Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/proc_fs.h>
101#include <linux/seq_file.h>
102#include <linux/stat.h>
103#include <net/dst.h>
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
106#include <net/xfrm.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/wext.h>
115#include <net/iw_handler.h>
116#include <asm/current.h>
117#include <linux/audit.h>
118#include <linux/dmaengine.h>
119#include <linux/err.h>
120#include <linux/ctype.h>
121#include <linux/if_arp.h>
122#include <linux/if_vlan.h>
123#include <linux/ip.h>
124#include <net/ip.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127#include <linux/jhash.h>
128#include <linux/random.h>
129#include <trace/events/napi.h>
130#include <trace/events/net.h>
131#include <trace/events/skb.h>
132#include <linux/pci.h>
133#include <linux/inetdevice.h>
134#include <linux/cpu_rmap.h>
135#include <linux/net_tstamp.h>
136#include <linux/static_key.h>
137#include <net/flow_keys.h>
138
139#include "net-sysfs.h"
140
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147/*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175#define PTYPE_HASH_SIZE (16)
176#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178static DEFINE_SPINLOCK(ptype_lock);
179static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180static struct list_head ptype_all __read_mostly; /* Taps */
181
182/*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201DEFINE_RWLOCK(dev_base_lock);
202EXPORT_SYMBOL(dev_base_lock);
203
204static inline void dev_base_seq_inc(struct net *net)
205{
206 while (++net->dev_base_seq == 0);
207}
208
209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210{
211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock(struct softnet_data *sd)
221{
222#ifdef CONFIG_RPS
223 spin_lock(&sd->input_pkt_queue.lock);
224#endif
225}
226
227static inline void rps_unlock(struct softnet_data *sd)
228{
229#ifdef CONFIG_RPS
230 spin_unlock(&sd->input_pkt_queue.lock);
231#endif
232}
233
234/* Device list insertion */
235static int list_netdevice(struct net_device *dev)
236{
237 struct net *net = dev_net(dev);
238
239 ASSERT_RTNL();
240
241 write_lock_bh(&dev_base_lock);
242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 hlist_add_head_rcu(&dev->index_hlist,
245 dev_index_hash(net, dev->ifindex));
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(net);
249
250 return 0;
251}
252
253/* Device list removal
254 * caller must respect a RCU grace period before freeing/reusing dev
255 */
256static void unlist_netdevice(struct net_device *dev)
257{
258 ASSERT_RTNL();
259
260 /* Unlink dev from the device chain */
261 write_lock_bh(&dev_base_lock);
262 list_del_rcu(&dev->dev_list);
263 hlist_del_rcu(&dev->name_hlist);
264 hlist_del_rcu(&dev->index_hlist);
265 write_unlock_bh(&dev_base_lock);
266
267 dev_base_seq_inc(dev_net(dev));
268}
269
270/*
271 * Our notifier list
272 */
273
274static RAW_NOTIFIER_HEAD(netdev_chain);
275
276/*
277 * Device drivers call our routines to queue packets here. We empty the
278 * queue in the local softnet handler.
279 */
280
281DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282EXPORT_PER_CPU_SYMBOL(softnet_data);
283
284#ifdef CONFIG_LOCKDEP
285/*
286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287 * according to dev->type
288 */
289static const unsigned short netdev_lock_type[] =
290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 ARPHRD_VOID, ARPHRD_NONE};
306
307static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 "_xmit_VOID", "_xmit_NONE"};
324
325static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327
328static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329{
330 int i;
331
332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 if (netdev_lock_type[i] == dev_type)
334 return i;
335 /* the last key is used by default */
336 return ARRAY_SIZE(netdev_lock_type) - 1;
337}
338
339static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 unsigned short dev_type)
341{
342 int i;
343
344 i = netdev_lock_pos(dev_type);
345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 netdev_lock_name[i]);
347}
348
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350{
351 int i;
352
353 i = netdev_lock_pos(dev->type);
354 lockdep_set_class_and_name(&dev->addr_list_lock,
355 &netdev_addr_lock_key[i],
356 netdev_lock_name[i]);
357}
358#else
359static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 unsigned short dev_type)
361{
362}
363static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364{
365}
366#endif
367
368/*******************************************************************************
369
370 Protocol management and registration routines
371
372*******************************************************************************/
373
374/*
375 * Add a protocol ID to the list. Now that the input handler is
376 * smarter we can dispense with all the messy stuff that used to be
377 * here.
378 *
379 * BEWARE!!! Protocol handlers, mangling input packets,
380 * MUST BE last in hash buckets and checking protocol handlers
381 * MUST start from promiscuous ptype_all chain in net_bh.
382 * It is true now, do not change it.
383 * Explanation follows: if protocol handler, mangling packet, will
384 * be the first on list, it is not able to sense, that packet
385 * is cloned and should be copied-on-write, so that it will
386 * change it and subsequent readers will get broken packet.
387 * --ANK (980803)
388 */
389
390static inline struct list_head *ptype_head(const struct packet_type *pt)
391{
392 if (pt->type == htons(ETH_P_ALL))
393 return &ptype_all;
394 else
395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396}
397
398/**
399 * dev_add_pack - add packet handler
400 * @pt: packet type declaration
401 *
402 * Add a protocol handler to the networking stack. The passed &packet_type
403 * is linked into kernel lists and may not be freed until it has been
404 * removed from the kernel lists.
405 *
406 * This call does not sleep therefore it can not
407 * guarantee all CPU's that are in middle of receiving packets
408 * will see the new packet type (until the next received packet).
409 */
410
411void dev_add_pack(struct packet_type *pt)
412{
413 struct list_head *head = ptype_head(pt);
414
415 spin_lock(&ptype_lock);
416 list_add_rcu(&pt->list, head);
417 spin_unlock(&ptype_lock);
418}
419EXPORT_SYMBOL(dev_add_pack);
420
421/**
422 * __dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
424 *
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
429 *
430 * The packet type might still be in use by receivers
431 * and must not be freed until after all the CPU's have gone
432 * through a quiescent state.
433 */
434void __dev_remove_pack(struct packet_type *pt)
435{
436 struct list_head *head = ptype_head(pt);
437 struct packet_type *pt1;
438
439 spin_lock(&ptype_lock);
440
441 list_for_each_entry(pt1, head, list) {
442 if (pt == pt1) {
443 list_del_rcu(&pt->list);
444 goto out;
445 }
446 }
447
448 pr_warn("dev_remove_pack: %p not found\n", pt);
449out:
450 spin_unlock(&ptype_lock);
451}
452EXPORT_SYMBOL(__dev_remove_pack);
453
454/**
455 * dev_remove_pack - remove packet handler
456 * @pt: packet type declaration
457 *
458 * Remove a protocol handler that was previously added to the kernel
459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
460 * from the kernel lists and can be freed or reused once this function
461 * returns.
462 *
463 * This call sleeps to guarantee that no CPU is looking at the packet
464 * type after return.
465 */
466void dev_remove_pack(struct packet_type *pt)
467{
468 __dev_remove_pack(pt);
469
470 synchronize_net();
471}
472EXPORT_SYMBOL(dev_remove_pack);
473
474/******************************************************************************
475
476 Device Boot-time Settings Routines
477
478*******************************************************************************/
479
480/* Boot time configuration table */
481static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482
483/**
484 * netdev_boot_setup_add - add new setup entry
485 * @name: name of the device
486 * @map: configured settings for the device
487 *
488 * Adds new setup entry to the dev_boot_setup list. The function
489 * returns 0 on error and 1 on success. This is a generic routine to
490 * all netdevices.
491 */
492static int netdev_boot_setup_add(char *name, struct ifmap *map)
493{
494 struct netdev_boot_setup *s;
495 int i;
496
497 s = dev_boot_setup;
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 memset(s[i].name, 0, sizeof(s[i].name));
501 strlcpy(s[i].name, name, IFNAMSIZ);
502 memcpy(&s[i].map, map, sizeof(s[i].map));
503 break;
504 }
505 }
506
507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508}
509
510/**
511 * netdev_boot_setup_check - check boot time settings
512 * @dev: the netdevice
513 *
514 * Check boot time settings for the device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found, 1 if they are.
518 */
519int netdev_boot_setup_check(struct net_device *dev)
520{
521 struct netdev_boot_setup *s = dev_boot_setup;
522 int i;
523
524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 !strcmp(dev->name, s[i].name)) {
527 dev->irq = s[i].map.irq;
528 dev->base_addr = s[i].map.base_addr;
529 dev->mem_start = s[i].map.mem_start;
530 dev->mem_end = s[i].map.mem_end;
531 return 1;
532 }
533 }
534 return 0;
535}
536EXPORT_SYMBOL(netdev_boot_setup_check);
537
538
539/**
540 * netdev_boot_base - get address from boot time settings
541 * @prefix: prefix for network device
542 * @unit: id for network device
543 *
544 * Check boot time settings for the base address of device.
545 * The found settings are set for the device to be used
546 * later in the device probing.
547 * Returns 0 if no settings found.
548 */
549unsigned long netdev_boot_base(const char *prefix, int unit)
550{
551 const struct netdev_boot_setup *s = dev_boot_setup;
552 char name[IFNAMSIZ];
553 int i;
554
555 sprintf(name, "%s%d", prefix, unit);
556
557 /*
558 * If device already registered then return base of 1
559 * to indicate not to probe for this interface
560 */
561 if (__dev_get_by_name(&init_net, name))
562 return 1;
563
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 if (!strcmp(name, s[i].name))
566 return s[i].map.base_addr;
567 return 0;
568}
569
570/*
571 * Saves at boot time configured settings for any netdevice.
572 */
573int __init netdev_boot_setup(char *str)
574{
575 int ints[5];
576 struct ifmap map;
577
578 str = get_options(str, ARRAY_SIZE(ints), ints);
579 if (!str || !*str)
580 return 0;
581
582 /* Save settings */
583 memset(&map, 0, sizeof(map));
584 if (ints[0] > 0)
585 map.irq = ints[1];
586 if (ints[0] > 1)
587 map.base_addr = ints[2];
588 if (ints[0] > 2)
589 map.mem_start = ints[3];
590 if (ints[0] > 3)
591 map.mem_end = ints[4];
592
593 /* Add new entry to the list */
594 return netdev_boot_setup_add(str, &map);
595}
596
597__setup("netdev=", netdev_boot_setup);
598
599/*******************************************************************************
600
601 Device Interface Subroutines
602
603*******************************************************************************/
604
605/**
606 * __dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
609 *
610 * Find an interface by name. Must be called under RTNL semaphore
611 * or @dev_base_lock. If the name is found a pointer to the device
612 * is returned. If the name is not found then %NULL is returned. The
613 * reference counters are not incremented so the caller must be
614 * careful with locks.
615 */
616
617struct net_device *__dev_get_by_name(struct net *net, const char *name)
618{
619 struct hlist_node *p;
620 struct net_device *dev;
621 struct hlist_head *head = dev_name_hash(net, name);
622
623 hlist_for_each_entry(dev, p, head, name_hlist)
624 if (!strncmp(dev->name, name, IFNAMSIZ))
625 return dev;
626
627 return NULL;
628}
629EXPORT_SYMBOL(__dev_get_by_name);
630
631/**
632 * dev_get_by_name_rcu - find a device by its name
633 * @net: the applicable net namespace
634 * @name: name to find
635 *
636 * Find an interface by name.
637 * If the name is found a pointer to the device is returned.
638 * If the name is not found then %NULL is returned.
639 * The reference counters are not incremented so the caller must be
640 * careful with locks. The caller must hold RCU lock.
641 */
642
643struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644{
645 struct hlist_node *p;
646 struct net_device *dev;
647 struct hlist_head *head = dev_name_hash(net, name);
648
649 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 if (!strncmp(dev->name, name, IFNAMSIZ))
651 return dev;
652
653 return NULL;
654}
655EXPORT_SYMBOL(dev_get_by_name_rcu);
656
657/**
658 * dev_get_by_name - find a device by its name
659 * @net: the applicable net namespace
660 * @name: name to find
661 *
662 * Find an interface by name. This can be called from any
663 * context and does its own locking. The returned handle has
664 * the usage count incremented and the caller must use dev_put() to
665 * release it when it is no longer needed. %NULL is returned if no
666 * matching device is found.
667 */
668
669struct net_device *dev_get_by_name(struct net *net, const char *name)
670{
671 struct net_device *dev;
672
673 rcu_read_lock();
674 dev = dev_get_by_name_rcu(net, name);
675 if (dev)
676 dev_hold(dev);
677 rcu_read_unlock();
678 return dev;
679}
680EXPORT_SYMBOL(dev_get_by_name);
681
682/**
683 * __dev_get_by_index - find a device by its ifindex
684 * @net: the applicable net namespace
685 * @ifindex: index of device
686 *
687 * Search for an interface by index. Returns %NULL if the device
688 * is not found or a pointer to the device. The device has not
689 * had its reference counter increased so the caller must be careful
690 * about locking. The caller must hold either the RTNL semaphore
691 * or @dev_base_lock.
692 */
693
694struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695{
696 struct hlist_node *p;
697 struct net_device *dev;
698 struct hlist_head *head = dev_index_hash(net, ifindex);
699
700 hlist_for_each_entry(dev, p, head, index_hlist)
701 if (dev->ifindex == ifindex)
702 return dev;
703
704 return NULL;
705}
706EXPORT_SYMBOL(__dev_get_by_index);
707
708/**
709 * dev_get_by_index_rcu - find a device by its ifindex
710 * @net: the applicable net namespace
711 * @ifindex: index of device
712 *
713 * Search for an interface by index. Returns %NULL if the device
714 * is not found or a pointer to the device. The device has not
715 * had its reference counter increased so the caller must be careful
716 * about locking. The caller must hold RCU lock.
717 */
718
719struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720{
721 struct hlist_node *p;
722 struct net_device *dev;
723 struct hlist_head *head = dev_index_hash(net, ifindex);
724
725 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 if (dev->ifindex == ifindex)
727 return dev;
728
729 return NULL;
730}
731EXPORT_SYMBOL(dev_get_by_index_rcu);
732
733
734/**
735 * dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns NULL if the device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
743 */
744
745struct net_device *dev_get_by_index(struct net *net, int ifindex)
746{
747 struct net_device *dev;
748
749 rcu_read_lock();
750 dev = dev_get_by_index_rcu(net, ifindex);
751 if (dev)
752 dev_hold(dev);
753 rcu_read_unlock();
754 return dev;
755}
756EXPORT_SYMBOL(dev_get_by_index);
757
758/**
759 * dev_getbyhwaddr_rcu - find a device by its hardware address
760 * @net: the applicable net namespace
761 * @type: media type of device
762 * @ha: hardware address
763 *
764 * Search for an interface by MAC address. Returns NULL if the device
765 * is not found or a pointer to the device.
766 * The caller must hold RCU or RTNL.
767 * The returned device has not had its ref count increased
768 * and the caller must therefore be careful about locking
769 *
770 */
771
772struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 const char *ha)
774{
775 struct net_device *dev;
776
777 for_each_netdev_rcu(net, dev)
778 if (dev->type == type &&
779 !memcmp(dev->dev_addr, ha, dev->addr_len))
780 return dev;
781
782 return NULL;
783}
784EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785
786struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787{
788 struct net_device *dev;
789
790 ASSERT_RTNL();
791 for_each_netdev(net, dev)
792 if (dev->type == type)
793 return dev;
794
795 return NULL;
796}
797EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798
799struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800{
801 struct net_device *dev, *ret = NULL;
802
803 rcu_read_lock();
804 for_each_netdev_rcu(net, dev)
805 if (dev->type == type) {
806 dev_hold(dev);
807 ret = dev;
808 break;
809 }
810 rcu_read_unlock();
811 return ret;
812}
813EXPORT_SYMBOL(dev_getfirstbyhwtype);
814
815/**
816 * dev_get_by_flags_rcu - find any device with given flags
817 * @net: the applicable net namespace
818 * @if_flags: IFF_* values
819 * @mask: bitmask of bits in if_flags to check
820 *
821 * Search for any interface with the given flags. Returns NULL if a device
822 * is not found or a pointer to the device. Must be called inside
823 * rcu_read_lock(), and result refcount is unchanged.
824 */
825
826struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 unsigned short mask)
828{
829 struct net_device *dev, *ret;
830
831 ret = NULL;
832 for_each_netdev_rcu(net, dev) {
833 if (((dev->flags ^ if_flags) & mask) == 0) {
834 ret = dev;
835 break;
836 }
837 }
838 return ret;
839}
840EXPORT_SYMBOL(dev_get_by_flags_rcu);
841
842/**
843 * dev_valid_name - check if name is okay for network device
844 * @name: name string
845 *
846 * Network device names need to be valid file names to
847 * to allow sysfs to work. We also disallow any kind of
848 * whitespace.
849 */
850bool dev_valid_name(const char *name)
851{
852 if (*name == '\0')
853 return false;
854 if (strlen(name) >= IFNAMSIZ)
855 return false;
856 if (!strcmp(name, ".") || !strcmp(name, ".."))
857 return false;
858
859 while (*name) {
860 if (*name == '/' || isspace(*name))
861 return false;
862 name++;
863 }
864 return true;
865}
866EXPORT_SYMBOL(dev_valid_name);
867
868/**
869 * __dev_alloc_name - allocate a name for a device
870 * @net: network namespace to allocate the device name in
871 * @name: name format string
872 * @buf: scratch buffer and result name string
873 *
874 * Passed a format string - eg "lt%d" it will try and find a suitable
875 * id. It scans list of devices to build up a free map, then chooses
876 * the first empty slot. The caller must hold the dev_base or rtnl lock
877 * while allocating the name and adding the device in order to avoid
878 * duplicates.
879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880 * Returns the number of the unit assigned or a negative errno code.
881 */
882
883static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884{
885 int i = 0;
886 const char *p;
887 const int max_netdevices = 8*PAGE_SIZE;
888 unsigned long *inuse;
889 struct net_device *d;
890
891 p = strnchr(name, IFNAMSIZ-1, '%');
892 if (p) {
893 /*
894 * Verify the string as this thing may have come from
895 * the user. There must be either one "%d" and no other "%"
896 * characters.
897 */
898 if (p[1] != 'd' || strchr(p + 2, '%'))
899 return -EINVAL;
900
901 /* Use one page as a bit array of possible slots */
902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 if (!inuse)
904 return -ENOMEM;
905
906 for_each_netdev(net, d) {
907 if (!sscanf(d->name, name, &i))
908 continue;
909 if (i < 0 || i >= max_netdevices)
910 continue;
911
912 /* avoid cases where sscanf is not exact inverse of printf */
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!strncmp(buf, d->name, IFNAMSIZ))
915 set_bit(i, inuse);
916 }
917
918 i = find_first_zero_bit(inuse, max_netdevices);
919 free_page((unsigned long) inuse);
920 }
921
922 if (buf != name)
923 snprintf(buf, IFNAMSIZ, name, i);
924 if (!__dev_get_by_name(net, buf))
925 return i;
926
927 /* It is possible to run out of possible slots
928 * when the name is long and there isn't enough space left
929 * for the digits, or if all bits are used.
930 */
931 return -ENFILE;
932}
933
934/**
935 * dev_alloc_name - allocate a name for a device
936 * @dev: device
937 * @name: name format string
938 *
939 * Passed a format string - eg "lt%d" it will try and find a suitable
940 * id. It scans list of devices to build up a free map, then chooses
941 * the first empty slot. The caller must hold the dev_base or rtnl lock
942 * while allocating the name and adding the device in order to avoid
943 * duplicates.
944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945 * Returns the number of the unit assigned or a negative errno code.
946 */
947
948int dev_alloc_name(struct net_device *dev, const char *name)
949{
950 char buf[IFNAMSIZ];
951 struct net *net;
952 int ret;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956 ret = __dev_alloc_name(net, name, buf);
957 if (ret >= 0)
958 strlcpy(dev->name, buf, IFNAMSIZ);
959 return ret;
960}
961EXPORT_SYMBOL(dev_alloc_name);
962
963static int dev_get_valid_name(struct net_device *dev, const char *name)
964{
965 struct net *net;
966
967 BUG_ON(!dev_net(dev));
968 net = dev_net(dev);
969
970 if (!dev_valid_name(name))
971 return -EINVAL;
972
973 if (strchr(name, '%'))
974 return dev_alloc_name(dev, name);
975 else if (__dev_get_by_name(net, name))
976 return -EEXIST;
977 else if (dev->name != name)
978 strlcpy(dev->name, name, IFNAMSIZ);
979
980 return 0;
981}
982
983/**
984 * dev_change_name - change name of a device
985 * @dev: device
986 * @newname: name (or format string) must be at least IFNAMSIZ
987 *
988 * Change name of a device, can pass format strings "eth%d".
989 * for wildcarding.
