at v3.4-rc3 86 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/if.h> 29#include <linux/if_ether.h> 30#include <linux/if_packet.h> 31#include <linux/if_link.h> 32 33#ifdef __KERNEL__ 34#include <linux/pm_qos.h> 35#include <linux/timer.h> 36#include <linux/bug.h> 37#include <linux/delay.h> 38#include <linux/atomic.h> 39#include <asm/cache.h> 40#include <asm/byteorder.h> 41 42#include <linux/percpu.h> 43#include <linux/rculist.h> 44#include <linux/dmaengine.h> 45#include <linux/workqueue.h> 46#include <linux/dynamic_queue_limits.h> 47 48#include <linux/ethtool.h> 49#include <net/net_namespace.h> 50#include <net/dsa.h> 51#ifdef CONFIG_DCB 52#include <net/dcbnl.h> 53#endif 54#include <net/netprio_cgroup.h> 55 56#include <linux/netdev_features.h> 57 58struct netpoll_info; 59struct device; 60struct phy_device; 61/* 802.11 specific */ 62struct wireless_dev; 63 /* source back-compat hooks */ 64#define SET_ETHTOOL_OPS(netdev,ops) \ 65 ( (netdev)->ethtool_ops = (ops) ) 66 67/* hardware address assignment types */ 68#define NET_ADDR_PERM 0 /* address is permanent (default) */ 69#define NET_ADDR_RANDOM 1 /* address is generated randomly */ 70#define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 71 72/* Backlog congestion levels */ 73#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 74#define NET_RX_DROP 1 /* packet dropped */ 75 76/* 77 * Transmit return codes: transmit return codes originate from three different 78 * namespaces: 79 * 80 * - qdisc return codes 81 * - driver transmit return codes 82 * - errno values 83 * 84 * Drivers are allowed to return any one of those in their hard_start_xmit() 85 * function. Real network devices commonly used with qdiscs should only return 86 * the driver transmit return codes though - when qdiscs are used, the actual 87 * transmission happens asynchronously, so the value is not propagated to 88 * higher layers. Virtual network devices transmit synchronously, in this case 89 * the driver transmit return codes are consumed by dev_queue_xmit(), all 90 * others are propagated to higher layers. 91 */ 92 93/* qdisc ->enqueue() return codes. */ 94#define NET_XMIT_SUCCESS 0x00 95#define NET_XMIT_DROP 0x01 /* skb dropped */ 96#define NET_XMIT_CN 0x02 /* congestion notification */ 97#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 98#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 99 100/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 101 * indicates that the device will soon be dropping packets, or already drops 102 * some packets of the same priority; prompting us to send less aggressively. */ 103#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 104#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 105 106/* Driver transmit return codes */ 107#define NETDEV_TX_MASK 0xf0 108 109enum netdev_tx { 110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 111 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 113 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 114}; 115typedef enum netdev_tx netdev_tx_t; 116 117/* 118 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 119 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 120 */ 121static inline bool dev_xmit_complete(int rc) 122{ 123 /* 124 * Positive cases with an skb consumed by a driver: 125 * - successful transmission (rc == NETDEV_TX_OK) 126 * - error while transmitting (rc < 0) 127 * - error while queueing to a different device (rc & NET_XMIT_MASK) 128 */ 129 if (likely(rc < NET_XMIT_MASK)) 130 return true; 131 132 return false; 133} 134 135#endif 136 137#define MAX_ADDR_LEN 32 /* Largest hardware address length */ 138 139/* Initial net device group. All devices belong to group 0 by default. */ 140#define INIT_NETDEV_GROUP 0 141 142#ifdef __KERNEL__ 143/* 144 * Compute the worst case header length according to the protocols 145 * used. 146 */ 147 148#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 149# if defined(CONFIG_MAC80211_MESH) 150# define LL_MAX_HEADER 128 151# else 152# define LL_MAX_HEADER 96 153# endif 154#elif IS_ENABLED(CONFIG_TR) 155# define LL_MAX_HEADER 48 156#else 157# define LL_MAX_HEADER 32 158#endif 159 160#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 161 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 162#define MAX_HEADER LL_MAX_HEADER 163#else 164#define MAX_HEADER (LL_MAX_HEADER + 48) 165#endif 166 167/* 168 * Old network device statistics. Fields are native words 169 * (unsigned long) so they can be read and written atomically. 170 */ 171 172struct net_device_stats { 173 unsigned long rx_packets; 174 unsigned long tx_packets; 175 unsigned long rx_bytes; 176 unsigned long tx_bytes; 177 unsigned long rx_errors; 178 unsigned long tx_errors; 179 unsigned long rx_dropped; 180 unsigned long tx_dropped; 181 unsigned long multicast; 182 unsigned long collisions; 183 unsigned long rx_length_errors; 184 unsigned long rx_over_errors; 185 unsigned long rx_crc_errors; 186 unsigned long rx_frame_errors; 187 unsigned long rx_fifo_errors; 188 unsigned long rx_missed_errors; 189 unsigned long tx_aborted_errors; 190 unsigned long tx_carrier_errors; 191 unsigned long tx_fifo_errors; 192 unsigned long tx_heartbeat_errors; 193 unsigned long tx_window_errors; 194 unsigned long rx_compressed; 195 unsigned long tx_compressed; 196}; 197 198#endif /* __KERNEL__ */ 199 200 201/* Media selection options. */ 202enum { 203 IF_PORT_UNKNOWN = 0, 204 IF_PORT_10BASE2, 205 IF_PORT_10BASET, 206 IF_PORT_AUI, 207 IF_PORT_100BASET, 208 IF_PORT_100BASETX, 209 IF_PORT_100BASEFX 210}; 211 212#ifdef __KERNEL__ 213 214#include <linux/cache.h> 215#include <linux/skbuff.h> 216 217#ifdef CONFIG_RPS 218#include <linux/static_key.h> 219extern struct static_key rps_needed; 220#endif 221 222struct neighbour; 223struct neigh_parms; 224struct sk_buff; 225 226struct netdev_hw_addr { 227 struct list_head list; 228 unsigned char addr[MAX_ADDR_LEN]; 229 unsigned char type; 230#define NETDEV_HW_ADDR_T_LAN 1 231#define NETDEV_HW_ADDR_T_SAN 2 232#define NETDEV_HW_ADDR_T_SLAVE 3 233#define NETDEV_HW_ADDR_T_UNICAST 4 234#define NETDEV_HW_ADDR_T_MULTICAST 5 235 bool synced; 236 bool global_use; 237 int refcount; 238 struct rcu_head rcu_head; 239}; 240 241struct netdev_hw_addr_list { 242 struct list_head list; 243 int count; 244}; 245 246#define netdev_hw_addr_list_count(l) ((l)->count) 247#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 248#define netdev_hw_addr_list_for_each(ha, l) \ 249 list_for_each_entry(ha, &(l)->list, list) 250 251#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 252#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 253#define netdev_for_each_uc_addr(ha, dev) \ 254 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 255 256#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 257#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 258#define netdev_for_each_mc_addr(ha, dev) \ 259 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 260 261struct hh_cache { 262 u16 hh_len; 263 u16 __pad; 264 seqlock_t hh_lock; 265 266 /* cached hardware header; allow for machine alignment needs. */ 267#define HH_DATA_MOD 16 268#define HH_DATA_OFF(__len) \ 269 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 270#define HH_DATA_ALIGN(__len) \ 271 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 272 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 273}; 274 275/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 276 * Alternative is: 277 * dev->hard_header_len ? (dev->hard_header_len + 278 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 279 * 280 * We could use other alignment values, but we must maintain the 281 * relationship HH alignment <= LL alignment. 282 */ 283#define LL_RESERVED_SPACE(dev) \ 284 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 285#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 286 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 287 288struct header_ops { 289 int (*create) (struct sk_buff *skb, struct net_device *dev, 290 unsigned short type, const void *daddr, 291 const void *saddr, unsigned len); 292 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 293 int (*rebuild)(struct sk_buff *skb); 294 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 295 void (*cache_update)(struct hh_cache *hh, 296 const struct net_device *dev, 297 const unsigned char *haddr); 298}; 299 300/* These flag bits are private to the generic network queueing 301 * layer, they may not be explicitly referenced by any other 302 * code. 303 */ 304 305enum netdev_state_t { 306 __LINK_STATE_START, 307 __LINK_STATE_PRESENT, 308 __LINK_STATE_NOCARRIER, 309 __LINK_STATE_LINKWATCH_PENDING, 310 __LINK_STATE_DORMANT, 311}; 312 313 314/* 315 * This structure holds at boot time configured netdevice settings. They 316 * are then used in the device probing. 317 */ 318struct netdev_boot_setup { 319 char name[IFNAMSIZ]; 320 struct ifmap map; 321}; 322#define NETDEV_BOOT_SETUP_MAX 8 323 324extern int __init netdev_boot_setup(char *str); 325 326/* 327 * Structure for NAPI scheduling similar to tasklet but with weighting 328 */ 329struct napi_struct { 330 /* The poll_list must only be managed by the entity which 331 * changes the state of the NAPI_STATE_SCHED bit. This means 332 * whoever atomically sets that bit can add this napi_struct 333 * to the per-cpu poll_list, and whoever clears that bit 334 * can remove from the list right before clearing the bit. 335 */ 336 struct list_head poll_list; 337 338 unsigned long state; 339 int weight; 340 int (*poll)(struct napi_struct *, int); 341#ifdef CONFIG_NETPOLL 342 spinlock_t poll_lock; 343 int poll_owner; 344#endif 345 346 unsigned int gro_count; 347 348 struct net_device *dev; 349 struct list_head dev_list; 350 struct sk_buff *gro_list; 351 struct sk_buff *skb; 352}; 353 354enum { 355 NAPI_STATE_SCHED, /* Poll is scheduled */ 356 NAPI_STATE_DISABLE, /* Disable pending */ 357 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 358}; 359 360enum gro_result { 361 GRO_MERGED, 362 GRO_MERGED_FREE, 363 GRO_HELD, 364 GRO_NORMAL, 365 GRO_DROP, 366}; 367typedef enum gro_result gro_result_t; 368 369/* 370 * enum rx_handler_result - Possible return values for rx_handlers. 371 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 372 * further. 373 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 374 * case skb->dev was changed by rx_handler. 375 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 376 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 377 * 378 * rx_handlers are functions called from inside __netif_receive_skb(), to do 379 * special processing of the skb, prior to delivery to protocol handlers. 380 * 381 * Currently, a net_device can only have a single rx_handler registered. Trying 382 * to register a second rx_handler will return -EBUSY. 383 * 384 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 385 * To unregister a rx_handler on a net_device, use 386 * netdev_rx_handler_unregister(). 387 * 388 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 389 * do with the skb. 390 * 391 * If the rx_handler consumed to skb in some way, it should return 392 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 393 * the skb to be delivered in some other ways. 394 * 395 * If the rx_handler changed skb->dev, to divert the skb to another 396 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 397 * new device will be called if it exists. 