Lower bound on congestion window is slow start threshold 2635 * unless congestion avoidance choice decides to overide it. 2636 */ 2637static inline u32 tcp_cwnd_min(const struct sock *sk) 2638{ 2639 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2640 2641 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2642} 2643 2644/* Decrease cwnd each second ack. */ 2645static void tcp_cwnd_down(struct sock *sk, int flag) 2646{ 2647 struct tcp_sock *tp = tcp_sk(sk); 2648 int decr = tp->snd_cwnd_cnt + 1; 2649 2650 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2651 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2652 tp->snd_cwnd_cnt = decr & 1; 2653 decr >>= 1; 2654 2655 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2656 tp->snd_cwnd -= decr; 2657 2658 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2659 tp->snd_cwnd_stamp = tcp_time_stamp; 2660 } 2661} 2662 2663/* Nothing was retransmitted or returned timestamp is less 2664 * than timestamp of the first retransmission. 2665 */ 2666static inline int tcp_packet_delayed(const struct tcp_sock *tp) 2667{ 2668 return !tp->retrans_stamp || 2669 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2670 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2671} 2672 2673/* Undo procedures. */ 2674 2675#if FASTRETRANS_DEBUG > 1 2676static void DBGUNDO(struct sock *sk, const char *msg) 2677{ 2678 struct tcp_sock *tp = tcp_sk(sk); 2679 struct inet_sock *inet = inet_sk(sk); 2680 2681 if (sk->sk_family == AF_INET) { 2682 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2683 msg, 2684 &inet->inet_daddr, ntohs(inet->inet_dport), 2685 tp->snd_cwnd, tcp_left_out(tp), 2686 tp->snd_ssthresh, tp->prior_ssthresh, 2687 tp->packets_out); 2688 } 2689#if IS_ENABLED(CONFIG_IPV6) 2690 else if (sk->sk_family == AF_INET6) { 2691 struct ipv6_pinfo *np = inet6_sk(sk); 2692 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2693 msg, 2694 &np->daddr, ntohs(inet->inet_dport), 2695 tp->snd_cwnd, tcp_left_out(tp), 2696 tp->snd_ssthresh, tp->prior_ssthresh, 2697 tp->packets_out); 2698 } 2699#endif 2700} 2701#else 2702#define DBGUNDO(x...) do { } while (0) 2703#endif 2704 2705static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh) 2706{ 2707 struct tcp_sock *tp = tcp_sk(sk); 2708 2709 if (tp->prior_ssthresh) { 2710 const struct inet_connection_sock *icsk = inet_csk(sk); 2711 2712 if (icsk->icsk_ca_ops->undo_cwnd) 2713 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2714 else 2715 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2716 2717 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) { 2718 tp->snd_ssthresh = tp->prior_ssthresh; 2719 TCP_ECN_withdraw_cwr(tp); 2720 } 2721 } else { 2722 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2723 } 2724 tp->snd_cwnd_stamp = tcp_time_stamp; 2725} 2726 2727static inline int tcp_may_undo(const struct tcp_sock *tp) 2728{ 2729 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2730} 2731 2732/* People celebrate: "We love our President!" */ 2733static int tcp_try_undo_recovery(struct sock *sk) 2734{ 2735 struct tcp_sock *tp = tcp_sk(sk); 2736 2737 if (tcp_may_undo(tp)) { 2738 int mib_idx; 2739 2740 /* Happy end! We did not retransmit anything 2741 * or our original transmission succeeded. 2742 */ 2743 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2744 tcp_undo_cwr(sk, true); 2745 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2746 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2747 else 2748 mib_idx = LINUX_MIB_TCPFULLUNDO; 2749 2750 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2751 tp->undo_marker = 0; 2752 } 2753 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2754 /* Hold old state until something *above* high_seq 2755 * is ACKed. For Reno it is MUST to prevent false 2756 * fast retransmits (RFC2582). SACK TCP is safe. */ 2757 tcp_moderate_cwnd(tp); 2758 return 1; 2759 } 2760 tcp_set_ca_state(sk, TCP_CA_Open); 2761 return 0; 2762} 2763 2764/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2765static void tcp_try_undo_dsack(struct sock *sk) 2766{ 2767 struct tcp_sock *tp = tcp_sk(sk); 2768 2769 if (tp->undo_marker && !tp->undo_retrans) { 2770 DBGUNDO(sk, "D-SACK"); 2771 tcp_undo_cwr(sk, true); 2772 tp->undo_marker = 0; 2773 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2774 } 2775} 2776 2777/* We can clear retrans_stamp when there are no retransmissions in the 2778 * window. It would seem that it is trivially available for us in 2779 * tp->retrans_out, however, that kind of assumptions doesn't consider 2780 * what will happen if errors occur when sending retransmission for the 2781 * second time. ...It could the that such segment has only 2782 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2783 * the head skb is enough except for some reneging corner cases that 2784 * are not worth the effort. 2785 * 2786 * Main reason for all this complexity is the fact that connection dying 2787 * time now depends on the validity of the retrans_stamp, in particular, 2788 * that successive retransmissions of a segment must not advance 2789 * retrans_stamp under any conditions. 2790 */ 2791static int tcp_any_retrans_done(const struct sock *sk) 2792{ 2793 const struct tcp_sock *tp = tcp_sk(sk); 2794 struct sk_buff *skb; 2795 2796 if (tp->retrans_out) 2797 return 1; 2798 2799 skb = tcp_write_queue_head(sk); 2800 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2801 return 1; 2802 2803 return 0; 2804} 2805 2806/* Undo during fast recovery after partial ACK. */ 2807 2808static int tcp_try_undo_partial(struct sock *sk, int acked) 2809{ 2810 struct tcp_sock *tp = tcp_sk(sk); 2811 /* Partial ACK arrived. Force Hoe's retransmit. */ 2812 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2813 2814 if (tcp_may_undo(tp)) { 2815 /* Plain luck! Hole if filled with delayed 2816 * packet, rather than with a retransmit. 2817 */ 2818 if (!tcp_any_retrans_done(sk)) 2819 tp->retrans_stamp = 0; 2820 2821 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2822 2823 DBGUNDO(sk, "Hoe"); 2824 tcp_undo_cwr(sk, false); 2825 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2826 2827 /* So... Do not make Hoe's retransmit yet. 2828 * If the first packet was delayed, the rest 2829 * ones are most probably delayed as well. 2830 */ 2831 failed = 0; 2832 } 2833 return failed; 2834} 2835 2836/* Undo during loss recovery after partial ACK. */ 2837static int tcp_try_undo_loss(struct sock *sk) 2838{ 2839 struct tcp_sock *tp = tcp_sk(sk); 2840 2841 if (tcp_may_undo(tp)) { 2842 struct sk_buff *skb; 2843 tcp_for_write_queue(skb, sk) { 2844 if (skb == tcp_send_head(sk)) 2845 break; 2846 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2847 } 2848 2849 tcp_clear_all_retrans_hints(tp); 2850 2851 DBGUNDO(sk, "partial loss"); 2852 tp->lost_out = 0; 2853 tcp_undo_cwr(sk, true); 2854 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2855 inet_csk(sk)->icsk_retransmits = 0; 2856 tp->undo_marker = 0; 2857 if (tcp_is_sack(tp)) 2858 tcp_set_ca_state(sk, TCP_CA_Open); 2859 return 1; 2860 } 2861 return 0; 2862} 2863 2864static inline void tcp_complete_cwr(struct sock *sk) 2865{ 2866 struct tcp_sock *tp = tcp_sk(sk); 2867 2868 /* Do not moderate cwnd if it's already undone in cwr or recovery. */ 2869 if (tp->undo_marker) { 2870 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) 2871 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2872 else /* PRR */ 2873 tp->snd_cwnd = tp->snd_ssthresh; 2874 tp->snd_cwnd_stamp = tcp_time_stamp; 2875 } 2876 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2877} 2878 2879static void tcp_try_keep_open(struct sock *sk) 2880{ 2881 struct tcp_sock *tp = tcp_sk(sk); 2882 int state = TCP_CA_Open; 2883 2884 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2885 state = TCP_CA_Disorder; 2886 2887 if (inet_csk(sk)->icsk_ca_state != state) { 2888 tcp_set_ca_state(sk, state); 2889 tp->high_seq = tp->snd_nxt; 2890 } 2891} 2892 2893static void tcp_try_to_open(struct sock *sk, int flag) 2894{ 2895 struct tcp_sock *tp = tcp_sk(sk); 2896 2897 tcp_verify_left_out(tp); 2898 2899 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2900 tp->retrans_stamp = 0; 2901 2902 if (flag & FLAG_ECE) 2903 tcp_enter_cwr(sk, 1); 2904 2905 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2906 tcp_try_keep_open(sk); 2907 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2908 tcp_moderate_cwnd(tp); 2909 } else { 2910 tcp_cwnd_down(sk, flag); 2911 } 2912} 2913 2914static void tcp_mtup_probe_failed(struct sock *sk) 2915{ 2916 struct inet_connection_sock *icsk = inet_csk(sk); 2917 2918 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2919 icsk->icsk_mtup.probe_size = 0; 2920} 2921 2922static void tcp_mtup_probe_success(struct sock *sk) 2923{ 2924 struct tcp_sock *tp = tcp_sk(sk); 2925 struct inet_connection_sock *icsk = inet_csk(sk); 2926 2927 /* FIXME: breaks with very large cwnd */ 2928 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2929 tp->snd_cwnd = tp->snd_cwnd * 2930 tcp_mss_to_mtu(sk, tp->mss_cache) / 2931 icsk->icsk_mtup.probe_size; 2932 tp->snd_cwnd_cnt = 0; 2933 tp->snd_cwnd_stamp = tcp_time_stamp; 2934 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2935 2936 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2937 icsk->icsk_mtup.probe_size = 0; 2938 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2939} 2940 2941/* Do a simple retransmit without using the backoff mechanisms in 2942 * tcp_timer. This is used for path mtu discovery. 2943 * The socket is already locked here. 2944 */ 2945void tcp_simple_retransmit(struct sock *sk) 2946{ 2947 const struct inet_connection_sock *icsk = inet_csk(sk); 2948 struct tcp_sock *tp = tcp_sk(sk); 2949 struct sk_buff *skb; 2950 unsigned int mss = tcp_current_mss(sk); 2951 u32 prior_lost = tp->lost_out; 2952 2953 tcp_for_write_queue(skb, sk) { 2954 if (skb == tcp_send_head(sk)) 2955 break; 2956 if (tcp_skb_seglen(skb) > mss && 2957 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2958 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2959 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2960 tp->retrans_out -= tcp_skb_pcount(skb); 2961 } 2962 tcp_skb_mark_lost_uncond_verify(tp, skb); 2963 } 2964 } 2965 2966 tcp_clear_retrans_hints_partial(tp); 2967 2968 if (prior_lost == tp->lost_out) 2969 return; 2970 2971 if (tcp_is_reno(tp)) 2972 tcp_limit_reno_sacked(tp); 2973 2974 tcp_verify_left_out(tp); 2975 2976 /* Don't muck with the congestion window here. 2977 * Reason is that we do not increase amount of _data_ 2978 * in network, but units changed and effective 2979 * cwnd/ssthresh really reduced now. 2980 */ 2981 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2982 tp->high_seq = tp->snd_nxt; 2983 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2984 tp->prior_ssthresh = 0; 2985 tp->undo_marker = 0; 2986 tcp_set_ca_state(sk, TCP_CA_Loss); 2987 } 2988 tcp_xmit_retransmit_queue(sk); 2989} 2990EXPORT_SYMBOL(tcp_simple_retransmit); 2991 2992/* This function implements the PRR algorithm, specifcally the PRR-SSRB 2993 * (proportional rate reduction with slow start reduction bound) as described in 2994 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt. 2995 * It computes the number of packets to send (sndcnt) based on packets newly 2996 * delivered: 2997 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2998 * cwnd reductions across a full RTT. 2999 * 2) If packets in flight is lower than ssthresh (such as due to excess 3000 * losses and/or application stalls), do not perform any further cwnd 3001 * reductions, but instead slow start up to ssthresh. 3002 */ 3003static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked, 3004 int fast_rexmit, int flag) 3005{ 3006 struct tcp_sock *tp = tcp_sk(sk); 3007 int sndcnt = 0; 3008 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 3009 3010 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 3011 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 3012 tp->prior_cwnd - 1; 3013 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 3014 } else { 3015 sndcnt = min_t(int, delta, 3016 max_t(int, tp->prr_delivered - tp->prr_out, 3017 newly_acked_sacked) + 1); 3018 } 3019 3020 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 3021 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 3022} 3023 3024/* Process an event, which can update packets-in-flight not trivially. 3025 * Main goal of this function is to calculate new estimate for left_out, 3026 * taking into account both packets sitting in receiver's buffer and 3027 * packets lost by network. 3028 * 3029 * Besides that it does CWND reduction, when packet loss is detected 3030 * and changes state of machine. 3031 * 3032 * It does _not_ decide what to send, it is made in function 3033 * tcp_xmit_retransmit_queue(). 