990 */
991int dev_change_name(struct net_device *dev, const char *newname)
992{
993 char oldname[IFNAMSIZ];
994 int err = 0;
995 int ret;
996 struct net *net;
997
998 ASSERT_RTNL();
999 BUG_ON(!dev_net(dev));
1000
1001 net = dev_net(dev);
1002 if (dev->flags & IFF_UP)
1003 return -EBUSY;
1004
1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 return 0;
1007
1008 memcpy(oldname, dev->name, IFNAMSIZ);
1009
1010 err = dev_get_valid_name(dev, newname);
1011 if (err < 0)
1012 return err;
1013
1014rollback:
1015 ret = device_rename(&dev->dev, dev->name);
1016 if (ret) {
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 return ret;
1019 }
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_del_rcu(&dev->name_hlist);
1023 write_unlock_bh(&dev_base_lock);
1024
1025 synchronize_rcu();
1026
1027 write_lock_bh(&dev_base_lock);
1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 write_unlock_bh(&dev_base_lock);
1030
1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 ret = notifier_to_errno(ret);
1033
1034 if (ret) {
1035 /* err >= 0 after dev_alloc_name() or stores the first errno */
1036 if (err >= 0) {
1037 err = ret;
1038 memcpy(dev->name, oldname, IFNAMSIZ);
1039 goto rollback;
1040 } else {
1041 pr_err("%s: name change rollback failed: %d\n",
1042 dev->name, ret);
1043 }
1044 }
1045
1046 return err;
1047}
1048
1049/**
1050 * dev_set_alias - change ifalias of a device
1051 * @dev: device
1052 * @alias: name up to IFALIASZ
1053 * @len: limit of bytes to copy from info
1054 *
1055 * Set ifalias for a device,
1056 */
1057int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058{
1059 ASSERT_RTNL();
1060
1061 if (len >= IFALIASZ)
1062 return -EINVAL;
1063
1064 if (!len) {
1065 if (dev->ifalias) {
1066 kfree(dev->ifalias);
1067 dev->ifalias = NULL;
1068 }
1069 return 0;
1070 }
1071
1072 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1073 if (!dev->ifalias)
1074 return -ENOMEM;
1075
1076 strlcpy(dev->ifalias, alias, len+1);
1077 return len;
1078}
1079
1080
1081/**
1082 * netdev_features_change - device changes features
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed features.
1086 */
1087void netdev_features_change(struct net_device *dev)
1088{
1089 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1090}
1091EXPORT_SYMBOL(netdev_features_change);
1092
1093/**
1094 * netdev_state_change - device changes state
1095 * @dev: device to cause notification
1096 *
1097 * Called to indicate a device has changed state. This function calls
1098 * the notifier chains for netdev_chain and sends a NEWLINK message
1099 * to the routing socket.
1100 */
1101void netdev_state_change(struct net_device *dev)
1102{
1103 if (dev->flags & IFF_UP) {
1104 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1105 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1106 }
1107}
1108EXPORT_SYMBOL(netdev_state_change);
1109
1110int netdev_bonding_change(struct net_device *dev, unsigned long event)
1111{
1112 return call_netdevice_notifiers(event, dev);
1113}
1114EXPORT_SYMBOL(netdev_bonding_change);
1115
1116/**
1117 * dev_load - load a network module
1118 * @net: the applicable net namespace
1119 * @name: name of interface
1120 *
1121 * If a network interface is not present and the process has suitable
1122 * privileges this function loads the module. If module loading is not
1123 * available in this kernel then it becomes a nop.
1124 */
1125
1126void dev_load(struct net *net, const char *name)
1127{
1128 struct net_device *dev;
1129 int no_module;
1130
1131 rcu_read_lock();
1132 dev = dev_get_by_name_rcu(net, name);
1133 rcu_read_unlock();
1134
1135 no_module = !dev;
1136 if (no_module && capable(CAP_NET_ADMIN))
1137 no_module = request_module("netdev-%s", name);
1138 if (no_module && capable(CAP_SYS_MODULE)) {
1139 if (!request_module("%s", name))
1140 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1141 name);
1142 }
1143}
1144EXPORT_SYMBOL(dev_load);
1145
1146static int __dev_open(struct net_device *dev)
1147{
1148 const struct net_device_ops *ops = dev->netdev_ops;
1149 int ret;
1150
1151 ASSERT_RTNL();
1152
1153 if (!netif_device_present(dev))
1154 return -ENODEV;
1155
1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 ret = notifier_to_errno(ret);
1158 if (ret)
1159 return ret;
1160
1161 set_bit(__LINK_STATE_START, &dev->state);
1162
1163 if (ops->ndo_validate_addr)
1164 ret = ops->ndo_validate_addr(dev);
1165
1166 if (!ret && ops->ndo_open)
1167 ret = ops->ndo_open(dev);
1168
1169 if (ret)
1170 clear_bit(__LINK_STATE_START, &dev->state);
1171 else {
1172 dev->flags |= IFF_UP;
1173 net_dmaengine_get();
1174 dev_set_rx_mode(dev);
1175 dev_activate(dev);
1176 }
1177
1178 return ret;
1179}
1180
1181/**
1182 * dev_open - prepare an interface for use.
1183 * @dev: device to open
1184 *
1185 * Takes a device from down to up state. The device's private open
1186 * function is invoked and then the multicast lists are loaded. Finally
1187 * the device is moved into the up state and a %NETDEV_UP message is
1188 * sent to the netdev notifier chain.
1189 *
1190 * Calling this function on an active interface is a nop. On a failure
1191 * a negative errno code is returned.
1192 */
1193int dev_open(struct net_device *dev)
1194{
1195 int ret;
1196
1197 if (dev->flags & IFF_UP)
1198 return 0;
1199
1200 ret = __dev_open(dev);
1201 if (ret < 0)
1202 return ret;
1203
1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 call_netdevice_notifiers(NETDEV_UP, dev);
1206
1207 return ret;
1208}
1209EXPORT_SYMBOL(dev_open);
1210
1211static int __dev_close_many(struct list_head *head)
1212{
1213 struct net_device *dev;
1214
1215 ASSERT_RTNL();
1216 might_sleep();
1217
1218 list_for_each_entry(dev, head, unreg_list) {
1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220
1221 clear_bit(__LINK_STATE_START, &dev->state);
1222
1223 /* Synchronize to scheduled poll. We cannot touch poll list, it
1224 * can be even on different cpu. So just clear netif_running().
1225 *
1226 * dev->stop() will invoke napi_disable() on all of it's
1227 * napi_struct instances on this device.
1228 */
1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230 }
1231
1232 dev_deactivate_many(head);
1233
1234 list_for_each_entry(dev, head, unreg_list) {
1235 const struct net_device_ops *ops = dev->netdev_ops;
1236
1237 /*
1238 * Call the device specific close. This cannot fail.
1239 * Only if device is UP
1240 *
1241 * We allow it to be called even after a DETACH hot-plug
1242 * event.
1243 */
1244 if (ops->ndo_stop)
1245 ops->ndo_stop(dev);
1246
1247 dev->flags &= ~IFF_UP;
1248 net_dmaengine_put();
1249 }
1250
1251 return 0;
1252}
1253
1254static int __dev_close(struct net_device *dev)
1255{
1256 int retval;
1257 LIST_HEAD(single);
1258
1259 list_add(&dev->unreg_list, &single);
1260 retval = __dev_close_many(&single);
1261 list_del(&single);
1262 return retval;
1263}
1264
1265static int dev_close_many(struct list_head *head)
1266{
1267 struct net_device *dev, *tmp;
1268 LIST_HEAD(tmp_list);
1269
1270 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 if (!(dev->flags & IFF_UP))
1272 list_move(&dev->unreg_list, &tmp_list);
1273
1274 __dev_close_many(head);
1275
1276 list_for_each_entry(dev, head, unreg_list) {
1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 call_netdevice_notifiers(NETDEV_DOWN, dev);
1279 }
1280
1281 /* rollback_registered_many needs the complete original list */
1282 list_splice(&tmp_list, head);
1283 return 0;
1284}
1285
1286/**
1287 * dev_close - shutdown an interface.
1288 * @dev: device to shutdown
1289 *
1290 * This function moves an active device into down state. A
1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293 * chain.
1294 */
1295int dev_close(struct net_device *dev)
1296{
1297 if (dev->flags & IFF_UP) {
1298 LIST_HEAD(single);
1299
1300 list_add(&dev->unreg_list, &single);
1301 dev_close_many(&single);
1302 list_del(&single);
1303 }
1304 return 0;
1305}
1306EXPORT_SYMBOL(dev_close);
1307
1308
1309/**
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1312 *
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1316 */
1317void dev_disable_lro(struct net_device *dev)
1318{
1319 /*
1320 * If we're trying to disable lro on a vlan device
1321 * use the underlying physical device instead
1322 */
1323 if (is_vlan_dev(dev))
1324 dev = vlan_dev_real_dev(dev);
1325
1326 dev->wanted_features &= ~NETIF_F_LRO;
1327 netdev_update_features(dev);
1328
1329 if (unlikely(dev->features & NETIF_F_LRO))
1330 netdev_WARN(dev, "failed to disable LRO!\n");
1331}
1332EXPORT_SYMBOL(dev_disable_lro);
1333
1334
1335static int dev_boot_phase = 1;
1336
1337/**
1338 * register_netdevice_notifier - register a network notifier block
1339 * @nb: notifier
1340 *
1341 * Register a notifier to be called when network device events occur.
1342 * The notifier passed is linked into the kernel structures and must
1343 * not be reused until it has been unregistered. A negative errno code
1344 * is returned on a failure.
1345 *
1346 * When registered all registration and up events are replayed
1347 * to the new notifier to allow device to have a race free
1348 * view of the network device list.
1349 */
1350
1351int register_netdevice_notifier(struct notifier_block *nb)
1352{
1353 struct net_device *dev;
1354 struct net_device *last;
1355 struct net *net;
1356 int err;
1357
1358 rtnl_lock();
1359 err = raw_notifier_chain_register(&netdev_chain, nb);
1360 if (err)
1361 goto unlock;
1362 if (dev_boot_phase)
1363 goto unlock;
1364 for_each_net(net) {
1365 for_each_netdev(net, dev) {
1366 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1367 err = notifier_to_errno(err);
1368 if (err)
1369 goto rollback;
1370
1371 if (!(dev->flags & IFF_UP))
1372 continue;
1373
1374 nb->notifier_call(nb, NETDEV_UP, dev);
1375 }
1376 }
1377
1378unlock:
1379 rtnl_unlock();
1380 return err;
1381
1382rollback:
1383 last = dev;
1384 for_each_net(net) {
1385 for_each_netdev(net, dev) {
1386 if (dev == last)
1387 goto outroll;
1388
1389 if (dev->flags & IFF_UP) {
1390 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1391 nb->notifier_call(nb, NETDEV_DOWN, dev);
1392 }
1393 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1394 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1395 }
1396 }
1397
1398outroll:
1399 raw_notifier_chain_unregister(&netdev_chain, nb);
1400 goto unlock;
1401}
1402EXPORT_SYMBOL(register_netdevice_notifier);
1403
1404/**
1405 * unregister_netdevice_notifier - unregister a network notifier block
1406 * @nb: notifier
1407 *
1408 * Unregister a notifier previously registered by
1409 * register_netdevice_notifier(). The notifier is unlinked into the
1410 * kernel structures and may then be reused. A negative errno code
1411 * is returned on a failure.
1412 */
1413
1414int unregister_netdevice_notifier(struct notifier_block *nb)
1415{
1416 int err;
1417
1418 rtnl_lock();
1419 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1420 rtnl_unlock();
1421 return err;
1422}
1423EXPORT_SYMBOL(unregister_netdevice_notifier);
1424
1425/**
1426 * call_netdevice_notifiers - call all network notifier blocks
1427 * @val: value passed unmodified to notifier function
1428 * @dev: net_device pointer passed unmodified to notifier function
1429 *
1430 * Call all network notifier blocks. Parameters and return value
1431 * are as for raw_notifier_call_chain().
1432 */
1433
1434int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1435{
1436 ASSERT_RTNL();
1437 return raw_notifier_call_chain(&netdev_chain, val, dev);
1438}
1439EXPORT_SYMBOL(call_netdevice_notifiers);
1440
1441static struct static_key netstamp_needed __read_mostly;
1442#ifdef HAVE_JUMP_LABEL
1443/* We are not allowed to call static_key_slow_dec() from irq context
1444 * If net_disable_timestamp() is called from irq context, defer the
1445 * static_key_slow_dec() calls.
1446 */
1447static atomic_t netstamp_needed_deferred;
1448#endif
1449
1450void net_enable_timestamp(void)
1451{
1452#ifdef HAVE_JUMP_LABEL
1453 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1454
1455 if (deferred) {
1456 while (--deferred)
1457 static_key_slow_dec(&netstamp_needed);
1458 return;
1459 }
1460#endif
1461 WARN_ON(in_interrupt());
1462 static_key_slow_inc(&netstamp_needed);
1463}
1464EXPORT_SYMBOL(net_enable_timestamp);
1465
1466void net_disable_timestamp(void)
1467{
1468#ifdef HAVE_JUMP_LABEL
1469 if (in_interrupt()) {
1470 atomic_inc(&netstamp_needed_deferred);
1471 return;
1472 }
1473#endif
1474 static_key_slow_dec(&netstamp_needed);
1475}
1476EXPORT_SYMBOL(net_disable_timestamp);
1477
1478static inline void net_timestamp_set(struct sk_buff *skb)
1479{
1480 skb->tstamp.tv64 = 0;
1481 if (static_key_false(&netstamp_needed))
1482 __net_timestamp(skb);
1483}
1484
1485#define net_timestamp_check(COND, SKB) \
1486 if (static_key_false(&netstamp_needed)) { \
1487 if ((COND) && !(SKB)->tstamp.tv64) \
1488 __net_timestamp(SKB); \
1489 } \
1490
1491static int net_hwtstamp_validate(struct ifreq *ifr)
1492{
1493 struct hwtstamp_config cfg;
1494 enum hwtstamp_tx_types tx_type;
1495 enum hwtstamp_rx_filters rx_filter;
1496 int tx_type_valid = 0;
1497 int rx_filter_valid = 0;
1498
1499 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1500 return -EFAULT;
1501
1502 if (cfg.flags) /* reserved for future extensions */
1503 return -EINVAL;
1504
1505 tx_type = cfg.tx_type;
1506 rx_filter = cfg.rx_filter;
1507
1508 switch (tx_type) {
1509 case HWTSTAMP_TX_OFF:
1510 case HWTSTAMP_TX_ON:
1511 case HWTSTAMP_TX_ONESTEP_SYNC:
1512 tx_type_valid = 1;
1513 break;
1514 }
1515
1516 switch (rx_filter) {
1517 case HWTSTAMP_FILTER_NONE:
1518 case HWTSTAMP_FILTER_ALL:
1519 case HWTSTAMP_FILTER_SOME:
1520 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1521 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1522 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1523 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1524 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1525 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1526 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1527 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1528 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1529 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1530 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1531 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1532 rx_filter_valid = 1;
1533 break;
1534 }
1535
1536 if (!tx_type_valid || !rx_filter_valid)
1537 return -ERANGE;
1538
1539 return 0;
1540}
1541
1542static inline bool is_skb_forwardable(struct net_device *dev,
1543 struct sk_buff *skb)
1544{
1545 unsigned int len;
1546
1547 if (!(dev->flags & IFF_UP))
1548 return false;
1549
1550 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1551 if (skb->len <= len)
1552 return true;
1553
1554 /* if TSO is enabled, we don't care about the length as the packet
1555 * could be forwarded without being segmented before
1556 */
1557 if (skb_is_gso(skb))
1558 return true;
1559
1560 return false;
1561}
1562
1563/**
1564 * dev_forward_skb - loopback an skb to another netif
1565 *
1566 * @dev: destination network device
1567 * @skb: buffer to forward
1568 *
1569 * return values:
1570 * NET_RX_SUCCESS (no congestion)
1571 * NET_RX_DROP (packet was dropped, but freed)
1572 *
1573 * dev_forward_skb can be used for injecting an skb from the
1574 * start_xmit function of one device into the receive queue
1575 * of another device.
1576 *
1577 * The receiving device may be in another namespace, so
1578 * we have to clear all information in the skb that could
1579 * impact namespace isolation.
1580 */
1581int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1582{
1583 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1584 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1585 atomic_long_inc(&dev->rx_dropped);
1586 kfree_skb(skb);
1587 return NET_RX_DROP;
1588 }
1589 }
1590
1591 skb_orphan(skb);
1592 nf_reset(skb);
1593
1594 if (unlikely(!is_skb_forwardable(dev, skb))) {
1595 atomic_long_inc(&dev->rx_dropped);
1596 kfree_skb(skb);
1597 return NET_RX_DROP;
1598 }
1599 skb_set_dev(skb, dev);
1600 skb->tstamp.tv64 = 0;
1601 skb->pkt_type = PACKET_HOST;
1602 skb->protocol = eth_type_trans(skb, dev);
1603 return netif_rx(skb);
1604}
1605EXPORT_SYMBOL_GPL(dev_forward_skb);
1606
1607static inline int deliver_skb(struct sk_buff *skb,
1608 struct packet_type *pt_prev,
1609 struct net_device *orig_dev)
1610{
1611 atomic_inc(&skb->users);
1612 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1613}
1614
1615/*
1616 * Support routine. Sends outgoing frames to any network
1617 * taps currently in use.
1618 */
1619
1620static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1621{
1622 struct packet_type *ptype;
1623 struct sk_buff *skb2 = NULL;
1624 struct packet_type *pt_prev = NULL;
1625
1626 rcu_read_lock();
1627 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1628 /* Never send packets back to the socket
1629 * they originated from - MvS (miquels@drinkel.ow.org)
1630 */
1631 if ((ptype->dev == dev || !ptype->dev) &&
1632 (ptype->af_packet_priv == NULL ||
1633 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1634 if (pt_prev) {
1635 deliver_skb(skb2, pt_prev, skb->dev);
1636 pt_prev = ptype;
1637 continue;
1638 }
1639
1640 skb2 = skb_clone(skb, GFP_ATOMIC);
1641 if (!skb2)
1642 break;
1643
1644 net_timestamp_set(skb2);
1645
1646 /* skb->nh should be correctly
1647 set by sender, so that the second statement is
1648 just protection against buggy protocols.
1649 */
1650 skb_reset_mac_header(skb2);
1651
1652 if (skb_network_header(skb2) < skb2->data ||
1653 skb2->network_header > skb2->tail) {
1654 if (net_ratelimit())
1655 pr_crit("protocol %04x is buggy, dev %s\n",
1656 ntohs(skb2->protocol),
1657 dev->name);
1658 skb_reset_network_header(skb2);
1659 }
1660
1661 skb2->transport_header = skb2->network_header;
1662 skb2->pkt_type = PACKET_OUTGOING;
1663 pt_prev = ptype;
1664 }
1665 }
1666 if (pt_prev)
1667 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1668 rcu_read_unlock();
1669}
1670
1671/* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1672 * @dev: Network device
1673 * @txq: number of queues available
1674 *
1675 * If real_num_tx_queues is changed the tc mappings may no longer be
1676 * valid. To resolve this verify the tc mapping remains valid and if
1677 * not NULL the mapping. With no priorities mapping to this
1678 * offset/count pair it will no longer be used. In the worst case TC0
1679 * is invalid nothing can be done so disable priority mappings. If is
1680 * expected that drivers will fix this mapping if they can before
1681 * calling netif_set_real_num_tx_queues.
1682 */
1683static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1684{
1685 int i;
1686 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1687
1688 /* If TC0 is invalidated disable TC mapping */
1689 if (tc->offset + tc->count > txq) {
1690 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1691 dev->num_tc = 0;
1692 return;
1693 }
1694
1695 /* Invalidated prio to tc mappings set to TC0 */
1696 for (i = 1; i < TC_BITMASK + 1; i++) {
1697 int q = netdev_get_prio_tc_map(dev, i);
1698
1699 tc = &dev->tc_to_txq[q];
1700 if (tc->offset + tc->count > txq) {
1701 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1702 i, q);
1703 netdev_set_prio_tc_map(dev, i, 0);
1704 }
1705 }
1706}
1707
1708/*
1709 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1710 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1711 */
1712int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1713{
1714 int rc;
1715
1716 if (txq < 1 || txq > dev->num_tx_queues)
1717 return -EINVAL;
1718
1719 if (dev->reg_state == NETREG_REGISTERED ||
1720 dev->reg_state == NETREG_UNREGISTERING) {
1721 ASSERT_RTNL();
1722
1723 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1724 txq);
1725 if (rc)
1726 return rc;
1727
1728 if (dev->num_tc)
1729 netif_setup_tc(dev, txq);
1730
1731 if (txq < dev->real_num_tx_queues)
1732 qdisc_reset_all_tx_gt(dev, txq);
1733 }
1734
1735 dev->real_num_tx_queues = txq;
1736 return 0;
1737}
1738EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1739
1740#ifdef CONFIG_RPS
1741/**
1742 * netif_set_real_num_rx_queues - set actual number of RX queues used
1743 * @dev: Network device
1744 * @rxq: Actual number of RX queues
1745 *
1746 * This must be called either with the rtnl_lock held or before
1747 * registration of the net device. Returns 0 on success, or a
1748 * negative error code. If called before registration, it always
1749 * succeeds.