398 * 399 * If the rx_handler consider the skb should be ignored, it should return 400 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 401 * are registred on exact device (ptype->dev == skb->dev). 402 * 403 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 404 * delivered, it should return RX_HANDLER_PASS. 405 * 406 * A device without a registered rx_handler will behave as if rx_handler 407 * returned RX_HANDLER_PASS. 408 */ 409 410enum rx_handler_result { 411 RX_HANDLER_CONSUMED, 412 RX_HANDLER_ANOTHER, 413 RX_HANDLER_EXACT, 414 RX_HANDLER_PASS, 415}; 416typedef enum rx_handler_result rx_handler_result_t; 417typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 418 419extern void __napi_schedule(struct napi_struct *n); 420 421static inline bool napi_disable_pending(struct napi_struct *n) 422{ 423 return test_bit(NAPI_STATE_DISABLE, &n->state); 424} 425 426/** 427 * napi_schedule_prep - check if napi can be scheduled 428 * @n: napi context 429 * 430 * Test if NAPI routine is already running, and if not mark 431 * it as running. This is used as a condition variable 432 * insure only one NAPI poll instance runs. We also make 433 * sure there is no pending NAPI disable. 434 */ 435static inline bool napi_schedule_prep(struct napi_struct *n) 436{ 437 return !napi_disable_pending(n) && 438 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 439} 440 441/** 442 * napi_schedule - schedule NAPI poll 443 * @n: napi context 444 * 445 * Schedule NAPI poll routine to be called if it is not already 446 * running. 447 */ 448static inline void napi_schedule(struct napi_struct *n) 449{ 450 if (napi_schedule_prep(n)) 451 __napi_schedule(n); 452} 453 454/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 455static inline bool napi_reschedule(struct napi_struct *napi) 456{ 457 if (napi_schedule_prep(napi)) { 458 __napi_schedule(napi); 459 return true; 460 } 461 return false; 462} 463 464/** 465 * napi_complete - NAPI processing complete 466 * @n: napi context 467 * 468 * Mark NAPI processing as complete. 469 */ 470extern void __napi_complete(struct napi_struct *n); 471extern void napi_complete(struct napi_struct *n); 472 473/** 474 * napi_disable - prevent NAPI from scheduling 475 * @n: napi context 476 * 477 * Stop NAPI from being scheduled on this context. 478 * Waits till any outstanding processing completes. 479 */ 480static inline void napi_disable(struct napi_struct *n) 481{ 482 set_bit(NAPI_STATE_DISABLE, &n->state); 483 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 484 msleep(1); 485 clear_bit(NAPI_STATE_DISABLE, &n->state); 486} 487 488/** 489 * napi_enable - enable NAPI scheduling 490 * @n: napi context 491 * 492 * Resume NAPI from being scheduled on this context. 493 * Must be paired with napi_disable. 494 */ 495static inline void napi_enable(struct napi_struct *n) 496{ 497 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 498 smp_mb__before_clear_bit(); 499 clear_bit(NAPI_STATE_SCHED, &n->state); 500} 501 502#ifdef CONFIG_SMP 503/** 504 * napi_synchronize - wait until NAPI is not running 505 * @n: napi context 506 * 507 * Wait until NAPI is done being scheduled on this context. 508 * Waits till any outstanding processing completes but 509 * does not disable future activations. 510 */ 511static inline void napi_synchronize(const struct napi_struct *n) 512{ 513 while (test_bit(NAPI_STATE_SCHED, &n->state)) 514 msleep(1); 515} 516#else 517# define napi_synchronize(n) barrier() 518#endif 519 520enum netdev_queue_state_t { 521 __QUEUE_STATE_DRV_XOFF, 522 __QUEUE_STATE_STACK_XOFF, 523 __QUEUE_STATE_FROZEN, 524#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 525 (1 << __QUEUE_STATE_STACK_XOFF)) 526#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 527 (1 << __QUEUE_STATE_FROZEN)) 528}; 529/* 530 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 531 * netif_tx_* functions below are used to manipulate this flag. The 532 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 533 * queue independently. The netif_xmit_*stopped functions below are called 534 * to check if the queue has been stopped by the driver or stack (either 535 * of the XOFF bits are set in the state). Drivers should not need to call 536 * netif_xmit*stopped functions, they should only be using netif_tx_*. 537 */ 538 539struct netdev_queue { 540/* 541 * read mostly part 542 */ 543 struct net_device *dev; 544 struct Qdisc *qdisc; 545 struct Qdisc *qdisc_sleeping; 546#ifdef CONFIG_SYSFS 547 struct kobject kobj; 548#endif 549#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 550 int numa_node; 551#endif 552/* 553 * write mostly part 554 */ 555 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 556 int xmit_lock_owner; 557 /* 558 * please use this field instead of dev->trans_start 559 */ 560 unsigned long trans_start; 561 562 /* 563 * Number of TX timeouts for this queue 564 * (/sys/class/net/DEV/Q/trans_timeout) 565 */ 566 unsigned long trans_timeout; 567 568 unsigned long state; 569 570#ifdef CONFIG_BQL 571 struct dql dql; 572#endif 573} ____cacheline_aligned_in_smp; 574 575static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 576{ 577#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 578 return q->numa_node; 579#else 580 return NUMA_NO_NODE; 581#endif 582} 583 584static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 585{ 586#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 587 q->numa_node = node; 588#endif 589} 590 591#ifdef CONFIG_RPS 592/* 593 * This structure holds an RPS map which can be of variable length. The 594 * map is an array of CPUs. 595 */ 596struct rps_map { 597 unsigned int len; 598 struct rcu_head rcu; 599 u16 cpus[0]; 600}; 601#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 602 603/* 604 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 605 * tail pointer for that CPU's input queue at the time of last enqueue, and 606 * a hardware filter index. 607 */ 608struct rps_dev_flow { 609 u16 cpu; 610 u16 filter; 611 unsigned int last_qtail; 612}; 613#define RPS_NO_FILTER 0xffff 614 615/* 616 * The rps_dev_flow_table structure contains a table of flow mappings. 617 */ 618struct rps_dev_flow_table { 619 unsigned int mask; 620 struct rcu_head rcu; 621 struct work_struct free_work; 622 struct rps_dev_flow flows[0]; 623}; 624#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 625 ((_num) * sizeof(struct rps_dev_flow))) 626 627/* 628 * The rps_sock_flow_table contains mappings of flows to the last CPU 629 * on which they were processed by the application (set in recvmsg). 630 */ 631struct rps_sock_flow_table { 632 unsigned int mask; 633 u16 ents[0]; 634}; 635#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 636 ((_num) * sizeof(u16))) 637 638#define RPS_NO_CPU 0xffff 639 640static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 641 u32 hash) 642{ 643 if (table && hash) { 644 unsigned int cpu, index = hash & table->mask; 645 646 /* We only give a hint, preemption can change cpu under us */ 647 cpu = raw_smp_processor_id(); 648 649 if (table->ents[index] != cpu) 650 table->ents[index] = cpu; 651 } 652} 653 654static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 655 u32 hash) 656{ 657 if (table && hash) 658 table->ents[hash & table->mask] = RPS_NO_CPU; 659} 660 661extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 662 663#ifdef CONFIG_RFS_ACCEL 664extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 665 u32 flow_id, u16 filter_id); 666#endif 667 668/* This structure contains an instance of an RX queue. */ 669struct netdev_rx_queue { 670 struct rps_map __rcu *rps_map; 671 struct rps_dev_flow_table __rcu *rps_flow_table; 672 struct kobject kobj; 673 struct net_device *dev; 674} ____cacheline_aligned_in_smp; 675#endif /* CONFIG_RPS */ 676 677#ifdef CONFIG_XPS 678/* 679 * This structure holds an XPS map which can be of variable length. The 680 * map is an array of queues. 681 */ 682struct xps_map { 683 unsigned int len; 684 unsigned int alloc_len; 685 struct rcu_head rcu; 686 u16 queues[0]; 687}; 688#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 689#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 690 / sizeof(u16)) 691 692/* 693 * This structure holds all XPS maps for device. Maps are indexed by CPU. 694 */ 695struct xps_dev_maps { 696 struct rcu_head rcu; 697 struct xps_map __rcu *cpu_map[0]; 698}; 699#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 700 (nr_cpu_ids * sizeof(struct xps_map *))) 701#endif /* CONFIG_XPS */ 702 703#define TC_MAX_QUEUE 16 704#define TC_BITMASK 15 705/* HW offloaded queuing disciplines txq count and offset maps */ 706struct netdev_tc_txq { 707 u16 count; 708 u16 offset; 709}; 710 711#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 712/* 713 * This structure is to hold information about the device 714 * configured to run FCoE protocol stack. 715 */ 716struct netdev_fcoe_hbainfo { 717 char manufacturer[64]; 718 char serial_number[64]; 719 char hardware_version[64]; 720 char driver_version[64]; 721 char optionrom_version[64]; 722 char firmware_version[64]; 723 char model[256]; 724 char model_description[256]; 725}; 726#endif 727 728/* 729 * This structure defines the management hooks for network devices. 730 * The following hooks can be defined; unless noted otherwise, they are 731 * optional and can be filled with a null pointer. 732 * 733 * int (*ndo_init)(struct net_device *dev); 734 * This function is called once when network device is registered. 735 * The network device can use this to any late stage initializaton 736 * or semantic validattion. It can fail with an error code which will 737 * be propogated back to register_netdev 738 * 739 * void (*ndo_uninit)(struct net_device *dev); 740 * This function is called when device is unregistered or when registration 741 * fails. It is not called if init fails. 742 * 743 * int (*ndo_open)(struct net_device *dev); 744 * This function is called when network device transistions to the up 745 * state. 746 * 747 * int (*ndo_stop)(struct net_device *dev); 748 * This function is called when network device transistions to the down 749 * state. 750 * 751 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 752 * struct net_device *dev); 753 * Called when a packet needs to be transmitted. 754 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 755 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 756 * Required can not be NULL. 757 * 758 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 759 * Called to decide which queue to when device supports multiple 760 * transmit queues. 761 * 762 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 763 * This function is called to allow device receiver to make 764 * changes to configuration when multicast or promiscious is enabled. 765 * 766 * void (*ndo_set_rx_mode)(struct net_device *dev); 767 * This function is called device changes address list filtering. 768 * If driver handles unicast address filtering, it should set 769 * IFF_UNICAST_FLT to its priv_flags. 770 * 771 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 772 * This function is called when the Media Access Control address 773 * needs to be changed. If this interface is not defined, the 774 * mac address can not be changed. 