3034 */ 3035static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, 3036 int newly_acked_sacked, bool is_dupack, 3037 int flag) 3038{ 3039 struct inet_connection_sock *icsk = inet_csk(sk); 3040 struct tcp_sock *tp = tcp_sk(sk); 3041 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 3042 (tcp_fackets_out(tp) > tp->reordering)); 3043 int fast_rexmit = 0, mib_idx; 3044 3045 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 3046 tp->sacked_out = 0; 3047 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 3048 tp->fackets_out = 0; 3049 3050 /* Now state machine starts. 3051 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3052 if (flag & FLAG_ECE) 3053 tp->prior_ssthresh = 0; 3054 3055 /* B. In all the states check for reneging SACKs. */ 3056 if (tcp_check_sack_reneging(sk, flag)) 3057 return; 3058 3059 /* C. Check consistency of the current state. */ 3060 tcp_verify_left_out(tp); 3061 3062 /* D. Check state exit conditions. State can be terminated 3063 * when high_seq is ACKed. */ 3064 if (icsk->icsk_ca_state == TCP_CA_Open) { 3065 WARN_ON(tp->retrans_out != 0); 3066 tp->retrans_stamp = 0; 3067 } else if (!before(tp->snd_una, tp->high_seq)) { 3068 switch (icsk->icsk_ca_state) { 3069 case TCP_CA_Loss: 3070 icsk->icsk_retransmits = 0; 3071 if (tcp_try_undo_recovery(sk)) 3072 return; 3073 break; 3074 3075 case TCP_CA_CWR: 3076 /* CWR is to be held something *above* high_seq 3077 * is ACKed for CWR bit to reach receiver. */ 3078 if (tp->snd_una != tp->high_seq) { 3079 tcp_complete_cwr(sk); 3080 tcp_set_ca_state(sk, TCP_CA_Open); 3081 } 3082 break; 3083 3084 case TCP_CA_Recovery: 3085 if (tcp_is_reno(tp)) 3086 tcp_reset_reno_sack(tp); 3087 if (tcp_try_undo_recovery(sk)) 3088 return; 3089 tcp_complete_cwr(sk); 3090 break; 3091 } 3092 } 3093 3094 /* E. Process state. */ 3095 switch (icsk->icsk_ca_state) { 3096 case TCP_CA_Recovery: 3097 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3098 if (tcp_is_reno(tp) && is_dupack) 3099 tcp_add_reno_sack(sk); 3100 } else 3101 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3102 break; 3103 case TCP_CA_Loss: 3104 if (flag & FLAG_DATA_ACKED) 3105 icsk->icsk_retransmits = 0; 3106 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3107 tcp_reset_reno_sack(tp); 3108 if (!tcp_try_undo_loss(sk)) { 3109 tcp_moderate_cwnd(tp); 3110 tcp_xmit_retransmit_queue(sk); 3111 return; 3112 } 3113 if (icsk->icsk_ca_state != TCP_CA_Open) 3114 return; 3115 /* Loss is undone; fall through to processing in Open state. */ 3116 default: 3117 if (tcp_is_reno(tp)) { 3118 if (flag & FLAG_SND_UNA_ADVANCED) 3119 tcp_reset_reno_sack(tp); 3120 if (is_dupack) 3121 tcp_add_reno_sack(sk); 3122 } 3123 3124 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3125 tcp_try_undo_dsack(sk); 3126 3127 if (!tcp_time_to_recover(sk)) { 3128 tcp_try_to_open(sk, flag); 3129 return; 3130 } 3131 3132 /* MTU probe failure: don't reduce cwnd */ 3133 if (icsk->icsk_ca_state < TCP_CA_CWR && 3134 icsk->icsk_mtup.probe_size && 3135 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3136 tcp_mtup_probe_failed(sk); 3137 /* Restores the reduction we did in tcp_mtup_probe() */ 3138 tp->snd_cwnd++; 3139 tcp_simple_retransmit(sk); 3140 return; 3141 } 3142 3143 /* Otherwise enter Recovery state */ 3144 3145 if (tcp_is_reno(tp)) 3146 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3147 else 3148 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3149 3150 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3151 3152 tp->high_seq = tp->snd_nxt; 3153 tp->prior_ssthresh = 0; 3154 tp->undo_marker = tp->snd_una; 3155 tp->undo_retrans = tp->retrans_out; 3156 3157 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3158 if (!(flag & FLAG_ECE)) 3159 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3160 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3161 TCP_ECN_queue_cwr(tp); 3162 } 3163 3164 tp->bytes_acked = 0; 3165 tp->snd_cwnd_cnt = 0; 3166 tp->prior_cwnd = tp->snd_cwnd; 3167 tp->prr_delivered = 0; 3168 tp->prr_out = 0; 3169 tcp_set_ca_state(sk, TCP_CA_Recovery); 3170 fast_rexmit = 1; 3171 } 3172 3173 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3174 tcp_update_scoreboard(sk, fast_rexmit); 3175 tp->prr_delivered += newly_acked_sacked; 3176 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag); 3177 tcp_xmit_retransmit_queue(sk); 3178} 3179 3180void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3181{ 3182 tcp_rtt_estimator(sk, seq_rtt); 3183 tcp_set_rto(sk); 3184 inet_csk(sk)->icsk_backoff = 0; 3185} 3186EXPORT_SYMBOL(tcp_valid_rtt_meas); 3187 3188/* Read draft-ietf-tcplw-high-performance before mucking 3189 * with this code. (Supersedes RFC1323) 3190 */ 3191static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3192{ 3193 /* RTTM Rule: A TSecr value received in a segment is used to 3194 * update the averaged RTT measurement only if the segment 3195 * acknowledges some new data, i.e., only if it advances the 3196 * left edge of the send window. 3197 * 3198 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3199 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3200 * 3201 * Changed: reset backoff as soon as we see the first valid sample. 3202 * If we do not, we get strongly overestimated rto. With timestamps 3203 * samples are accepted even from very old segments: f.e., when rtt=1 3204 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3205 * answer arrives rto becomes 120 seconds! If at least one of segments 3206 * in window is lost... Voila. --ANK (010210) 3207 */ 3208 struct tcp_sock *tp = tcp_sk(sk); 3209 3210 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3211} 3212 3213static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3214{ 3215 /* We don't have a timestamp. Can only use 3216 * packets that are not retransmitted to determine 3217 * rtt estimates. Also, we must not reset the 3218 * backoff for rto until we get a non-retransmitted 3219 * packet. This allows us to deal with a situation 3220 * where the network delay has increased suddenly. 3221 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3222 */ 3223 3224 if (flag & FLAG_RETRANS_DATA_ACKED) 3225 return; 3226 3227 tcp_valid_rtt_meas(sk, seq_rtt); 3228} 3229 3230static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3231 const s32 seq_rtt) 3232{ 3233 const struct tcp_sock *tp = tcp_sk(sk); 3234 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3235 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3236 tcp_ack_saw_tstamp(sk, flag); 3237 else if (seq_rtt >= 0) 3238 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3239} 3240 3241static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3242{ 3243 const struct inet_connection_sock *icsk = inet_csk(sk); 3244 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3245 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3246} 3247 3248/* Restart timer after forward progress on connection. 3249 * RFC2988 recommends to restart timer to now+rto. 3250 */ 3251static void tcp_rearm_rto(struct sock *sk) 3252{ 3253 const struct tcp_sock *tp = tcp_sk(sk); 3254 3255 if (!tp->packets_out) { 3256 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3257 } else { 3258 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3259 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3260 } 3261} 3262 3263/* If we get here, the whole TSO packet has not been acked. */ 3264static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3265{ 3266 struct tcp_sock *tp = tcp_sk(sk); 3267 u32 packets_acked; 3268 3269 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3270 3271 packets_acked = tcp_skb_pcount(skb); 3272 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3273 return 0; 3274 packets_acked -= tcp_skb_pcount(skb); 3275 3276 if (packets_acked) { 3277 BUG_ON(tcp_skb_pcount(skb) == 0); 3278 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3279 } 3280 3281 return packets_acked; 3282} 3283 3284/* Remove acknowledged frames from the retransmission queue. If our packet 3285 * is before the ack sequence we can discard it as it's confirmed to have 3286 * arrived at the other end. 3287 */ 3288static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3289 u32 prior_snd_una) 3290{ 3291 struct tcp_sock *tp = tcp_sk(sk); 3292 const struct inet_connection_sock *icsk = inet_csk(sk); 3293 struct sk_buff *skb; 3294 u32 now = tcp_time_stamp; 3295 int fully_acked = 1; 3296 int flag = 0; 3297 u32 pkts_acked = 0; 3298 u32 reord = tp->packets_out; 3299 u32 prior_sacked = tp->sacked_out; 3300 s32 seq_rtt = -1; 3301 s32 ca_seq_rtt = -1; 3302 ktime_t last_ackt = net_invalid_timestamp(); 3303 3304 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3305 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3306 u32 acked_pcount; 3307 u8 sacked = scb->sacked; 3308 3309 /* Determine how many packets and what bytes were acked, tso and else */ 3310 if (after(scb->end_seq, tp->snd_una)) { 3311 if (tcp_skb_pcount(skb) == 1 || 3312 !after(tp->snd_una, scb->seq)) 3313 break; 3314 3315 acked_pcount = tcp_tso_acked(sk, skb); 3316 if (!acked_pcount) 3317 break; 3318 3319 fully_acked = 0; 3320 } else { 3321 acked_pcount = tcp_skb_pcount(skb); 3322 } 3323 3324 if (sacked & TCPCB_RETRANS) { 3325 if (sacked & TCPCB_SACKED_RETRANS) 3326 tp->retrans_out -= acked_pcount; 3327 flag |= FLAG_RETRANS_DATA_ACKED; 3328 ca_seq_rtt = -1; 3329 seq_rtt = -1; 3330 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3331 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3332 } else { 3333 ca_seq_rtt = now - scb->when; 3334 last_ackt = skb->tstamp; 3335 if (seq_rtt < 0) { 3336 seq_rtt = ca_seq_rtt; 3337 } 3338 if (!(sacked & TCPCB_SACKED_ACKED)) 3339 reord = min(pkts_acked, reord); 3340 } 3341 3342 if (sacked & TCPCB_SACKED_ACKED) 3343 tp->sacked_out -= acked_pcount; 3344 if (sacked & TCPCB_LOST) 3345 tp->lost_out -= acked_pcount; 3346 3347 tp->packets_out -= acked_pcount; 3348 pkts_acked += acked_pcount; 3349 3350 /* Initial outgoing SYN's get put onto the write_queue 3351 * just like anything else we transmit. It is not 3352 * true data, and if we misinform our callers that 3353 * this ACK acks real data, we will erroneously exit 3354 * connection startup slow start one packet too 3355 * quickly. This is severely frowned upon behavior. 3356 */ 3357 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3358 flag |= FLAG_DATA_ACKED; 3359 } else { 3360 flag |= FLAG_SYN_ACKED; 3361 tp->retrans_stamp = 0; 3362 } 3363 3364 if (!fully_acked) 3365 break; 3366 3367 tcp_unlink_write_queue(skb, sk); 3368 sk_wmem_free_skb(sk, skb); 3369 tp->scoreboard_skb_hint = NULL; 3370 if (skb == tp->retransmit_skb_hint) 3371 tp->retransmit_skb_hint = NULL; 3372 if (skb == tp->lost_skb_hint) 3373 tp->lost_skb_hint = NULL; 3374 } 3375 3376 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3377 tp->snd_up = tp->snd_una; 3378 3379 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3380 flag |= FLAG_SACK_RENEGING; 3381 3382 if (flag & FLAG_ACKED) { 3383 const struct tcp_congestion_ops *ca_ops 3384 = inet_csk(sk)->icsk_ca_ops; 3385 3386 if (unlikely(icsk->icsk_mtup.probe_size && 3387 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3388 tcp_mtup_probe_success(sk); 3389 } 3390 3391 tcp_ack_update_rtt(sk, flag, seq_rtt); 3392 tcp_rearm_rto(sk); 3393 3394 if (tcp_is_reno(tp)) { 3395 tcp_remove_reno_sacks(sk, pkts_acked); 3396 } else { 3397 int delta; 3398 3399 /* Non-retransmitted hole got filled? That's reordering */ 3400 if (reord < prior_fackets) 3401 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3402 3403 delta = tcp_is_fack(tp) ? pkts_acked : 3404 prior_sacked - tp->sacked_out; 3405 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3406 } 3407 3408 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3409 3410 if (ca_ops->pkts_acked) { 3411 s32 rtt_us = -1; 3412 3413 /* Is the ACK triggering packet unambiguous? */ 3414 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3415 /* High resolution needed and available? */ 3416 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3417 !ktime_equal(last_ackt, 3418 net_invalid_timestamp())) 3419 rtt_us = ktime_us_delta(ktime_get_real(), 3420 last_ackt); 3421 else if (ca_seq_rtt >= 0) 3422 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3423 } 3424 3425 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3426 } 3427 } 3428 3429#if FASTRETRANS_DEBUG > 0 3430 WARN_ON((int)tp->sacked_out < 0); 3431 WARN_ON((int)tp->lost_out < 0); 3432 WARN_ON((int)tp->retrans_out < 0); 3433 if (!tp->packets_out && tcp_is_sack(tp)) { 3434 icsk = inet_csk(sk); 3435 if (tp->lost_out) { 3436 printk(KERN_DEBUG "Leak l=%u %d\n", 3437 tp->lost_out, icsk->icsk_ca_state); 3438 tp->lost_out = 0; 3439 } 3440 if (tp->sacked_out) { 3441 printk(KERN_DEBUG "Leak s=%u %d\n", 3442 tp->sacked_out, icsk->icsk_ca_state); 3443 tp->sacked_out = 0; 3444 } 3445 if (tp->retrans_out) { 3446 printk(KERN_DEBUG "Leak r=%u %d\n", 3447 tp->retrans_out, icsk->icsk_ca_state); 3448 tp->retrans_out = 0; 3449 } 3450 } 3451#endif 3452 return flag; 3453} 3454 3455static void tcp_ack_probe(struct sock *sk) 3456{ 3457 const struct tcp_sock *tp = tcp_sk(sk); 3458 struct inet_connection_sock *icsk = inet_csk(sk); 3459 3460 /* Was it a usable window open? */ 3461 3462 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3463 icsk->icsk_backoff = 0; 3464 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3465 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3466 * This function is not for random using! 