1750 */
1751int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1752{
1753 int rc;
1754
1755 if (rxq < 1 || rxq > dev->num_rx_queues)
1756 return -EINVAL;
1757
1758 if (dev->reg_state == NETREG_REGISTERED) {
1759 ASSERT_RTNL();
1760
1761 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1762 rxq);
1763 if (rc)
1764 return rc;
1765 }
1766
1767 dev->real_num_rx_queues = rxq;
1768 return 0;
1769}
1770EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1771#endif
1772
1773static inline void __netif_reschedule(struct Qdisc *q)
1774{
1775 struct softnet_data *sd;
1776 unsigned long flags;
1777
1778 local_irq_save(flags);
1779 sd = &__get_cpu_var(softnet_data);
1780 q->next_sched = NULL;
1781 *sd->output_queue_tailp = q;
1782 sd->output_queue_tailp = &q->next_sched;
1783 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1784 local_irq_restore(flags);
1785}
1786
1787void __netif_schedule(struct Qdisc *q)
1788{
1789 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1790 __netif_reschedule(q);
1791}
1792EXPORT_SYMBOL(__netif_schedule);
1793
1794void dev_kfree_skb_irq(struct sk_buff *skb)
1795{
1796 if (atomic_dec_and_test(&skb->users)) {
1797 struct softnet_data *sd;
1798 unsigned long flags;
1799
1800 local_irq_save(flags);
1801 sd = &__get_cpu_var(softnet_data);
1802 skb->next = sd->completion_queue;
1803 sd->completion_queue = skb;
1804 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1805 local_irq_restore(flags);
1806 }
1807}
1808EXPORT_SYMBOL(dev_kfree_skb_irq);
1809
1810void dev_kfree_skb_any(struct sk_buff *skb)
1811{
1812 if (in_irq() || irqs_disabled())
1813 dev_kfree_skb_irq(skb);
1814 else
1815 dev_kfree_skb(skb);
1816}
1817EXPORT_SYMBOL(dev_kfree_skb_any);
1818
1819
1820/**
1821 * netif_device_detach - mark device as removed
1822 * @dev: network device
1823 *
1824 * Mark device as removed from system and therefore no longer available.
1825 */
1826void netif_device_detach(struct net_device *dev)
1827{
1828 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1829 netif_running(dev)) {
1830 netif_tx_stop_all_queues(dev);
1831 }
1832}
1833EXPORT_SYMBOL(netif_device_detach);
1834
1835/**
1836 * netif_device_attach - mark device as attached
1837 * @dev: network device
1838 *
1839 * Mark device as attached from system and restart if needed.
1840 */
1841void netif_device_attach(struct net_device *dev)
1842{
1843 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1844 netif_running(dev)) {
1845 netif_tx_wake_all_queues(dev);
1846 __netdev_watchdog_up(dev);
1847 }
1848}
1849EXPORT_SYMBOL(netif_device_attach);
1850
1851/**
1852 * skb_dev_set -- assign a new device to a buffer
1853 * @skb: buffer for the new device
1854 * @dev: network device
1855 *
1856 * If an skb is owned by a device already, we have to reset
1857 * all data private to the namespace a device belongs to
1858 * before assigning it a new device.
1859 */
1860#ifdef CONFIG_NET_NS
1861void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1862{
1863 skb_dst_drop(skb);
1864 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1865 secpath_reset(skb);
1866 nf_reset(skb);
1867 skb_init_secmark(skb);
1868 skb->mark = 0;
1869 skb->priority = 0;
1870 skb->nf_trace = 0;
1871 skb->ipvs_property = 0;
1872#ifdef CONFIG_NET_SCHED
1873 skb->tc_index = 0;
1874#endif
1875 }
1876 skb->dev = dev;
1877}
1878EXPORT_SYMBOL(skb_set_dev);
1879#endif /* CONFIG_NET_NS */
1880
1881static void skb_warn_bad_offload(const struct sk_buff *skb)
1882{
1883 static const netdev_features_t null_features = 0;
1884 struct net_device *dev = skb->dev;
1885 const char *driver = "";
1886
1887 if (dev && dev->dev.parent)
1888 driver = dev_driver_string(dev->dev.parent);
1889
1890 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1891 "gso_type=%d ip_summed=%d\n",
1892 driver, dev ? &dev->features : &null_features,
1893 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1894 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1895 skb_shinfo(skb)->gso_type, skb->ip_summed);
1896}
1897
1898/*
1899 * Invalidate hardware checksum when packet is to be mangled, and
1900 * complete checksum manually on outgoing path.
1901 */
1902int skb_checksum_help(struct sk_buff *skb)
1903{
1904 __wsum csum;
1905 int ret = 0, offset;
1906
1907 if (skb->ip_summed == CHECKSUM_COMPLETE)
1908 goto out_set_summed;
1909
1910 if (unlikely(skb_shinfo(skb)->gso_size)) {
1911 skb_warn_bad_offload(skb);
1912 return -EINVAL;
1913 }
1914
1915 offset = skb_checksum_start_offset(skb);
1916 BUG_ON(offset >= skb_headlen(skb));
1917 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1918
1919 offset += skb->csum_offset;
1920 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1921
1922 if (skb_cloned(skb) &&
1923 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1924 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1925 if (ret)
1926 goto out;
1927 }
1928
1929 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1930out_set_summed:
1931 skb->ip_summed = CHECKSUM_NONE;
1932out:
1933 return ret;
1934}
1935EXPORT_SYMBOL(skb_checksum_help);
1936
1937/**
1938 * skb_gso_segment - Perform segmentation on skb.
1939 * @skb: buffer to segment
1940 * @features: features for the output path (see dev->features)
1941 *
1942 * This function segments the given skb and returns a list of segments.
1943 *
1944 * It may return NULL if the skb requires no segmentation. This is
1945 * only possible when GSO is used for verifying header integrity.
1946 */
1947struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1948 netdev_features_t features)
1949{
1950 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1951 struct packet_type *ptype;
1952 __be16 type = skb->protocol;
1953 int vlan_depth = ETH_HLEN;
1954 int err;
1955
1956 while (type == htons(ETH_P_8021Q)) {
1957 struct vlan_hdr *vh;
1958
1959 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1960 return ERR_PTR(-EINVAL);
1961
1962 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1963 type = vh->h_vlan_encapsulated_proto;
1964 vlan_depth += VLAN_HLEN;
1965 }
1966
1967 skb_reset_mac_header(skb);
1968 skb->mac_len = skb->network_header - skb->mac_header;
1969 __skb_pull(skb, skb->mac_len);
1970
1971 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1972 skb_warn_bad_offload(skb);
1973
1974 if (skb_header_cloned(skb) &&
1975 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1976 return ERR_PTR(err);
1977 }
1978
1979 rcu_read_lock();
1980 list_for_each_entry_rcu(ptype,
1981 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1982 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1983 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1984 err = ptype->gso_send_check(skb);
1985 segs = ERR_PTR(err);
1986 if (err || skb_gso_ok(skb, features))
1987 break;
1988 __skb_push(skb, (skb->data -
1989 skb_network_header(skb)));
1990 }
1991 segs = ptype->gso_segment(skb, features);
1992 break;
1993 }
1994 }
1995 rcu_read_unlock();
1996
1997 __skb_push(skb, skb->data - skb_mac_header(skb));
1998
1999 return segs;
2000}
2001EXPORT_SYMBOL(skb_gso_segment);
2002
2003/* Take action when hardware reception checksum errors are detected. */
2004#ifdef CONFIG_BUG
2005void netdev_rx_csum_fault(struct net_device *dev)
2006{
2007 if (net_ratelimit()) {
2008 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2009 dump_stack();
2010 }
2011}
2012EXPORT_SYMBOL(netdev_rx_csum_fault);
2013#endif
2014
2015/* Actually, we should eliminate this check as soon as we know, that:
2016 * 1. IOMMU is present and allows to map all the memory.
2017 * 2. No high memory really exists on this machine.
2018 */
2019
2020static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2021{
2022#ifdef CONFIG_HIGHMEM
2023 int i;
2024 if (!(dev->features & NETIF_F_HIGHDMA)) {
2025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2026 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2027 if (PageHighMem(skb_frag_page(frag)))
2028 return 1;
2029 }
2030 }
2031
2032 if (PCI_DMA_BUS_IS_PHYS) {
2033 struct device *pdev = dev->dev.parent;
2034
2035 if (!pdev)
2036 return 0;
2037 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2038 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2039 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2040 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2041 return 1;
2042 }
2043 }
2044#endif
2045 return 0;
2046}
2047
2048struct dev_gso_cb {
2049 void (*destructor)(struct sk_buff *skb);
2050};
2051
2052#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2053
2054static void dev_gso_skb_destructor(struct sk_buff *skb)
2055{
2056 struct dev_gso_cb *cb;
2057
2058 do {
2059 struct sk_buff *nskb = skb->next;
2060
2061 skb->next = nskb->next;
2062 nskb->next = NULL;
2063 kfree_skb(nskb);
2064 } while (skb->next);
2065
2066 cb = DEV_GSO_CB(skb);
2067 if (cb->destructor)
2068 cb->destructor(skb);
2069}
2070
2071/**
2072 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2073 * @skb: buffer to segment
2074 * @features: device features as applicable to this skb
2075 *
2076 * This function segments the given skb and stores the list of segments
2077 * in skb->next.
2078 */
2079static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2080{
2081 struct sk_buff *segs;
2082
2083 segs = skb_gso_segment(skb, features);
2084
2085 /* Verifying header integrity only. */
2086 if (!segs)
2087 return 0;
2088
2089 if (IS_ERR(segs))
2090 return PTR_ERR(segs);
2091
2092 skb->next = segs;
2093 DEV_GSO_CB(skb)->destructor = skb->destructor;
2094 skb->destructor = dev_gso_skb_destructor;
2095
2096 return 0;
2097}
2098
2099/*
2100 * Try to orphan skb early, right before transmission by the device.
2101 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2102 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2103 */
2104static inline void skb_orphan_try(struct sk_buff *skb)
2105{
2106 struct sock *sk = skb->sk;
2107
2108 if (sk && !skb_shinfo(skb)->tx_flags) {
2109 /* skb_tx_hash() wont be able to get sk.
2110 * We copy sk_hash into skb->rxhash
2111 */
2112 if (!skb->rxhash)
2113 skb->rxhash = sk->sk_hash;
2114 skb_orphan(skb);
2115 }
2116}
2117
2118static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2119{
2120 return ((features & NETIF_F_GEN_CSUM) ||
2121 ((features & NETIF_F_V4_CSUM) &&
2122 protocol == htons(ETH_P_IP)) ||
2123 ((features & NETIF_F_V6_CSUM) &&
2124 protocol == htons(ETH_P_IPV6)) ||
2125 ((features & NETIF_F_FCOE_CRC) &&
2126 protocol == htons(ETH_P_FCOE)));
2127}
2128
2129static netdev_features_t harmonize_features(struct sk_buff *skb,
2130 __be16 protocol, netdev_features_t features)
2131{
2132 if (!can_checksum_protocol(features, protocol)) {
2133 features &= ~NETIF_F_ALL_CSUM;
2134 features &= ~NETIF_F_SG;
2135 } else if (illegal_highdma(skb->dev, skb)) {
2136 features &= ~NETIF_F_SG;
2137 }
2138
2139 return features;
2140}
2141
2142netdev_features_t netif_skb_features(struct sk_buff *skb)
2143{
2144 __be16 protocol = skb->protocol;
2145 netdev_features_t features = skb->dev->features;
2146
2147 if (protocol == htons(ETH_P_8021Q)) {
2148 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2149 protocol = veh->h_vlan_encapsulated_proto;
2150 } else if (!vlan_tx_tag_present(skb)) {
2151 return harmonize_features(skb, protocol, features);
2152 }
2153
2154 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2155
2156 if (protocol != htons(ETH_P_8021Q)) {
2157 return harmonize_features(skb, protocol, features);
2158 } else {
2159 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2160 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2161 return harmonize_features(skb, protocol, features);
2162 }
2163}
2164EXPORT_SYMBOL(netif_skb_features);
2165
2166/*
2167 * Returns true if either:
2168 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2169 * 2. skb is fragmented and the device does not support SG, or if
2170 * at least one of fragments is in highmem and device does not
2171 * support DMA from it.
2172 */
2173static inline int skb_needs_linearize(struct sk_buff *skb,
2174 int features)
2175{
2176 return skb_is_nonlinear(skb) &&
2177 ((skb_has_frag_list(skb) &&
2178 !(features & NETIF_F_FRAGLIST)) ||
2179 (skb_shinfo(skb)->nr_frags &&
2180 !(features & NETIF_F_SG)));
2181}
2182
2183int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2184 struct netdev_queue *txq)
2185{
2186 const struct net_device_ops *ops = dev->netdev_ops;
2187 int rc = NETDEV_TX_OK;
2188 unsigned int skb_len;
2189
2190 if (likely(!skb->next)) {
2191 netdev_features_t features;
2192
2193 /*
2194 * If device doesn't need skb->dst, release it right now while
2195 * its hot in this cpu cache
2196 */
2197 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2198 skb_dst_drop(skb);
2199
2200 if (!list_empty(&ptype_all))
2201 dev_queue_xmit_nit(skb, dev);
2202
2203 skb_orphan_try(skb);
2204
2205 features = netif_skb_features(skb);
2206
2207 if (vlan_tx_tag_present(skb) &&
2208 !(features & NETIF_F_HW_VLAN_TX)) {
2209 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2210 if (unlikely(!skb))
2211 goto out;
2212
2213 skb->vlan_tci = 0;
2214 }
2215
2216 if (netif_needs_gso(skb, features)) {
2217 if (unlikely(dev_gso_segment(skb, features)))
2218 goto out_kfree_skb;
2219 if (skb->next)
2220 goto gso;
2221 } else {
2222 if (skb_needs_linearize(skb, features) &&
2223 __skb_linearize(skb))
2224 goto out_kfree_skb;
2225
2226 /* If packet is not checksummed and device does not
2227 * support checksumming for this protocol, complete
2228 * checksumming here.
2229 */
2230 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2231 skb_set_transport_header(skb,
2232 skb_checksum_start_offset(skb));
2233 if (!(features & NETIF_F_ALL_CSUM) &&
2234 skb_checksum_help(skb))
2235 goto out_kfree_skb;
2236 }
2237 }
2238
2239 skb_len = skb->len;
2240 rc = ops->ndo_start_xmit(skb, dev);
2241 trace_net_dev_xmit(skb, rc, dev, skb_len);
2242 if (rc == NETDEV_TX_OK)
2243 txq_trans_update(txq);
2244 return rc;
2245 }
2246
2247gso:
2248 do {
2249 struct sk_buff *nskb = skb->next;
2250
2251 skb->next = nskb->next;
2252 nskb->next = NULL;
2253
2254 /*
2255 * If device doesn't need nskb->dst, release it right now while
2256 * its hot in this cpu cache
2257 */
2258 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2259 skb_dst_drop(nskb);
2260
2261 skb_len = nskb->len;
2262 rc = ops->ndo_start_xmit(nskb, dev);
2263 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2264 if (unlikely(rc != NETDEV_TX_OK)) {
2265 if (rc & ~NETDEV_TX_MASK)
2266 goto out_kfree_gso_skb;
2267 nskb->next = skb->next;
2268 skb->next = nskb;
2269 return rc;
2270 }
2271 txq_trans_update(txq);
2272 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2273 return NETDEV_TX_BUSY;
2274 } while (skb->next);
2275
2276out_kfree_gso_skb:
2277 if (likely(skb->next == NULL))
2278 skb->destructor = DEV_GSO_CB(skb)->destructor;
2279out_kfree_skb:
2280 kfree_skb(skb);
2281out:
2282 return rc;
2283}
2284
2285static u32 hashrnd __read_mostly;
2286
2287/*
2288 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2289 * to be used as a distribution range.
2290 */
2291u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2292 unsigned int num_tx_queues)
2293{
2294 u32 hash;
2295 u16 qoffset = 0;
2296 u16 qcount = num_tx_queues;
2297
2298 if (skb_rx_queue_recorded(skb)) {
2299 hash = skb_get_rx_queue(skb);
2300 while (unlikely(hash >= num_tx_queues))
2301 hash -= num_tx_queues;
2302 return hash;
2303 }
2304
2305 if (dev->num_tc) {
2306 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2307 qoffset = dev->tc_to_txq[tc].offset;
2308 qcount = dev->tc_to_txq[tc].count;
2309 }
2310
2311 if (skb->sk && skb->sk->sk_hash)
2312 hash = skb->sk->sk_hash;
2313 else
2314 hash = (__force u16) skb->protocol ^ skb->rxhash;
2315 hash = jhash_1word(hash, hashrnd);
2316
2317 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2318}
2319EXPORT_SYMBOL(__skb_tx_hash);
2320
2321static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2322{
2323 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2324 if (net_ratelimit()) {
2325 pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n",
2326 dev->name, queue_index,
2327 dev->real_num_tx_queues);
2328 }
2329 return 0;
2330 }
2331 return queue_index;
2332}
2333
2334static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2335{
2336#ifdef CONFIG_XPS
2337 struct xps_dev_maps *dev_maps;
2338 struct xps_map *map;
2339 int queue_index = -1;
2340
2341 rcu_read_lock();
2342 dev_maps = rcu_dereference(dev->xps_maps);
2343 if (dev_maps) {
2344 map = rcu_dereference(
2345 dev_maps->cpu_map[raw_smp_processor_id()]);
2346 if (map) {
2347 if (map->len == 1)
2348 queue_index = map->queues[0];
2349 else {
2350 u32 hash;
2351 if (skb->sk && skb->sk->sk_hash)
2352 hash = skb->sk->sk_hash;
2353 else
2354 hash = (__force u16) skb->protocol ^
2355 skb->rxhash;
2356 hash = jhash_1word(hash, hashrnd);
2357 queue_index = map->queues[
2358 ((u64)hash * map->len) >> 32];
2359 }
2360 if (unlikely(queue_index >= dev->real_num_tx_queues))
2361 queue_index = -1;
2362 }
2363 }
2364 rcu_read_unlock();
2365
2366 return queue_index;
2367#else
2368 return -1;
2369#endif
2370}
2371
2372static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2373 struct sk_buff *skb)
2374{
2375 int queue_index;
2376 const struct net_device_ops *ops = dev->netdev_ops;
2377
2378 if (dev->real_num_tx_queues == 1)
2379 queue_index = 0;
2380 else if (ops->ndo_select_queue) {
2381 queue_index = ops->ndo_select_queue(dev, skb);
2382 queue_index = dev_cap_txqueue(dev, queue_index);
2383 } else {
2384 struct sock *sk = skb->sk;
2385 queue_index = sk_tx_queue_get(sk);
2386
2387 if (queue_index < 0 || skb->ooo_okay ||
2388 queue_index >= dev->real_num_tx_queues) {
2389 int old_index = queue_index;
2390
2391 queue_index = get_xps_queue(dev, skb);
2392 if (queue_index < 0)
2393 queue_index = skb_tx_hash(dev, skb);
2394
2395 if (queue_index != old_index && sk) {
2396 struct dst_entry *dst =
2397 rcu_dereference_check(sk->sk_dst_cache, 1);
2398
2399 if (dst && skb_dst(skb) == dst)
2400 sk_tx_queue_set(sk, queue_index);
2401 }
2402 }
2403 }
2404
2405 skb_set_queue_mapping(skb, queue_index);
2406 return netdev_get_tx_queue(dev, queue_index);
2407}
2408
2409static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2410 struct net_device *dev,
2411 struct netdev_queue *txq)
2412{
2413 spinlock_t *root_lock = qdisc_lock(q);
2414 bool contended;
2415 int rc;
2416
2417 qdisc_skb_cb(skb)->pkt_len = skb->len;
2418 qdisc_calculate_pkt_len(skb, q);
2419 /*
2420 * Heuristic to force contended enqueues to serialize on a
2421 * separate lock before trying to get qdisc main lock.
2422 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2423 * and dequeue packets faster.
2424 */
2425 contended = qdisc_is_running(q);
2426 if (unlikely(contended))
2427 spin_lock(&q->busylock);
2428
2429 spin_lock(root_lock);
2430 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2431 kfree_skb(skb);
2432 rc = NET_XMIT_DROP;
2433 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2434 qdisc_run_begin(q)) {
2435 /*
2436 * This is a work-conserving queue; there are no old skbs
2437 * waiting to be sent out; and the qdisc is not running -
2438 * xmit the skb directly.
2439 */
2440 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2441 skb_dst_force(skb);
2442
2443 qdisc_bstats_update(q, skb);
2444
2445 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2446 if (unlikely(contended)) {
2447 spin_unlock(&q->busylock);
2448 contended = false;
2449 }
2450 __qdisc_run(q);
2451 } else
2452 qdisc_run_end(q);
2453
2454 rc = NET_XMIT_SUCCESS;
2455 } else {
2456 skb_dst_force(skb);
2457 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2458 if (qdisc_run_begin(q)) {
2459 if (unlikely(contended)) {
2460 spin_unlock(&q->busylock);
2461 contended = false;
2462 }
2463 __qdisc_run(q);
2464 }
2465 }
2466 spin_unlock(root_lock);
2467 if (unlikely(contended))
2468 spin_unlock(&q->busylock);
2469 return rc;
2470}
2471
2472#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2473static void skb_update_prio(struct sk_buff *skb)
2474{
2475 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2476
2477 if ((!skb->priority) && (skb->sk) && map)
2478 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2479}
2480#else
2481#define skb_update_prio(skb)
2482#endif
2483
2484static DEFINE_PER_CPU(int, xmit_recursion);
2485#define RECURSION_LIMIT 10
2486
2487/**
2488 * dev_queue_xmit - transmit a buffer
2489 * @skb: buffer to transmit
2490 *
2491 * Queue a buffer for transmission to a network device. The caller must
2492 * have set the device and priority and built the buffer before calling
2493 * this function. The function can be called from an interrupt.
2494 *
2495 * A negative errno code is returned on a failure. A success does not
2496 * guarantee the frame will be transmitted as it may be dropped due
2497 * to congestion or traffic shaping.
2498 *
2499 * -----------------------------------------------------------------------------------
2500 * I notice this method can also return errors from the queue disciplines,
2501 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2502 * be positive.