775 * 776 * int (*ndo_validate_addr)(struct net_device *dev); 777 * Test if Media Access Control address is valid for the device. 778 * 779 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 780 * Called when a user request an ioctl which can't be handled by 781 * the generic interface code. If not defined ioctl's return 782 * not supported error code. 783 * 784 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 785 * Used to set network devices bus interface parameters. This interface 786 * is retained for legacy reason, new devices should use the bus 787 * interface (PCI) for low level management. 788 * 789 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 790 * Called when a user wants to change the Maximum Transfer Unit 791 * of a device. If not defined, any request to change MTU will 792 * will return an error. 793 * 794 * void (*ndo_tx_timeout)(struct net_device *dev); 795 * Callback uses when the transmitter has not made any progress 796 * for dev->watchdog ticks. 797 * 798 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 799 * struct rtnl_link_stats64 *storage); 800 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 801 * Called when a user wants to get the network device usage 802 * statistics. Drivers must do one of the following: 803 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 804 * rtnl_link_stats64 structure passed by the caller. 805 * 2. Define @ndo_get_stats to update a net_device_stats structure 806 * (which should normally be dev->stats) and return a pointer to 807 * it. The structure may be changed asynchronously only if each 808 * field is written atomically. 809 * 3. Update dev->stats asynchronously and atomically, and define 810 * neither operation. 811 * 812 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 813 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 814 * this function is called when a VLAN id is registered. 815 * 816 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 817 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 818 * this function is called when a VLAN id is unregistered. 819 * 820 * void (*ndo_poll_controller)(struct net_device *dev); 821 * 822 * SR-IOV management functions. 823 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 824 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 825 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 826 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 827 * int (*ndo_get_vf_config)(struct net_device *dev, 828 * int vf, struct ifla_vf_info *ivf); 829 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 830 * struct nlattr *port[]); 831 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 832 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 833 * Called to setup 'tc' number of traffic classes in the net device. This 834 * is always called from the stack with the rtnl lock held and netif tx 835 * queues stopped. This allows the netdevice to perform queue management 836 * safely. 837 * 838 * Fiber Channel over Ethernet (FCoE) offload functions. 839 * int (*ndo_fcoe_enable)(struct net_device *dev); 840 * Called when the FCoE protocol stack wants to start using LLD for FCoE 841 * so the underlying device can perform whatever needed configuration or 842 * initialization to support acceleration of FCoE traffic. 843 * 844 * int (*ndo_fcoe_disable)(struct net_device *dev); 845 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 846 * so the underlying device can perform whatever needed clean-ups to 847 * stop supporting acceleration of FCoE traffic. 848 * 849 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 850 * struct scatterlist *sgl, unsigned int sgc); 851 * Called when the FCoE Initiator wants to initialize an I/O that 852 * is a possible candidate for Direct Data Placement (DDP). The LLD can 853 * perform necessary setup and returns 1 to indicate the device is set up 854 * successfully to perform DDP on this I/O, otherwise this returns 0. 855 * 856 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 857 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 858 * indicated by the FC exchange id 'xid', so the underlying device can 859 * clean up and reuse resources for later DDP requests. 860 * 861 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 862 * struct scatterlist *sgl, unsigned int sgc); 863 * Called when the FCoE Target wants to initialize an I/O that 864 * is a possible candidate for Direct Data Placement (DDP). The LLD can 865 * perform necessary setup and returns 1 to indicate the device is set up 866 * successfully to perform DDP on this I/O, otherwise this returns 0. 867 * 868 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 869 * struct netdev_fcoe_hbainfo *hbainfo); 870 * Called when the FCoE Protocol stack wants information on the underlying 871 * device. This information is utilized by the FCoE protocol stack to 872 * register attributes with Fiber Channel management service as per the 873 * FC-GS Fabric Device Management Information(FDMI) specification. 874 * 875 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 876 * Called when the underlying device wants to override default World Wide 877 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 878 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 879 * protocol stack to use. 880 * 881 * RFS acceleration. 882 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 883 * u16 rxq_index, u32 flow_id); 884 * Set hardware filter for RFS. rxq_index is the target queue index; 885 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 886 * Return the filter ID on success, or a negative error code. 887 * 888 * Slave management functions (for bridge, bonding, etc). User should 889 * call netdev_set_master() to set dev->master properly. 890 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 891 * Called to make another netdev an underling. 892 * 893 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 894 * Called to release previously enslaved netdev. 895 * 896 * Feature/offload setting functions. 897 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 898 * netdev_features_t features); 899 * Adjusts the requested feature flags according to device-specific 900 * constraints, and returns the resulting flags. Must not modify 901 * the device state. 902 * 903 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 904 * Called to update device configuration to new features. Passed 905 * feature set might be less than what was returned by ndo_fix_features()). 906 * Must return >0 or -errno if it changed dev->features itself. 907 * 908 */ 909struct net_device_ops { 910 int (*ndo_init)(struct net_device *dev); 911 void (*ndo_uninit)(struct net_device *dev); 912 int (*ndo_open)(struct net_device *dev); 913 int (*ndo_stop)(struct net_device *dev); 914 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 915 struct net_device *dev); 916 u16 (*ndo_select_queue)(struct net_device *dev, 917 struct sk_buff *skb); 918 void (*ndo_change_rx_flags)(struct net_device *dev, 919 int flags); 920 void (*ndo_set_rx_mode)(struct net_device *dev); 921 int (*ndo_set_mac_address)(struct net_device *dev, 922 void *addr); 923 int (*ndo_validate_addr)(struct net_device *dev); 924 int (*ndo_do_ioctl)(struct net_device *dev, 925 struct ifreq *ifr, int cmd); 926 int (*ndo_set_config)(struct net_device *dev, 927 struct ifmap *map); 928 int (*ndo_change_mtu)(struct net_device *dev, 929 int new_mtu); 930 int (*ndo_neigh_setup)(struct net_device *dev, 931 struct neigh_parms *); 932 void (*ndo_tx_timeout) (struct net_device *dev); 933 934 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 935 struct rtnl_link_stats64 *storage); 936 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 937 938 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 939 unsigned short vid); 940 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 941 unsigned short vid); 942#ifdef CONFIG_NET_POLL_CONTROLLER 943 void (*ndo_poll_controller)(struct net_device *dev); 944 int (*ndo_netpoll_setup)(struct net_device *dev, 945 struct netpoll_info *info); 946 void (*ndo_netpoll_cleanup)(struct net_device *dev); 947#endif 948 int (*ndo_set_vf_mac)(struct net_device *dev, 949 int queue, u8 *mac); 950 int (*ndo_set_vf_vlan)(struct net_device *dev, 951 int queue, u16 vlan, u8 qos); 952 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 953 int vf, int rate); 954 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 955 int vf, bool setting); 956 int (*ndo_get_vf_config)(struct net_device *dev, 957 int vf, 958 struct ifla_vf_info *ivf); 959 int (*ndo_set_vf_port)(struct net_device *dev, 960 int vf, 961 struct nlattr *port[]); 962 int (*ndo_get_vf_port)(struct net_device *dev, 963 int vf, struct sk_buff *skb); 964 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 965#if IS_ENABLED(CONFIG_FCOE) 966 int (*ndo_fcoe_enable)(struct net_device *dev); 967 int (*ndo_fcoe_disable)(struct net_device *dev); 968 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 969 u16 xid, 970 struct scatterlist *sgl, 971 unsigned int sgc); 972 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 973 u16 xid); 974 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 975 u16 xid, 976 struct scatterlist *sgl, 977 unsigned int sgc); 978 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 979 struct netdev_fcoe_hbainfo *hbainfo); 980#endif 981 982#if IS_ENABLED(CONFIG_LIBFCOE) 983#define NETDEV_FCOE_WWNN 0 984#define NETDEV_FCOE_WWPN 1 985 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 986 u64 *wwn, int type); 987#endif 988 989#ifdef CONFIG_RFS_ACCEL 990 int (*ndo_rx_flow_steer)(struct net_device *dev, 991 const struct sk_buff *skb, 992 u16 rxq_index, 993 u32 flow_id); 994#endif 995 int (*ndo_add_slave)(struct net_device *dev, 996 struct net_device *slave_dev); 997 int (*ndo_del_slave)(struct net_device *dev, 998 struct net_device *slave_dev); 999 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1000 netdev_features_t features); 1001 int (*ndo_set_features)(struct net_device *dev, 1002 netdev_features_t features); 1003 int (*ndo_neigh_construct)(struct neighbour *n); 1004 void (*ndo_neigh_destroy)(struct neighbour *n); 1005}; 1006 1007/* 1008 * The DEVICE structure. 1009 * Actually, this whole structure is a big mistake. It mixes I/O 1010 * data with strictly "high-level" data, and it has to know about 1011 * almost every data structure used in the INET module. 1012 * 1013 * FIXME: cleanup struct net_device such that network protocol info 1014 * moves out. 1015 */ 1016 1017struct net_device { 1018 1019 /* 1020 * This is the first field of the "visible" part of this structure 1021 * (i.e. as seen by users in the "Space.c" file). It is the name 1022 * of the interface. 