3467 */ 3468 } else { 3469 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3470 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3471 TCP_RTO_MAX); 3472 } 3473} 3474 3475static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3476{ 3477 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3478 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3479} 3480 3481static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3482{ 3483 const struct tcp_sock *tp = tcp_sk(sk); 3484 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3485 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3486} 3487 3488/* Check that window update is acceptable. 3489 * The function assumes that snd_una<=ack<=snd_next. 3490 */ 3491static inline int tcp_may_update_window(const struct tcp_sock *tp, 3492 const u32 ack, const u32 ack_seq, 3493 const u32 nwin) 3494{ 3495 return after(ack, tp->snd_una) || 3496 after(ack_seq, tp->snd_wl1) || 3497 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3498} 3499 3500/* Update our send window. 3501 * 3502 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3503 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3504 */ 3505static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3506 u32 ack_seq) 3507{ 3508 struct tcp_sock *tp = tcp_sk(sk); 3509 int flag = 0; 3510 u32 nwin = ntohs(tcp_hdr(skb)->window); 3511 3512 if (likely(!tcp_hdr(skb)->syn)) 3513 nwin <<= tp->rx_opt.snd_wscale; 3514 3515 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3516 flag |= FLAG_WIN_UPDATE; 3517 tcp_update_wl(tp, ack_seq); 3518 3519 if (tp->snd_wnd != nwin) { 3520 tp->snd_wnd = nwin; 3521 3522 /* Note, it is the only place, where 3523 * fast path is recovered for sending TCP. 3524 */ 3525 tp->pred_flags = 0; 3526 tcp_fast_path_check(sk); 3527 3528 if (nwin > tp->max_window) { 3529 tp->max_window = nwin; 3530 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3531 } 3532 } 3533 } 3534 3535 tp->snd_una = ack; 3536 3537 return flag; 3538} 3539 3540/* A very conservative spurious RTO response algorithm: reduce cwnd and 3541 * continue in congestion avoidance. 3542 */ 3543static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3544{ 3545 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3546 tp->snd_cwnd_cnt = 0; 3547 tp->bytes_acked = 0; 3548 TCP_ECN_queue_cwr(tp); 3549 tcp_moderate_cwnd(tp); 3550} 3551 3552/* A conservative spurious RTO response algorithm: reduce cwnd using 3553 * rate halving and continue in congestion avoidance. 3554 */ 3555static void tcp_ratehalving_spur_to_response(struct sock *sk) 3556{ 3557 tcp_enter_cwr(sk, 0); 3558} 3559 3560static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3561{ 3562 if (flag & FLAG_ECE) 3563 tcp_ratehalving_spur_to_response(sk); 3564 else 3565 tcp_undo_cwr(sk, true); 3566} 3567 3568/* F-RTO spurious RTO detection algorithm (RFC4138) 3569 * 3570 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3571 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3572 * window (but not to or beyond highest sequence sent before RTO): 3573 * On First ACK, send two new segments out. 3574 * On Second ACK, RTO was likely spurious. Do spurious response (response 3575 * algorithm is not part of the F-RTO detection algorithm 3576 * given in RFC4138 but can be selected separately). 3577 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3578 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3579 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3580 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3581 * 3582 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3583 * original window even after we transmit two new data segments. 3584 * 3585 * SACK version: 3586 * on first step, wait until first cumulative ACK arrives, then move to 3587 * the second step. In second step, the next ACK decides. 3588 * 3589 * F-RTO is implemented (mainly) in four functions: 3590 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3591 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3592 * called when tcp_use_frto() showed green light 3593 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3594 * - tcp_enter_frto_loss() is called if there is not enough evidence 3595 * to prove that the RTO is indeed spurious. It transfers the control 3596 * from F-RTO to the conventional RTO recovery 3597 */ 3598static int tcp_process_frto(struct sock *sk, int flag) 3599{ 3600 struct tcp_sock *tp = tcp_sk(sk); 3601 3602 tcp_verify_left_out(tp); 3603 3604 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3605 if (flag & FLAG_DATA_ACKED) 3606 inet_csk(sk)->icsk_retransmits = 0; 3607 3608 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3609 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3610 tp->undo_marker = 0; 3611 3612 if (!before(tp->snd_una, tp->frto_highmark)) { 3613 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3614 return 1; 3615 } 3616 3617 if (!tcp_is_sackfrto(tp)) { 3618 /* RFC4138 shortcoming in step 2; should also have case c): 3619 * ACK isn't duplicate nor advances window, e.g., opposite dir 3620 * data, winupdate 3621 */ 3622 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3623 return 1; 3624 3625 if (!(flag & FLAG_DATA_ACKED)) { 3626 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3627 flag); 3628 return 1; 3629 } 3630 } else { 3631 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3632 /* Prevent sending of new data. */ 3633 tp->snd_cwnd = min(tp->snd_cwnd, 3634 tcp_packets_in_flight(tp)); 3635 return 1; 3636 } 3637 3638 if ((tp->frto_counter >= 2) && 3639 (!(flag & FLAG_FORWARD_PROGRESS) || 3640 ((flag & FLAG_DATA_SACKED) && 3641 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3642 /* RFC4138 shortcoming (see comment above) */ 3643 if (!(flag & FLAG_FORWARD_PROGRESS) && 3644 (flag & FLAG_NOT_DUP)) 3645 return 1; 3646 3647 tcp_enter_frto_loss(sk, 3, flag); 3648 return 1; 3649 } 3650 } 3651 3652 if (tp->frto_counter == 1) { 3653 /* tcp_may_send_now needs to see updated state */ 3654 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3655 tp->frto_counter = 2; 3656 3657 if (!tcp_may_send_now(sk)) 3658 tcp_enter_frto_loss(sk, 2, flag); 3659 3660 return 1; 3661 } else { 3662 switch (sysctl_tcp_frto_response) { 3663 case 2: 3664 tcp_undo_spur_to_response(sk, flag); 3665 break; 3666 case 1: 3667 tcp_conservative_spur_to_response(tp); 3668 break; 3669 default: 3670 tcp_ratehalving_spur_to_response(sk); 3671 break; 3672 } 3673 tp->frto_counter = 0; 3674 tp->undo_marker = 0; 3675 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3676 } 3677 return 0; 3678} 3679 3680/* This routine deals with incoming acks, but not outgoing ones. */ 3681static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3682{ 3683 struct inet_connection_sock *icsk = inet_csk(sk); 3684 struct tcp_sock *tp = tcp_sk(sk); 3685 u32 prior_snd_una = tp->snd_una; 3686 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3687 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3688 bool is_dupack = false; 3689 u32 prior_in_flight; 3690 u32 prior_fackets; 3691 int prior_packets; 3692 int prior_sacked = tp->sacked_out; 3693 int pkts_acked = 0; 3694 int newly_acked_sacked = 0; 3695 int frto_cwnd = 0; 3696 3697 /* If the ack is older than previous acks 3698 * then we can probably ignore it. 3699 */ 3700 if (before(ack, prior_snd_una)) 3701 goto old_ack; 3702 3703 /* If the ack includes data we haven't sent yet, discard 3704 * this segment (RFC793 Section 3.9). 3705 */ 3706 if (after(ack, tp->snd_nxt)) 3707 goto invalid_ack; 3708 3709 if (after(ack, prior_snd_una)) 3710 flag |= FLAG_SND_UNA_ADVANCED; 3711 3712 if (sysctl_tcp_abc) { 3713 if (icsk->icsk_ca_state < TCP_CA_CWR) 3714 tp->bytes_acked += ack - prior_snd_una; 3715 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3716 /* we assume just one segment left network */ 3717 tp->bytes_acked += min(ack - prior_snd_una, 3718 tp->mss_cache); 3719 } 3720 3721 prior_fackets = tp->fackets_out; 3722 prior_in_flight = tcp_packets_in_flight(tp); 3723 3724 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3725 /* Window is constant, pure forward advance. 3726 * No more checks are required. 3727 * Note, we use the fact that SND.UNA>=SND.WL2. 3728 */ 3729 tcp_update_wl(tp, ack_seq); 3730 tp->snd_una = ack; 3731 flag |= FLAG_WIN_UPDATE; 3732 3733 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3734 3735 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3736 } else { 3737 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3738 flag |= FLAG_DATA; 3739 else 3740 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3741 3742 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3743 3744 if (TCP_SKB_CB(skb)->sacked) 3745 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3746 3747 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3748 flag |= FLAG_ECE; 3749 3750 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3751 } 3752 3753 /* We passed data and got it acked, remove any soft error 3754 * log. Something worked... 3755 */ 3756 sk->sk_err_soft = 0; 3757 icsk->icsk_probes_out = 0; 3758 tp->rcv_tstamp = tcp_time_stamp; 3759 prior_packets = tp->packets_out; 3760 if (!prior_packets) 3761 goto no_queue; 3762 3763 /* See if we can take anything off of the retransmit queue. */ 3764 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3765 3766 pkts_acked = prior_packets - tp->packets_out; 3767 newly_acked_sacked = (prior_packets - prior_sacked) - 3768 (tp->packets_out - tp->sacked_out); 3769 3770 if (tp->frto_counter) 3771 frto_cwnd = tcp_process_frto(sk, flag); 3772 /* Guarantee sacktag reordering detection against wrap-arounds */ 3773 if (before(tp->frto_highmark, tp->snd_una)) 3774 tp->frto_highmark = 0; 3775 3776 if (tcp_ack_is_dubious(sk, flag)) { 3777 /* Advance CWND, if state allows this. */ 3778 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3779 tcp_may_raise_cwnd(sk, flag)) 3780 tcp_cong_avoid(sk, ack, prior_in_flight); 3781 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3782 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked, 3783 is_dupack, flag); 3784 } else { 3785 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3786 tcp_cong_avoid(sk, ack, prior_in_flight); 3787 } 3788 3789 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3790 dst_confirm(__sk_dst_get(sk)); 3791 3792 return 1; 3793 3794no_queue: 3795 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3796 if (flag & FLAG_DSACKING_ACK) 3797 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked, 3798 is_dupack, flag); 3799 /* If this ack opens up a zero window, clear backoff. It was 3800 * being used to time the probes, and is probably far higher than 3801 * it needs to be for normal retransmission. 3802 */ 3803 if (tcp_send_head(sk)) 3804 tcp_ack_probe(sk); 3805 return 1; 3806 3807invalid_ack: 3808 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3809 return -1; 3810 3811old_ack: 3812 /* If data was SACKed, tag it and see if we should send more data. 3813 * If data was DSACKed, see if we can undo a cwnd reduction. 3814 */ 3815 if (TCP_SKB_CB(skb)->sacked) { 3816 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3817 newly_acked_sacked = tp->sacked_out - prior_sacked; 3818 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked, 3819 is_dupack, flag); 3820 } 3821 3822 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3823 return 0; 3824} 3825 3826/* Look for tcp options. Normally only called on SYN and SYNACK packets. 3827 * But, this can also be called on packets in the established flow when 3828 * the fast version below fails. 