2503 *
2504 * Regardless of the return value, the skb is consumed, so it is currently
2505 * difficult to retry a send to this method. (You can bump the ref count
2506 * before sending to hold a reference for retry if you are careful.)
2507 *
2508 * When calling this method, interrupts MUST be enabled. This is because
2509 * the BH enable code must have IRQs enabled so that it will not deadlock.
2510 * --BLG
2511 */
2512int dev_queue_xmit(struct sk_buff *skb)
2513{
2514 struct net_device *dev = skb->dev;
2515 struct netdev_queue *txq;
2516 struct Qdisc *q;
2517 int rc = -ENOMEM;
2518
2519 /* Disable soft irqs for various locks below. Also
2520 * stops preemption for RCU.
2521 */
2522 rcu_read_lock_bh();
2523
2524 skb_update_prio(skb);
2525
2526 txq = dev_pick_tx(dev, skb);
2527 q = rcu_dereference_bh(txq->qdisc);
2528
2529#ifdef CONFIG_NET_CLS_ACT
2530 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2531#endif
2532 trace_net_dev_queue(skb);
2533 if (q->enqueue) {
2534 rc = __dev_xmit_skb(skb, q, dev, txq);
2535 goto out;
2536 }
2537
2538 /* The device has no queue. Common case for software devices:
2539 loopback, all the sorts of tunnels...
2540
2541 Really, it is unlikely that netif_tx_lock protection is necessary
2542 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2543 counters.)
2544 However, it is possible, that they rely on protection
2545 made by us here.
2546
2547 Check this and shot the lock. It is not prone from deadlocks.
2548 Either shot noqueue qdisc, it is even simpler 8)
2549 */
2550 if (dev->flags & IFF_UP) {
2551 int cpu = smp_processor_id(); /* ok because BHs are off */
2552
2553 if (txq->xmit_lock_owner != cpu) {
2554
2555 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2556 goto recursion_alert;
2557
2558 HARD_TX_LOCK(dev, txq, cpu);
2559
2560 if (!netif_xmit_stopped(txq)) {
2561 __this_cpu_inc(xmit_recursion);
2562 rc = dev_hard_start_xmit(skb, dev, txq);
2563 __this_cpu_dec(xmit_recursion);
2564 if (dev_xmit_complete(rc)) {
2565 HARD_TX_UNLOCK(dev, txq);
2566 goto out;
2567 }
2568 }
2569 HARD_TX_UNLOCK(dev, txq);
2570 if (net_ratelimit())
2571 pr_crit("Virtual device %s asks to queue packet!\n",
2572 dev->name);
2573 } else {
2574 /* Recursion is detected! It is possible,
2575 * unfortunately
2576 */
2577recursion_alert:
2578 if (net_ratelimit())
2579 pr_crit("Dead loop on virtual device %s, fix it urgently!\n",
2580 dev->name);
2581 }
2582 }
2583
2584 rc = -ENETDOWN;
2585 rcu_read_unlock_bh();
2586
2587 kfree_skb(skb);
2588 return rc;
2589out:
2590 rcu_read_unlock_bh();
2591 return rc;
2592}
2593EXPORT_SYMBOL(dev_queue_xmit);
2594
2595
2596/*=======================================================================
2597 Receiver routines
2598 =======================================================================*/
2599
2600int netdev_max_backlog __read_mostly = 1000;
2601int netdev_tstamp_prequeue __read_mostly = 1;
2602int netdev_budget __read_mostly = 300;
2603int weight_p __read_mostly = 64; /* old backlog weight */
2604
2605/* Called with irq disabled */
2606static inline void ____napi_schedule(struct softnet_data *sd,
2607 struct napi_struct *napi)
2608{
2609 list_add_tail(&napi->poll_list, &sd->poll_list);
2610 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2611}
2612
2613/*
2614 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2615 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2616 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2617 * if hash is a canonical 4-tuple hash over transport ports.
2618 */
2619void __skb_get_rxhash(struct sk_buff *skb)
2620{
2621 struct flow_keys keys;
2622 u32 hash;
2623
2624 if (!skb_flow_dissect(skb, &keys))
2625 return;
2626
2627 if (keys.ports) {
2628 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2629 swap(keys.port16[0], keys.port16[1]);
2630 skb->l4_rxhash = 1;
2631 }
2632
2633 /* get a consistent hash (same value on both flow directions) */
2634 if ((__force u32)keys.dst < (__force u32)keys.src)
2635 swap(keys.dst, keys.src);
2636
2637 hash = jhash_3words((__force u32)keys.dst,
2638 (__force u32)keys.src,
2639 (__force u32)keys.ports, hashrnd);
2640 if (!hash)
2641 hash = 1;
2642
2643 skb->rxhash = hash;
2644}
2645EXPORT_SYMBOL(__skb_get_rxhash);
2646
2647#ifdef CONFIG_RPS
2648
2649/* One global table that all flow-based protocols share. */
2650struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2651EXPORT_SYMBOL(rps_sock_flow_table);
2652
2653struct static_key rps_needed __read_mostly;
2654
2655static struct rps_dev_flow *
2656set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2657 struct rps_dev_flow *rflow, u16 next_cpu)
2658{
2659 if (next_cpu != RPS_NO_CPU) {
2660#ifdef CONFIG_RFS_ACCEL
2661 struct netdev_rx_queue *rxqueue;
2662 struct rps_dev_flow_table *flow_table;
2663 struct rps_dev_flow *old_rflow;
2664 u32 flow_id;
2665 u16 rxq_index;
2666 int rc;
2667
2668 /* Should we steer this flow to a different hardware queue? */
2669 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2670 !(dev->features & NETIF_F_NTUPLE))
2671 goto out;
2672 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2673 if (rxq_index == skb_get_rx_queue(skb))
2674 goto out;
2675
2676 rxqueue = dev->_rx + rxq_index;
2677 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2678 if (!flow_table)
2679 goto out;
2680 flow_id = skb->rxhash & flow_table->mask;
2681 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2682 rxq_index, flow_id);
2683 if (rc < 0)
2684 goto out;
2685 old_rflow = rflow;
2686 rflow = &flow_table->flows[flow_id];
2687 rflow->filter = rc;
2688 if (old_rflow->filter == rflow->filter)
2689 old_rflow->filter = RPS_NO_FILTER;
2690 out:
2691#endif
2692 rflow->last_qtail =
2693 per_cpu(softnet_data, next_cpu).input_queue_head;
2694 }
2695
2696 rflow->cpu = next_cpu;
2697 return rflow;
2698}
2699
2700/*
2701 * get_rps_cpu is called from netif_receive_skb and returns the target
2702 * CPU from the RPS map of the receiving queue for a given skb.
2703 * rcu_read_lock must be held on entry.
2704 */
2705static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2706 struct rps_dev_flow **rflowp)
2707{
2708 struct netdev_rx_queue *rxqueue;
2709 struct rps_map *map;
2710 struct rps_dev_flow_table *flow_table;
2711 struct rps_sock_flow_table *sock_flow_table;
2712 int cpu = -1;
2713 u16 tcpu;
2714
2715 if (skb_rx_queue_recorded(skb)) {
2716 u16 index = skb_get_rx_queue(skb);
2717 if (unlikely(index >= dev->real_num_rx_queues)) {
2718 WARN_ONCE(dev->real_num_rx_queues > 1,
2719 "%s received packet on queue %u, but number "
2720 "of RX queues is %u\n",
2721 dev->name, index, dev->real_num_rx_queues);
2722 goto done;
2723 }
2724 rxqueue = dev->_rx + index;
2725 } else
2726 rxqueue = dev->_rx;
2727
2728 map = rcu_dereference(rxqueue->rps_map);
2729 if (map) {
2730 if (map->len == 1 &&
2731 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2732 tcpu = map->cpus[0];
2733 if (cpu_online(tcpu))
2734 cpu = tcpu;
2735 goto done;
2736 }
2737 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2738 goto done;
2739 }
2740
2741 skb_reset_network_header(skb);
2742 if (!skb_get_rxhash(skb))
2743 goto done;
2744
2745 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2746 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2747 if (flow_table && sock_flow_table) {
2748 u16 next_cpu;
2749 struct rps_dev_flow *rflow;
2750
2751 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2752 tcpu = rflow->cpu;
2753
2754 next_cpu = sock_flow_table->ents[skb->rxhash &
2755 sock_flow_table->mask];
2756
2757 /*
2758 * If the desired CPU (where last recvmsg was done) is
2759 * different from current CPU (one in the rx-queue flow
2760 * table entry), switch if one of the following holds:
2761 * - Current CPU is unset (equal to RPS_NO_CPU).
2762 * - Current CPU is offline.
2763 * - The current CPU's queue tail has advanced beyond the
2764 * last packet that was enqueued using this table entry.
2765 * This guarantees that all previous packets for the flow
2766 * have been dequeued, thus preserving in order delivery.
2767 */
2768 if (unlikely(tcpu != next_cpu) &&
2769 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2770 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2771 rflow->last_qtail)) >= 0))
2772 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2773
2774 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2775 *rflowp = rflow;
2776 cpu = tcpu;
2777 goto done;
2778 }
2779 }
2780
2781 if (map) {
2782 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2783
2784 if (cpu_online(tcpu)) {
2785 cpu = tcpu;
2786 goto done;
2787 }
2788 }
2789
2790done:
2791 return cpu;
2792}
2793
2794#ifdef CONFIG_RFS_ACCEL
2795
2796/**
2797 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2798 * @dev: Device on which the filter was set
2799 * @rxq_index: RX queue index
2800 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2801 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2802 *
2803 * Drivers that implement ndo_rx_flow_steer() should periodically call
2804 * this function for each installed filter and remove the filters for
2805 * which it returns %true.
2806 */
2807bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2808 u32 flow_id, u16 filter_id)
2809{
2810 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2811 struct rps_dev_flow_table *flow_table;
2812 struct rps_dev_flow *rflow;
2813 bool expire = true;
2814 int cpu;
2815
2816 rcu_read_lock();
2817 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2818 if (flow_table && flow_id <= flow_table->mask) {
2819 rflow = &flow_table->flows[flow_id];
2820 cpu = ACCESS_ONCE(rflow->cpu);
2821 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2822 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2823 rflow->last_qtail) <
2824 (int)(10 * flow_table->mask)))
2825 expire = false;
2826 }
2827 rcu_read_unlock();
2828 return expire;
2829}
2830EXPORT_SYMBOL(rps_may_expire_flow);
2831
2832#endif /* CONFIG_RFS_ACCEL */
2833
2834/* Called from hardirq (IPI) context */
2835static void rps_trigger_softirq(void *data)
2836{
2837 struct softnet_data *sd = data;
2838
2839 ____napi_schedule(sd, &sd->backlog);
2840 sd->received_rps++;
2841}
2842
2843#endif /* CONFIG_RPS */
2844
2845/*
2846 * Check if this softnet_data structure is another cpu one
2847 * If yes, queue it to our IPI list and return 1
2848 * If no, return 0
2849 */
2850static int rps_ipi_queued(struct softnet_data *sd)
2851{
2852#ifdef CONFIG_RPS
2853 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2854
2855 if (sd != mysd) {
2856 sd->rps_ipi_next = mysd->rps_ipi_list;
2857 mysd->rps_ipi_list = sd;
2858
2859 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2860 return 1;
2861 }
2862#endif /* CONFIG_RPS */
2863 return 0;
2864}
2865
2866/*
2867 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2868 * queue (may be a remote CPU queue).
2869 */
2870static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2871 unsigned int *qtail)
2872{
2873 struct softnet_data *sd;
2874 unsigned long flags;
2875
2876 sd = &per_cpu(softnet_data, cpu);
2877
2878 local_irq_save(flags);
2879
2880 rps_lock(sd);
2881 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2882 if (skb_queue_len(&sd->input_pkt_queue)) {
2883enqueue:
2884 __skb_queue_tail(&sd->input_pkt_queue, skb);
2885 input_queue_tail_incr_save(sd, qtail);
2886 rps_unlock(sd);
2887 local_irq_restore(flags);
2888 return NET_RX_SUCCESS;
2889 }
2890
2891 /* Schedule NAPI for backlog device
2892 * We can use non atomic operation since we own the queue lock
2893 */
2894 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2895 if (!rps_ipi_queued(sd))
2896 ____napi_schedule(sd, &sd->backlog);
2897 }
2898 goto enqueue;
2899 }
2900
2901 sd->dropped++;
2902 rps_unlock(sd);
2903
2904 local_irq_restore(flags);
2905
2906 atomic_long_inc(&skb->dev->rx_dropped);
2907 kfree_skb(skb);
2908 return NET_RX_DROP;
2909}
2910
2911/**
2912 * netif_rx - post buffer to the network code
2913 * @skb: buffer to post
2914 *
2915 * This function receives a packet from a device driver and queues it for
2916 * the upper (protocol) levels to process. It always succeeds. The buffer
2917 * may be dropped during processing for congestion control or by the
2918 * protocol layers.
2919 *
2920 * return values:
2921 * NET_RX_SUCCESS (no congestion)
2922 * NET_RX_DROP (packet was dropped)
2923 *
2924 */
2925
2926int netif_rx(struct sk_buff *skb)
2927{
2928 int ret;
2929
2930 /* if netpoll wants it, pretend we never saw it */
2931 if (netpoll_rx(skb))
2932 return NET_RX_DROP;
2933
2934 net_timestamp_check(netdev_tstamp_prequeue, skb);
2935
2936 trace_netif_rx(skb);
2937#ifdef CONFIG_RPS
2938 if (static_key_false(&rps_needed)) {
2939 struct rps_dev_flow voidflow, *rflow = &voidflow;
2940 int cpu;
2941
2942 preempt_disable();
2943 rcu_read_lock();
2944
2945 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2946 if (cpu < 0)
2947 cpu = smp_processor_id();
2948
2949 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2950
2951 rcu_read_unlock();
2952 preempt_enable();
2953 } else
2954#endif
2955 {
2956 unsigned int qtail;
2957 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2958 put_cpu();
2959 }
2960 return ret;
2961}
2962EXPORT_SYMBOL(netif_rx);
2963
2964int netif_rx_ni(struct sk_buff *skb)
2965{
2966 int err;
2967
2968 preempt_disable();
2969 err = netif_rx(skb);
2970 if (local_softirq_pending())
2971 do_softirq();
2972 preempt_enable();
2973
2974 return err;
2975}
2976EXPORT_SYMBOL(netif_rx_ni);
2977
2978static void net_tx_action(struct softirq_action *h)
2979{
2980 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2981
2982 if (sd->completion_queue) {
2983 struct sk_buff *clist;
2984
2985 local_irq_disable();
2986 clist = sd->completion_queue;
2987 sd->completion_queue = NULL;
2988 local_irq_enable();
2989
2990 while (clist) {
2991 struct sk_buff *skb = clist;
2992 clist = clist->next;
2993
2994 WARN_ON(atomic_read(&skb->users));
2995 trace_kfree_skb(skb, net_tx_action);
2996 __kfree_skb(skb);
2997 }
2998 }
2999
3000 if (sd->output_queue) {
3001 struct Qdisc *head;
3002
3003 local_irq_disable();
3004 head = sd->output_queue;
3005 sd->output_queue = NULL;
3006 sd->output_queue_tailp = &sd->output_queue;
3007 local_irq_enable();
3008
3009 while (head) {
3010 struct Qdisc *q = head;
3011 spinlock_t *root_lock;
3012
3013 head = head->next_sched;
3014
3015 root_lock = qdisc_lock(q);
3016 if (spin_trylock(root_lock)) {
3017 smp_mb__before_clear_bit();
3018 clear_bit(__QDISC_STATE_SCHED,
3019 &q->state);
3020 qdisc_run(q);
3021 spin_unlock(root_lock);
3022 } else {
3023 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3024 &q->state)) {
3025 __netif_reschedule(q);
3026 } else {
3027 smp_mb__before_clear_bit();
3028 clear_bit(__QDISC_STATE_SCHED,
3029 &q->state);
3030 }
3031 }
3032 }
3033 }
3034}
3035
3036#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3037 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3038/* This hook is defined here for ATM LANE */
3039int (*br_fdb_test_addr_hook)(struct net_device *dev,
3040 unsigned char *addr) __read_mostly;
3041EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3042#endif
3043
3044#ifdef CONFIG_NET_CLS_ACT
3045/* TODO: Maybe we should just force sch_ingress to be compiled in
3046 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3047 * a compare and 2 stores extra right now if we dont have it on
3048 * but have CONFIG_NET_CLS_ACT
3049 * NOTE: This doesn't stop any functionality; if you dont have
3050 * the ingress scheduler, you just can't add policies on ingress.
3051 *
3052 */
3053static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3054{
3055 struct net_device *dev = skb->dev;
3056 u32 ttl = G_TC_RTTL(skb->tc_verd);
3057 int result = TC_ACT_OK;
3058 struct Qdisc *q;
3059
3060 if (unlikely(MAX_RED_LOOP < ttl++)) {
3061 if (net_ratelimit())
3062 pr_warn("Redir loop detected Dropping packet (%d->%d)\n",
3063 skb->skb_iif, dev->ifindex);
3064 return TC_ACT_SHOT;
3065 }
3066
3067 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3068 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3069
3070 q = rxq->qdisc;
3071 if (q != &noop_qdisc) {
3072 spin_lock(qdisc_lock(q));
3073 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3074 result = qdisc_enqueue_root(skb, q);
3075 spin_unlock(qdisc_lock(q));
3076 }
3077
3078 return result;
3079}
3080
3081static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3082 struct packet_type **pt_prev,
3083 int *ret, struct net_device *orig_dev)
3084{
3085 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3086
3087 if (!rxq || rxq->qdisc == &noop_qdisc)
3088 goto out;
3089
3090 if (*pt_prev) {
3091 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3092 *pt_prev = NULL;
3093 }
3094
3095 switch (ing_filter(skb, rxq)) {
3096 case TC_ACT_SHOT:
3097 case TC_ACT_STOLEN:
3098 kfree_skb(skb);
3099 return NULL;
3100 }
3101
3102out:
3103 skb->tc_verd = 0;
3104 return skb;
3105}
3106#endif
3107
3108/**
3109 * netdev_rx_handler_register - register receive handler
3110 * @dev: device to register a handler for
3111 * @rx_handler: receive handler to register
3112 * @rx_handler_data: data pointer that is used by rx handler
3113 *
3114 * Register a receive hander for a device. This handler will then be
3115 * called from __netif_receive_skb. A negative errno code is returned
3116 * on a failure.
3117 *
3118 * The caller must hold the rtnl_mutex.
3119 *
3120 * For a general description of rx_handler, see enum rx_handler_result.
3121 */
3122int netdev_rx_handler_register(struct net_device *dev,
3123 rx_handler_func_t *rx_handler,
3124 void *rx_handler_data)
3125{
3126 ASSERT_RTNL();
3127
3128 if (dev->rx_handler)
3129 return -EBUSY;
3130
3131 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3132 rcu_assign_pointer(dev->rx_handler, rx_handler);
3133
3134 return 0;
3135}
3136EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3137
3138/**
3139 * netdev_rx_handler_unregister - unregister receive handler
3140 * @dev: device to unregister a handler from
3141 *
3142 * Unregister a receive hander from a device.
3143 *
3144 * The caller must hold the rtnl_mutex.
3145 */
3146void netdev_rx_handler_unregister(struct net_device *dev)
3147{
3148
3149 ASSERT_RTNL();
3150 RCU_INIT_POINTER(dev->rx_handler, NULL);
3151 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3152}
3153EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3154
3155static int __netif_receive_skb(struct sk_buff *skb)
3156{
3157 struct packet_type *ptype, *pt_prev;
3158 rx_handler_func_t *rx_handler;
3159 struct net_device *orig_dev;
3160 struct net_device *null_or_dev;
3161 bool deliver_exact = false;
3162 int ret = NET_RX_DROP;
3163 __be16 type;
3164
3165 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3166
3167 trace_netif_receive_skb(skb);
3168
3169 /* if we've gotten here through NAPI, check netpoll */
3170 if (netpoll_receive_skb(skb))
3171 return NET_RX_DROP;
3172
3173 if (!skb->skb_iif)
3174 skb->skb_iif = skb->dev->ifindex;
3175 orig_dev = skb->dev;
3176
3177 skb_reset_network_header(skb);
3178 skb_reset_transport_header(skb);
3179 skb_reset_mac_len(skb);
3180
3181 pt_prev = NULL;
3182
3183 rcu_read_lock();
3184
3185another_round:
3186
3187 __this_cpu_inc(softnet_data.processed);
3188
3189 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3190 skb = vlan_untag(skb);
3191 if (unlikely(!skb))
3192 goto out;
3193 }
3194
3195#ifdef CONFIG_NET_CLS_ACT
3196 if (skb->tc_verd & TC_NCLS) {
3197 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3198 goto ncls;
3199 }
3200#endif
3201
3202 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3203 if (!ptype->dev || ptype->dev == skb->dev) {
3204 if (pt_prev)
3205 ret = deliver_skb(skb, pt_prev, orig_dev);
3206 pt_prev = ptype;
3207 }
3208 }
3209
3210#ifdef CONFIG_NET_CLS_ACT
3211 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3212 if (!skb)
3213 goto out;
3214ncls:
3215#endif
3216
3217 rx_handler = rcu_dereference(skb->dev->rx_handler);
3218 if (vlan_tx_tag_present(skb)) {
3219 if (pt_prev) {
3220 ret = deliver_skb(skb, pt_prev, orig_dev);
3221 pt_prev = NULL;
3222 }
3223 if (vlan_do_receive(&skb, !rx_handler))
3224 goto another_round;
3225 else if (unlikely(!skb))
3226 goto out;
3227 }
3228
3229 if (rx_handler) {
3230 if (pt_prev) {
3231 ret = deliver_skb(skb, pt_prev, orig_dev);
3232 pt_prev = NULL;
3233 }
3234 switch (rx_handler(&skb)) {
3235 case RX_HANDLER_CONSUMED:
3236 goto out;
3237 case RX_HANDLER_ANOTHER:
3238 goto another_round;
3239 case RX_HANDLER_EXACT:
3240 deliver_exact = true;
3241 case RX_HANDLER_PASS:
3242 break;
3243 default:
3244 BUG();
3245 }
3246 }
3247
3248 /* deliver only exact match when indicated */
3249 null_or_dev = deliver_exact ? skb->dev : NULL;
3250
3251 type = skb->protocol;
3252 list_for_each_entry_rcu(ptype,
3253 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3254 if (ptype->type == type &&
3255 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3256 ptype->dev == orig_dev)) {
3257 if (pt_prev)
3258 ret = deliver_skb(skb, pt_prev, orig_dev);
3259 pt_prev = ptype;
3260 }
3261 }
3262
3263 if (pt_prev) {
3264 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3265 } else {
3266 atomic_long_inc(&skb->dev->rx_dropped);
3267 kfree_skb(skb);
3268 /* Jamal, now you will not able to escape explaining
3269 * me how you were going to use this. :-)
3270 */
3271 ret = NET_RX_DROP;
3272 }
3273
3274out:
3275 rcu_read_unlock();
3276 return ret;
3277}
3278
3279/**
3280 * netif_receive_skb - process receive buffer from network
3281 * @skb: buffer to process
3282 *
3283 * netif_receive_skb() is the main receive data processing function.