1023 */ 1024 char name[IFNAMSIZ]; 1025 1026 struct pm_qos_request pm_qos_req; 1027 1028 /* device name hash chain */ 1029 struct hlist_node name_hlist; 1030 /* snmp alias */ 1031 char *ifalias; 1032 1033 /* 1034 * I/O specific fields 1035 * FIXME: Merge these and struct ifmap into one 1036 */ 1037 unsigned long mem_end; /* shared mem end */ 1038 unsigned long mem_start; /* shared mem start */ 1039 unsigned long base_addr; /* device I/O address */ 1040 unsigned int irq; /* device IRQ number */ 1041 1042 /* 1043 * Some hardware also needs these fields, but they are not 1044 * part of the usual set specified in Space.c. 1045 */ 1046 1047 unsigned long state; 1048 1049 struct list_head dev_list; 1050 struct list_head napi_list; 1051 struct list_head unreg_list; 1052 1053 /* currently active device features */ 1054 netdev_features_t features; 1055 /* user-changeable features */ 1056 netdev_features_t hw_features; 1057 /* user-requested features */ 1058 netdev_features_t wanted_features; 1059 /* mask of features inheritable by VLAN devices */ 1060 netdev_features_t vlan_features; 1061 1062 /* Interface index. Unique device identifier */ 1063 int ifindex; 1064 int iflink; 1065 1066 struct net_device_stats stats; 1067 atomic_long_t rx_dropped; /* dropped packets by core network 1068 * Do not use this in drivers. 1069 */ 1070 1071#ifdef CONFIG_WIRELESS_EXT 1072 /* List of functions to handle Wireless Extensions (instead of ioctl). 1073 * See <net/iw_handler.h> for details. Jean II */ 1074 const struct iw_handler_def * wireless_handlers; 1075 /* Instance data managed by the core of Wireless Extensions. */ 1076 struct iw_public_data * wireless_data; 1077#endif 1078 /* Management operations */ 1079 const struct net_device_ops *netdev_ops; 1080 const struct ethtool_ops *ethtool_ops; 1081 1082 /* Hardware header description */ 1083 const struct header_ops *header_ops; 1084 1085 unsigned int flags; /* interface flags (a la BSD) */ 1086 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1087 * See if.h for definitions. */ 1088 unsigned short gflags; 1089 unsigned short padded; /* How much padding added by alloc_netdev() */ 1090 1091 unsigned char operstate; /* RFC2863 operstate */ 1092 unsigned char link_mode; /* mapping policy to operstate */ 1093 1094 unsigned char if_port; /* Selectable AUI, TP,..*/ 1095 unsigned char dma; /* DMA channel */ 1096 1097 unsigned int mtu; /* interface MTU value */ 1098 unsigned short type; /* interface hardware type */ 1099 unsigned short hard_header_len; /* hardware hdr length */ 1100 1101 /* extra head- and tailroom the hardware may need, but not in all cases 1102 * can this be guaranteed, especially tailroom. Some cases also use 1103 * LL_MAX_HEADER instead to allocate the skb. 1104 */ 1105 unsigned short needed_headroom; 1106 unsigned short needed_tailroom; 1107 1108 /* Interface address info. */ 1109 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1110 unsigned char addr_assign_type; /* hw address assignment type */ 1111 unsigned char addr_len; /* hardware address length */ 1112 unsigned char neigh_priv_len; 1113 unsigned short dev_id; /* for shared network cards */ 1114 1115 spinlock_t addr_list_lock; 1116 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1117 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1118 bool uc_promisc; 1119 unsigned int promiscuity; 1120 unsigned int allmulti; 1121 1122 1123 /* Protocol specific pointers */ 1124 1125#if IS_ENABLED(CONFIG_VLAN_8021Q) 1126 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1127#endif 1128#if IS_ENABLED(CONFIG_NET_DSA) 1129 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1130#endif 1131 void *atalk_ptr; /* AppleTalk link */ 1132 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1133 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1134 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1135 void *ec_ptr; /* Econet specific data */ 1136 void *ax25_ptr; /* AX.25 specific data */ 1137 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1138 assign before registering */ 1139 1140/* 1141 * Cache lines mostly used on receive path (including eth_type_trans()) 1142 */ 1143 unsigned long last_rx; /* Time of last Rx 1144 * This should not be set in 1145 * drivers, unless really needed, 1146 * because network stack (bonding) 1147 * use it if/when necessary, to 1148 * avoid dirtying this cache line. 1149 */ 1150 1151 struct net_device *master; /* Pointer to master device of a group, 1152 * which this device is member of. 1153 */ 1154 1155 /* Interface address info used in eth_type_trans() */ 1156 unsigned char *dev_addr; /* hw address, (before bcast 1157 because most packets are 1158 unicast) */ 1159 1160 struct netdev_hw_addr_list dev_addrs; /* list of device 1161 hw addresses */ 1162 1163 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1164 1165#ifdef CONFIG_SYSFS 1166 struct kset *queues_kset; 1167#endif 1168 1169#ifdef CONFIG_RPS 1170 struct netdev_rx_queue *_rx; 1171 1172 /* Number of RX queues allocated at register_netdev() time */ 1173 unsigned int num_rx_queues; 1174 1175 /* Number of RX queues currently active in device */ 1176 unsigned int real_num_rx_queues; 1177 1178#ifdef CONFIG_RFS_ACCEL 1179 /* CPU reverse-mapping for RX completion interrupts, indexed 1180 * by RX queue number. Assigned by driver. This must only be 1181 * set if the ndo_rx_flow_steer operation is defined. */ 1182 struct cpu_rmap *rx_cpu_rmap; 1183#endif 1184#endif 1185 1186 rx_handler_func_t __rcu *rx_handler; 1187 void __rcu *rx_handler_data; 1188 1189 struct netdev_queue __rcu *ingress_queue; 1190 1191/* 1192 * Cache lines mostly used on transmit path 1193 */ 1194 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1195 1196 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1197 unsigned int num_tx_queues; 1198 1199 /* Number of TX queues currently active in device */ 1200 unsigned int real_num_tx_queues; 1201 1202 /* root qdisc from userspace point of view */ 1203 struct Qdisc *qdisc; 1204 1205 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1206 spinlock_t tx_global_lock; 1207 1208#ifdef CONFIG_XPS 1209 struct xps_dev_maps __rcu *xps_maps; 1210#endif 1211 1212 /* These may be needed for future network-power-down code. */ 1213 1214 /* 1215 * trans_start here is expensive for high speed devices on SMP, 1216 * please use netdev_queue->trans_start instead. 1217 */ 1218 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1219 1220 int watchdog_timeo; /* used by dev_watchdog() */ 1221 struct timer_list watchdog_timer; 1222 1223 /* Number of references to this device */ 1224 int __percpu *pcpu_refcnt; 1225 1226 /* delayed register/unregister */ 1227 struct list_head todo_list; 1228 /* device index hash chain */ 1229 struct hlist_node index_hlist; 1230 1231 struct list_head link_watch_list; 1232 1233 /* register/unregister state machine */ 1234 enum { NETREG_UNINITIALIZED=0, 1235 NETREG_REGISTERED, /* completed register_netdevice */ 1236 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1237 NETREG_UNREGISTERED, /* completed unregister todo */ 1238 NETREG_RELEASED, /* called free_netdev */ 1239 NETREG_DUMMY, /* dummy device for NAPI poll */ 1240 } reg_state:8; 1241 1242 bool dismantle; /* device is going do be freed */ 1243 1244 enum { 1245 RTNL_LINK_INITIALIZED, 1246 RTNL_LINK_INITIALIZING, 1247 } rtnl_link_state:16; 1248 1249 /* Called from unregister, can be used to call free_netdev */ 1250 void (*destructor)(struct net_device *dev); 1251 1252#ifdef CONFIG_NETPOLL 1253 struct netpoll_info *npinfo; 1254#endif 1255 1256#ifdef CONFIG_NET_NS 1257 /* Network namespace this network device is inside */ 1258 struct net *nd_net; 1259#endif 1260 1261 /* mid-layer private */ 1262 union { 1263 void *ml_priv; 1264 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1265 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1266 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1267 }; 1268 /* GARP */ 1269 struct garp_port __rcu *garp_port; 1270 1271 /* class/net/name entry */ 1272 struct device dev; 1273 /* space for optional device, statistics, and wireless sysfs groups */ 1274 const struct attribute_group *sysfs_groups[4]; 1275 1276 /* rtnetlink link ops */ 1277 const struct rtnl_link_ops *rtnl_link_ops; 1278 1279 /* for setting kernel sock attribute on TCP connection setup */ 1280#define GSO_MAX_SIZE 65536 1281 unsigned int gso_max_size; 1282 1283#ifdef CONFIG_DCB 1284 /* Data Center Bridging netlink ops */ 1285 const struct dcbnl_rtnl_ops *dcbnl_ops; 1286#endif 1287 u8 num_tc; 1288 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1289 u8 prio_tc_map[TC_BITMASK + 1]; 1290 1291#if IS_ENABLED(CONFIG_FCOE) 1292 /* max exchange id for FCoE LRO by ddp */ 1293 unsigned int fcoe_ddp_xid; 1294#endif 1295#if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1296 struct netprio_map __rcu *priomap; 1297#endif 1298 /* phy device may attach itself for hardware timestamping */ 1299 struct phy_device *phydev; 1300 1301 /* group the device belongs to */ 1302 int group; 1303}; 1304#define to_net_dev(d) container_of(d, struct net_device, dev) 1305 1306#define NETDEV_ALIGN 32 1307 1308static inline 1309int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1310{ 1311 return dev->prio_tc_map[prio & TC_BITMASK]; 1312} 1313 1314static inline 1315int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1316{ 1317 if (tc >= dev->num_tc) 1318 return -EINVAL; 1319 1320 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1321 return 0; 1322} 1323 1324static inline 1325void netdev_reset_tc(struct net_device *dev) 1326{ 1327 dev->num_tc = 0; 1328 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1329 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1330} 1331 1332static inline 1333int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1334{ 1335 if (tc >= dev->num_tc) 1336 return -EINVAL; 1337 1338 dev->tc_to_txq[tc].count = count; 1339 dev->tc_to_txq[tc].offset = offset; 1340 return 0; 1341} 1342 1343static inline 1344int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1345{ 1346 if (num_tc > TC_MAX_QUEUE) 1347 return -EINVAL; 1348 1349 dev->num_tc = num_tc; 1350 return 0; 1351} 1352 1353static inline 1354int netdev_get_num_tc(struct net_device *dev) 1355{ 1356 return dev->num_tc; 1357} 1358 1359static inline 1360struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1361 unsigned int index) 1362{ 1363 return &dev->_tx[index]; 1364} 1365 1366static inline void netdev_for_each_tx_queue(struct net_device *dev, 1367 void (*f)(struct net_device *, 1368 struct netdev_queue *, 1369 void *), 1370 void *arg) 1371{ 1372 unsigned int i; 1373 1374 for (i = 0; i < dev->num_tx_queues; i++) 1375 f(dev, &dev->_tx[i], arg); 1376} 1377 1378/* 1379 * Net namespace inlines 1380 */ 1381static inline 1382struct net *dev_net(const struct net_device *dev) 1383{ 1384 return read_pnet(&dev->nd_net); 1385} 1386 1387static inline 1388void dev_net_set(struct net_device *dev, struct net *net) 1389{ 1390#ifdef CONFIG_NET_NS 1391 release_net(dev->nd_net); 1392 dev->nd_net = hold_net(net); 1393#endif 1394} 1395 1396static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1397{ 1398#ifdef CONFIG_NET_DSA_TAG_DSA 1399 if (dev->dsa_ptr != NULL) 1400 return dsa_uses_dsa_tags(dev->dsa_ptr); 1401#endif 1402 1403 return 0; 1404} 1405 1406#ifndef CONFIG_NET_NS 1407static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1408{ 1409 skb->dev = dev; 1410} 1411#else /* CONFIG_NET_NS */ 1412void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1413#endif 1414 1415static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1416{ 1417#ifdef CONFIG_NET_DSA_TAG_TRAILER 1418 if (dev->dsa_ptr != NULL) 1419 return dsa_uses_trailer_tags(dev->dsa_ptr); 1420#endif 1421 1422 return 0; 1423} 1424 1425/** 1426 * netdev_priv - access network device private data 1427 * @dev: network device 1428 * 1429 * Get network device private data 1430 */ 1431static inline void *netdev_priv(const struct net_device *dev) 1432{ 1433 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1434} 1435 1436/* Set the sysfs physical device reference for the network logical device 1437 * if set prior to registration will cause a symlink during initialization. 