3829 */ 3830void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx, 3831 const u8 **hvpp, int estab) 3832{ 3833 const unsigned char *ptr; 3834 const struct tcphdr *th = tcp_hdr(skb); 3835 int length = (th->doff * 4) - sizeof(struct tcphdr); 3836 3837 ptr = (const unsigned char *)(th + 1); 3838 opt_rx->saw_tstamp = 0; 3839 3840 while (length > 0) { 3841 int opcode = *ptr++; 3842 int opsize; 3843 3844 switch (opcode) { 3845 case TCPOPT_EOL: 3846 return; 3847 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3848 length--; 3849 continue; 3850 default: 3851 opsize = *ptr++; 3852 if (opsize < 2) /* "silly options" */ 3853 return; 3854 if (opsize > length) 3855 return; /* don't parse partial options */ 3856 switch (opcode) { 3857 case TCPOPT_MSS: 3858 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3859 u16 in_mss = get_unaligned_be16(ptr); 3860 if (in_mss) { 3861 if (opt_rx->user_mss && 3862 opt_rx->user_mss < in_mss) 3863 in_mss = opt_rx->user_mss; 3864 opt_rx->mss_clamp = in_mss; 3865 } 3866 } 3867 break; 3868 case TCPOPT_WINDOW: 3869 if (opsize == TCPOLEN_WINDOW && th->syn && 3870 !estab && sysctl_tcp_window_scaling) { 3871 __u8 snd_wscale = *(__u8 *)ptr; 3872 opt_rx->wscale_ok = 1; 3873 if (snd_wscale > 14) { 3874 if (net_ratelimit()) 3875 pr_info("%s: Illegal window scaling value %d >14 received\n", 3876 __func__, 3877 snd_wscale); 3878 snd_wscale = 14; 3879 } 3880 opt_rx->snd_wscale = snd_wscale; 3881 } 3882 break; 3883 case TCPOPT_TIMESTAMP: 3884 if ((opsize == TCPOLEN_TIMESTAMP) && 3885 ((estab && opt_rx->tstamp_ok) || 3886 (!estab && sysctl_tcp_timestamps))) { 3887 opt_rx->saw_tstamp = 1; 3888 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3889 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3890 } 3891 break; 3892 case TCPOPT_SACK_PERM: 3893 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3894 !estab && sysctl_tcp_sack) { 3895 opt_rx->sack_ok = TCP_SACK_SEEN; 3896 tcp_sack_reset(opt_rx); 3897 } 3898 break; 3899 3900 case TCPOPT_SACK: 3901 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3902 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3903 opt_rx->sack_ok) { 3904 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3905 } 3906 break; 3907#ifdef CONFIG_TCP_MD5SIG 3908 case TCPOPT_MD5SIG: 3909 /* 3910 * The MD5 Hash has already been 3911 * checked (see tcp_v{4,6}_do_rcv()). 3912 */ 3913 break; 3914#endif 3915 case TCPOPT_COOKIE: 3916 /* This option is variable length. 3917 */ 3918 switch (opsize) { 3919 case TCPOLEN_COOKIE_BASE: 3920 /* not yet implemented */ 3921 break; 3922 case TCPOLEN_COOKIE_PAIR: 3923 /* not yet implemented */ 3924 break; 3925 case TCPOLEN_COOKIE_MIN+0: 3926 case TCPOLEN_COOKIE_MIN+2: 3927 case TCPOLEN_COOKIE_MIN+4: 3928 case TCPOLEN_COOKIE_MIN+6: 3929 case TCPOLEN_COOKIE_MAX: 3930 /* 16-bit multiple */ 3931 opt_rx->cookie_plus = opsize; 3932 *hvpp = ptr; 3933 break; 3934 default: 3935 /* ignore option */ 3936 break; 3937 } 3938 break; 3939 } 3940 3941 ptr += opsize-2; 3942 length -= opsize; 3943 } 3944 } 3945} 3946EXPORT_SYMBOL(tcp_parse_options); 3947 3948static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3949{ 3950 const __be32 *ptr = (const __be32 *)(th + 1); 3951 3952 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3953 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3954 tp->rx_opt.saw_tstamp = 1; 3955 ++ptr; 3956 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3957 ++ptr; 3958 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3959 return 1; 3960 } 3961 return 0; 3962} 3963 3964/* Fast parse options. This hopes to only see timestamps. 3965 * If it is wrong it falls back on tcp_parse_options(). 3966 */ 3967static int tcp_fast_parse_options(const struct sk_buff *skb, 3968 const struct tcphdr *th, 3969 struct tcp_sock *tp, const u8 **hvpp) 3970{ 3971 /* In the spirit of fast parsing, compare doff directly to constant 3972 * values. Because equality is used, short doff can be ignored here. 3973 */ 3974 if (th->doff == (sizeof(*th) / 4)) { 3975 tp->rx_opt.saw_tstamp = 0; 3976 return 0; 3977 } else if (tp->rx_opt.tstamp_ok && 3978 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3979 if (tcp_parse_aligned_timestamp(tp, th)) 3980 return 1; 3981 } 3982 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1); 3983 return 1; 3984} 3985 3986#ifdef CONFIG_TCP_MD5SIG 3987/* 3988 * Parse MD5 Signature option 3989 */ 3990const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3991{ 3992 int length = (th->doff << 2) - sizeof(*th); 3993 const u8 *ptr = (const u8 *)(th + 1); 3994 3995 /* If the TCP option is too short, we can short cut */ 3996 if (length < TCPOLEN_MD5SIG) 3997 return NULL; 3998 3999 while (length > 0) { 4000 int opcode = *ptr++; 4001 int opsize; 4002 4003 switch(opcode) { 4004 case TCPOPT_EOL: 4005 return NULL; 4006 case TCPOPT_NOP: 4007 length--; 4008 continue; 4009 default: 4010 opsize = *ptr++; 4011 if (opsize < 2 || opsize > length) 4012 return NULL; 4013 if (opcode == TCPOPT_MD5SIG) 4014 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4015 } 4016 ptr += opsize - 2; 4017 length -= opsize; 4018 } 4019 return NULL; 4020} 4021EXPORT_SYMBOL(tcp_parse_md5sig_option); 4022#endif 4023 4024static inline void tcp_store_ts_recent(struct tcp_sock *tp) 4025{ 4026 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 4027 tp->rx_opt.ts_recent_stamp = get_seconds(); 4028} 4029 4030static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 4031{ 4032 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 4033 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 4034 * extra check below makes sure this can only happen 4035 * for pure ACK frames. -DaveM 4036 * 4037 * Not only, also it occurs for expired timestamps. 4038 */ 4039 4040 if (tcp_paws_check(&tp->rx_opt, 0)) 4041 tcp_store_ts_recent(tp); 4042 } 4043} 4044 4045/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4046 * 4047 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4048 * it can pass through stack. So, the following predicate verifies that 4049 * this segment is not used for anything but congestion avoidance or 4050 * fast retransmit. Moreover, we even are able to eliminate most of such 4051 * second order effects, if we apply some small "replay" window (~RTO) 4052 * to timestamp space. 4053 * 4054 * All these measures still do not guarantee that we reject wrapped ACKs 4055 * on networks with high bandwidth, when sequence space is recycled fastly, 4056 * but it guarantees that such events will be very rare and do not affect 4057 * connection seriously. This doesn't look nice, but alas, PAWS is really 4058 * buggy extension. 4059 * 4060 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4061 * states that events when retransmit arrives after original data are rare. 4062 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4063 * the biggest problem on large power networks even with minor reordering. 4064 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4065 * up to bandwidth of 18Gigabit/sec. 8) ] 4066 */ 4067 4068static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4069{ 4070 const struct tcp_sock *tp = tcp_sk(sk); 4071 const struct tcphdr *th = tcp_hdr(skb); 4072 u32 seq = TCP_SKB_CB(skb)->seq; 4073 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4074 4075 return (/* 1. Pure ACK with correct sequence number. */ 4076 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4077 4078 /* 2. ... and duplicate ACK. */ 4079 ack == tp->snd_una && 4080 4081 /* 3. ... and does not update window. */ 4082 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4083 4084 /* 4. ... and sits in replay window. */ 4085 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4086} 4087 4088static inline int tcp_paws_discard(const struct sock *sk, 4089 const struct sk_buff *skb) 4090{ 4091 const struct tcp_sock *tp = tcp_sk(sk); 4092 4093 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4094 !tcp_disordered_ack(sk, skb); 4095} 4096 4097/* Check segment sequence number for validity. 4098 * 4099 * Segment controls are considered valid, if the segment 4100 * fits to the window after truncation to the window. Acceptability 4101 * of data (and SYN, FIN, of course) is checked separately. 4102 * See tcp_data_queue(), for example. 4103 * 4104 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4105 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4106 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4107 * (borrowed from freebsd) 4108 */ 4109 4110static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4111{ 4112 return !before(end_seq, tp->rcv_wup) && 4113 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4114} 4115 4116/* When we get a reset we do this. */ 4117static void tcp_reset(struct sock *sk) 4118{ 4119 /* We want the right error as BSD sees it (and indeed as we do). */ 4120 switch (sk->sk_state) { 4121 case TCP_SYN_SENT: 4122 sk->sk_err = ECONNREFUSED; 4123 break; 4124 case TCP_CLOSE_WAIT: 4125 sk->sk_err = EPIPE; 4126 break; 4127 case TCP_CLOSE: 4128 return; 4129 default: 4130 sk->sk_err = ECONNRESET; 4131 } 4132 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4133 smp_wmb(); 4134 4135 if (!sock_flag(sk, SOCK_DEAD)) 4136 sk->sk_error_report(sk); 4137 4138 tcp_done(sk); 4139} 4140 4141/* 4142 * Process the FIN bit. This now behaves as it is supposed to work 4143 * and the FIN takes effect when it is validly part of sequence 4144 * space. Not before when we get holes. 4145 * 4146 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4147 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4148 * TIME-WAIT) 4149 * 4150 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4151 * close and we go into CLOSING (and later onto TIME-WAIT) 4152 * 4153 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4154 */ 4155static void tcp_fin(struct sock *sk) 4156{ 4157 struct tcp_sock *tp = tcp_sk(sk); 4158 4159 inet_csk_schedule_ack(sk); 4160 4161 sk->sk_shutdown |= RCV_SHUTDOWN; 4162 sock_set_flag(sk, SOCK_DONE); 4163 4164 switch (sk->sk_state) { 4165 case TCP_SYN_RECV: 4166 case TCP_ESTABLISHED: 4167 /* Move to CLOSE_WAIT */ 4168 tcp_set_state(sk, TCP_CLOSE_WAIT); 4169 inet_csk(sk)->icsk_ack.pingpong = 1; 4170 break; 4171 4172 case TCP_CLOSE_WAIT: 4173 case TCP_CLOSING: 4174 /* Received a retransmission of the FIN, do 4175 * nothing. 4176 */ 4177 break; 4178 case TCP_LAST_ACK: 4179 /* RFC793: Remain in the LAST-ACK state. */ 4180 break; 4181 4182 case TCP_FIN_WAIT1: 4183 /* This case occurs when a simultaneous close 4184 * happens, we must ack the received FIN and 4185 * enter the CLOSING state. 4186 */ 4187 tcp_send_ack(sk); 4188 tcp_set_state(sk, TCP_CLOSING); 4189 break; 4190 case TCP_FIN_WAIT2: 4191 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4192 tcp_send_ack(sk); 4193 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4194 break; 4195 default: 4196 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4197 * cases we should never reach this piece of code. 4198 */ 4199 pr_err("%s: Impossible, sk->sk_state=%d\n", 4200 __func__, sk->sk_state); 4201 break; 4202 } 4203 4204 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4205 * Probably, we should reset in this case. For now drop them. 4206 */ 4207 __skb_queue_purge(&tp->out_of_order_queue); 4208 if (tcp_is_sack(tp)) 4209 tcp_sack_reset(&tp->rx_opt); 4210 sk_mem_reclaim(sk); 4211 4212 if (!sock_flag(sk, SOCK_DEAD)) { 4213 sk->sk_state_change(sk); 4214 4215 /* Do not send POLL_HUP for half duplex close. */ 4216 if (sk->sk_shutdown == SHUTDOWN_MASK || 4217 sk->sk_state == TCP_CLOSE) 4218 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4219 else 4220 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4221 } 4222} 4223 4224static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4225 u32 end_seq) 4226{ 4227 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4228 if (before(seq, sp->start_seq)) 4229 sp->start_seq = seq; 4230 if (after(end_seq, sp->end_seq)) 4231 sp->end_seq = end_seq; 4232 return 1; 4233 } 4234 return 0; 4235} 4236 4237static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4238{ 4239 struct tcp_sock *tp = tcp_sk(sk); 4240 4241 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4242 int mib_idx; 4243 4244 if (before(seq, tp->rcv_nxt)) 4245 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4246 else 4247 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4248 4249 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4250 4251 tp->rx_opt.dsack = 1; 4252 tp->duplicate_sack[0].start_seq = seq; 4253 tp->duplicate_sack[0].end_seq = end_seq; 4254 } 4255} 4256 4257static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4258{ 4259 struct tcp_sock *tp = tcp_sk(sk); 4260 4261 if (!tp->rx_opt.dsack) 4262 tcp_dsack_set(sk, seq, end_seq); 4263 else 4264 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4265} 4266 4267static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4268{ 4269 struct tcp_sock *tp = tcp_sk(sk); 4270 4271 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4272 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4273 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4274 tcp_enter_quickack_mode(sk); 4275 4276 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4277 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4278 4279 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4280 end_seq = tp->rcv_nxt; 4281 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4282 } 4283 } 4284 4285 tcp_send_ack(sk); 4286} 4287 4288/* These routines update the SACK block as out-of-order packets arrive or 4289 * in-order packets close up the sequence space. 4290 */ 4291static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4292{ 4293 int this_sack; 4294 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4295 struct tcp_sack_block *swalk = sp + 1; 4296 4297 /* See if the recent change to the first SACK eats into 4298 * or hits the sequence space of other SACK blocks, if so coalesce. 