3284 * It always succeeds. The buffer may be dropped during processing
3285 * for congestion control or by the protocol layers.
3286 *
3287 * This function may only be called from softirq context and interrupts
3288 * should be enabled.
3289 *
3290 * Return values (usually ignored):
3291 * NET_RX_SUCCESS: no congestion
3292 * NET_RX_DROP: packet was dropped
3293 */
3294int netif_receive_skb(struct sk_buff *skb)
3295{
3296 net_timestamp_check(netdev_tstamp_prequeue, skb);
3297
3298 if (skb_defer_rx_timestamp(skb))
3299 return NET_RX_SUCCESS;
3300
3301#ifdef CONFIG_RPS
3302 if (static_key_false(&rps_needed)) {
3303 struct rps_dev_flow voidflow, *rflow = &voidflow;
3304 int cpu, ret;
3305
3306 rcu_read_lock();
3307
3308 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3309
3310 if (cpu >= 0) {
3311 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3312 rcu_read_unlock();
3313 return ret;
3314 }
3315 rcu_read_unlock();
3316 }
3317#endif
3318 return __netif_receive_skb(skb);
3319}
3320EXPORT_SYMBOL(netif_receive_skb);
3321
3322/* Network device is going away, flush any packets still pending
3323 * Called with irqs disabled.
3324 */
3325static void flush_backlog(void *arg)
3326{
3327 struct net_device *dev = arg;
3328 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3329 struct sk_buff *skb, *tmp;
3330
3331 rps_lock(sd);
3332 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3333 if (skb->dev == dev) {
3334 __skb_unlink(skb, &sd->input_pkt_queue);
3335 kfree_skb(skb);
3336 input_queue_head_incr(sd);
3337 }
3338 }
3339 rps_unlock(sd);
3340
3341 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3342 if (skb->dev == dev) {
3343 __skb_unlink(skb, &sd->process_queue);
3344 kfree_skb(skb);
3345 input_queue_head_incr(sd);
3346 }
3347 }
3348}
3349
3350static int napi_gro_complete(struct sk_buff *skb)
3351{
3352 struct packet_type *ptype;
3353 __be16 type = skb->protocol;
3354 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3355 int err = -ENOENT;
3356
3357 if (NAPI_GRO_CB(skb)->count == 1) {
3358 skb_shinfo(skb)->gso_size = 0;
3359 goto out;
3360 }
3361
3362 rcu_read_lock();
3363 list_for_each_entry_rcu(ptype, head, list) {
3364 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3365 continue;
3366
3367 err = ptype->gro_complete(skb);
3368 break;
3369 }
3370 rcu_read_unlock();
3371
3372 if (err) {
3373 WARN_ON(&ptype->list == head);
3374 kfree_skb(skb);
3375 return NET_RX_SUCCESS;
3376 }
3377
3378out:
3379 return netif_receive_skb(skb);
3380}
3381
3382inline void napi_gro_flush(struct napi_struct *napi)
3383{
3384 struct sk_buff *skb, *next;
3385
3386 for (skb = napi->gro_list; skb; skb = next) {
3387 next = skb->next;
3388 skb->next = NULL;
3389 napi_gro_complete(skb);
3390 }
3391
3392 napi->gro_count = 0;
3393 napi->gro_list = NULL;
3394}
3395EXPORT_SYMBOL(napi_gro_flush);
3396
3397enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3398{
3399 struct sk_buff **pp = NULL;
3400 struct packet_type *ptype;
3401 __be16 type = skb->protocol;
3402 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3403 int same_flow;
3404 int mac_len;
3405 enum gro_result ret;
3406
3407 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3408 goto normal;
3409
3410 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3411 goto normal;
3412
3413 rcu_read_lock();
3414 list_for_each_entry_rcu(ptype, head, list) {
3415 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3416 continue;
3417
3418 skb_set_network_header(skb, skb_gro_offset(skb));
3419 mac_len = skb->network_header - skb->mac_header;
3420 skb->mac_len = mac_len;
3421 NAPI_GRO_CB(skb)->same_flow = 0;
3422 NAPI_GRO_CB(skb)->flush = 0;
3423 NAPI_GRO_CB(skb)->free = 0;
3424
3425 pp = ptype->gro_receive(&napi->gro_list, skb);
3426 break;
3427 }
3428 rcu_read_unlock();
3429
3430 if (&ptype->list == head)
3431 goto normal;
3432
3433 same_flow = NAPI_GRO_CB(skb)->same_flow;
3434 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3435
3436 if (pp) {
3437 struct sk_buff *nskb = *pp;
3438
3439 *pp = nskb->next;
3440 nskb->next = NULL;
3441 napi_gro_complete(nskb);
3442 napi->gro_count--;
3443 }
3444
3445 if (same_flow)
3446 goto ok;
3447
3448 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3449 goto normal;
3450
3451 napi->gro_count++;
3452 NAPI_GRO_CB(skb)->count = 1;
3453 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3454 skb->next = napi->gro_list;
3455 napi->gro_list = skb;
3456 ret = GRO_HELD;
3457
3458pull:
3459 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3460 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3461
3462 BUG_ON(skb->end - skb->tail < grow);
3463
3464 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3465
3466 skb->tail += grow;
3467 skb->data_len -= grow;
3468
3469 skb_shinfo(skb)->frags[0].page_offset += grow;
3470 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3471
3472 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3473 skb_frag_unref(skb, 0);
3474 memmove(skb_shinfo(skb)->frags,
3475 skb_shinfo(skb)->frags + 1,
3476 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3477 }
3478 }
3479
3480ok:
3481 return ret;
3482
3483normal:
3484 ret = GRO_NORMAL;
3485 goto pull;
3486}
3487EXPORT_SYMBOL(dev_gro_receive);
3488
3489static inline gro_result_t
3490__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3491{
3492 struct sk_buff *p;
3493 unsigned int maclen = skb->dev->hard_header_len;
3494
3495 for (p = napi->gro_list; p; p = p->next) {
3496 unsigned long diffs;
3497
3498 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3499 diffs |= p->vlan_tci ^ skb->vlan_tci;
3500 if (maclen == ETH_HLEN)
3501 diffs |= compare_ether_header(skb_mac_header(p),
3502 skb_gro_mac_header(skb));
3503 else if (!diffs)
3504 diffs = memcmp(skb_mac_header(p),
3505 skb_gro_mac_header(skb),
3506 maclen);
3507 NAPI_GRO_CB(p)->same_flow = !diffs;
3508 NAPI_GRO_CB(p)->flush = 0;
3509 }
3510
3511 return dev_gro_receive(napi, skb);
3512}
3513
3514gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3515{
3516 switch (ret) {
3517 case GRO_NORMAL:
3518 if (netif_receive_skb(skb))
3519 ret = GRO_DROP;
3520 break;
3521
3522 case GRO_DROP:
3523 case GRO_MERGED_FREE:
3524 kfree_skb(skb);
3525 break;
3526
3527 case GRO_HELD:
3528 case GRO_MERGED:
3529 break;
3530 }
3531
3532 return ret;
3533}
3534EXPORT_SYMBOL(napi_skb_finish);
3535
3536void skb_gro_reset_offset(struct sk_buff *skb)
3537{
3538 NAPI_GRO_CB(skb)->data_offset = 0;
3539 NAPI_GRO_CB(skb)->frag0 = NULL;
3540 NAPI_GRO_CB(skb)->frag0_len = 0;
3541
3542 if (skb->mac_header == skb->tail &&
3543 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3544 NAPI_GRO_CB(skb)->frag0 =
3545 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3546 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3547 }
3548}
3549EXPORT_SYMBOL(skb_gro_reset_offset);
3550
3551gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3552{
3553 skb_gro_reset_offset(skb);
3554
3555 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3556}
3557EXPORT_SYMBOL(napi_gro_receive);
3558
3559static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3560{
3561 __skb_pull(skb, skb_headlen(skb));
3562 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3563 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3564 skb->vlan_tci = 0;
3565 skb->dev = napi->dev;
3566 skb->skb_iif = 0;
3567
3568 napi->skb = skb;
3569}
3570
3571struct sk_buff *napi_get_frags(struct napi_struct *napi)
3572{
3573 struct sk_buff *skb = napi->skb;
3574
3575 if (!skb) {
3576 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3577 if (skb)
3578 napi->skb = skb;
3579 }
3580 return skb;
3581}
3582EXPORT_SYMBOL(napi_get_frags);
3583
3584gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3585 gro_result_t ret)
3586{
3587 switch (ret) {
3588 case GRO_NORMAL:
3589 case GRO_HELD:
3590 skb->protocol = eth_type_trans(skb, skb->dev);
3591
3592 if (ret == GRO_HELD)
3593 skb_gro_pull(skb, -ETH_HLEN);
3594 else if (netif_receive_skb(skb))
3595 ret = GRO_DROP;
3596 break;
3597
3598 case GRO_DROP:
3599 case GRO_MERGED_FREE:
3600 napi_reuse_skb(napi, skb);
3601 break;
3602
3603 case GRO_MERGED:
3604 break;
3605 }
3606
3607 return ret;
3608}
3609EXPORT_SYMBOL(napi_frags_finish);
3610
3611struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3612{
3613 struct sk_buff *skb = napi->skb;
3614 struct ethhdr *eth;
3615 unsigned int hlen;
3616 unsigned int off;
3617
3618 napi->skb = NULL;
3619
3620 skb_reset_mac_header(skb);
3621 skb_gro_reset_offset(skb);
3622
3623 off = skb_gro_offset(skb);
3624 hlen = off + sizeof(*eth);
3625 eth = skb_gro_header_fast(skb, off);
3626 if (skb_gro_header_hard(skb, hlen)) {
3627 eth = skb_gro_header_slow(skb, hlen, off);
3628 if (unlikely(!eth)) {
3629 napi_reuse_skb(napi, skb);
3630 skb = NULL;
3631 goto out;
3632 }
3633 }
3634
3635 skb_gro_pull(skb, sizeof(*eth));
3636
3637 /*
3638 * This works because the only protocols we care about don't require
3639 * special handling. We'll fix it up properly at the end.
3640 */
3641 skb->protocol = eth->h_proto;
3642
3643out:
3644 return skb;
3645}
3646EXPORT_SYMBOL(napi_frags_skb);
3647
3648gro_result_t napi_gro_frags(struct napi_struct *napi)
3649{
3650 struct sk_buff *skb = napi_frags_skb(napi);
3651
3652 if (!skb)
3653 return GRO_DROP;
3654
3655 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3656}
3657EXPORT_SYMBOL(napi_gro_frags);
3658
3659/*
3660 * net_rps_action sends any pending IPI's for rps.
3661 * Note: called with local irq disabled, but exits with local irq enabled.
3662 */
3663static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3664{
3665#ifdef CONFIG_RPS
3666 struct softnet_data *remsd = sd->rps_ipi_list;
3667
3668 if (remsd) {
3669 sd->rps_ipi_list = NULL;
3670
3671 local_irq_enable();
3672
3673 /* Send pending IPI's to kick RPS processing on remote cpus. */
3674 while (remsd) {
3675 struct softnet_data *next = remsd->rps_ipi_next;
3676
3677 if (cpu_online(remsd->cpu))
3678 __smp_call_function_single(remsd->cpu,
3679 &remsd->csd, 0);
3680 remsd = next;
3681 }
3682 } else
3683#endif
3684 local_irq_enable();
3685}
3686
3687static int process_backlog(struct napi_struct *napi, int quota)
3688{
3689 int work = 0;
3690 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3691
3692#ifdef CONFIG_RPS
3693 /* Check if we have pending ipi, its better to send them now,
3694 * not waiting net_rx_action() end.
3695 */
3696 if (sd->rps_ipi_list) {
3697 local_irq_disable();
3698 net_rps_action_and_irq_enable(sd);
3699 }
3700#endif
3701 napi->weight = weight_p;
3702 local_irq_disable();
3703 while (work < quota) {
3704 struct sk_buff *skb;
3705 unsigned int qlen;
3706
3707 while ((skb = __skb_dequeue(&sd->process_queue))) {
3708 local_irq_enable();
3709 __netif_receive_skb(skb);
3710 local_irq_disable();
3711 input_queue_head_incr(sd);
3712 if (++work >= quota) {
3713 local_irq_enable();
3714 return work;
3715 }
3716 }
3717
3718 rps_lock(sd);
3719 qlen = skb_queue_len(&sd->input_pkt_queue);
3720 if (qlen)
3721 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3722 &sd->process_queue);
3723
3724 if (qlen < quota - work) {
3725 /*
3726 * Inline a custom version of __napi_complete().
3727 * only current cpu owns and manipulates this napi,
3728 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3729 * we can use a plain write instead of clear_bit(),
3730 * and we dont need an smp_mb() memory barrier.
3731 */
3732 list_del(&napi->poll_list);
3733 napi->state = 0;
3734
3735 quota = work + qlen;
3736 }
3737 rps_unlock(sd);
3738 }
3739 local_irq_enable();
3740
3741 return work;
3742}
3743
3744/**
3745 * __napi_schedule - schedule for receive
3746 * @n: entry to schedule
3747 *
3748 * The entry's receive function will be scheduled to run
3749 */
3750void __napi_schedule(struct napi_struct *n)
3751{
3752 unsigned long flags;
3753
3754 local_irq_save(flags);
3755 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3756 local_irq_restore(flags);
3757}
3758EXPORT_SYMBOL(__napi_schedule);
3759
3760void __napi_complete(struct napi_struct *n)
3761{
3762 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3763 BUG_ON(n->gro_list);
3764
3765 list_del(&n->poll_list);
3766 smp_mb__before_clear_bit();
3767 clear_bit(NAPI_STATE_SCHED, &n->state);
3768}
3769EXPORT_SYMBOL(__napi_complete);
3770
3771void napi_complete(struct napi_struct *n)
3772{
3773 unsigned long flags;
3774
3775 /*
3776 * don't let napi dequeue from the cpu poll list
3777 * just in case its running on a different cpu
3778 */
3779 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3780 return;
3781
3782 napi_gro_flush(n);
3783 local_irq_save(flags);
3784 __napi_complete(n);
3785 local_irq_restore(flags);
3786}
3787EXPORT_SYMBOL(napi_complete);
3788
3789void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3790 int (*poll)(struct napi_struct *, int), int weight)
3791{
3792 INIT_LIST_HEAD(&napi->poll_list);
3793 napi->gro_count = 0;
3794 napi->gro_list = NULL;
3795 napi->skb = NULL;
3796 napi->poll = poll;
3797 napi->weight = weight;
3798 list_add(&napi->dev_list, &dev->napi_list);
3799 napi->dev = dev;
3800#ifdef CONFIG_NETPOLL
3801 spin_lock_init(&napi->poll_lock);
3802 napi->poll_owner = -1;
3803#endif
3804 set_bit(NAPI_STATE_SCHED, &napi->state);
3805}
3806EXPORT_SYMBOL(netif_napi_add);
3807
3808void netif_napi_del(struct napi_struct *napi)
3809{
3810 struct sk_buff *skb, *next;
3811
3812 list_del_init(&napi->dev_list);
3813 napi_free_frags(napi);
3814
3815 for (skb = napi->gro_list; skb; skb = next) {
3816 next = skb->next;
3817 skb->next = NULL;
3818 kfree_skb(skb);
3819 }
3820
3821 napi->gro_list = NULL;
3822 napi->gro_count = 0;
3823}
3824EXPORT_SYMBOL(netif_napi_del);
3825
3826static void net_rx_action(struct softirq_action *h)
3827{
3828 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3829 unsigned long time_limit = jiffies + 2;
3830 int budget = netdev_budget;
3831 void *have;
3832
3833 local_irq_disable();
3834
3835 while (!list_empty(&sd->poll_list)) {
3836 struct napi_struct *n;
3837 int work, weight;
3838
3839 /* If softirq window is exhuasted then punt.
3840 * Allow this to run for 2 jiffies since which will allow
3841 * an average latency of 1.5/HZ.
3842 */
3843 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3844 goto softnet_break;
3845
3846 local_irq_enable();
3847
3848 /* Even though interrupts have been re-enabled, this
3849 * access is safe because interrupts can only add new
3850 * entries to the tail of this list, and only ->poll()
3851 * calls can remove this head entry from the list.
3852 */
3853 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3854
3855 have = netpoll_poll_lock(n);
3856
3857 weight = n->weight;
3858
3859 /* This NAPI_STATE_SCHED test is for avoiding a race
3860 * with netpoll's poll_napi(). Only the entity which
3861 * obtains the lock and sees NAPI_STATE_SCHED set will
3862 * actually make the ->poll() call. Therefore we avoid
3863 * accidentally calling ->poll() when NAPI is not scheduled.
3864 */
3865 work = 0;
3866 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3867 work = n->poll(n, weight);
3868 trace_napi_poll(n);
3869 }
3870
3871 WARN_ON_ONCE(work > weight);
3872
3873 budget -= work;
3874
3875 local_irq_disable();
3876
3877 /* Drivers must not modify the NAPI state if they
3878 * consume the entire weight. In such cases this code
3879 * still "owns" the NAPI instance and therefore can
3880 * move the instance around on the list at-will.
3881 */
3882 if (unlikely(work == weight)) {
3883 if (unlikely(napi_disable_pending(n))) {
3884 local_irq_enable();
3885 napi_complete(n);
3886 local_irq_disable();
3887 } else
3888 list_move_tail(&n->poll_list, &sd->poll_list);
3889 }
3890
3891 netpoll_poll_unlock(have);
3892 }
3893out:
3894 net_rps_action_and_irq_enable(sd);
3895
3896#ifdef CONFIG_NET_DMA
3897 /*
3898 * There may not be any more sk_buffs coming right now, so push
3899 * any pending DMA copies to hardware
3900 */
3901 dma_issue_pending_all();
3902#endif
3903
3904 return;
3905
3906softnet_break:
3907 sd->time_squeeze++;
3908 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3909 goto out;
3910}
3911
3912static gifconf_func_t *gifconf_list[NPROTO];
3913
3914/**
3915 * register_gifconf - register a SIOCGIF handler
3916 * @family: Address family
3917 * @gifconf: Function handler
3918 *
3919 * Register protocol dependent address dumping routines. The handler
3920 * that is passed must not be freed or reused until it has been replaced
3921 * by another handler.
3922 */
3923int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3924{
3925 if (family >= NPROTO)
3926 return -EINVAL;
3927 gifconf_list[family] = gifconf;
3928 return 0;
3929}
3930EXPORT_SYMBOL(register_gifconf);
3931
3932
3933/*
3934 * Map an interface index to its name (SIOCGIFNAME)
3935 */
3936
3937/*
3938 * We need this ioctl for efficient implementation of the
3939 * if_indextoname() function required by the IPv6 API. Without
3940 * it, we would have to search all the interfaces to find a
3941 * match. --pb
3942 */
3943
3944static int dev_ifname(struct net *net, struct ifreq __user *arg)
3945{
3946 struct net_device *dev;
3947 struct ifreq ifr;
3948
3949 /*
3950 * Fetch the caller's info block.
3951 */
3952
3953 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3954 return -EFAULT;
3955
3956 rcu_read_lock();
3957 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3958 if (!dev) {
3959 rcu_read_unlock();
3960 return -ENODEV;
3961 }
3962
3963 strcpy(ifr.ifr_name, dev->name);
3964 rcu_read_unlock();
3965
3966 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3967 return -EFAULT;
3968 return 0;
3969}
3970
3971/*
3972 * Perform a SIOCGIFCONF call. This structure will change
3973 * size eventually, and there is nothing I can do about it.
3974 * Thus we will need a 'compatibility mode'.