1438 */ 1439#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1440 1441/* Set the sysfs device type for the network logical device to allow 1442 * fin grained indentification of different network device types. For 1443 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1444 */ 1445#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1446 1447/** 1448 * netif_napi_add - initialize a napi context 1449 * @dev: network device 1450 * @napi: napi context 1451 * @poll: polling function 1452 * @weight: default weight 1453 * 1454 * netif_napi_add() must be used to initialize a napi context prior to calling 1455 * *any* of the other napi related functions. 1456 */ 1457void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1458 int (*poll)(struct napi_struct *, int), int weight); 1459 1460/** 1461 * netif_napi_del - remove a napi context 1462 * @napi: napi context 1463 * 1464 * netif_napi_del() removes a napi context from the network device napi list 1465 */ 1466void netif_napi_del(struct napi_struct *napi); 1467 1468struct napi_gro_cb { 1469 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1470 void *frag0; 1471 1472 /* Length of frag0. */ 1473 unsigned int frag0_len; 1474 1475 /* This indicates where we are processing relative to skb->data. */ 1476 int data_offset; 1477 1478 /* This is non-zero if the packet may be of the same flow. */ 1479 int same_flow; 1480 1481 /* This is non-zero if the packet cannot be merged with the new skb. */ 1482 int flush; 1483 1484 /* Number of segments aggregated. */ 1485 int count; 1486 1487 /* Free the skb? */ 1488 int free; 1489}; 1490 1491#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1492 1493struct packet_type { 1494 __be16 type; /* This is really htons(ether_type). */ 1495 struct net_device *dev; /* NULL is wildcarded here */ 1496 int (*func) (struct sk_buff *, 1497 struct net_device *, 1498 struct packet_type *, 1499 struct net_device *); 1500 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1501 netdev_features_t features); 1502 int (*gso_send_check)(struct sk_buff *skb); 1503 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1504 struct sk_buff *skb); 1505 int (*gro_complete)(struct sk_buff *skb); 1506 void *af_packet_priv; 1507 struct list_head list; 1508}; 1509 1510#include <linux/notifier.h> 1511 1512/* netdevice notifier chain. Please remember to update the rtnetlink 1513 * notification exclusion list in rtnetlink_event() when adding new 1514 * types. 1515 */ 1516#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1517#define NETDEV_DOWN 0x0002 1518#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1519 detected a hardware crash and restarted 1520 - we can use this eg to kick tcp sessions 1521 once done */ 1522#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1523#define NETDEV_REGISTER 0x0005 1524#define NETDEV_UNREGISTER 0x0006 1525#define NETDEV_CHANGEMTU 0x0007 1526#define NETDEV_CHANGEADDR 0x0008 1527#define NETDEV_GOING_DOWN 0x0009 1528#define NETDEV_CHANGENAME 0x000A 1529#define NETDEV_FEAT_CHANGE 0x000B 1530#define NETDEV_BONDING_FAILOVER 0x000C 1531#define NETDEV_PRE_UP 0x000D 1532#define NETDEV_PRE_TYPE_CHANGE 0x000E 1533#define NETDEV_POST_TYPE_CHANGE 0x000F 1534#define NETDEV_POST_INIT 0x0010 1535#define NETDEV_UNREGISTER_BATCH 0x0011 1536#define NETDEV_RELEASE 0x0012 1537#define NETDEV_NOTIFY_PEERS 0x0013 1538#define NETDEV_JOIN 0x0014 1539 1540extern int register_netdevice_notifier(struct notifier_block *nb); 1541extern int unregister_netdevice_notifier(struct notifier_block *nb); 1542extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1543 1544 1545extern rwlock_t dev_base_lock; /* Device list lock */ 1546 1547 1548#define for_each_netdev(net, d) \ 1549 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1550#define for_each_netdev_reverse(net, d) \ 1551 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1552#define for_each_netdev_rcu(net, d) \ 1553 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1554#define for_each_netdev_safe(net, d, n) \ 1555 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1556#define for_each_netdev_continue(net, d) \ 1557 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1558#define for_each_netdev_continue_rcu(net, d) \ 1559 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1560#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1561 1562static inline struct net_device *next_net_device(struct net_device *dev) 1563{ 1564 struct list_head *lh; 1565 struct net *net; 1566 1567 net = dev_net(dev); 1568 lh = dev->dev_list.next; 1569 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1570} 1571 1572static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1573{ 1574 struct list_head *lh; 1575 struct net *net; 1576 1577 net = dev_net(dev); 1578 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1579 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1580} 1581 1582static inline struct net_device *first_net_device(struct net *net) 1583{ 1584 return list_empty(&net->dev_base_head) ? NULL : 1585 net_device_entry(net->dev_base_head.next); 1586} 1587 1588static inline struct net_device *first_net_device_rcu(struct net *net) 1589{ 1590 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1591 1592 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1593} 1594 1595extern int netdev_boot_setup_check(struct net_device *dev); 1596extern unsigned long netdev_boot_base(const char *prefix, int unit); 1597extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1598 const char *hwaddr); 1599extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1600extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1601extern void dev_add_pack(struct packet_type *pt); 1602extern void dev_remove_pack(struct packet_type *pt); 1603extern void __dev_remove_pack(struct packet_type *pt); 1604 1605extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1606 unsigned short mask); 1607extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1608extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1609extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1610extern int dev_alloc_name(struct net_device *dev, const char *name); 1611extern int dev_open(struct net_device *dev); 1612extern int dev_close(struct net_device *dev); 1613extern void dev_disable_lro(struct net_device *dev); 1614extern int dev_queue_xmit(struct sk_buff *skb); 1615extern int register_netdevice(struct net_device *dev); 1616extern void unregister_netdevice_queue(struct net_device *dev, 1617 struct list_head *head); 1618extern void unregister_netdevice_many(struct list_head *head); 1619static inline void unregister_netdevice(struct net_device *dev) 1620{ 1621 unregister_netdevice_queue(dev, NULL); 1622} 1623 1624extern int netdev_refcnt_read(const struct net_device *dev); 1625extern void free_netdev(struct net_device *dev); 1626extern void synchronize_net(void); 1627extern int init_dummy_netdev(struct net_device *dev); 1628extern void netdev_resync_ops(struct net_device *dev); 1629 1630extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1631extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1632extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1633extern int dev_restart(struct net_device *dev); 1634#ifdef CONFIG_NETPOLL_TRAP 1635extern int netpoll_trap(void); 1636#endif 1637extern int skb_gro_receive(struct sk_buff **head, 1638 struct sk_buff *skb); 1639extern void skb_gro_reset_offset(struct sk_buff *skb); 1640 1641static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1642{ 1643 return NAPI_GRO_CB(skb)->data_offset; 1644} 1645 1646static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1647{ 1648 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1649} 1650 1651static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1652{ 1653 NAPI_GRO_CB(skb)->data_offset += len; 1654} 1655 1656static inline void *skb_gro_header_fast(struct sk_buff *skb, 1657 unsigned int offset) 1658{ 1659 return NAPI_GRO_CB(skb)->frag0 + offset; 1660} 1661 1662static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1663{ 1664 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1665} 1666 1667static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1668 unsigned int offset) 1669{ 1670 if (!pskb_may_pull(skb, hlen)) 1671 return NULL; 1672 1673 NAPI_GRO_CB(skb)->frag0 = NULL; 1674 NAPI_GRO_CB(skb)->frag0_len = 0; 1675 return skb->data + offset; 1676} 1677 1678static inline void *skb_gro_mac_header(struct sk_buff *skb) 1679{ 1680 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1681} 1682 1683static inline void *skb_gro_network_header(struct sk_buff *skb) 1684{ 1685 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1686 skb_network_offset(skb); 1687} 1688 1689static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1690 unsigned short type, 1691 const void *daddr, const void *saddr, 1692 unsigned len) 1693{ 1694 if (!dev->header_ops || !dev->header_ops->create) 1695 return 0; 1696 1697 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1698} 1699 1700static inline int dev_parse_header(const struct sk_buff *skb, 1701 unsigned char *haddr) 1702{ 1703 const struct net_device *dev = skb->dev; 1704 1705 if (!dev->header_ops || !dev->header_ops->parse) 1706 return 0; 1707 return dev->header_ops->parse(skb, haddr); 1708} 1709 1710typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1711extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1712static inline int unregister_gifconf(unsigned int family) 1713{ 1714 return register_gifconf(family, NULL); 1715} 1716 1717/* 1718 * Incoming packets are placed on per-cpu queues 1719 */ 1720struct softnet_data { 1721 struct Qdisc *output_queue; 1722 struct Qdisc **output_queue_tailp; 1723 struct list_head poll_list; 1724 struct sk_buff *completion_queue; 1725 struct sk_buff_head process_queue; 1726 1727 /* stats */ 1728 unsigned int processed; 1729 unsigned int time_squeeze; 1730 unsigned int cpu_collision; 1731 unsigned int received_rps; 1732 1733#ifdef CONFIG_RPS 1734 struct softnet_data *rps_ipi_list; 1735 1736 /* Elements below can be accessed between CPUs for RPS */ 1737 struct call_single_data csd ____cacheline_aligned_in_smp; 1738 struct softnet_data *rps_ipi_next; 1739 unsigned int cpu; 1740 unsigned int input_queue_head; 1741 unsigned int input_queue_tail; 1742#endif 1743 unsigned dropped; 1744 struct sk_buff_head input_pkt_queue; 1745 struct napi_struct backlog; 1746}; 1747 1748static inline void input_queue_head_incr(struct softnet_data *sd) 1749{ 1750#ifdef CONFIG_RPS 1751 sd->input_queue_head++; 1752#endif 1753} 1754 1755static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1756 unsigned int *qtail) 1757{ 1758#ifdef CONFIG_RPS 1759 *qtail = ++sd->input_queue_tail; 1760#endif 1761} 1762 1763DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1764 1765extern void __netif_schedule(struct Qdisc *q); 1766 1767static inline void netif_schedule_queue(struct netdev_queue *txq) 1768{ 1769 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1770 __netif_schedule(txq->qdisc); 1771} 1772 1773static inline void netif_tx_schedule_all(struct net_device *dev) 1774{ 1775 unsigned int i; 1776 1777 for (i = 0; i < dev->num_tx_queues; i++) 1778 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1779} 1780 1781static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1782{ 1783 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1784} 1785 1786/** 1787 * netif_start_queue - allow transmit 1788 * @dev: network device 1789 * 1790 * Allow upper layers to call the device hard_start_xmit routine. 