4299 */ 4300 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4301 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4302 int i; 4303 4304 /* Zap SWALK, by moving every further SACK up by one slot. 4305 * Decrease num_sacks. 4306 */ 4307 tp->rx_opt.num_sacks--; 4308 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4309 sp[i] = sp[i + 1]; 4310 continue; 4311 } 4312 this_sack++, swalk++; 4313 } 4314} 4315 4316static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4317{ 4318 struct tcp_sock *tp = tcp_sk(sk); 4319 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4320 int cur_sacks = tp->rx_opt.num_sacks; 4321 int this_sack; 4322 4323 if (!cur_sacks) 4324 goto new_sack; 4325 4326 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4327 if (tcp_sack_extend(sp, seq, end_seq)) { 4328 /* Rotate this_sack to the first one. */ 4329 for (; this_sack > 0; this_sack--, sp--) 4330 swap(*sp, *(sp - 1)); 4331 if (cur_sacks > 1) 4332 tcp_sack_maybe_coalesce(tp); 4333 return; 4334 } 4335 } 4336 4337 /* Could not find an adjacent existing SACK, build a new one, 4338 * put it at the front, and shift everyone else down. We 4339 * always know there is at least one SACK present already here. 4340 * 4341 * If the sack array is full, forget about the last one. 4342 */ 4343 if (this_sack >= TCP_NUM_SACKS) { 4344 this_sack--; 4345 tp->rx_opt.num_sacks--; 4346 sp--; 4347 } 4348 for (; this_sack > 0; this_sack--, sp--) 4349 *sp = *(sp - 1); 4350 4351new_sack: 4352 /* Build the new head SACK, and we're done. */ 4353 sp->start_seq = seq; 4354 sp->end_seq = end_seq; 4355 tp->rx_opt.num_sacks++; 4356} 4357 4358/* RCV.NXT advances, some SACKs should be eaten. */ 4359 4360static void tcp_sack_remove(struct tcp_sock *tp) 4361{ 4362 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4363 int num_sacks = tp->rx_opt.num_sacks; 4364 int this_sack; 4365 4366 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4367 if (skb_queue_empty(&tp->out_of_order_queue)) { 4368 tp->rx_opt.num_sacks = 0; 4369 return; 4370 } 4371 4372 for (this_sack = 0; this_sack < num_sacks;) { 4373 /* Check if the start of the sack is covered by RCV.NXT. */ 4374 if (!before(tp->rcv_nxt, sp->start_seq)) { 4375 int i; 4376 4377 /* RCV.NXT must cover all the block! */ 4378 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4379 4380 /* Zap this SACK, by moving forward any other SACKS. */ 4381 for (i=this_sack+1; i < num_sacks; i++) 4382 tp->selective_acks[i-1] = tp->selective_acks[i]; 4383 num_sacks--; 4384 continue; 4385 } 4386 this_sack++; 4387 sp++; 4388 } 4389 tp->rx_opt.num_sacks = num_sacks; 4390} 4391 4392/* This one checks to see if we can put data from the 4393 * out_of_order queue into the receive_queue. 4394 */ 4395static void tcp_ofo_queue(struct sock *sk) 4396{ 4397 struct tcp_sock *tp = tcp_sk(sk); 4398 __u32 dsack_high = tp->rcv_nxt; 4399 struct sk_buff *skb; 4400 4401 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4402 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4403 break; 4404 4405 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4406 __u32 dsack = dsack_high; 4407 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4408 dsack_high = TCP_SKB_CB(skb)->end_seq; 4409 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4410 } 4411 4412 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4413 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4414 __skb_unlink(skb, &tp->out_of_order_queue); 4415 __kfree_skb(skb); 4416 continue; 4417 } 4418 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4419 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4420 TCP_SKB_CB(skb)->end_seq); 4421 4422 __skb_unlink(skb, &tp->out_of_order_queue); 4423 __skb_queue_tail(&sk->sk_receive_queue, skb); 4424 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4425 if (tcp_hdr(skb)->fin) 4426 tcp_fin(sk); 4427 } 4428} 4429 4430static int tcp_prune_ofo_queue(struct sock *sk); 4431static int tcp_prune_queue(struct sock *sk); 4432 4433static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4434{ 4435 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4436 !sk_rmem_schedule(sk, size)) { 4437 4438 if (tcp_prune_queue(sk) < 0) 4439 return -1; 4440 4441 if (!sk_rmem_schedule(sk, size)) { 4442 if (!tcp_prune_ofo_queue(sk)) 4443 return -1; 4444 4445 if (!sk_rmem_schedule(sk, size)) 4446 return -1; 4447 } 4448 } 4449 return 0; 4450} 4451 4452static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4453{ 4454 struct tcp_sock *tp = tcp_sk(sk); 4455 struct sk_buff *skb1; 4456 u32 seq, end_seq; 4457 4458 TCP_ECN_check_ce(tp, skb); 4459 4460 if (tcp_try_rmem_schedule(sk, skb->truesize)) { 4461 /* TODO: should increment a counter */ 4462 __kfree_skb(skb); 4463 return; 4464 } 4465 4466 /* Disable header prediction. */ 4467 tp->pred_flags = 0; 4468 inet_csk_schedule_ack(sk); 4469 4470 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4471 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4472 4473 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4474 if (!skb1) { 4475 /* Initial out of order segment, build 1 SACK. */ 4476 if (tcp_is_sack(tp)) { 4477 tp->rx_opt.num_sacks = 1; 4478 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4479 tp->selective_acks[0].end_seq = 4480 TCP_SKB_CB(skb)->end_seq; 4481 } 4482 __skb_queue_head(&tp->out_of_order_queue, skb); 4483 goto end; 4484 } 4485 4486 seq = TCP_SKB_CB(skb)->seq; 4487 end_seq = TCP_SKB_CB(skb)->end_seq; 4488 4489 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4490 /* Packets in ofo can stay in queue a long time. 4491 * Better try to coalesce them right now 4492 * to avoid future tcp_collapse_ofo_queue(), 4493 * probably the most expensive function in tcp stack. 4494 */ 4495 if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) { 4496 NET_INC_STATS_BH(sock_net(sk), 4497 LINUX_MIB_TCPRCVCOALESCE); 4498 BUG_ON(skb_copy_bits(skb, 0, 4499 skb_put(skb1, skb->len), 4500 skb->len)); 4501 TCP_SKB_CB(skb1)->end_seq = end_seq; 4502 TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 4503 __kfree_skb(skb); 4504 skb = NULL; 4505 } else { 4506 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4507 } 4508 4509 if (!tp->rx_opt.num_sacks || 4510 tp->selective_acks[0].end_seq != seq) 4511 goto add_sack; 4512 4513 /* Common case: data arrive in order after hole. */ 4514 tp->selective_acks[0].end_seq = end_seq; 4515 goto end; 4516 } 4517 4518 /* Find place to insert this segment. */ 4519 while (1) { 4520 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4521 break; 4522 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4523 skb1 = NULL; 4524 break; 4525 } 4526 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4527 } 4528 4529 /* Do skb overlap to previous one? */ 4530 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4531 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4532 /* All the bits are present. Drop. */ 4533 __kfree_skb(skb); 4534 skb = NULL; 4535 tcp_dsack_set(sk, seq, end_seq); 4536 goto add_sack; 4537 } 4538 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4539 /* Partial overlap. */ 4540 tcp_dsack_set(sk, seq, 4541 TCP_SKB_CB(skb1)->end_seq); 4542 } else { 4543 if (skb_queue_is_first(&tp->out_of_order_queue, 4544 skb1)) 4545 skb1 = NULL; 4546 else 4547 skb1 = skb_queue_prev( 4548 &tp->out_of_order_queue, 4549 skb1); 4550 } 4551 } 4552 if (!skb1) 4553 __skb_queue_head(&tp->out_of_order_queue, skb); 4554 else 4555 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4556 4557 /* And clean segments covered by new one as whole. */ 4558 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4559 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4560 4561 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4562 break; 4563 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4564 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4565 end_seq); 4566 break; 4567 } 4568 __skb_unlink(skb1, &tp->out_of_order_queue); 4569 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4570 TCP_SKB_CB(skb1)->end_seq); 4571 __kfree_skb(skb1); 4572 } 4573 4574add_sack: 4575 if (tcp_is_sack(tp)) 4576 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4577end: 4578 if (skb) 4579 skb_set_owner_r(skb, sk); 4580} 4581 4582 4583static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4584{ 4585 const struct tcphdr *th = tcp_hdr(skb); 4586 struct tcp_sock *tp = tcp_sk(sk); 4587 int eaten = -1; 4588 4589 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4590 goto drop; 4591 4592 skb_dst_drop(skb); 4593 __skb_pull(skb, th->doff * 4); 4594 4595 TCP_ECN_accept_cwr(tp, skb); 4596 4597 tp->rx_opt.dsack = 0; 4598 4599 /* Queue data for delivery to the user. 4600 * Packets in sequence go to the receive queue. 4601 * Out of sequence packets to the out_of_order_queue. 4602 */ 4603 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4604 if (tcp_receive_window(tp) == 0) 4605 goto out_of_window; 4606 4607 /* Ok. In sequence. In window. */ 4608 if (tp->ucopy.task == current && 4609 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4610 sock_owned_by_user(sk) && !tp->urg_data) { 4611 int chunk = min_t(unsigned int, skb->len, 4612 tp->ucopy.len); 4613 4614 __set_current_state(TASK_RUNNING); 4615 4616 local_bh_enable(); 4617 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4618 tp->ucopy.len -= chunk; 4619 tp->copied_seq += chunk; 4620 eaten = (chunk == skb->len); 4621 tcp_rcv_space_adjust(sk); 4622 } 4623 local_bh_disable(); 4624 } 4625 4626 if (eaten <= 0) { 4627queue_and_out: 4628 if (eaten < 0 && 4629 tcp_try_rmem_schedule(sk, skb->truesize)) 4630 goto drop; 4631 4632 skb_set_owner_r(skb, sk); 4633 __skb_queue_tail(&sk->sk_receive_queue, skb); 4634 } 4635 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4636 if (skb->len) 4637 tcp_event_data_recv(sk, skb); 4638 if (th->fin) 4639 tcp_fin(sk); 4640 4641 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4642 tcp_ofo_queue(sk); 4643 4644 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4645 * gap in queue is filled. 4646 */ 4647 if (skb_queue_empty(&tp->out_of_order_queue)) 4648 inet_csk(sk)->icsk_ack.pingpong = 0; 4649 } 4650 4651 if (tp->rx_opt.num_sacks) 4652 tcp_sack_remove(tp); 4653 4654 tcp_fast_path_check(sk); 4655 4656 if (eaten > 0) 4657 __kfree_skb(skb); 4658 else if (!sock_flag(sk, SOCK_DEAD)) 4659 sk->sk_data_ready(sk, 0); 4660 return; 4661 } 4662 4663 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4664 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4665 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4666 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4667 4668out_of_window: 4669 tcp_enter_quickack_mode(sk); 4670 inet_csk_schedule_ack(sk); 4671drop: 4672 __kfree_skb(skb); 4673 return; 4674 } 4675 4676 /* Out of window. F.e. zero window probe. */ 4677 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4678 goto out_of_window; 4679 4680 tcp_enter_quickack_mode(sk); 4681 4682 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4683 /* Partial packet, seq < rcv_next < end_seq */ 4684 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4685 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4686 TCP_SKB_CB(skb)->end_seq); 4687 4688 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4689 4690 /* If window is closed, drop tail of packet. But after 4691 * remembering D-SACK for its head made in previous line. 4692 */ 4693 if (!tcp_receive_window(tp)) 4694 goto out_of_window; 4695 goto queue_and_out; 4696 } 4697 4698 tcp_data_queue_ofo(sk, skb); 4699} 4700 4701static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4702 struct sk_buff_head *list) 4703{ 4704 struct sk_buff *next = NULL; 4705 4706 if (!skb_queue_is_last(list, skb)) 4707 next = skb_queue_next(list, skb); 4708 4709 __skb_unlink(skb, list); 4710 __kfree_skb(skb); 4711 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4712 4713 return next; 4714} 4715 4716/* Collapse contiguous sequence of skbs head..tail with 4717 * sequence numbers start..end. 4718 * 4719 * If tail is NULL, this means until the end of the list. 4720 * 4721 * Segments with FIN/SYN are not collapsed (only because this 4722 * simplifies code) 4723 */ 4724static void 4725tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4726 struct sk_buff *head, struct sk_buff *tail, 4727 u32 start, u32 end) 4728{ 4729 struct sk_buff *skb, *n; 4730 bool end_of_skbs; 4731 4732 /* First, check that queue is collapsible and find 4733 * the point where collapsing can be useful. */ 4734 skb = head; 4735restart: 4736 end_of_skbs = true; 4737 skb_queue_walk_from_safe(list, skb, n) { 4738 if (skb == tail) 4739 break; 4740 /* No new bits? It is possible on ofo queue. */ 4741 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4742 skb = tcp_collapse_one(sk, skb, list); 4743 if (!skb) 4744 break; 4745 goto restart; 4746 } 4747 4748 /* The first skb to