3975 */
3976
3977static int dev_ifconf(struct net *net, char __user *arg)
3978{
3979 struct ifconf ifc;
3980 struct net_device *dev;
3981 char __user *pos;
3982 int len;
3983 int total;
3984 int i;
3985
3986 /*
3987 * Fetch the caller's info block.
3988 */
3989
3990 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3991 return -EFAULT;
3992
3993 pos = ifc.ifc_buf;
3994 len = ifc.ifc_len;
3995
3996 /*
3997 * Loop over the interfaces, and write an info block for each.
3998 */
3999
4000 total = 0;
4001 for_each_netdev(net, dev) {
4002 for (i = 0; i < NPROTO; i++) {
4003 if (gifconf_list[i]) {
4004 int done;
4005 if (!pos)
4006 done = gifconf_list[i](dev, NULL, 0);
4007 else
4008 done = gifconf_list[i](dev, pos + total,
4009 len - total);
4010 if (done < 0)
4011 return -EFAULT;
4012 total += done;
4013 }
4014 }
4015 }
4016
4017 /*
4018 * All done. Write the updated control block back to the caller.
4019 */
4020 ifc.ifc_len = total;
4021
4022 /*
4023 * Both BSD and Solaris return 0 here, so we do too.
4024 */
4025 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4026}
4027
4028#ifdef CONFIG_PROC_FS
4029
4030#define BUCKET_SPACE (32 - NETDEV_HASHBITS)
4031
4032struct dev_iter_state {
4033 struct seq_net_private p;
4034 unsigned int pos; /* bucket << BUCKET_SPACE + offset */
4035};
4036
4037#define get_bucket(x) ((x) >> BUCKET_SPACE)
4038#define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4039#define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4040
4041static inline struct net_device *dev_from_same_bucket(struct seq_file *seq)
4042{
4043 struct dev_iter_state *state = seq->private;
4044 struct net *net = seq_file_net(seq);
4045 struct net_device *dev;
4046 struct hlist_node *p;
4047 struct hlist_head *h;
4048 unsigned int count, bucket, offset;
4049
4050 bucket = get_bucket(state->pos);
4051 offset = get_offset(state->pos);
4052 h = &net->dev_name_head[bucket];
4053 count = 0;
4054 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4055 if (count++ == offset) {
4056 state->pos = set_bucket_offset(bucket, count);
4057 return dev;
4058 }
4059 }
4060
4061 return NULL;
4062}
4063
4064static inline struct net_device *dev_from_new_bucket(struct seq_file *seq)
4065{
4066 struct dev_iter_state *state = seq->private;
4067 struct net_device *dev;
4068 unsigned int bucket;
4069
4070 bucket = get_bucket(state->pos);
4071 do {
4072 dev = dev_from_same_bucket(seq);
4073 if (dev)
4074 return dev;
4075
4076 bucket++;
4077 state->pos = set_bucket_offset(bucket, 0);
4078 } while (bucket < NETDEV_HASHENTRIES);
4079
4080 return NULL;
4081}
4082
4083/*
4084 * This is invoked by the /proc filesystem handler to display a device
4085 * in detail.
4086 */
4087void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4088 __acquires(RCU)
4089{
4090 struct dev_iter_state *state = seq->private;
4091
4092 rcu_read_lock();
4093 if (!*pos)
4094 return SEQ_START_TOKEN;
4095
4096 /* check for end of the hash */
4097 if (state->pos == 0 && *pos > 1)
4098 return NULL;
4099
4100 return dev_from_new_bucket(seq);
4101}
4102
4103void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4104{
4105 struct net_device *dev;
4106
4107 ++*pos;
4108
4109 if (v == SEQ_START_TOKEN)
4110 return dev_from_new_bucket(seq);
4111
4112 dev = dev_from_same_bucket(seq);
4113 if (dev)
4114 return dev;
4115
4116 return dev_from_new_bucket(seq);
4117}
4118
4119void dev_seq_stop(struct seq_file *seq, void *v)
4120 __releases(RCU)
4121{
4122 rcu_read_unlock();
4123}
4124
4125static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4126{
4127 struct rtnl_link_stats64 temp;
4128 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4129
4130 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4131 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4132 dev->name, stats->rx_bytes, stats->rx_packets,
4133 stats->rx_errors,
4134 stats->rx_dropped + stats->rx_missed_errors,
4135 stats->rx_fifo_errors,
4136 stats->rx_length_errors + stats->rx_over_errors +
4137 stats->rx_crc_errors + stats->rx_frame_errors,
4138 stats->rx_compressed, stats->multicast,
4139 stats->tx_bytes, stats->tx_packets,
4140 stats->tx_errors, stats->tx_dropped,
4141 stats->tx_fifo_errors, stats->collisions,
4142 stats->tx_carrier_errors +
4143 stats->tx_aborted_errors +
4144 stats->tx_window_errors +
4145 stats->tx_heartbeat_errors,
4146 stats->tx_compressed);
4147}
4148
4149/*
4150 * Called from the PROCfs module. This now uses the new arbitrary sized
4151 * /proc/net interface to create /proc/net/dev
4152 */
4153static int dev_seq_show(struct seq_file *seq, void *v)
4154{
4155 if (v == SEQ_START_TOKEN)
4156 seq_puts(seq, "Inter-| Receive "
4157 " | Transmit\n"
4158 " face |bytes packets errs drop fifo frame "
4159 "compressed multicast|bytes packets errs "
4160 "drop fifo colls carrier compressed\n");
4161 else
4162 dev_seq_printf_stats(seq, v);
4163 return 0;
4164}
4165
4166static struct softnet_data *softnet_get_online(loff_t *pos)
4167{
4168 struct softnet_data *sd = NULL;
4169
4170 while (*pos < nr_cpu_ids)
4171 if (cpu_online(*pos)) {
4172 sd = &per_cpu(softnet_data, *pos);
4173 break;
4174 } else
4175 ++*pos;
4176 return sd;
4177}
4178
4179static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4180{
4181 return softnet_get_online(pos);
4182}
4183
4184static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4185{
4186 ++*pos;
4187 return softnet_get_online(pos);
4188}
4189
4190static void softnet_seq_stop(struct seq_file *seq, void *v)
4191{
4192}
4193
4194static int softnet_seq_show(struct seq_file *seq, void *v)
4195{
4196 struct softnet_data *sd = v;
4197
4198 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4199 sd->processed, sd->dropped, sd->time_squeeze, 0,
4200 0, 0, 0, 0, /* was fastroute */
4201 sd->cpu_collision, sd->received_rps);
4202 return 0;
4203}
4204
4205static const struct seq_operations dev_seq_ops = {
4206 .start = dev_seq_start,
4207 .next = dev_seq_next,
4208 .stop = dev_seq_stop,
4209 .show = dev_seq_show,
4210};
4211
4212static int dev_seq_open(struct inode *inode, struct file *file)
4213{
4214 return seq_open_net(inode, file, &dev_seq_ops,
4215 sizeof(struct dev_iter_state));
4216}
4217
4218int dev_seq_open_ops(struct inode *inode, struct file *file,
4219 const struct seq_operations *ops)
4220{
4221 return seq_open_net(inode, file, ops, sizeof(struct dev_iter_state));
4222}
4223
4224static const struct file_operations dev_seq_fops = {
4225 .owner = THIS_MODULE,
4226 .open = dev_seq_open,
4227 .read = seq_read,
4228 .llseek = seq_lseek,
4229 .release = seq_release_net,
4230};
4231
4232static const struct seq_operations softnet_seq_ops = {
4233 .start = softnet_seq_start,
4234 .next = softnet_seq_next,
4235 .stop = softnet_seq_stop,
4236 .show = softnet_seq_show,
4237};
4238
4239static int softnet_seq_open(struct inode *inode, struct file *file)
4240{
4241 return seq_open(file, &softnet_seq_ops);
4242}
4243
4244static const struct file_operations softnet_seq_fops = {
4245 .owner = THIS_MODULE,
4246 .open = softnet_seq_open,
4247 .read = seq_read,
4248 .llseek = seq_lseek,
4249 .release = seq_release,
4250};
4251
4252static void *ptype_get_idx(loff_t pos)
4253{
4254 struct packet_type *pt = NULL;
4255 loff_t i = 0;
4256 int t;
4257
4258 list_for_each_entry_rcu(pt, &ptype_all, list) {
4259 if (i == pos)
4260 return pt;
4261 ++i;
4262 }
4263
4264 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4265 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4266 if (i == pos)
4267 return pt;
4268 ++i;
4269 }
4270 }
4271 return NULL;
4272}
4273
4274static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4275 __acquires(RCU)
4276{
4277 rcu_read_lock();
4278 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4279}
4280
4281static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4282{
4283 struct packet_type *pt;
4284 struct list_head *nxt;
4285 int hash;
4286
4287 ++*pos;
4288 if (v == SEQ_START_TOKEN)
4289 return ptype_get_idx(0);
4290
4291 pt = v;
4292 nxt = pt->list.next;
4293 if (pt->type == htons(ETH_P_ALL)) {
4294 if (nxt != &ptype_all)
4295 goto found;
4296 hash = 0;
4297 nxt = ptype_base[0].next;
4298 } else
4299 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4300
4301 while (nxt == &ptype_base[hash]) {
4302 if (++hash >= PTYPE_HASH_SIZE)
4303 return NULL;
4304 nxt = ptype_base[hash].next;
4305 }
4306found:
4307 return list_entry(nxt, struct packet_type, list);
4308}
4309
4310static void ptype_seq_stop(struct seq_file *seq, void *v)
4311 __releases(RCU)
4312{
4313 rcu_read_unlock();
4314}
4315
4316static int ptype_seq_show(struct seq_file *seq, void *v)
4317{
4318 struct packet_type *pt = v;
4319
4320 if (v == SEQ_START_TOKEN)
4321 seq_puts(seq, "Type Device Function\n");
4322 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4323 if (pt->type == htons(ETH_P_ALL))
4324 seq_puts(seq, "ALL ");
4325 else
4326 seq_printf(seq, "%04x", ntohs(pt->type));
4327
4328 seq_printf(seq, " %-8s %pF\n",
4329 pt->dev ? pt->dev->name : "", pt->func);
4330 }
4331
4332 return 0;
4333}
4334
4335static const struct seq_operations ptype_seq_ops = {
4336 .start = ptype_seq_start,
4337 .next = ptype_seq_next,
4338 .stop = ptype_seq_stop,
4339 .show = ptype_seq_show,
4340};
4341
4342static int ptype_seq_open(struct inode *inode, struct file *file)
4343{
4344 return seq_open_net(inode, file, &ptype_seq_ops,
4345 sizeof(struct seq_net_private));
4346}
4347
4348static const struct file_operations ptype_seq_fops = {
4349 .owner = THIS_MODULE,
4350 .open = ptype_seq_open,
4351 .read = seq_read,
4352 .llseek = seq_lseek,
4353 .release = seq_release_net,
4354};
4355
4356
4357static int __net_init dev_proc_net_init(struct net *net)
4358{
4359 int rc = -ENOMEM;
4360
4361 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4362 goto out;
4363 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4364 goto out_dev;
4365 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4366 goto out_softnet;
4367
4368 if (wext_proc_init(net))
4369 goto out_ptype;
4370 rc = 0;
4371out:
4372 return rc;
4373out_ptype:
4374 proc_net_remove(net, "ptype");
4375out_softnet:
4376 proc_net_remove(net, "softnet_stat");
4377out_dev:
4378 proc_net_remove(net, "dev");
4379 goto out;
4380}
4381
4382static void __net_exit dev_proc_net_exit(struct net *net)
4383{
4384 wext_proc_exit(net);
4385
4386 proc_net_remove(net, "ptype");
4387 proc_net_remove(net, "softnet_stat");
4388 proc_net_remove(net, "dev");
4389}
4390
4391static struct pernet_operations __net_initdata dev_proc_ops = {
4392 .init = dev_proc_net_init,
4393 .exit = dev_proc_net_exit,
4394};
4395
4396static int __init dev_proc_init(void)
4397{
4398 return register_pernet_subsys(&dev_proc_ops);
4399}
4400#else
4401#define dev_proc_init() 0
4402#endif /* CONFIG_PROC_FS */
4403
4404
4405/**
4406 * netdev_set_master - set up master pointer
4407 * @slave: slave device
4408 * @master: new master device
4409 *
4410 * Changes the master device of the slave. Pass %NULL to break the
4411 * bonding. The caller must hold the RTNL semaphore. On a failure
4412 * a negative errno code is returned. On success the reference counts
4413 * are adjusted and the function returns zero.
4414 */
4415int netdev_set_master(struct net_device *slave, struct net_device *master)
4416{
4417 struct net_device *old = slave->master;
4418
4419 ASSERT_RTNL();
4420
4421 if (master) {
4422 if (old)
4423 return -EBUSY;
4424 dev_hold(master);
4425 }
4426
4427 slave->master = master;
4428
4429 if (old)
4430 dev_put(old);
4431 return 0;
4432}
4433EXPORT_SYMBOL(netdev_set_master);
4434
4435/**
4436 * netdev_set_bond_master - set up bonding master/slave pair
4437 * @slave: slave device
4438 * @master: new master device
4439 *
4440 * Changes the master device of the slave. Pass %NULL to break the
4441 * bonding. The caller must hold the RTNL semaphore. On a failure
4442 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4443 * to the routing socket and the function returns zero.
4444 */
4445int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4446{
4447 int err;
4448
4449 ASSERT_RTNL();
4450
4451 err = netdev_set_master(slave, master);
4452 if (err)
4453 return err;
4454 if (master)
4455 slave->flags |= IFF_SLAVE;
4456 else
4457 slave->flags &= ~IFF_SLAVE;
4458
4459 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4460 return 0;
4461}
4462EXPORT_SYMBOL(netdev_set_bond_master);
4463
4464static void dev_change_rx_flags(struct net_device *dev, int flags)
4465{
4466 const struct net_device_ops *ops = dev->netdev_ops;
4467
4468 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4469 ops->ndo_change_rx_flags(dev, flags);
4470}
4471
4472static int __dev_set_promiscuity(struct net_device *dev, int inc)
4473{
4474 unsigned int old_flags = dev->flags;
4475 uid_t uid;
4476 gid_t gid;
4477
4478 ASSERT_RTNL();
4479
4480 dev->flags |= IFF_PROMISC;
4481 dev->promiscuity += inc;
4482 if (dev->promiscuity == 0) {
4483 /*
4484 * Avoid overflow.
4485 * If inc causes overflow, untouch promisc and return error.
4486 */
4487 if (inc < 0)
4488 dev->flags &= ~IFF_PROMISC;
4489 else {
4490 dev->promiscuity -= inc;
4491 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4492 dev->name);
4493 return -EOVERFLOW;
4494 }
4495 }
4496 if (dev->flags != old_flags) {
4497 pr_info("device %s %s promiscuous mode\n",
4498 dev->name,
4499 dev->flags & IFF_PROMISC ? "entered" : "left");
4500 if (audit_enabled) {
4501 current_uid_gid(&uid, &gid);
4502 audit_log(current->audit_context, GFP_ATOMIC,
4503 AUDIT_ANOM_PROMISCUOUS,
4504 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4505 dev->name, (dev->flags & IFF_PROMISC),
4506 (old_flags & IFF_PROMISC),
4507 audit_get_loginuid(current),
4508 uid, gid,
4509 audit_get_sessionid(current));
4510 }
4511
4512 dev_change_rx_flags(dev, IFF_PROMISC);
4513 }
4514 return 0;
4515}
4516
4517/**
4518 * dev_set_promiscuity - update promiscuity count on a device
4519 * @dev: device
4520 * @inc: modifier
4521 *
4522 * Add or remove promiscuity from a device. While the count in the device
4523 * remains above zero the interface remains promiscuous. Once it hits zero
4524 * the device reverts back to normal filtering operation. A negative inc
4525 * value is used to drop promiscuity on the device.
4526 * Return 0 if successful or a negative errno code on error.
4527 */
4528int dev_set_promiscuity(struct net_device *dev, int inc)
4529{
4530 unsigned int old_flags = dev->flags;
4531 int err;
4532
4533 err = __dev_set_promiscuity(dev, inc);
4534 if (err < 0)
4535 return err;
4536 if (dev->flags != old_flags)
4537 dev_set_rx_mode(dev);
4538 return err;
4539}
4540EXPORT_SYMBOL(dev_set_promiscuity);
4541
4542/**
4543 * dev_set_allmulti - update allmulti count on a device
4544 * @dev: device
4545 * @inc: modifier
4546 *
4547 * Add or remove reception of all multicast frames to a device. While the
4548 * count in the device remains above zero the interface remains listening
4549 * to all interfaces. Once it hits zero the device reverts back to normal
4550 * filtering operation. A negative @inc value is used to drop the counter
4551 * when releasing a resource needing all multicasts.
4552 * Return 0 if successful or a negative errno code on error.
4553 */
4554
4555int dev_set_allmulti(struct net_device *dev, int inc)
4556{
4557 unsigned int old_flags = dev->flags;
4558
4559 ASSERT_RTNL();
4560
4561 dev->flags |= IFF_ALLMULTI;
4562 dev->allmulti += inc;
4563 if (dev->allmulti == 0) {
4564 /*
4565 * Avoid overflow.
4566 * If inc causes overflow, untouch allmulti and return error.
4567 */
4568 if (inc < 0)
4569 dev->flags &= ~IFF_ALLMULTI;
4570 else {
4571 dev->allmulti -= inc;
4572 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4573 dev->name);
4574 return -EOVERFLOW;
4575 }
4576 }
4577 if (dev->flags ^ old_flags) {
4578 dev_change_rx_flags(dev, IFF_ALLMULTI);
4579 dev_set_rx_mode(dev);
4580 }
4581 return 0;
4582}
4583EXPORT_SYMBOL(dev_set_allmulti);
4584
4585/*
4586 * Upload unicast and multicast address lists to device and
4587 * configure RX filtering. When the device doesn't support unicast
4588 * filtering it is put in promiscuous mode while unicast addresses
4589 * are present.
4590 */
4591void __dev_set_rx_mode(struct net_device *dev)
4592{
4593 const struct net_device_ops *ops = dev->netdev_ops;
4594
4595 /* dev_open will call this function so the list will stay sane. */
4596 if (!(dev->flags&IFF_UP))
4597 return;
4598
4599 if (!netif_device_present(dev))
4600 return;
4601
4602 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4603 /* Unicast addresses changes may only happen under the rtnl,
4604 * therefore calling __dev_set_promiscuity here is safe.
4605 */
4606 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4607 __dev_set_promiscuity(dev, 1);
4608 dev->uc_promisc = true;
4609 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4610 __dev_set_promiscuity(dev, -1);
4611 dev->uc_promisc = false;
4612 }
4613 }
4614
4615 if (ops->ndo_set_rx_mode)
4616 ops->ndo_set_rx_mode(dev);
4617}
4618
4619void dev_set_rx_mode(struct net_device *dev)
4620{
4621 netif_addr_lock_bh(dev);
4622 __dev_set_rx_mode(dev);
4623 netif_addr_unlock_bh(dev);
4624}
4625
4626/**
4627 * dev_get_flags - get flags reported to userspace
4628 * @dev: device
4629 *
4630 * Get the combination of flag bits exported through APIs to userspace.
4631 */
4632unsigned dev_get_flags(const struct net_device *dev)
4633{
4634 unsigned flags;
4635
4636 flags = (dev->flags & ~(IFF_PROMISC |
4637 IFF_ALLMULTI |
4638 IFF_RUNNING |
4639 IFF_LOWER_UP |
4640 IFF_DORMANT)) |
4641 (dev->gflags & (IFF_PROMISC |
4642 IFF_ALLMULTI));
4643
4644 if (netif_running(dev)) {
4645 if (netif_oper_up(dev))
4646 flags |= IFF_RUNNING;
4647 if (netif_carrier_ok(dev))
4648 flags |= IFF_LOWER_UP;
4649 if (netif_dormant(dev))
4650 flags |= IFF_DORMANT;
4651 }
4652
4653 return flags;
4654}
4655EXPORT_SYMBOL(dev_get_flags);
4656
4657int __dev_change_flags(struct net_device *dev, unsigned int flags)
4658{
4659 unsigned int old_flags = dev->flags;
4660 int ret;
4661
4662 ASSERT_RTNL();
4663
4664 /*
4665 * Set the flags on our device.
4666 */
4667
4668 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4669 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4670 IFF_AUTOMEDIA)) |
4671 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4672 IFF_ALLMULTI));
4673
4674 /*
4675 * Load in the correct multicast list now the flags have changed.
4676 */
4677
4678 if ((old_flags ^ flags) & IFF_MULTICAST)
4679 dev_change_rx_flags(dev, IFF_MULTICAST);
4680
4681 dev_set_rx_mode(dev);
4682
4683 /*
4684 * Have we downed the interface. We handle IFF_UP ourselves
4685 * according to user attempts to set it, rather than blindly
4686 * setting it.