1791 */ 1792static inline void netif_start_queue(struct net_device *dev) 1793{ 1794 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1795} 1796 1797static inline void netif_tx_start_all_queues(struct net_device *dev) 1798{ 1799 unsigned int i; 1800 1801 for (i = 0; i < dev->num_tx_queues; i++) { 1802 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1803 netif_tx_start_queue(txq); 1804 } 1805} 1806 1807static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1808{ 1809#ifdef CONFIG_NETPOLL_TRAP 1810 if (netpoll_trap()) { 1811 netif_tx_start_queue(dev_queue); 1812 return; 1813 } 1814#endif 1815 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1816 __netif_schedule(dev_queue->qdisc); 1817} 1818 1819/** 1820 * netif_wake_queue - restart transmit 1821 * @dev: network device 1822 * 1823 * Allow upper layers to call the device hard_start_xmit routine. 1824 * Used for flow control when transmit resources are available. 1825 */ 1826static inline void netif_wake_queue(struct net_device *dev) 1827{ 1828 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1829} 1830 1831static inline void netif_tx_wake_all_queues(struct net_device *dev) 1832{ 1833 unsigned int i; 1834 1835 for (i = 0; i < dev->num_tx_queues; i++) { 1836 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1837 netif_tx_wake_queue(txq); 1838 } 1839} 1840 1841static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1842{ 1843 if (WARN_ON(!dev_queue)) { 1844 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1845 return; 1846 } 1847 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1848} 1849 1850/** 1851 * netif_stop_queue - stop transmitted packets 1852 * @dev: network device 1853 * 1854 * Stop upper layers calling the device hard_start_xmit routine. 1855 * Used for flow control when transmit resources are unavailable. 1856 */ 1857static inline void netif_stop_queue(struct net_device *dev) 1858{ 1859 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1860} 1861 1862static inline void netif_tx_stop_all_queues(struct net_device *dev) 1863{ 1864 unsigned int i; 1865 1866 for (i = 0; i < dev->num_tx_queues; i++) { 1867 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1868 netif_tx_stop_queue(txq); 1869 } 1870} 1871 1872static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1873{ 1874 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1875} 1876 1877/** 1878 * netif_queue_stopped - test if transmit queue is flowblocked 1879 * @dev: network device 1880 * 1881 * Test if transmit queue on device is currently unable to send. 1882 */ 1883static inline bool netif_queue_stopped(const struct net_device *dev) 1884{ 1885 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1886} 1887 1888static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 1889{ 1890 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1891} 1892 1893static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1894{ 1895 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1896} 1897 1898static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1899 unsigned int bytes) 1900{ 1901#ifdef CONFIG_BQL 1902 dql_queued(&dev_queue->dql, bytes); 1903 1904 if (likely(dql_avail(&dev_queue->dql) >= 0)) 1905 return; 1906 1907 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1908 1909 /* 1910 * The XOFF flag must be set before checking the dql_avail below, 1911 * because in netdev_tx_completed_queue we update the dql_completed 1912 * before checking the XOFF flag. 1913 */ 1914 smp_mb(); 1915 1916 /* check again in case another CPU has just made room avail */ 1917 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1918 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1919#endif 1920} 1921 1922static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1923{ 1924 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1925} 1926 1927static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1928 unsigned pkts, unsigned bytes) 1929{ 1930#ifdef CONFIG_BQL 1931 if (unlikely(!bytes)) 1932 return; 1933 1934 dql_completed(&dev_queue->dql, bytes); 1935 1936 /* 1937 * Without the memory barrier there is a small possiblity that 1938 * netdev_tx_sent_queue will miss the update and cause the queue to 1939 * be stopped forever 1940 */ 1941 smp_mb(); 1942 1943 if (dql_avail(&dev_queue->dql) < 0) 1944 return; 1945 1946 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 1947 netif_schedule_queue(dev_queue); 1948#endif 1949} 1950 1951static inline void netdev_completed_queue(struct net_device *dev, 1952 unsigned pkts, unsigned bytes) 1953{ 1954 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 1955} 1956 1957static inline void netdev_tx_reset_queue(struct netdev_queue *q) 1958{ 1959#ifdef CONFIG_BQL 1960 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 1961 dql_reset(&q->dql); 1962#endif 1963} 1964 1965static inline void netdev_reset_queue(struct net_device *dev_queue) 1966{ 1967 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 1968} 1969 1970/** 1971 * netif_running - test if up 1972 * @dev: network device 1973 * 1974 * Test if the device has been brought up. 1975 */ 1976static inline bool netif_running(const struct net_device *dev) 1977{ 1978 return test_bit(__LINK_STATE_START, &dev->state); 1979} 1980 1981/* 1982 * Routines to manage the subqueues on a device. We only need start 1983 * stop, and a check if it's stopped. All other device management is 1984 * done at the overall netdevice level. 1985 * Also test the device if we're multiqueue. 1986 */ 1987 1988/** 1989 * netif_start_subqueue - allow sending packets on subqueue 1990 * @dev: network device 1991 * @queue_index: sub queue index 1992 * 1993 * Start individual transmit queue of a device with multiple transmit queues. 1994 */ 1995static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1996{ 1997 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1998 1999 netif_tx_start_queue(txq); 2000} 2001 2002/** 2003 * netif_stop_subqueue - stop sending packets on subqueue 2004 * @dev: network device 2005 * @queue_index: sub queue index 2006 * 2007 * Stop individual transmit queue of a device with multiple transmit queues. 2008 */ 2009static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2010{ 2011 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2012#ifdef CONFIG_NETPOLL_TRAP 2013 if (netpoll_trap()) 2014 return; 2015#endif 2016 netif_tx_stop_queue(txq); 2017} 2018 2019/** 2020 * netif_subqueue_stopped - test status of subqueue 2021 * @dev: network device 2022 * @queue_index: sub queue index 2023 * 2024 * Check individual transmit queue of a device with multiple transmit queues. 2025 */ 2026static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2027 u16 queue_index) 2028{ 2029 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2030 2031 return netif_tx_queue_stopped(txq); 2032} 2033 2034static inline bool netif_subqueue_stopped(const struct net_device *dev, 2035 struct sk_buff *skb) 2036{ 2037 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2038} 2039 2040/** 2041 * netif_wake_subqueue - allow sending packets on subqueue 2042 * @dev: network device 2043 * @queue_index: sub queue index 2044 * 2045 * Resume individual transmit queue of a device with multiple transmit queues. 2046 */ 2047static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2048{ 2049 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2050#ifdef CONFIG_NETPOLL_TRAP 2051 if (netpoll_trap()) 2052 return; 2053#endif 2054 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2055 __netif_schedule(txq->qdisc); 2056} 2057 2058/* 2059 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2060 * as a distribution range limit for the returned value. 2061 */ 2062static inline u16 skb_tx_hash(const struct net_device *dev, 2063 const struct sk_buff *skb) 2064{ 2065 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2066} 2067 2068/** 2069 * netif_is_multiqueue - test if device has multiple transmit queues 2070 * @dev: network device 2071 * 2072 * Check if device has multiple transmit queues 2073 */ 2074static inline bool netif_is_multiqueue(const struct net_device *dev) 2075{ 2076 return dev->num_tx_queues > 1; 2077} 2078 2079extern int netif_set_real_num_tx_queues(struct net_device *dev, 2080 unsigned int txq); 2081 2082#ifdef CONFIG_RPS 2083extern int netif_set_real_num_rx_queues(struct net_device *dev, 2084 unsigned int rxq); 2085#else 2086static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2087 unsigned int rxq) 2088{ 2089 return 0; 2090} 2091#endif 2092 2093static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2094 const struct net_device *from_dev) 2095{ 2096 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 2097#ifdef CONFIG_RPS 2098 return netif_set_real_num_rx_queues(to_dev, 2099 from_dev->real_num_rx_queues); 2100#else 2101 return 0; 2102#endif 2103} 2104 2105/* Use this variant when it is known for sure that it 2106 * is executing from hardware interrupt context or with hardware interrupts 2107 * disabled. 2108 */ 2109extern void dev_kfree_skb_irq(struct sk_buff *skb); 2110 2111/* Use this variant in places where it could be invoked 2112 * from either hardware interrupt or other context, with hardware interrupts 2113 * either disabled or enabled. 2114 */ 2115extern void dev_kfree_skb_any(struct sk_buff *skb); 2116 2117extern int netif_rx(struct sk_buff *skb); 2118extern int netif_rx_ni(struct sk_buff *skb); 2119extern int netif_receive_skb(struct sk_buff *skb); 2120extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2121 struct sk_buff *skb); 2122extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2123extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2124 struct sk_buff *skb); 2125extern void napi_gro_flush(struct napi_struct *napi); 2126extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2127extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2128 struct sk_buff *skb, 2129 gro_result_t ret); 2130extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 2131extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2132 2133static inline void napi_free_frags(struct napi_struct *napi) 2134{ 2135 kfree_skb(napi->skb); 2136 napi->skb = NULL; 2137} 2138 2139extern int netdev_rx_handler_register(struct net_device *dev, 2140 rx_handler_func_t *rx_handler, 2141 void *rx_handler_data); 2142extern void netdev_rx_handler_unregister(struct net_device *dev); 2143 2144extern bool dev_valid_name(const char *name); 2145extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2146extern int dev_ethtool(struct net *net, struct ifreq *); 2147extern unsigned dev_get_flags(const struct net_device *); 2148extern int __dev_change_flags(struct net_device *, unsigned int flags); 2149extern int dev_change_flags(struct net_device *, unsigned); 2150extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2151extern int dev_change_name(struct net_device *, const char *); 2152extern int dev_set_alias(struct net_device *, const char *, size_t); 2153extern int dev_change_net_namespace(struct net_device *, 2154 struct net *, const char *); 2155extern int dev_set_mtu(struct net_device *, int); 2156extern void dev_set_group(struct net_device *, int); 2157extern int dev_set_mac_address(struct net_device *, 2158 struct sockaddr *); 2159extern int dev_hard_start_xmit(struct sk_buff *skb, 2160 struct net_device *dev, 2161 struct netdev_queue *txq); 2162extern int dev_forward_skb(struct net_device *dev, 2163 struct sk_buff *skb); 2164 2165extern int netdev_budget; 2166 2167/* Called by rtnetlink.c:rtnl_unlock() */ 2168extern void netdev_run_todo(void); 2169 2170/** 2171 * dev_put - release reference to device 2172 * @dev: network device 2173 * 2174 * Release reference to device to allow it to be freed. 