collapse is: 4749 * - not SYN/FIN and 4750 * - bloated or contains data before "start" or 4751 * overlaps to the next one. 4752 */ 4753 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4754 (tcp_win_from_space(skb->truesize) > skb->len || 4755 before(TCP_SKB_CB(skb)->seq, start))) { 4756 end_of_skbs = false; 4757 break; 4758 } 4759 4760 if (!skb_queue_is_last(list, skb)) { 4761 struct sk_buff *next = skb_queue_next(list, skb); 4762 if (next != tail && 4763 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4764 end_of_skbs = false; 4765 break; 4766 } 4767 } 4768 4769 /* Decided to skip this, advance start seq. */ 4770 start = TCP_SKB_CB(skb)->end_seq; 4771 } 4772 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4773 return; 4774 4775 while (before(start, end)) { 4776 struct sk_buff *nskb; 4777 unsigned int header = skb_headroom(skb); 4778 int copy = SKB_MAX_ORDER(header, 0); 4779 4780 /* Too big header? This can happen with IPv6. */ 4781 if (copy < 0) 4782 return; 4783 if (end - start < copy) 4784 copy = end - start; 4785 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4786 if (!nskb) 4787 return; 4788 4789 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4790 skb_set_network_header(nskb, (skb_network_header(skb) - 4791 skb->head)); 4792 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4793 skb->head)); 4794 skb_reserve(nskb, header); 4795 memcpy(nskb->head, skb->head, header); 4796 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4797 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4798 __skb_queue_before(list, skb, nskb); 4799 skb_set_owner_r(nskb, sk); 4800 4801 /* Copy data, releasing collapsed skbs. */ 4802 while (copy > 0) { 4803 int offset = start - TCP_SKB_CB(skb)->seq; 4804 int size = TCP_SKB_CB(skb)->end_seq - start; 4805 4806 BUG_ON(offset < 0); 4807 if (size > 0) { 4808 size = min(copy, size); 4809 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4810 BUG(); 4811 TCP_SKB_CB(nskb)->end_seq += size; 4812 copy -= size; 4813 start += size; 4814 } 4815 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4816 skb = tcp_collapse_one(sk, skb, list); 4817 if (!skb || 4818 skb == tail || 4819 tcp_hdr(skb)->syn || 4820 tcp_hdr(skb)->fin) 4821 return; 4822 } 4823 } 4824 } 4825} 4826 4827/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4828 * and tcp_collapse() them until all the queue is collapsed. 4829 */ 4830static void tcp_collapse_ofo_queue(struct sock *sk) 4831{ 4832 struct tcp_sock *tp = tcp_sk(sk); 4833 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4834 struct sk_buff *head; 4835 u32 start, end; 4836 4837 if (skb == NULL) 4838 return; 4839 4840 start = TCP_SKB_CB(skb)->seq; 4841 end = TCP_SKB_CB(skb)->end_seq; 4842 head = skb; 4843 4844 for (;;) { 4845 struct sk_buff *next = NULL; 4846 4847 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4848 next = skb_queue_next(&tp->out_of_order_queue, skb); 4849 skb = next; 4850 4851 /* Segment is terminated when we see gap or when 4852 * we are at the end of all the queue. */ 4853 if (!skb || 4854 after(TCP_SKB_CB(skb)->seq, end) || 4855 before(TCP_SKB_CB(skb)->end_seq, start)) { 4856 tcp_collapse(sk, &tp->out_of_order_queue, 4857 head, skb, start, end); 4858 head = skb; 4859 if (!skb) 4860 break; 4861 /* Start new segment */ 4862 start = TCP_SKB_CB(skb)->seq; 4863 end = TCP_SKB_CB(skb)->end_seq; 4864 } else { 4865 if (before(TCP_SKB_CB(skb)->seq, start)) 4866 start = TCP_SKB_CB(skb)->seq; 4867 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4868 end = TCP_SKB_CB(skb)->end_seq; 4869 } 4870 } 4871} 4872 4873/* 4874 * Purge the out-of-order queue. 4875 * Return true if queue was pruned. 4876 */ 4877static int tcp_prune_ofo_queue(struct sock *sk) 4878{ 4879 struct tcp_sock *tp = tcp_sk(sk); 4880 int res = 0; 4881 4882 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4883 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4884 __skb_queue_purge(&tp->out_of_order_queue); 4885 4886 /* Reset SACK state. A conforming SACK implementation will 4887 * do the same at a timeout based retransmit. When a connection 4888 * is in a sad state like this, we care only about integrity 4889 * of the connection not performance. 4890 */ 4891 if (tp->rx_opt.sack_ok) 4892 tcp_sack_reset(&tp->rx_opt); 4893 sk_mem_reclaim(sk); 4894 res = 1; 4895 } 4896 return res; 4897} 4898 4899/* Reduce allocated memory if we can, trying to get 4900 * the socket within its memory limits again. 4901 * 4902 * Return less than zero if we should start dropping frames 4903 * until the socket owning process reads some of the data 4904 * to stabilize the situation. 4905 */ 4906static int tcp_prune_queue(struct sock *sk) 4907{ 4908 struct tcp_sock *tp = tcp_sk(sk); 4909 4910 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4911 4912 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4913 4914 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4915 tcp_clamp_window(sk); 4916 else if (sk_under_memory_pressure(sk)) 4917 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4918 4919 tcp_collapse_ofo_queue(sk); 4920 if (!skb_queue_empty(&sk->sk_receive_queue)) 4921 tcp_collapse(sk, &sk->sk_receive_queue, 4922 skb_peek(&sk->sk_receive_queue), 4923 NULL, 4924 tp->copied_seq, tp->rcv_nxt); 4925 sk_mem_reclaim(sk); 4926 4927 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4928 return 0; 4929 4930 /* Collapsing did not help, destructive actions follow. 4931 * This must not ever occur. */ 4932 4933 tcp_prune_ofo_queue(sk); 4934 4935 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4936 return 0; 4937 4938 /* If we are really being abused, tell the caller to silently 4939 * drop receive data on the floor. It will get retransmitted 4940 * and hopefully then we'll have sufficient space. 4941 */ 4942 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4943 4944 /* Massive buffer overcommit. */ 4945 tp->pred_flags = 0; 4946 return -1; 4947} 4948 4949/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4950 * As additional protections, we do not touch cwnd in retransmission phases, 4951 * and if application hit its sndbuf limit recently. 4952 */ 4953void tcp_cwnd_application_limited(struct sock *sk) 4954{ 4955 struct tcp_sock *tp = tcp_sk(sk); 4956 4957 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4958 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4959 /* Limited by application or receiver window. */ 4960 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4961 u32 win_used = max(tp->snd_cwnd_used, init_win); 4962 if (win_used < tp->snd_cwnd) { 4963 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4964 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4965 } 4966 tp->snd_cwnd_used = 0; 4967 } 4968 tp->snd_cwnd_stamp = tcp_time_stamp; 4969} 4970 4971static int tcp_should_expand_sndbuf(const struct sock *sk) 4972{ 4973 const struct tcp_sock *tp = tcp_sk(sk); 4974 4975 /* If the user specified a specific send buffer setting, do 4976 * not modify it. 4977 */ 4978 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4979 return 0; 4980 4981 /* If we are under global TCP memory pressure, do not expand. */ 4982 if (sk_under_memory_pressure(sk)) 4983 return 0; 4984 4985 /* If we are under soft global TCP memory pressure, do not expand. */ 4986 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4987 return 0; 4988 4989 /* If we filled the congestion window, do not expand. */ 4990 if (tp->packets_out >= tp->snd_cwnd) 4991 return 0; 4992 4993 return 1; 4994} 4995 4996/* When incoming ACK allowed to free some skb from write_queue, 4997 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4998 * on the exit from tcp input handler. 4999 * 5000 * PROBLEM: sndbuf expansion does not work well with largesend. 5001 */ 5002static void tcp_new_space(struct sock *sk) 5003{ 5004 struct tcp_sock *tp = tcp_sk(sk); 5005 5006 if (tcp_should_expand_sndbuf(sk)) { 5007 int sndmem = SKB_TRUESIZE(max_t(u32, 5008 tp->rx_opt.mss_clamp, 5009 tp->mss_cache) + 5010 MAX_TCP_HEADER); 5011 int demanded = max_t(unsigned int, tp->snd_cwnd, 5012 tp->reordering + 1); 5013 sndmem *= 2 * demanded; 5014 if (sndmem > sk->sk_sndbuf) 5015 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 5016 tp->snd_cwnd_stamp = tcp_time_stamp; 5017 } 5018 5019 sk->sk_write_space(sk); 5020} 5021 5022static void tcp_check_space(struct sock *sk) 5023{ 5024 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5025 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5026 if (sk->sk_socket && 5027 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5028 tcp_new_space(sk); 5029 } 5030} 5031 5032static inline void tcp_data_snd_check(struct sock *sk) 5033{ 5034 tcp_push_pending_frames(sk); 5035 tcp_check_space(sk); 5036} 5037 5038/* 5039 * Check if sending an ack is needed. 5040 */ 5041static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5042{ 5043 struct tcp_sock *tp = tcp_sk(sk); 5044 5045 /* More than one full frame received... */ 5046 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5047 /* ... and right edge of window advances far enough. 5048 * (tcp_recvmsg() will send ACK otherwise). Or... 5049 */ 5050 __tcp_select_window(sk) >= tp->rcv_wnd) || 5051 /* We ACK each frame or... */ 5052 tcp_in_quickack_mode(sk) || 5053 /* We have out of order data. */ 5054 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 5055 /* Then ack it now */ 5056 tcp_send_ack(sk); 5057 } else { 5058 /* Else, send delayed ack. */ 5059 tcp_send_delayed_ack(sk); 5060 } 5061} 5062 5063static inline void tcp_ack_snd_check(struct sock *sk) 5064{ 5065 if (!inet_csk_ack_scheduled(sk)) { 5066 /* We sent a data segment already. */ 5067 return; 5068 } 5069 __tcp_ack_snd_check(sk, 1); 5070} 5071 5072/* 5073 * This routine is only called when we have urgent data 5074 * signaled. Its the 'slow' part of tcp_urg. It could be 5075 * moved inline now as tcp_urg is only called from one 5076 * place. We handle URGent data wrong. We have to - as 5077 * BSD still doesn't use the correction from RFC961. 5078 * For 1003.1g we should support a new option TCP_STDURG to permit 5079 * either form (or just set the sysctl tcp_stdurg). 5080 */ 5081 5082static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5083{ 5084 struct tcp_sock *tp = tcp_sk(sk); 5085 u32 ptr = ntohs(th->urg_ptr); 5086 5087 if (ptr && !sysctl_tcp_stdurg) 5088 ptr--; 5089 ptr += ntohl(th->seq); 5090 5091 /* Ignore urgent data that we've already seen and read. */ 5092 if (after(tp->copied_seq, ptr)) 5093 return; 5094 5095 /* Do not replay urg ptr. 5096 * 5097 * NOTE: interesting situation not covered by specs. 5098 * Misbehaving sender may send urg ptr, pointing to segment, 5099 * which we already have in ofo queue. We are not able to fetch 5100 * such data and will stay in TCP_URG_NOTYET until will be eaten 5101 * by recvmsg(). Seems, we are not obliged to handle such wicked 5102 * situations. But it is worth to think about possibility of some 5103 * DoSes using some hypothetical application level deadlock. 5104 */ 5105 if (before(ptr, tp->rcv_nxt)) 5106 return; 5107 5108 /* Do we already have a newer (or duplicate) urgent pointer? */ 5109 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5110 return; 5111 5112 /* Tell the world about our new urgent pointer. */ 5113 sk_send_sigurg(sk); 5114 5115 /* We may be adding urgent data when the last byte read was 5116 * urgent. To do this requires some care. We cannot just ignore 5117 * tp->copied_seq since we would read the last urgent byte again 5118 * as data, nor can we alter copied_seq until this data arrives 5119 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5120 * 5121 * NOTE. Double Dutch. Rendering to plain English: author of comment 5122 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5123 * and expect that both A and B disappear from stream. This is _wrong_. 5124 * Though this happens in BSD with high probability, this is occasional. 5125 * Any application relying on this is buggy. Note also, that fix "works" 5126 * only in this artificial test. Insert some normal data between A and B and we will 5127 * decline of BSD again. Verdict: it is better to remove to trap 5128 * buggy users. 