4687 */
4688
4689 ret = 0;
4690 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4691 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4692
4693 if (!ret)
4694 dev_set_rx_mode(dev);
4695 }
4696
4697 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4698 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4699
4700 dev->gflags ^= IFF_PROMISC;
4701 dev_set_promiscuity(dev, inc);
4702 }
4703
4704 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4705 is important. Some (broken) drivers set IFF_PROMISC, when
4706 IFF_ALLMULTI is requested not asking us and not reporting.
4707 */
4708 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4709 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4710
4711 dev->gflags ^= IFF_ALLMULTI;
4712 dev_set_allmulti(dev, inc);
4713 }
4714
4715 return ret;
4716}
4717
4718void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4719{
4720 unsigned int changes = dev->flags ^ old_flags;
4721
4722 if (changes & IFF_UP) {
4723 if (dev->flags & IFF_UP)
4724 call_netdevice_notifiers(NETDEV_UP, dev);
4725 else
4726 call_netdevice_notifiers(NETDEV_DOWN, dev);
4727 }
4728
4729 if (dev->flags & IFF_UP &&
4730 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4731 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4732}
4733
4734/**
4735 * dev_change_flags - change device settings
4736 * @dev: device
4737 * @flags: device state flags
4738 *
4739 * Change settings on device based state flags. The flags are
4740 * in the userspace exported format.
4741 */
4742int dev_change_flags(struct net_device *dev, unsigned int flags)
4743{
4744 int ret;
4745 unsigned int changes, old_flags = dev->flags;
4746
4747 ret = __dev_change_flags(dev, flags);
4748 if (ret < 0)
4749 return ret;
4750
4751 changes = old_flags ^ dev->flags;
4752 if (changes)
4753 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4754
4755 __dev_notify_flags(dev, old_flags);
4756 return ret;
4757}
4758EXPORT_SYMBOL(dev_change_flags);
4759
4760/**
4761 * dev_set_mtu - Change maximum transfer unit
4762 * @dev: device
4763 * @new_mtu: new transfer unit
4764 *
4765 * Change the maximum transfer size of the network device.
4766 */
4767int dev_set_mtu(struct net_device *dev, int new_mtu)
4768{
4769 const struct net_device_ops *ops = dev->netdev_ops;
4770 int err;
4771
4772 if (new_mtu == dev->mtu)
4773 return 0;
4774
4775 /* MTU must be positive. */
4776 if (new_mtu < 0)
4777 return -EINVAL;
4778
4779 if (!netif_device_present(dev))
4780 return -ENODEV;
4781
4782 err = 0;
4783 if (ops->ndo_change_mtu)
4784 err = ops->ndo_change_mtu(dev, new_mtu);
4785 else
4786 dev->mtu = new_mtu;
4787
4788 if (!err && dev->flags & IFF_UP)
4789 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4790 return err;
4791}
4792EXPORT_SYMBOL(dev_set_mtu);
4793
4794/**
4795 * dev_set_group - Change group this device belongs to
4796 * @dev: device
4797 * @new_group: group this device should belong to
4798 */
4799void dev_set_group(struct net_device *dev, int new_group)
4800{
4801 dev->group = new_group;
4802}
4803EXPORT_SYMBOL(dev_set_group);
4804
4805/**
4806 * dev_set_mac_address - Change Media Access Control Address
4807 * @dev: device
4808 * @sa: new address
4809 *
4810 * Change the hardware (MAC) address of the device
4811 */
4812int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4813{
4814 const struct net_device_ops *ops = dev->netdev_ops;
4815 int err;
4816
4817 if (!ops->ndo_set_mac_address)
4818 return -EOPNOTSUPP;
4819 if (sa->sa_family != dev->type)
4820 return -EINVAL;
4821 if (!netif_device_present(dev))
4822 return -ENODEV;
4823 err = ops->ndo_set_mac_address(dev, sa);
4824 if (!err)
4825 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4826 return err;
4827}
4828EXPORT_SYMBOL(dev_set_mac_address);
4829
4830/*
4831 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4832 */
4833static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4834{
4835 int err;
4836 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4837
4838 if (!dev)
4839 return -ENODEV;
4840
4841 switch (cmd) {
4842 case SIOCGIFFLAGS: /* Get interface flags */
4843 ifr->ifr_flags = (short) dev_get_flags(dev);
4844 return 0;
4845
4846 case SIOCGIFMETRIC: /* Get the metric on the interface
4847 (currently unused) */
4848 ifr->ifr_metric = 0;
4849 return 0;
4850
4851 case SIOCGIFMTU: /* Get the MTU of a device */
4852 ifr->ifr_mtu = dev->mtu;
4853 return 0;
4854
4855 case SIOCGIFHWADDR:
4856 if (!dev->addr_len)
4857 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4858 else
4859 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4860 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4861 ifr->ifr_hwaddr.sa_family = dev->type;
4862 return 0;
4863
4864 case SIOCGIFSLAVE:
4865 err = -EINVAL;
4866 break;
4867
4868 case SIOCGIFMAP:
4869 ifr->ifr_map.mem_start = dev->mem_start;
4870 ifr->ifr_map.mem_end = dev->mem_end;
4871 ifr->ifr_map.base_addr = dev->base_addr;
4872 ifr->ifr_map.irq = dev->irq;
4873 ifr->ifr_map.dma = dev->dma;
4874 ifr->ifr_map.port = dev->if_port;
4875 return 0;
4876
4877 case SIOCGIFINDEX:
4878 ifr->ifr_ifindex = dev->ifindex;
4879 return 0;
4880
4881 case SIOCGIFTXQLEN:
4882 ifr->ifr_qlen = dev->tx_queue_len;
4883 return 0;
4884
4885 default:
4886 /* dev_ioctl() should ensure this case
4887 * is never reached
4888 */
4889 WARN_ON(1);
4890 err = -ENOTTY;
4891 break;
4892
4893 }
4894 return err;
4895}
4896
4897/*
4898 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4899 */
4900static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4901{
4902 int err;
4903 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4904 const struct net_device_ops *ops;
4905
4906 if (!dev)
4907 return -ENODEV;
4908
4909 ops = dev->netdev_ops;
4910
4911 switch (cmd) {
4912 case SIOCSIFFLAGS: /* Set interface flags */
4913 return dev_change_flags(dev, ifr->ifr_flags);
4914
4915 case SIOCSIFMETRIC: /* Set the metric on the interface
4916 (currently unused) */
4917 return -EOPNOTSUPP;
4918
4919 case SIOCSIFMTU: /* Set the MTU of a device */
4920 return dev_set_mtu(dev, ifr->ifr_mtu);
4921
4922 case SIOCSIFHWADDR:
4923 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4924
4925 case SIOCSIFHWBROADCAST:
4926 if (ifr->ifr_hwaddr.sa_family != dev->type)
4927 return -EINVAL;
4928 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4929 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4930 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4931 return 0;
4932
4933 case SIOCSIFMAP:
4934 if (ops->ndo_set_config) {
4935 if (!netif_device_present(dev))
4936 return -ENODEV;
4937 return ops->ndo_set_config(dev, &ifr->ifr_map);
4938 }
4939 return -EOPNOTSUPP;
4940
4941 case SIOCADDMULTI:
4942 if (!ops->ndo_set_rx_mode ||
4943 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4944 return -EINVAL;
4945 if (!netif_device_present(dev))
4946 return -ENODEV;
4947 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4948
4949 case SIOCDELMULTI:
4950 if (!ops->ndo_set_rx_mode ||
4951 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4952 return -EINVAL;
4953 if (!netif_device_present(dev))
4954 return -ENODEV;
4955 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4956
4957 case SIOCSIFTXQLEN:
4958 if (ifr->ifr_qlen < 0)
4959 return -EINVAL;
4960 dev->tx_queue_len = ifr->ifr_qlen;
4961 return 0;
4962
4963 case SIOCSIFNAME:
4964 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4965 return dev_change_name(dev, ifr->ifr_newname);
4966
4967 case SIOCSHWTSTAMP:
4968 err = net_hwtstamp_validate(ifr);
4969 if (err)
4970 return err;
4971 /* fall through */
4972
4973 /*
4974 * Unknown or private ioctl
4975 */
4976 default:
4977 if ((cmd >= SIOCDEVPRIVATE &&
4978 cmd <= SIOCDEVPRIVATE + 15) ||
4979 cmd == SIOCBONDENSLAVE ||
4980 cmd == SIOCBONDRELEASE ||
4981 cmd == SIOCBONDSETHWADDR ||
4982 cmd == SIOCBONDSLAVEINFOQUERY ||
4983 cmd == SIOCBONDINFOQUERY ||
4984 cmd == SIOCBONDCHANGEACTIVE ||
4985 cmd == SIOCGMIIPHY ||
4986 cmd == SIOCGMIIREG ||
4987 cmd == SIOCSMIIREG ||
4988 cmd == SIOCBRADDIF ||
4989 cmd == SIOCBRDELIF ||
4990 cmd == SIOCSHWTSTAMP ||
4991 cmd == SIOCWANDEV) {
4992 err = -EOPNOTSUPP;
4993 if (ops->ndo_do_ioctl) {
4994 if (netif_device_present(dev))
4995 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4996 else
4997 err = -ENODEV;
4998 }
4999 } else
5000 err = -EINVAL;
5001
5002 }
5003 return err;
5004}
5005
5006/*
5007 * This function handles all "interface"-type I/O control requests. The actual
5008 * 'doing' part of this is dev_ifsioc above.
5009 */
5010
5011/**
5012 * dev_ioctl - network device ioctl
5013 * @net: the applicable net namespace
5014 * @cmd: command to issue
5015 * @arg: pointer to a struct ifreq in user space
5016 *
5017 * Issue ioctl functions to devices. This is normally called by the
5018 * user space syscall interfaces but can sometimes be useful for
5019 * other purposes. The return value is the return from the syscall if
5020 * positive or a negative errno code on error.
5021 */
5022
5023int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5024{
5025 struct ifreq ifr;
5026 int ret;
5027 char *colon;
5028
5029 /* One special case: SIOCGIFCONF takes ifconf argument
5030 and requires shared lock, because it sleeps writing
5031 to user space.
5032 */
5033
5034 if (cmd == SIOCGIFCONF) {
5035 rtnl_lock();
5036 ret = dev_ifconf(net, (char __user *) arg);
5037 rtnl_unlock();
5038 return ret;
5039 }
5040 if (cmd == SIOCGIFNAME)
5041 return dev_ifname(net, (struct ifreq __user *)arg);
5042
5043 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5044 return -EFAULT;
5045
5046 ifr.ifr_name[IFNAMSIZ-1] = 0;
5047
5048 colon = strchr(ifr.ifr_name, ':');
5049 if (colon)
5050 *colon = 0;
5051
5052 /*
5053 * See which interface the caller is talking about.
5054 */
5055
5056 switch (cmd) {
5057 /*
5058 * These ioctl calls:
5059 * - can be done by all.
5060 * - atomic and do not require locking.
5061 * - return a value
5062 */
5063 case SIOCGIFFLAGS:
5064 case SIOCGIFMETRIC:
5065 case SIOCGIFMTU:
5066 case SIOCGIFHWADDR:
5067 case SIOCGIFSLAVE:
5068 case SIOCGIFMAP:
5069 case SIOCGIFINDEX:
5070 case SIOCGIFTXQLEN:
5071 dev_load(net, ifr.ifr_name);
5072 rcu_read_lock();
5073 ret = dev_ifsioc_locked(net, &ifr, cmd);
5074 rcu_read_unlock();
5075 if (!ret) {
5076 if (colon)
5077 *colon = ':';
5078 if (copy_to_user(arg, &ifr,
5079 sizeof(struct ifreq)))
5080 ret = -EFAULT;
5081 }
5082 return ret;
5083
5084 case SIOCETHTOOL:
5085 dev_load(net, ifr.ifr_name);
5086 rtnl_lock();
5087 ret = dev_ethtool(net, &ifr);
5088 rtnl_unlock();
5089 if (!ret) {
5090 if (colon)
5091 *colon = ':';
5092 if (copy_to_user(arg, &ifr,
5093 sizeof(struct ifreq)))
5094 ret = -EFAULT;
5095 }
5096 return ret;
5097
5098 /*
5099 * These ioctl calls:
5100 * - require superuser power.
5101 * - require strict serialization.
5102 * - return a value
5103 */
5104 case SIOCGMIIPHY:
5105 case SIOCGMIIREG:
5106 case SIOCSIFNAME:
5107 if (!capable(CAP_NET_ADMIN))
5108 return -EPERM;
5109 dev_load(net, ifr.ifr_name);
5110 rtnl_lock();
5111 ret = dev_ifsioc(net, &ifr, cmd);
5112 rtnl_unlock();
5113 if (!ret) {
5114 if (colon)
5115 *colon = ':';
5116 if (copy_to_user(arg, &ifr,
5117 sizeof(struct ifreq)))
5118 ret = -EFAULT;
5119 }
5120 return ret;
5121
5122 /*
5123 * These ioctl calls:
5124 * - require superuser power.
5125 * - require strict serialization.
5126 * - do not return a value
5127 */
5128 case SIOCSIFFLAGS:
5129 case SIOCSIFMETRIC:
5130 case SIOCSIFMTU:
5131 case SIOCSIFMAP:
5132 case SIOCSIFHWADDR:
5133 case SIOCSIFSLAVE:
5134 case SIOCADDMULTI:
5135 case SIOCDELMULTI:
5136 case SIOCSIFHWBROADCAST:
5137 case SIOCSIFTXQLEN:
5138 case SIOCSMIIREG:
5139 case SIOCBONDENSLAVE:
5140 case SIOCBONDRELEASE:
5141 case SIOCBONDSETHWADDR:
5142 case SIOCBONDCHANGEACTIVE:
5143 case SIOCBRADDIF:
5144 case SIOCBRDELIF:
5145 case SIOCSHWTSTAMP:
5146 if (!capable(CAP_NET_ADMIN))
5147 return -EPERM;
5148 /* fall through */
5149 case SIOCBONDSLAVEINFOQUERY:
5150 case SIOCBONDINFOQUERY:
5151 dev_load(net, ifr.ifr_name);
5152 rtnl_lock();
5153 ret = dev_ifsioc(net, &ifr, cmd);
5154 rtnl_unlock();
5155 return ret;
5156
5157 case SIOCGIFMEM:
5158 /* Get the per device memory space. We can add this but
5159 * currently do not support it */
5160 case SIOCSIFMEM:
5161 /* Set the per device memory buffer space.
5162 * Not applicable in our case */
5163 case SIOCSIFLINK:
5164 return -ENOTTY;
5165
5166 /*
5167 * Unknown or private ioctl.
5168 */
5169 default:
5170 if (cmd == SIOCWANDEV ||
5171 (cmd >= SIOCDEVPRIVATE &&
5172 cmd <= SIOCDEVPRIVATE + 15)) {
5173 dev_load(net, ifr.ifr_name);
5174 rtnl_lock();
5175 ret = dev_ifsioc(net, &ifr, cmd);
5176 rtnl_unlock();
5177 if (!ret && copy_to_user(arg, &ifr,
5178 sizeof(struct ifreq)))
5179 ret = -EFAULT;
5180 return ret;
5181 }
5182 /* Take care of Wireless Extensions */
5183 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5184 return wext_handle_ioctl(net, &ifr, cmd, arg);
5185 return -ENOTTY;
5186 }
5187}
5188
5189
5190/**
5191 * dev_new_index - allocate an ifindex
5192 * @net: the applicable net namespace
5193 *
5194 * Returns a suitable unique value for a new device interface
5195 * number. The caller must hold the rtnl semaphore or the
5196 * dev_base_lock to be sure it remains unique.
5197 */
5198static int dev_new_index(struct net *net)
5199{
5200 static int ifindex;
5201 for (;;) {
5202 if (++ifindex <= 0)
5203 ifindex = 1;
5204 if (!__dev_get_by_index(net, ifindex))
5205 return ifindex;
5206 }
5207}
5208
5209/* Delayed registration/unregisteration */
5210static LIST_HEAD(net_todo_list);
5211
5212static void net_set_todo(struct net_device *dev)
5213{
5214 list_add_tail(&dev->todo_list, &net_todo_list);
5215}
5216
5217static void rollback_registered_many(struct list_head *head)
5218{
5219 struct net_device *dev, *tmp;
5220
5221 BUG_ON(dev_boot_phase);
5222 ASSERT_RTNL();
5223
5224 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5225 /* Some devices call without registering
5226 * for initialization unwind. Remove those
5227 * devices and proceed with the remaining.
5228 */
5229 if (dev->reg_state == NETREG_UNINITIALIZED) {
5230 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5231 dev->name, dev);
5232
5233 WARN_ON(1);
5234 list_del(&dev->unreg_list);
5235 continue;
5236 }
5237 dev->dismantle = true;
5238 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5239 }
5240
5241 /* If device is running, close it first. */
5242 dev_close_many(head);
5243
5244 list_for_each_entry(dev, head, unreg_list) {
5245 /* And unlink it from device chain. */
5246 unlist_netdevice(dev);
5247
5248 dev->reg_state = NETREG_UNREGISTERING;
5249 }
5250
5251 synchronize_net();
5252
5253 list_for_each_entry(dev, head, unreg_list) {
5254 /* Shutdown queueing discipline. */
5255 dev_shutdown(dev);
5256
5257
5258 /* Notify protocols, that we are about to destroy
5259 this device. They should clean all the things.
5260 */
5261 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5262
5263 if (!dev->rtnl_link_ops ||
5264 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5265 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5266
5267 /*
5268 * Flush the unicast and multicast chains
5269 */
5270 dev_uc_flush(dev);
5271 dev_mc_flush(dev);
5272
5273 if (dev->netdev_ops->ndo_uninit)
5274 dev->netdev_ops->ndo_uninit(dev);
5275
5276 /* Notifier chain MUST detach us from master device. */
5277 WARN_ON(dev->master);
5278
5279 /* Remove entries from kobject tree */
5280 netdev_unregister_kobject(dev);
5281 }
5282
5283 /* Process any work delayed until the end of the batch */
5284 dev = list_first_entry(head, struct net_device, unreg_list);
5285 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5286
5287 synchronize_net();
5288
5289 list_for_each_entry(dev, head, unreg_list)
5290 dev_put(dev);
5291}
5292
5293static void rollback_registered(struct net_device *dev)
5294{
5295 LIST_HEAD(single);
5296
5297 list_add(&dev->unreg_list, &single);
5298 rollback_registered_many(&single);
5299 list_del(&single);
5300}
5301
5302static netdev_features_t netdev_fix_features(struct net_device *dev,
5303 netdev_features_t features)
5304{
5305 /* Fix illegal checksum combinations */
5306 if ((features & NETIF_F_HW_CSUM) &&
5307 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5308 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5309 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5310 }
5311
5312 /* Fix illegal SG+CSUM combinations. */
5313 if ((features & NETIF_F_SG) &&
5314 !(features & NETIF_F_ALL_CSUM)) {
5315 netdev_dbg(dev,
5316 "Dropping NETIF_F_SG since no checksum feature.\n");
5317 features &= ~NETIF_F_SG;
5318 }
5319
5320 /* TSO requires that SG is present as well. */
5321 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5322 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5323 features &= ~NETIF_F_ALL_TSO;
5324 }
5325
5326 /* TSO ECN requires that TSO is present as well. */
5327 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5328 features &= ~NETIF_F_TSO_ECN;
5329
5330 /* Software GSO depends on SG. */
5331 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5332 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5333 features &= ~NETIF_F_GSO;
5334 }
5335
5336 /* UFO needs SG and checksumming */
5337 if (features & NETIF_F_UFO) {
5338 /* maybe split UFO into V4 and V6? */
5339 if (!((features & NETIF_F_GEN_CSUM) ||
5340 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5341 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5342 netdev_dbg(dev,
5343 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5344 features &= ~NETIF_F_UFO;
5345 }
5346
5347 if (!(features & NETIF_F_SG)) {
5348 netdev_dbg(dev,
5349 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5350 features &= ~NETIF_F_UFO;
5351 }
5352 }
5353
5354 return features;
5355}
5356
5357int __netdev_update_features(struct net_device *dev)
5358{
5359 netdev_features_t features;
5360 int err = 0;
5361
5362 ASSERT_RTNL();
5363
5364 features = netdev_get_wanted_features(dev);
5365
5366 if (dev->netdev_ops->ndo_fix_features)
5367 features = dev->netdev_ops->ndo_fix_features(dev, features);
5368
5369 /* driver might be less strict about feature dependencies */
5370 features = netdev_fix_features(dev, features);
5371
5372 if (dev->features == features)
5373 return 0;
5374
5375 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5376 &dev->features, &features);
5377
5378 if (dev->netdev_ops->ndo_set_features)
5379 err = dev->netdev_ops->ndo_set_features(dev, features);
5380
5381 if (unlikely(err < 0)) {
5382 netdev_err(dev,
5383 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5384 err, &features, &dev->features);
5385 return -1;
5386 }
5387
5388 if (!err)
5389 dev->features = features;
5390
5391 return 1;
5392}
5393
5394/**
5395 * netdev_update_features - recalculate device features
5396 * @dev: the device to check
5397 *
5398 * Recalculate dev->features set and send notifications if it
5399 * has changed. Should be called after driver or hardware dependent
5400 * conditions might have changed that influence the features.
5401 */
5402void netdev_update_features(struct net_device *dev)
5403{
5404 if (__netdev_update_features(dev))
5405 netdev_features_change(dev);
5406}
5407EXPORT_SYMBOL(netdev_update_features);
5408
5409/**
5410 * netdev_change_features - recalculate device features
5411 * @dev: the device to check
5412 *
5413 * Recalculate dev->features set and send notifications even
5414 * if they have not changed. Should be called instead of
5415 * netdev_update_features() if also dev->vlan_features might
5416 * have changed to allow the changes to be propagated to stacked
5417 * VLAN devices.