2175 */ 2176static inline void dev_put(struct net_device *dev) 2177{ 2178 this_cpu_dec(*dev->pcpu_refcnt); 2179} 2180 2181/** 2182 * dev_hold - get reference to device 2183 * @dev: network device 2184 * 2185 * Hold reference to device to keep it from being freed. 2186 */ 2187static inline void dev_hold(struct net_device *dev) 2188{ 2189 this_cpu_inc(*dev->pcpu_refcnt); 2190} 2191 2192/* Carrier loss detection, dial on demand. The functions netif_carrier_on 2193 * and _off may be called from IRQ context, but it is caller 2194 * who is responsible for serialization of these calls. 2195 * 2196 * The name carrier is inappropriate, these functions should really be 2197 * called netif_lowerlayer_*() because they represent the state of any 2198 * kind of lower layer not just hardware media. 2199 */ 2200 2201extern void linkwatch_fire_event(struct net_device *dev); 2202extern void linkwatch_forget_dev(struct net_device *dev); 2203 2204/** 2205 * netif_carrier_ok - test if carrier present 2206 * @dev: network device 2207 * 2208 * Check if carrier is present on device 2209 */ 2210static inline bool netif_carrier_ok(const struct net_device *dev) 2211{ 2212 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2213} 2214 2215extern unsigned long dev_trans_start(struct net_device *dev); 2216 2217extern void __netdev_watchdog_up(struct net_device *dev); 2218 2219extern void netif_carrier_on(struct net_device *dev); 2220 2221extern void netif_carrier_off(struct net_device *dev); 2222 2223extern void netif_notify_peers(struct net_device *dev); 2224 2225/** 2226 * netif_dormant_on - mark device as dormant. 2227 * @dev: network device 2228 * 2229 * Mark device as dormant (as per RFC2863). 2230 * 2231 * The dormant state indicates that the relevant interface is not 2232 * actually in a condition to pass packets (i.e., it is not 'up') but is 2233 * in a "pending" state, waiting for some external event. For "on- 2234 * demand" interfaces, this new state identifies the situation where the 2235 * interface is waiting for events to place it in the up state. 2236 * 2237 */ 2238static inline void netif_dormant_on(struct net_device *dev) 2239{ 2240 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2241 linkwatch_fire_event(dev); 2242} 2243 2244/** 2245 * netif_dormant_off - set device as not dormant. 2246 * @dev: network device 2247 * 2248 * Device is not in dormant state. 2249 */ 2250static inline void netif_dormant_off(struct net_device *dev) 2251{ 2252 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2253 linkwatch_fire_event(dev); 2254} 2255 2256/** 2257 * netif_dormant - test if carrier present 2258 * @dev: network device 2259 * 2260 * Check if carrier is present on device 2261 */ 2262static inline bool netif_dormant(const struct net_device *dev) 2263{ 2264 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2265} 2266 2267 2268/** 2269 * netif_oper_up - test if device is operational 2270 * @dev: network device 2271 * 2272 * Check if carrier is operational 2273 */ 2274static inline bool netif_oper_up(const struct net_device *dev) 2275{ 2276 return (dev->operstate == IF_OPER_UP || 2277 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2278} 2279 2280/** 2281 * netif_device_present - is device available or removed 2282 * @dev: network device 2283 * 2284 * Check if device has not been removed from system. 2285 */ 2286static inline bool netif_device_present(struct net_device *dev) 2287{ 2288 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2289} 2290 2291extern void netif_device_detach(struct net_device *dev); 2292 2293extern void netif_device_attach(struct net_device *dev); 2294 2295/* 2296 * Network interface message level settings 2297 */ 2298 2299enum { 2300 NETIF_MSG_DRV = 0x0001, 2301 NETIF_MSG_PROBE = 0x0002, 2302 NETIF_MSG_LINK = 0x0004, 2303 NETIF_MSG_TIMER = 0x0008, 2304 NETIF_MSG_IFDOWN = 0x0010, 2305 NETIF_MSG_IFUP = 0x0020, 2306 NETIF_MSG_RX_ERR = 0x0040, 2307 NETIF_MSG_TX_ERR = 0x0080, 2308 NETIF_MSG_TX_QUEUED = 0x0100, 2309 NETIF_MSG_INTR = 0x0200, 2310 NETIF_MSG_TX_DONE = 0x0400, 2311 NETIF_MSG_RX_STATUS = 0x0800, 2312 NETIF_MSG_PKTDATA = 0x1000, 2313 NETIF_MSG_HW = 0x2000, 2314 NETIF_MSG_WOL = 0x4000, 2315}; 2316 2317#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2318#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2319#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2320#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2321#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2322#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2323#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2324#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2325#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2326#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2327#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2328#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2329#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2330#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2331#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2332 2333static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2334{ 2335 /* use default */ 2336 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2337 return default_msg_enable_bits; 2338 if (debug_value == 0) /* no output */ 2339 return 0; 2340 /* set low N bits */ 2341 return (1 << debug_value) - 1; 2342} 2343 2344static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2345{ 2346 spin_lock(&txq->_xmit_lock); 2347 txq->xmit_lock_owner = cpu; 2348} 2349 2350static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2351{ 2352 spin_lock_bh(&txq->_xmit_lock); 2353 txq->xmit_lock_owner = smp_processor_id(); 2354} 2355 2356static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2357{ 2358 bool ok = spin_trylock(&txq->_xmit_lock); 2359 if (likely(ok)) 2360 txq->xmit_lock_owner = smp_processor_id(); 2361 return ok; 2362} 2363 2364static inline void __netif_tx_unlock(struct netdev_queue *txq) 2365{ 2366 txq->xmit_lock_owner = -1; 2367 spin_unlock(&txq->_xmit_lock); 2368} 2369 2370static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2371{ 2372 txq->xmit_lock_owner = -1; 2373 spin_unlock_bh(&txq->_xmit_lock); 2374} 2375 2376static inline void txq_trans_update(struct netdev_queue *txq) 2377{ 2378 if (txq->xmit_lock_owner != -1) 2379 txq->trans_start = jiffies; 2380} 2381 2382/** 2383 * netif_tx_lock - grab network device transmit lock 2384 * @dev: network device 2385 * 2386 * Get network device transmit lock 2387 */ 2388static inline void netif_tx_lock(struct net_device *dev) 2389{ 2390 unsigned int i; 2391 int cpu; 2392 2393 spin_lock(&dev->tx_global_lock); 2394 cpu = smp_processor_id(); 2395 for (i = 0; i < dev->num_tx_queues; i++) { 2396 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2397 2398 /* We are the only thread of execution doing a 2399 * freeze, but we have to grab the _xmit_lock in 2400 * order to synchronize with threads which are in 2401 * the ->hard_start_xmit() handler and already 2402 * checked the frozen bit. 2403 */ 2404 __netif_tx_lock(txq, cpu); 2405 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2406 __netif_tx_unlock(txq); 2407 } 2408} 2409 2410static inline void netif_tx_lock_bh(struct net_device *dev) 2411{ 2412 local_bh_disable(); 2413 netif_tx_lock(dev); 2414} 2415 2416static inline void netif_tx_unlock(struct net_device *dev) 2417{ 2418 unsigned int i; 2419 2420 for (i = 0; i < dev->num_tx_queues; i++) { 2421 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2422 2423 /* No need to grab the _xmit_lock here. If the 2424 * queue is not stopped for another reason, we 2425 * force a schedule. 2426 */ 2427 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2428 netif_schedule_queue(txq); 2429 } 2430 spin_unlock(&dev->tx_global_lock); 2431} 2432 2433static inline void netif_tx_unlock_bh(struct net_device *dev) 2434{ 2435 netif_tx_unlock(dev); 2436 local_bh_enable(); 2437} 2438 2439#define HARD_TX_LOCK(dev, txq, cpu) { \ 2440 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2441 __netif_tx_lock(txq, cpu); \ 2442 } \ 2443} 2444 2445#define HARD_TX_UNLOCK(dev, txq) { \ 2446 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2447 __netif_tx_unlock(txq); \ 2448 } \ 2449} 2450 2451static inline void netif_tx_disable(struct net_device *dev) 2452{ 2453 unsigned int i; 2454 int cpu; 2455 2456 local_bh_disable(); 2457 cpu = smp_processor_id(); 2458 for (i = 0; i < dev->num_tx_queues; i++) { 2459 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2460 2461 __netif_tx_lock(txq, cpu); 2462 netif_tx_stop_queue(txq); 2463 __netif_tx_unlock(txq); 2464 } 2465 local_bh_enable(); 2466} 2467 2468static inline void netif_addr_lock(struct net_device *dev) 2469{ 2470 spin_lock(&dev->addr_list_lock); 2471} 2472 2473static inline void netif_addr_lock_nested(struct net_device *dev) 2474{ 2475 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2476} 2477 2478static inline void netif_addr_lock_bh(struct net_device *dev) 2479{ 2480 spin_lock_bh(&dev->addr_list_lock); 2481} 2482 2483static inline void netif_addr_unlock(struct net_device *dev) 2484{ 2485 spin_unlock(&dev->addr_list_lock); 2486} 2487 2488static inline void netif_addr_unlock_bh(struct net_device *dev) 2489{ 2490 spin_unlock_bh(&dev->addr_list_lock); 2491} 2492 2493/* 2494 * dev_addrs walker. Should be used only for read access. Call with 2495 * rcu_read_lock held. 2496 */ 2497#define for_each_dev_addr(dev, ha) \ 2498 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2499 2500/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2501 2502extern void ether_setup(struct net_device *dev); 2503 2504/* Support for loadable net-drivers */ 2505extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2506 void (*setup)(struct net_device *), 2507 unsigned int txqs, unsigned int rxqs); 2508#define alloc_netdev(sizeof_priv, name, setup) \ 2509 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2510 2511#define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2512 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2513 