5129 */ 5130 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5131 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5132 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5133 tp->copied_seq++; 5134 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5135 __skb_unlink(skb, &sk->sk_receive_queue); 5136 __kfree_skb(skb); 5137 } 5138 } 5139 5140 tp->urg_data = TCP_URG_NOTYET; 5141 tp->urg_seq = ptr; 5142 5143 /* Disable header prediction. */ 5144 tp->pred_flags = 0; 5145} 5146 5147/* This is the 'fast' part of urgent handling. */ 5148static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5149{ 5150 struct tcp_sock *tp = tcp_sk(sk); 5151 5152 /* Check if we get a new urgent pointer - normally not. */ 5153 if (th->urg) 5154 tcp_check_urg(sk, th); 5155 5156 /* Do we wait for any urgent data? - normally not... */ 5157 if (tp->urg_data == TCP_URG_NOTYET) { 5158 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5159 th->syn; 5160 5161 /* Is the urgent pointer pointing into this packet? */ 5162 if (ptr < skb->len) { 5163 u8 tmp; 5164 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5165 BUG(); 5166 tp->urg_data = TCP_URG_VALID | tmp; 5167 if (!sock_flag(sk, SOCK_DEAD)) 5168 sk->sk_data_ready(sk, 0); 5169 } 5170 } 5171} 5172 5173static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5174{ 5175 struct tcp_sock *tp = tcp_sk(sk); 5176 int chunk = skb->len - hlen; 5177 int err; 5178 5179 local_bh_enable(); 5180 if (skb_csum_unnecessary(skb)) 5181 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5182 else 5183 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5184 tp->ucopy.iov); 5185 5186 if (!err) { 5187 tp->ucopy.len -= chunk; 5188 tp->copied_seq += chunk; 5189 tcp_rcv_space_adjust(sk); 5190 } 5191 5192 local_bh_disable(); 5193 return err; 5194} 5195 5196static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5197 struct sk_buff *skb) 5198{ 5199 __sum16 result; 5200 5201 if (sock_owned_by_user(sk)) { 5202 local_bh_enable(); 5203 result = __tcp_checksum_complete(skb); 5204 local_bh_disable(); 5205 } else { 5206 result = __tcp_checksum_complete(skb); 5207 } 5208 return result; 5209} 5210 5211static inline int tcp_checksum_complete_user(struct sock *sk, 5212 struct sk_buff *skb) 5213{ 5214 return !skb_csum_unnecessary(skb) && 5215 __tcp_checksum_complete_user(sk, skb); 5216} 5217 5218#ifdef CONFIG_NET_DMA 5219static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5220 int hlen) 5221{ 5222 struct tcp_sock *tp = tcp_sk(sk); 5223 int chunk = skb->len - hlen; 5224 int dma_cookie; 5225 int copied_early = 0; 5226 5227 if (tp->ucopy.wakeup) 5228 return 0; 5229 5230 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5231 tp->ucopy.dma_chan = net_dma_find_channel(); 5232 5233 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5234 5235 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5236 skb, hlen, 5237 tp->ucopy.iov, chunk, 5238 tp->ucopy.pinned_list); 5239 5240 if (dma_cookie < 0) 5241 goto out; 5242 5243 tp->ucopy.dma_cookie = dma_cookie; 5244 copied_early = 1; 5245 5246 tp->ucopy.len -= chunk; 5247 tp->copied_seq += chunk; 5248 tcp_rcv_space_adjust(sk); 5249 5250 if ((tp->ucopy.len == 0) || 5251 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5252 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5253 tp->ucopy.wakeup = 1; 5254 sk->sk_data_ready(sk, 0); 5255 } 5256 } else if (chunk > 0) { 5257 tp->ucopy.wakeup = 1; 5258 sk->sk_data_ready(sk, 0); 5259 } 5260out: 5261 return copied_early; 5262} 5263#endif /* CONFIG_NET_DMA */ 5264 5265/* Does PAWS and seqno based validation of an incoming segment, flags will 5266 * play significant role here. 5267 */ 5268static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5269 const struct tcphdr *th, int syn_inerr) 5270{ 5271 const u8 *hash_location; 5272 struct tcp_sock *tp = tcp_sk(sk); 5273 5274 /* RFC1323: H1. Apply PAWS check first. */ 5275 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5276 tp->rx_opt.saw_tstamp && 5277 tcp_paws_discard(sk, skb)) { 5278 if (!th->rst) { 5279 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5280 tcp_send_dupack(sk, skb); 5281 goto discard; 5282 } 5283 /* Reset is accepted even if it did not pass PAWS. */ 5284 } 5285 5286 /* Step 1: check sequence number */ 5287 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5288 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5289 * (RST) segments are validated by checking their SEQ-fields." 5290 * And page 69: "If an incoming segment is not acceptable, 5291 * an acknowledgment should be sent in reply (unless the RST 5292 * bit is set, if so drop the segment and return)". 5293 */ 5294 if (!th->rst) 5295 tcp_send_dupack(sk, skb); 5296 goto discard; 5297 } 5298 5299 /* Step 2: check RST bit */ 5300 if (th->rst) { 5301 tcp_reset(sk); 5302 goto discard; 5303 } 5304 5305 /* ts_recent update must be made after we are sure that the packet 5306 * is in window. 5307 */ 5308 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5309 5310 /* step 3: check security and precedence [ignored] */ 5311 5312 /* step 4: Check for a SYN in window. */ 5313 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5314 if (syn_inerr) 5315 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5316 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5317 tcp_reset(sk); 5318 return -1; 5319 } 5320 5321 return 1; 5322 5323discard: 5324 __kfree_skb(skb); 5325 return 0; 5326} 5327 5328/* 5329 * TCP receive function for the ESTABLISHED state. 5330 * 5331 * It is split into a fast path and a slow path. The fast path is 5332 * disabled when: 5333 * - A zero window was announced from us - zero window probing 5334 * is only handled properly in the slow path. 5335 * - Out of order segments arrived. 5336 * - Urgent data is expected. 5337 * - There is no buffer space left 5338 * - Unexpected TCP flags/window values/header lengths are received 5339 * (detected by checking the TCP header against pred_flags) 5340 * - Data is sent in both directions. Fast path only supports pure senders 5341 * or pure receivers (this means either the sequence number or the ack 5342 * value must stay constant) 5343 * - Unexpected TCP option. 5344 * 5345 * When these conditions are not satisfied it drops into a standard 5346 * receive procedure patterned after RFC793 to handle all cases. 5347 * The first three cases are guaranteed by proper pred_flags setting, 5348 * the rest is checked inline. Fast processing is turned on in 5349 * tcp_data_queue when everything is OK. 5350 */ 5351int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5352 const struct tcphdr *th, unsigned int len) 5353{ 5354 struct tcp_sock *tp = tcp_sk(sk); 5355 int res; 5356 5357 /* 5358 * Header prediction. 5359 * The code loosely follows the one in the famous 5360 * "30 instruction TCP receive" Van Jacobson mail. 5361 * 5362 * Van's trick is to deposit buffers into socket queue 5363 * on a device interrupt, to call tcp_recv function 5364 * on the receive process context and checksum and copy 5365 * the buffer to user space. smart... 5366 * 5367 * Our current scheme is not silly either but we take the 5368 * extra cost of the net_bh soft interrupt processing... 5369 * We do checksum and copy also but from device to kernel. 5370 */ 5371 5372 tp->rx_opt.saw_tstamp = 0; 5373 5374 /* pred_flags is 0xS?10 << 16 + snd_wnd 5375 * if header_prediction is to be made 5376 * 'S' will always be tp->tcp_header_len >> 2 5377 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5378 * turn it off (when there are holes in the receive 5379 * space for instance) 5380 * PSH flag is ignored. 5381 */ 5382 5383 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5384 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5385 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5386 int tcp_header_len = tp->tcp_header_len; 5387 5388 /* Timestamp header prediction: tcp_header_len 5389 * is automatically equal to th->doff*4 due to pred_flags 5390 * match. 5391 */ 5392 5393 /* Check timestamp */ 5394 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5395 /* No? Slow path! */ 5396 if (!tcp_parse_aligned_timestamp(tp, th)) 5397 goto slow_path; 5398 5399 /* If PAWS failed, check it more carefully in slow path */ 5400 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5401 goto slow_path; 5402 5403 /* DO NOT update ts_recent here, if checksum fails 5404 * and timestamp was corrupted part, it will result 5405 * in a hung connection since we will drop all 5406 * future packets due to the PAWS test. 5407 */ 5408 } 5409 5410 if (len <= tcp_header_len) { 5411 /* Bulk data transfer: sender */ 5412 if (len == tcp_header_len) { 5413 /* Predicted packet is in window by definition. 5414 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5415 * Hence, check seq<=rcv_wup reduces to: 5416 */ 5417 if (tcp_header_len == 5418 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5419 tp->rcv_nxt == tp->rcv_wup) 5420 tcp_store_ts_recent(tp); 5421 5422 /* We know that such packets are checksummed 5423 * on entry. 5424 */ 5425 tcp_ack(sk, skb, 0); 5426 __kfree_skb(skb); 5427 tcp_data_snd_check(sk); 5428 return 0; 5429 } else { /* Header too small */ 5430 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5431 goto discard; 5432 } 5433 } else { 5434 int eaten = 0; 5435 int copied_early = 0; 5436 5437 if (tp->copied_seq == tp->rcv_nxt && 5438 len - tcp_header_len <= tp->ucopy.len) { 5439#ifdef CONFIG_NET_DMA 5440 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5441 copied_early = 1; 5442 eaten = 1; 5443 } 5444#endif 5445 if (tp->ucopy.task == current && 5446 sock_owned_by_user(sk) && !copied_early) { 5447 __set_current_state(TASK_RUNNING); 5448 5449 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5450 eaten = 1; 5451 } 5452 if (eaten) { 5453 /* Predicted packet is in window by definition. 5454 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5455 * Hence, check seq<=rcv_wup reduces to: 5456 */ 5457 if (tcp_header_len == 5458 (sizeof(struct tcphdr) + 5459 TCPOLEN_TSTAMP_ALIGNED) && 5460 tp->rcv_nxt == tp->rcv_wup) 5461 tcp_store_ts_recent(tp); 5462 5463 tcp_rcv_rtt_measure_ts(sk, skb); 5464 5465 __skb_pull(skb, tcp_header_len); 5466 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5467 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5468 } 5469 if (copied_early) 5470 tcp_cleanup_rbuf(sk, skb->len); 5471 } 5472 if (!eaten) { 5473 if (tcp_checksum_complete_user(sk, skb)) 5474 goto csum_error; 5475 5476 /* Predicted packet is in window by definition. 5477 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5478 * Hence, check seq<=rcv_wup reduces to: 5479 */ 5480 if (tcp_header_len == 5481 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5482 tp->rcv_nxt == tp->rcv_wup) 5483 tcp_store_ts_recent(tp); 5484 5485 tcp_rcv_rtt_measure_ts(sk, skb); 5486 5487 if ((int)skb->truesize > sk->sk_forward_alloc) 5488 goto step5; 5489 5490 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5491 5492 /* Bulk data transfer: receiver */ 5493 __skb_pull(skb, tcp_header_len); 5494 __skb_queue_tail(&sk->sk_receive_queue, skb); 5495 skb_set_owner_r(skb, sk); 5496 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5497 } 5498 5499 tcp_event_data_recv(sk, skb); 5500 5501 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5502 /* Well, only one small jumplet in fast path... */ 5503 tcp_ack(sk, skb, FLAG_DATA); 5504 tcp_data_snd_check(sk); 5505 if (!inet_csk_ack_scheduled(sk)) 5506 goto no_ack; 5507 } 5508 5509 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5510 __tcp_ack_snd_check(sk, 0); 5511no_ack: 5512#ifdef CONFIG_NET_DMA 5513 if (copied_early) 5514 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5515 else 5516#endif 5517 if (eaten) 5518 __kfree_skb(skb); 5519 else 5520 sk->sk_data_ready(sk, 0); 5521 return 0; 5522 } 5523 } 5524 5525slow_path: 5526 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5527 goto csum_error; 5528 5529 /* 5530 * Standard slow path. 5531 */ 5532 5533 res = tcp_validate_incoming(sk, skb, th, 1); 5534 if (res <= 0) 5535 return -res; 5536 5537step5: 5538 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5539 goto discard; 5540 5541 tcp_rcv_rtt_measure_ts(sk, skb); 5542 5543 /* Process urgent data. */ 5544 tcp_urg(sk, skb, th); 5545 5546 /* step 7: process the segment text */ 5547 tcp_data_queue(sk, skb); 5548 5549 tcp_data_snd_check(sk); 5550 tcp_ack_snd_check(sk); 5551 return 0; 5552 5553csum_error: 5554 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5555 5556discard: 5557 __kfree_skb(skb); 5558 return 0; 5559} 5560EXPORT_SYMBOL(tcp_rcv_established); 5561 5562static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5563 const struct tcphdr *th, unsigned int len) 5564{ 5565 const u8 *hash_location; 5566 struct inet_connection_sock *icsk = inet_csk(sk); 5567 struct tcp_sock *tp = tcp_sk(sk); 5568 struct tcp_cookie_values *cvp = tp->cookie_values; 5569 int saved_clamp = tp->rx_opt.mss_clamp; 5570 5571 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0); 5572 5573 if (th->ack) { 5574 /* rfc793: 5575 * "If the state is SYN-SENT then 5576 * first check the ACK bit 5577 * If the ACK bit is set 5578 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5579 * a reset (unless the RST bit is set, if so drop 5580 * the segment and return)" 5581 * 5582 * We do not send data with SYN, so that RFC-correct 5583 * test reduces to: 5584 */ 5585 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5586 goto reset_and_undo; 5587 5588 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5589 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5590 tcp_time_stamp)) { 5591 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5592 goto reset_and_undo; 5593 } 5594 5595 /* Now ACK is acceptable. 5596 * 5597 * "If the RST bit is set 5598 * If the ACK was acceptable then signal the user "error: 5599 * connection reset", drop the segment, enter CLOSED state, 5600 * delete TCB, and return." 5601 */ 5602 5603 if (th->rst) { 5604 tcp_reset(sk); 5605 goto discard; 5606 } 5607 5608 /* rfc793: 5609 * "fifth, if neither of the SYN or RST bits is set then 5610 * drop the segment and return." 5611 * 5612 * See note below! 5613 * --ANK(990513) 5614 */ 5615 if (!th->syn) 5616 goto discard_and_undo; 5617 5618 /* rfc793: 5619 * "If the SYN bit is on ... 5620 * are acceptable then ... 5621 * (our SYN has been ACKed), change the connection 5622 * state to ESTABLISHED..." 5623 */ 5624 5625 TCP_ECN_rcv_synack(tp, th); 5626 5627 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5628 tcp_ack(sk, skb, FLAG_SLOWPATH); 5629 5630 /* Ok.. it's good. Set up sequence numbers and 5631 * move to established. 5632 */ 5633 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5634 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5635 5636 /* RFC1323: The window in SYN & SYN/ACK segments is 5637 * never scaled. 5638 */ 5639 tp->snd_wnd = ntohs(th->window); 5640 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5641 5642 if (!tp->rx_opt.wscale_ok) { 5643 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5644 tp->window_clamp = min(tp->window_clamp, 65535U); 5645 } 5646 5647 if (tp->rx_opt.saw_tstamp) { 5648 tp->rx_opt.tstamp_ok = 1; 5649 tp->tcp_header_len = 5650 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5651 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5652 tcp_store_ts_recent(tp); 5653 } else { 5654 tp->tcp_header_len = sizeof(struct tcphdr); 5655 } 5656 5657 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5658 tcp_enable_fack(tp); 5659 5660 tcp_mtup_init(sk); 5661 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5662 tcp_initialize_rcv_mss(sk); 5663 5664 /* Remember, tcp_poll() does not lock socket! 5665 * Change state from SYN-SENT only after copied_seq 5666 * is initialized. */ 5667 tp->copied_seq = tp->rcv_nxt; 5668 5669 if (cvp != NULL && 5670 cvp->cookie_pair_size > 0 && 5671 tp->rx_opt.cookie_plus > 0) { 5672 int cookie_size = tp->rx_opt.cookie_plus 5673 - TCPOLEN_COOKIE_BASE; 5674 int cookie_pair_size = cookie_size 5675 + cvp->cookie_desired; 5676 5677 /* A cookie extension option was sent and returned. 5678 * Note that each incoming SYNACK replaces the 5679 * Responder cookie. The initial exchange is most 5680 * fragile, as protection against spoofing relies 5681 * entirely upon the sequence and timestamp (above). 5682 * This replacement strategy allows the correct pair to 5683 * pass through, while any others will be filtered via 5684 * Responder verification later. 5685 */ 5686 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5687 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5688 hash_location, cookie_size); 5689 cvp->cookie_pair_size = cookie_pair_size; 5690 } 5691 } 5692 5693 smp_mb(); 5694 tcp_set_state(sk, TCP_ESTABLISHED); 5695 5696 security_inet_conn_established(sk, skb); 5697 5698 /* Make sure socket is routed, for correct metrics. */ 5699 icsk->icsk_af_ops->rebuild_header(sk); 5700 5701 tcp_init_metrics(sk); 5702 5703 tcp_init_congestion_control(sk); 5704 5705 /* Prevent spurious tcp_cwnd_restart() on first data 5706 * packet. 5707 */ 5708 tp->lsndtime = tcp_time_stamp; 5709 5710 tcp_init_buffer_space(sk); 5711 5712 if (sock_flag(sk, SOCK_KEEPOPEN)) 5713 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5714 5715 if (!tp->rx_opt.snd_wscale) 5716 __tcp_fast_path_on(tp, tp->snd_wnd); 5717 else 5718 tp->pred_flags = 0; 5719 5720 if (!sock_flag(sk, SOCK_DEAD)) { 5721 sk->sk_state_change(sk); 5722 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5723 } 5724 5725 if (sk->sk_write_pending || 5726 icsk->icsk_accept_queue.rskq_defer_accept || 5727 icsk->icsk_ack.pingpong) { 5728 /* Save one ACK. Data will be ready after 5729 * several ticks, if write_pending is set. 5730 * 5731 * It may be deleted, but with this feature tcpdumps 5732 * look so _wonderfully_ clever, that I was not able 5733 * to stand against the temptation 8) --ANK 5734 */ 5735 inet_csk_schedule_ack(sk); 5736 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5737 icsk->icsk_ack.ato = TCP_ATO_MIN; 5738 tcp_incr_quickack(sk); 5739 tcp_enter_quickack_mode(sk); 5740 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5741 TCP_DELACK_MAX, TCP_RTO_MAX); 5742 5743discard: 5744 __kfree_skb(skb); 5745 return 0; 5746 } else { 5747 tcp_send_ack(sk); 5748 } 5749 return -1; 5750 } 5751 5752 /* No ACK in the segment */ 5753 5754 if (th->rst) { 5755 /* rfc793: 5756 * "If the RST bit is set 5757 * 5758 * Otherwise (no ACK) drop the segment and return." 5759 */ 5760 5761 goto discard_and_undo; 5762 } 5763 5764 /* PAWS check. */ 5765 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5766 tcp_paws_reject(&tp->rx_opt, 0)) 5767 goto discard_and_undo; 5768 5769 if (th->syn) { 5770 /* We see SYN without ACK. It is attempt of 5771 * simultaneous connect with crossed SYNs. 5772 * Particularly, it can be connect to self. 5773 */ 5774 tcp_set_state(sk, TCP_SYN_RECV); 5775 5776 if (tp->rx_opt.saw_tstamp) { 5777 tp->rx_opt.tstamp_ok = 1; 5778 tcp_store_ts_recent(tp); 5779 tp->tcp_header_len = 5780 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5781 } else { 5782 tp->tcp_header_len = sizeof(struct tcphdr); 5783 } 5784 5785 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5786 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5787 5788 /* RFC1323: The window in SYN & SYN/ACK segments is 5789 * never scaled. 5790 */ 5791 tp->snd_wnd = ntohs(th->window); 5792 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5793 tp->max_window = tp->snd_wnd; 5794 5795 TCP_ECN_rcv_syn(tp, th); 5796 5797 tcp_mtup_init(sk); 5798 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5799 tcp_initialize_rcv_mss(sk); 5800 5801 tcp_send_synack(sk); 5802#if 0 5803 /* Note, we could accept data and URG from this segment. 5804 * There are no obstacles to make this. 5805 * 5806 * However, if we ignore data in ACKless segments sometimes, 5807 * we have no reasons to accept it sometimes. 5808 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5809 * is not flawless. So, discard packet for sanity. 5810 * Uncomment this return to process the data. 5811 */ 5812 return -1; 5813#else 5814 goto discard; 5815#endif 5816 } 5817 /* "fifth, if neither of the SYN or RST bits is set then 5818 * drop the segment and return." 5819 */ 5820 5821discard_and_undo: 5822 tcp_clear_options(&tp->rx_opt); 5823 tp->rx_opt.mss_clamp = saved_clamp; 5824 goto discard; 5825 5826reset_and_undo: 5827 tcp_clear_options(&tp->rx_opt); 5828 tp->rx_opt.mss_clamp = saved_clamp; 5829 return 1; 5830} 5831 5832/* 5833 * This function implements the receiving procedure of RFC 793 for 5834 * all states except ESTABLISHED and TIME_WAIT. 5835 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5836 * address independent. 5837 */ 5838 5839int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5840 const struct tcphdr *th, unsigned int len) 5841{ 5842 struct tcp_sock *tp = tcp_sk(sk); 5843 struct inet_connection_sock *icsk = inet_csk(sk); 5844 int queued = 0; 5845 int res; 5846 5847 tp->rx_opt.saw_tstamp = 0; 5848 5849 switch (sk->sk_state) { 5850 case TCP_CLOSE: 5851 goto discard; 5852 5853 case TCP_LISTEN: 5854 if (th->ack) 5855 return 1; 5856 5857 if (th->rst) 5858 goto discard; 5859 5860 if (th->syn) { 5861 if (th->fin) 5862 goto discard; 5863 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5864 return 1; 5865 5866 /* Now we have several options: In theory there is 5867 * nothing else in the frame. KA9Q has an option to 5868 * send data with the syn, BSD accepts data with the 5869 * syn up to the [to be] advertised window and 5870 * Solaris 2.1 gives you a protocol error. For now 5871 * we just ignore it, that fits the spec precisely 5872 * and avoids incompatibilities. It would be nice in 5873 * future to drop through and process the data. 5874 * 5875 * Now that TTCP is starting to be used we ought to 5876 * queue this data. 5877 * But, this leaves one open to an easy denial of 5878 * service attack, and SYN cookies can't defend 5879 * against this problem. So, we drop the data 5880 * in the interest of security over speed unless 5881 * it's still in use. 5882 */ 5883 kfree_skb(skb); 5884 return 0; 5885 } 5886 goto discard; 5887 5888 case TCP_SYN_SENT: 5889 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5890 if (queued >= 0) 5891 return queued; 5892 5893 /* Do step6 onward by hand. */ 5894 tcp_urg(sk, skb, th); 5895 __kfree_skb(skb); 5896 tcp_data_snd_check(sk); 5897 return 0; 5898 } 5899 5900 res = tcp_validate_incoming(sk, skb, th, 0); 5901 if (res <= 0) 5902 return -res; 5903 5904 /* step 5: check the ACK field */ 5905 if (th->ack) { 5906 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5907 5908 switch (sk->sk_state) { 5909 case TCP_SYN_RECV: 5910 if (acceptable) { 5911 tp->copied_seq = tp->rcv_nxt; 5912 smp_mb(); 5913 tcp_set_state(sk, TCP_ESTABLISHED); 5914 sk->sk_state_change(sk); 5915 5916 /* Note, that this wakeup is only for marginal 5917 * crossed SYN case. Passively open sockets 5918 * are not waked up, because sk->sk_sleep == 5919 * NULL and sk->sk_socket == NULL. 5920 */ 5921 if (sk->sk_socket) 5922 sk_wake_async(sk, 5923 SOCK_WAKE_IO, POLL_OUT); 5924 5925 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5926 tp->snd_wnd = ntohs(th->window) << 5927 tp->rx_opt.snd_wscale; 5928 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5929 5930 if (tp->rx_opt.tstamp_ok) 5931 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5932 5933 /* Make sure socket is routed, for 5934 * correct metrics. 5935 */ 5936 icsk->icsk_af_ops->rebuild_header(sk); 5937 5938 tcp_init_metrics(sk); 5939 5940 tcp_init_congestion_control(sk); 5941 5942 /* Prevent spurious tcp_cwnd_restart() on 5943 * first data packet. 5944 */ 5945 tp->lsndtime = tcp_time_stamp; 5946 5947 tcp_mtup_init(sk); 5948 tcp_initialize_rcv_mss(sk); 5949 tcp_init_buffer_space(sk); 5950 tcp_fast_path_on(tp); 5951 } else { 5952 return 1; 5953 } 5954 break; 5955 5956 case TCP_FIN_WAIT1: 5957 if (tp->snd_una == tp->write_seq) { 5958 tcp_set_state(sk, TCP_FIN_WAIT2); 5959 sk->sk_shutdown |= SEND_SHUTDOWN; 5960 dst_confirm(__sk_dst_get(sk)); 5961 5962 if (!sock_flag(sk, SOCK_DEAD)) 5963 /* Wake up lingering close() */ 5964 sk->sk_state_change(sk); 5965 else { 5966 int tmo; 5967 5968 if (tp->linger2 < 0 || 5969 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5970 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5971 tcp_done(sk); 5972 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5973 return 1; 5974 } 5975 5976 tmo = tcp_fin_time(sk); 5977 if (tmo > TCP_TIMEWAIT_LEN) { 5978 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5979 } else if (th->fin || sock_owned_by_user(sk)) { 5980 /* Bad case. We could lose such FIN otherwise. 5981 * It is not a big problem, but it looks confusing 5982 * and not so rare event. We still can lose it now, 5983 * if it spins in bh_lock_sock(), but it is really 5984 * marginal case. 5985 */ 5986 inet_csk_reset_keepalive_timer(sk, tmo); 5987 } else { 5988 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5989 goto discard; 5990 } 5991 } 5992 } 5993 break; 5994 5995 case TCP_CLOSING: 5996 if (tp->snd_una == tp->write_seq) { 5997 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5998 goto discard; 5999 } 6000 break; 6001 6002 case TCP_LAST_ACK: 6003 if (tp->snd_una == tp->write_seq) { 6004 tcp_update_metrics(sk); 6005 tcp_done(sk); 6006 goto discard; 6007 } 6008 break; 6009 } 6010 } else 6011 goto discard; 6012 6013 /* step 6: check the URG bit */ 6014 tcp_urg(sk, skb, th); 6015 6016 /* step 7: process the segment text */ 6017 switch (sk->sk_state) { 6018 case TCP_CLOSE_WAIT: 6019 case TCP_CLOSING: 6020 case TCP_LAST_ACK: 6021 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6022 break; 6023 case TCP_FIN_WAIT1: 6024 case TCP_FIN_WAIT2: 6025 /* RFC 793 says to queue data in these states, 6026 * RFC 1122 says we MUST send a reset. 6027 * BSD 4.4 also does reset. 6028 */ 6029 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6030 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6031 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6032 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6033 tcp_reset(sk); 6034 return 1; 6035 } 6036 } 6037 /* Fall through */ 6038 case TCP_ESTABLISHED: 6039 tcp_data_queue(sk, skb); 6040 queued = 1; 6041 break; 6042 } 6043 6044 /* tcp_data could move socket to TIME-WAIT */ 6045 if (sk->sk_state != TCP_CLOSE) { 6046 tcp_data_snd_check(sk); 6047 tcp_ack_snd_check(sk); 6048 } 6049 6050 if (!queued) { 6051discard: 6052 __kfree_skb(skb); 6053 } 6054 return 0; 6055} 6056EXPORT_SYMBOL(tcp_rcv_state_process);