2514extern int register_netdev(struct net_device *dev); 2515extern void unregister_netdev(struct net_device *dev); 2516 2517/* General hardware address lists handling functions */ 2518extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2519 struct netdev_hw_addr_list *from_list, 2520 int addr_len, unsigned char addr_type); 2521extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2522 struct netdev_hw_addr_list *from_list, 2523 int addr_len, unsigned char addr_type); 2524extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2525 struct netdev_hw_addr_list *from_list, 2526 int addr_len); 2527extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2528 struct netdev_hw_addr_list *from_list, 2529 int addr_len); 2530extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2531extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2532 2533/* Functions used for device addresses handling */ 2534extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2535 unsigned char addr_type); 2536extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2537 unsigned char addr_type); 2538extern int dev_addr_add_multiple(struct net_device *to_dev, 2539 struct net_device *from_dev, 2540 unsigned char addr_type); 2541extern int dev_addr_del_multiple(struct net_device *to_dev, 2542 struct net_device *from_dev, 2543 unsigned char addr_type); 2544extern void dev_addr_flush(struct net_device *dev); 2545extern int dev_addr_init(struct net_device *dev); 2546 2547/* Functions used for unicast addresses handling */ 2548extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2549extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2550extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2551extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2552extern void dev_uc_flush(struct net_device *dev); 2553extern void dev_uc_init(struct net_device *dev); 2554 2555/* Functions used for multicast addresses handling */ 2556extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2557extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2558extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2559extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2560extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2561extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2562extern void dev_mc_flush(struct net_device *dev); 2563extern void dev_mc_init(struct net_device *dev); 2564 2565/* Functions used for secondary unicast and multicast support */ 2566extern void dev_set_rx_mode(struct net_device *dev); 2567extern void __dev_set_rx_mode(struct net_device *dev); 2568extern int dev_set_promiscuity(struct net_device *dev, int inc); 2569extern int dev_set_allmulti(struct net_device *dev, int inc); 2570extern void netdev_state_change(struct net_device *dev); 2571extern int netdev_bonding_change(struct net_device *dev, 2572 unsigned long event); 2573extern void netdev_features_change(struct net_device *dev); 2574/* Load a device via the kmod */ 2575extern void dev_load(struct net *net, const char *name); 2576extern void dev_mcast_init(void); 2577extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2578 struct rtnl_link_stats64 *storage); 2579extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2580 const struct net_device_stats *netdev_stats); 2581 2582extern int netdev_max_backlog; 2583extern int netdev_tstamp_prequeue; 2584extern int weight_p; 2585extern int bpf_jit_enable; 2586extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2587extern int netdev_set_bond_master(struct net_device *dev, 2588 struct net_device *master); 2589extern int skb_checksum_help(struct sk_buff *skb); 2590extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2591 netdev_features_t features); 2592#ifdef CONFIG_BUG 2593extern void netdev_rx_csum_fault(struct net_device *dev); 2594#else 2595static inline void netdev_rx_csum_fault(struct net_device *dev) 2596{ 2597} 2598#endif 2599/* rx skb timestamps */ 2600extern void net_enable_timestamp(void); 2601extern void net_disable_timestamp(void); 2602 2603#ifdef CONFIG_PROC_FS 2604extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2605extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2606extern void dev_seq_stop(struct seq_file *seq, void *v); 2607#endif 2608 2609extern int netdev_class_create_file(struct class_attribute *class_attr); 2610extern void netdev_class_remove_file(struct class_attribute *class_attr); 2611 2612extern struct kobj_ns_type_operations net_ns_type_operations; 2613 2614extern const char *netdev_drivername(const struct net_device *dev); 2615 2616extern void linkwatch_run_queue(void); 2617 2618static inline netdev_features_t netdev_get_wanted_features( 2619 struct net_device *dev) 2620{ 2621 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2622} 2623netdev_features_t netdev_increment_features(netdev_features_t all, 2624 netdev_features_t one, netdev_features_t mask); 2625int __netdev_update_features(struct net_device *dev); 2626void netdev_update_features(struct net_device *dev); 2627void netdev_change_features(struct net_device *dev); 2628 2629void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2630 struct net_device *dev); 2631 2632netdev_features_t netif_skb_features(struct sk_buff *skb); 2633 2634static inline bool net_gso_ok(netdev_features_t features, int gso_type) 2635{ 2636 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2637 2638 /* check flags correspondence */ 2639 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2640 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2641 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2642 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2643 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2644 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2645 2646 return (features & feature) == feature; 2647} 2648 2649static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2650{ 2651 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2652 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2653} 2654 2655static inline bool netif_needs_gso(struct sk_buff *skb, 2656 netdev_features_t features) 2657{ 2658 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2659 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 2660 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 2661} 2662 2663static inline void netif_set_gso_max_size(struct net_device *dev, 2664 unsigned int size) 2665{ 2666 dev->gso_max_size = size; 2667} 2668 2669static inline bool netif_is_bond_slave(struct net_device *dev) 2670{ 2671 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2672} 2673 2674static inline bool netif_supports_nofcs(struct net_device *dev) 2675{ 2676 return dev->priv_flags & IFF_SUPP_NOFCS; 2677} 2678 2679extern struct pernet_operations __net_initdata loopback_net_ops; 2680 2681/* Logging, debugging and troubleshooting/diagnostic helpers. */ 2682 2683/* netdev_printk helpers, similar to dev_printk */ 2684 2685static inline const char *netdev_name(const struct net_device *dev) 2686{ 2687 if (dev->reg_state != NETREG_REGISTERED) 2688 return "(unregistered net_device)"; 2689 return dev->name; 2690} 2691 2692extern int __netdev_printk(const char *level, const struct net_device *dev, 2693 struct va_format *vaf); 2694 2695extern __printf(3, 4) 2696int netdev_printk(const char *level, const struct net_device *dev, 2697 const char *format, ...); 2698extern __printf(2, 3) 2699int netdev_emerg(const struct net_device *dev, const char *format, ...); 2700extern __printf(2, 3) 2701int netdev_alert(const struct net_device *dev, const char *format, ...); 2702extern __printf(2, 3) 2703int netdev_crit(const struct net_device *dev, const char *format, ...); 2704extern __printf(2, 3) 2705int netdev_err(const struct net_device *dev, const char *format, ...); 2706extern __printf(2, 3) 2707int netdev_warn(const struct net_device *dev, const char *format, ...); 2708extern __printf(2, 3) 2709int netdev_notice(const struct net_device *dev, const char *format, ...); 2710extern __printf(2, 3) 2711int netdev_info(const struct net_device *dev, const char *format, ...); 2712 2713#define MODULE_ALIAS_NETDEV(device) \ 2714 MODULE_ALIAS("netdev-" device) 2715 2716#if defined(CONFIG_DYNAMIC_DEBUG) 2717#define netdev_dbg(__dev, format, args...) \ 2718do { \ 2719 dynamic_netdev_dbg(__dev, format, ##args); \ 2720} while (0) 2721#elif defined(DEBUG) 2722#define netdev_dbg(__dev, format, args...) \ 2723 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2724#else 2725#define netdev_dbg(__dev, format, args...) \ 2726({ \ 2727 if (0) \ 2728 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2729 0; \ 2730}) 2731#endif 2732 2733#if defined(VERBOSE_DEBUG) 2734#define netdev_vdbg netdev_dbg 2735#else 2736 2737#define netdev_vdbg(dev, format, args...) \ 2738({ \ 2739 if (0) \ 2740 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2741 0; \ 2742}) 2743#endif 2744 2745/* 2746 * netdev_WARN() acts like dev_printk(), but with the key difference 2747 * of using a WARN/WARN_ON to get the message out, including the 2748 * file/line information and a backtrace. 2749 */ 2750#define netdev_WARN(dev, format, args...) \ 2751 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2752 2753/* netif printk helpers, similar to netdev_printk */ 2754 2755#define netif_printk(priv, type, level, dev, fmt, args...) \ 2756do { \ 2757 if (netif_msg_##type(priv)) \ 2758 netdev_printk(level, (dev), fmt, ##args); \ 2759} while (0) 2760 2761#define netif_level(level, priv, type, dev, fmt, args...) \ 2762do { \ 2763 if (netif_msg_##type(priv)) \ 2764 netdev_##level(dev, fmt, ##args); \ 2765} while (0) 2766 2767#define netif_emerg(priv, type, dev, fmt, args...) \ 2768 netif_level(emerg, priv, type, dev, fmt, ##args) 2769#define netif_alert(priv, type, dev, fmt, args...) \ 2770 netif_level(alert, priv, type, dev, fmt, ##args) 2771#define netif_crit(priv, type, dev, fmt, args...) \ 2772 netif_level(crit, priv, type, dev, fmt, ##args) 2773#define netif_err(priv, type, dev, fmt, args...) \ 2774 netif_level(err, priv, type, dev, fmt, ##args) 2775#define netif_warn(priv, type, dev, fmt, args...) \ 2776 netif_level(warn, priv, type, dev, fmt, ##args) 2777#define netif_notice(priv, type, dev, fmt, args...) \ 2778 netif_level(notice, priv, type, dev, fmt, ##args) 2779#define netif_info(priv, type, dev, fmt, args...) \ 2780 netif_level(info, priv, type, dev, fmt, ##args) 2781 2782#if defined(DEBUG) 2783#define netif_dbg(priv, type, dev, format, args...) \ 2784 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2785#elif defined(CONFIG_DYNAMIC_DEBUG) 2786#define netif_dbg(priv, type, netdev, format, args...) \ 2787do { \ 2788 if (netif_msg_##type(priv)) \ 2789 dynamic_netdev_dbg(netdev, format, ##args); \ 2790} while (0) 2791#else 2792#define netif_dbg(priv, type, dev, format, args...) \ 2793({ \ 2794 if (0) \ 2795 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2796 0; \ 2797}) 2798#endif 2799 2800#if defined(VERBOSE_DEBUG) 2801#define netif_vdbg netif_dbg 2802#else 2803#define netif_vdbg(priv, type, dev, format, args...) \ 2804({ \ 2805 if (0) \ 2806 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2807 0; \ 2808}) 2809#endif 2810 2811#endif /* __KERNEL__ */ 2812 2813#endif /* _LINUX_NETDEVICE_H */