5418 */
5419void netdev_change_features(struct net_device *dev)
5420{
5421 __netdev_update_features(dev);
5422 netdev_features_change(dev);
5423}
5424EXPORT_SYMBOL(netdev_change_features);
5425
5426/**
5427 * netif_stacked_transfer_operstate - transfer operstate
5428 * @rootdev: the root or lower level device to transfer state from
5429 * @dev: the device to transfer operstate to
5430 *
5431 * Transfer operational state from root to device. This is normally
5432 * called when a stacking relationship exists between the root
5433 * device and the device(a leaf device).
5434 */
5435void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5436 struct net_device *dev)
5437{
5438 if (rootdev->operstate == IF_OPER_DORMANT)
5439 netif_dormant_on(dev);
5440 else
5441 netif_dormant_off(dev);
5442
5443 if (netif_carrier_ok(rootdev)) {
5444 if (!netif_carrier_ok(dev))
5445 netif_carrier_on(dev);
5446 } else {
5447 if (netif_carrier_ok(dev))
5448 netif_carrier_off(dev);
5449 }
5450}
5451EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5452
5453#ifdef CONFIG_RPS
5454static int netif_alloc_rx_queues(struct net_device *dev)
5455{
5456 unsigned int i, count = dev->num_rx_queues;
5457 struct netdev_rx_queue *rx;
5458
5459 BUG_ON(count < 1);
5460
5461 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5462 if (!rx) {
5463 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5464 return -ENOMEM;
5465 }
5466 dev->_rx = rx;
5467
5468 for (i = 0; i < count; i++)
5469 rx[i].dev = dev;
5470 return 0;
5471}
5472#endif
5473
5474static void netdev_init_one_queue(struct net_device *dev,
5475 struct netdev_queue *queue, void *_unused)
5476{
5477 /* Initialize queue lock */
5478 spin_lock_init(&queue->_xmit_lock);
5479 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5480 queue->xmit_lock_owner = -1;
5481 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5482 queue->dev = dev;
5483#ifdef CONFIG_BQL
5484 dql_init(&queue->dql, HZ);
5485#endif
5486}
5487
5488static int netif_alloc_netdev_queues(struct net_device *dev)
5489{
5490 unsigned int count = dev->num_tx_queues;
5491 struct netdev_queue *tx;
5492
5493 BUG_ON(count < 1);
5494
5495 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5496 if (!tx) {
5497 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5498 return -ENOMEM;
5499 }
5500 dev->_tx = tx;
5501
5502 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5503 spin_lock_init(&dev->tx_global_lock);
5504
5505 return 0;
5506}
5507
5508/**
5509 * register_netdevice - register a network device
5510 * @dev: device to register
5511 *
5512 * Take a completed network device structure and add it to the kernel
5513 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5514 * chain. 0 is returned on success. A negative errno code is returned
5515 * on a failure to set up the device, or if the name is a duplicate.
5516 *
5517 * Callers must hold the rtnl semaphore. You may want
5518 * register_netdev() instead of this.
5519 *
5520 * BUGS:
5521 * The locking appears insufficient to guarantee two parallel registers
5522 * will not get the same name.
5523 */
5524
5525int register_netdevice(struct net_device *dev)
5526{
5527 int ret;
5528 struct net *net = dev_net(dev);
5529
5530 BUG_ON(dev_boot_phase);
5531 ASSERT_RTNL();
5532
5533 might_sleep();
5534
5535 /* When net_device's are persistent, this will be fatal. */
5536 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5537 BUG_ON(!net);
5538
5539 spin_lock_init(&dev->addr_list_lock);
5540 netdev_set_addr_lockdep_class(dev);
5541
5542 dev->iflink = -1;
5543
5544 ret = dev_get_valid_name(dev, dev->name);
5545 if (ret < 0)
5546 goto out;
5547
5548 /* Init, if this function is available */
5549 if (dev->netdev_ops->ndo_init) {
5550 ret = dev->netdev_ops->ndo_init(dev);
5551 if (ret) {
5552 if (ret > 0)
5553 ret = -EIO;
5554 goto out;
5555 }
5556 }
5557
5558 dev->ifindex = dev_new_index(net);
5559 if (dev->iflink == -1)
5560 dev->iflink = dev->ifindex;
5561
5562 /* Transfer changeable features to wanted_features and enable
5563 * software offloads (GSO and GRO).
5564 */
5565 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5566 dev->features |= NETIF_F_SOFT_FEATURES;
5567 dev->wanted_features = dev->features & dev->hw_features;
5568
5569 /* Turn on no cache copy if HW is doing checksum */
5570 if (!(dev->flags & IFF_LOOPBACK)) {
5571 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5572 if (dev->features & NETIF_F_ALL_CSUM) {
5573 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5574 dev->features |= NETIF_F_NOCACHE_COPY;
5575 }
5576 }
5577
5578 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5579 */
5580 dev->vlan_features |= NETIF_F_HIGHDMA;
5581
5582 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5583 ret = notifier_to_errno(ret);
5584 if (ret)
5585 goto err_uninit;
5586
5587 ret = netdev_register_kobject(dev);
5588 if (ret)
5589 goto err_uninit;
5590 dev->reg_state = NETREG_REGISTERED;
5591
5592 __netdev_update_features(dev);
5593
5594 /*
5595 * Default initial state at registry is that the
5596 * device is present.
5597 */
5598
5599 set_bit(__LINK_STATE_PRESENT, &dev->state);
5600
5601 dev_init_scheduler(dev);
5602 dev_hold(dev);
5603 list_netdevice(dev);
5604
5605 /* Notify protocols, that a new device appeared. */
5606 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5607 ret = notifier_to_errno(ret);
5608 if (ret) {
5609 rollback_registered(dev);
5610 dev->reg_state = NETREG_UNREGISTERED;
5611 }
5612 /*
5613 * Prevent userspace races by waiting until the network
5614 * device is fully setup before sending notifications.
5615 */
5616 if (!dev->rtnl_link_ops ||
5617 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5618 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5619
5620out:
5621 return ret;
5622
5623err_uninit:
5624 if (dev->netdev_ops->ndo_uninit)
5625 dev->netdev_ops->ndo_uninit(dev);
5626 goto out;
5627}
5628EXPORT_SYMBOL(register_netdevice);
5629
5630/**
5631 * init_dummy_netdev - init a dummy network device for NAPI
5632 * @dev: device to init
5633 *
5634 * This takes a network device structure and initialize the minimum
5635 * amount of fields so it can be used to schedule NAPI polls without
5636 * registering a full blown interface. This is to be used by drivers
5637 * that need to tie several hardware interfaces to a single NAPI
5638 * poll scheduler due to HW limitations.
5639 */
5640int init_dummy_netdev(struct net_device *dev)
5641{
5642 /* Clear everything. Note we don't initialize spinlocks
5643 * are they aren't supposed to be taken by any of the
5644 * NAPI code and this dummy netdev is supposed to be
5645 * only ever used for NAPI polls
5646 */
5647 memset(dev, 0, sizeof(struct net_device));
5648
5649 /* make sure we BUG if trying to hit standard
5650 * register/unregister code path
5651 */
5652 dev->reg_state = NETREG_DUMMY;
5653
5654 /* NAPI wants this */
5655 INIT_LIST_HEAD(&dev->napi_list);
5656
5657 /* a dummy interface is started by default */
5658 set_bit(__LINK_STATE_PRESENT, &dev->state);
5659 set_bit(__LINK_STATE_START, &dev->state);
5660
5661 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5662 * because users of this 'device' dont need to change
5663 * its refcount.
5664 */
5665
5666 return 0;
5667}
5668EXPORT_SYMBOL_GPL(init_dummy_netdev);
5669
5670
5671/**
5672 * register_netdev - register a network device
5673 * @dev: device to register
5674 *
5675 * Take a completed network device structure and add it to the kernel
5676 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5677 * chain. 0 is returned on success. A negative errno code is returned
5678 * on a failure to set up the device, or if the name is a duplicate.
5679 *
5680 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5681 * and expands the device name if you passed a format string to
5682 * alloc_netdev.
5683 */
5684int register_netdev(struct net_device *dev)
5685{
5686 int err;
5687
5688 rtnl_lock();
5689 err = register_netdevice(dev);
5690 rtnl_unlock();
5691 return err;
5692}
5693EXPORT_SYMBOL(register_netdev);
5694
5695int netdev_refcnt_read(const struct net_device *dev)
5696{
5697 int i, refcnt = 0;
5698
5699 for_each_possible_cpu(i)
5700 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5701 return refcnt;
5702}
5703EXPORT_SYMBOL(netdev_refcnt_read);
5704
5705/*
5706 * netdev_wait_allrefs - wait until all references are gone.
5707 *
5708 * This is called when unregistering network devices.
5709 *
5710 * Any protocol or device that holds a reference should register
5711 * for netdevice notification, and cleanup and put back the
5712 * reference if they receive an UNREGISTER event.
5713 * We can get stuck here if buggy protocols don't correctly
5714 * call dev_put.
5715 */
5716static void netdev_wait_allrefs(struct net_device *dev)
5717{
5718 unsigned long rebroadcast_time, warning_time;
5719 int refcnt;
5720
5721 linkwatch_forget_dev(dev);
5722
5723 rebroadcast_time = warning_time = jiffies;
5724 refcnt = netdev_refcnt_read(dev);
5725
5726 while (refcnt != 0) {
5727 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5728 rtnl_lock();
5729
5730 /* Rebroadcast unregister notification */
5731 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5732 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5733 * should have already handle it the first time */
5734
5735 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5736 &dev->state)) {
5737 /* We must not have linkwatch events
5738 * pending on unregister. If this
5739 * happens, we simply run the queue
5740 * unscheduled, resulting in a noop
5741 * for this device.
5742 */
5743 linkwatch_run_queue();
5744 }
5745
5746 __rtnl_unlock();
5747
5748 rebroadcast_time = jiffies;
5749 }
5750
5751 msleep(250);
5752
5753 refcnt = netdev_refcnt_read(dev);
5754
5755 if (time_after(jiffies, warning_time + 10 * HZ)) {
5756 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5757 dev->name, refcnt);
5758 warning_time = jiffies;
5759 }
5760 }
5761}
5762
5763/* The sequence is:
5764 *
5765 * rtnl_lock();
5766 * ...
5767 * register_netdevice(x1);
5768 * register_netdevice(x2);
5769 * ...
5770 * unregister_netdevice(y1);
5771 * unregister_netdevice(y2);
5772 * ...
5773 * rtnl_unlock();
5774 * free_netdev(y1);
5775 * free_netdev(y2);
5776 *
5777 * We are invoked by rtnl_unlock().
5778 * This allows us to deal with problems:
5779 * 1) We can delete sysfs objects which invoke hotplug
5780 * without deadlocking with linkwatch via keventd.
5781 * 2) Since we run with the RTNL semaphore not held, we can sleep
5782 * safely in order to wait for the netdev refcnt to drop to zero.
5783 *
5784 * We must not return until all unregister events added during
5785 * the interval the lock was held have been completed.
5786 */
5787void netdev_run_todo(void)
5788{
5789 struct list_head list;
5790
5791 /* Snapshot list, allow later requests */
5792 list_replace_init(&net_todo_list, &list);
5793
5794 __rtnl_unlock();
5795
5796 /* Wait for rcu callbacks to finish before attempting to drain
5797 * the device list. This usually avoids a 250ms wait.
5798 */
5799 if (!list_empty(&list))
5800 rcu_barrier();
5801
5802 while (!list_empty(&list)) {
5803 struct net_device *dev
5804 = list_first_entry(&list, struct net_device, todo_list);
5805 list_del(&dev->todo_list);
5806
5807 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5808 pr_err("network todo '%s' but state %d\n",
5809 dev->name, dev->reg_state);
5810 dump_stack();
5811 continue;
5812 }
5813
5814 dev->reg_state = NETREG_UNREGISTERED;
5815
5816 on_each_cpu(flush_backlog, dev, 1);
5817
5818 netdev_wait_allrefs(dev);
5819
5820 /* paranoia */
5821 BUG_ON(netdev_refcnt_read(dev));
5822 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5823 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5824 WARN_ON(dev->dn_ptr);
5825
5826 if (dev->destructor)
5827 dev->destructor(dev);
5828
5829 /* Free network device */
5830 kobject_put(&dev->dev.kobj);
5831 }
5832}
5833
5834/* Convert net_device_stats to rtnl_link_stats64. They have the same
5835 * fields in the same order, with only the type differing.
5836 */
5837void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5838 const struct net_device_stats *netdev_stats)
5839{
5840#if BITS_PER_LONG == 64
5841 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5842 memcpy(stats64, netdev_stats, sizeof(*stats64));
5843#else
5844 size_t i, n = sizeof(*stats64) / sizeof(u64);
5845 const unsigned long *src = (const unsigned long *)netdev_stats;
5846 u64 *dst = (u64 *)stats64;
5847
5848 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5849 sizeof(*stats64) / sizeof(u64));
5850 for (i = 0; i < n; i++)
5851 dst[i] = src[i];
5852#endif
5853}
5854EXPORT_SYMBOL(netdev_stats_to_stats64);
5855
5856/**
5857 * dev_get_stats - get network device statistics
5858 * @dev: device to get statistics from
5859 * @storage: place to store stats
5860 *
5861 * Get network statistics from device. Return @storage.
5862 * The device driver may provide its own method by setting
5863 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5864 * otherwise the internal statistics structure is used.
5865 */
5866struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5867 struct rtnl_link_stats64 *storage)
5868{
5869 const struct net_device_ops *ops = dev->netdev_ops;
5870
5871 if (ops->ndo_get_stats64) {
5872 memset(storage, 0, sizeof(*storage));
5873 ops->ndo_get_stats64(dev, storage);
5874 } else if (ops->ndo_get_stats) {
5875 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5876 } else {
5877 netdev_stats_to_stats64(storage, &dev->stats);
5878 }
5879 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5880 return storage;
5881}
5882EXPORT_SYMBOL(dev_get_stats);
5883
5884struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5885{
5886 struct netdev_queue *queue = dev_ingress_queue(dev);
5887
5888#ifdef CONFIG_NET_CLS_ACT
5889 if (queue)
5890 return queue;
5891 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5892 if (!queue)
5893 return NULL;
5894 netdev_init_one_queue(dev, queue, NULL);
5895 queue->qdisc = &noop_qdisc;
5896 queue->qdisc_sleeping = &noop_qdisc;
5897 rcu_assign_pointer(dev->ingress_queue, queue);
5898#endif
5899 return queue;
5900}
5901
5902/**
5903 * alloc_netdev_mqs - allocate network device
5904 * @sizeof_priv: size of private data to allocate space for
5905 * @name: device name format string
5906 * @setup: callback to initialize device
5907 * @txqs: the number of TX subqueues to allocate
5908 * @rxqs: the number of RX subqueues to allocate
5909 *
5910 * Allocates a struct net_device with private data area for driver use
5911 * and performs basic initialization. Also allocates subquue structs
5912 * for each queue on the device.
5913 */
5914struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5915 void (*setup)(struct net_device *),
5916 unsigned int txqs, unsigned int rxqs)
5917{
5918 struct net_device *dev;
5919 size_t alloc_size;
5920 struct net_device *p;
5921
5922 BUG_ON(strlen(name) >= sizeof(dev->name));
5923
5924 if (txqs < 1) {
5925 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5926 return NULL;
5927 }
5928
5929#ifdef CONFIG_RPS
5930 if (rxqs < 1) {
5931 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5932 return NULL;
5933 }
5934#endif
5935
5936 alloc_size = sizeof(struct net_device);
5937 if (sizeof_priv) {
5938 /* ensure 32-byte alignment of private area */
5939 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5940 alloc_size += sizeof_priv;
5941 }
5942 /* ensure 32-byte alignment of whole construct */
5943 alloc_size += NETDEV_ALIGN - 1;
5944
5945 p = kzalloc(alloc_size, GFP_KERNEL);
5946 if (!p) {
5947 pr_err("alloc_netdev: Unable to allocate device\n");
5948 return NULL;
5949 }
5950
5951 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5952 dev->padded = (char *)dev - (char *)p;
5953
5954 dev->pcpu_refcnt = alloc_percpu(int);
5955 if (!dev->pcpu_refcnt)
5956 goto free_p;
5957
5958 if (dev_addr_init(dev))
5959 goto free_pcpu;
5960
5961 dev_mc_init(dev);
5962 dev_uc_init(dev);
5963
5964 dev_net_set(dev, &init_net);
5965
5966 dev->gso_max_size = GSO_MAX_SIZE;
5967
5968 INIT_LIST_HEAD(&dev->napi_list);
5969 INIT_LIST_HEAD(&dev->unreg_list);
5970 INIT_LIST_HEAD(&dev->link_watch_list);
5971 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5972 setup(dev);
5973
5974 dev->num_tx_queues = txqs;
5975 dev->real_num_tx_queues = txqs;
5976 if (netif_alloc_netdev_queues(dev))
5977 goto free_all;
5978
5979#ifdef CONFIG_RPS
5980 dev->num_rx_queues = rxqs;
5981 dev->real_num_rx_queues = rxqs;
5982 if (netif_alloc_rx_queues(dev))
5983 goto free_all;
5984#endif
5985
5986 strcpy(dev->name, name);
5987 dev->group = INIT_NETDEV_GROUP;
5988 return dev;
5989
5990free_all:
5991 free_netdev(dev);
5992 return NULL;
5993
5994free_pcpu:
5995 free_percpu(dev->pcpu_refcnt);
5996 kfree(dev->_tx);
5997#ifdef CONFIG_RPS
5998 kfree(dev->_rx);
5999#endif
6000
6001free_p:
6002 kfree(p);
6003 return NULL;
6004}
6005EXPORT_SYMBOL(alloc_netdev_mqs);
6006
6007/**
6008 * free_netdev - free network device
6009 * @dev: device
6010 *
6011 * This function does the last stage of destroying an allocated device
6012 * interface. The reference to the device object is released.
6013 * If this is the last reference then it will be freed.
6014 */
6015void free_netdev(struct net_device *dev)
6016{
6017 struct napi_struct *p, *n;
6018
6019 release_net(dev_net(dev));
6020
6021 kfree(dev->_tx);
6022#ifdef CONFIG_RPS
6023 kfree(dev->_rx);
6024#endif
6025
6026 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6027
6028 /* Flush device addresses */
6029 dev_addr_flush(dev);
6030
6031 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6032 netif_napi_del(p);
6033
6034 free_percpu(dev->pcpu_refcnt);
6035 dev->pcpu_refcnt = NULL;
6036
6037 /* Compatibility with error handling in drivers */
6038 if (dev->reg_state == NETREG_UNINITIALIZED) {
6039 kfree((char *)dev - dev->padded);
6040 return;
6041 }
6042
6043 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6044 dev->reg_state = NETREG_RELEASED;
6045
6046 /* will free via device release */
6047 put_device(&dev->dev);
6048}
6049EXPORT_SYMBOL(free_netdev);
6050
6051/**
6052 * synchronize_net - Synchronize with packet receive processing
6053 *
6054 * Wait for packets currently being received to be done.
6055 * Does not block later packets from starting.
6056 */
6057void synchronize_net(void)
6058{
6059 might_sleep();
6060 if (rtnl_is_locked())
6061 synchronize_rcu_expedited();
6062 else
6063 synchronize_rcu();
6064}
6065EXPORT_SYMBOL(synchronize_net);
6066
6067/**
6068 * unregister_netdevice_queue - remove device from the kernel
6069 * @dev: device
6070 * @head: list
6071 *
6072 * This function shuts down a device interface and removes it
6073 * from the kernel tables.
6074 * If head not NULL, device is queued to be unregistered later.
6075 *
6076 * Callers must hold the rtnl semaphore. You may want
6077 * unregister_netdev() instead of this.
6078 */
6079
6080void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6081{
6082 ASSERT_RTNL();
6083
6084 if (head) {
6085 list_move_tail(&dev->unreg_list, head);
6086 } else {
6087 rollback_registered(dev);
6088 /* Finish processing unregister after unlock */
6089 net_set_todo(dev);
6090 }
6091}
6092EXPORT_SYMBOL(unregister_netdevice_queue);
6093
6094/**
6095 * unregister_netdevice_many - unregister many devices
6096 * @head: list of devices
6097 */
6098void unregister_netdevice_many(struct list_head *head)
6099{
6100 struct net_device *dev;
6101
6102 if (!list_empty(head)) {
6103 rollback_registered_many(head);
6104 list_for_each_entry(dev, head, unreg_list)
6105 net_set_todo(dev);
6106 }
6107}
6108EXPORT_SYMBOL(unregister_netdevice_many);
6109
6110/**
6111 * unregister_netdev - remove device from the kernel
6112 * @dev: device
6113 *
6114 * This function shuts down a device interface and removes it
6115 * from the kernel tables.
6116 *
6117 * This is just a wrapper for unregister_netdevice that takes
6118 * the rtnl semaphore. In general you want to use this and not
6119 * unregister_netdevice.
6120 */
6121void unregister_netdev(struct net_device *dev)
6122{
6123 rtnl_lock();
6124 unregister_netdevice(dev);
6125 rtnl_unlock();
6126}
6127EXPORT_SYMBOL(unregister_netdev);
6128
6129/**
6130 * dev_change_net_namespace - move device to different nethost namespace
6131 * @dev: device
6132 * @net: network namespace
6133 * @pat: If not NULL name pattern to try if the current device name
6134 * is already taken in the destination network namespace.
6135 *
6136 * This function shuts down a device interface and moves it
6137 * to a new network namespace. On success 0 is returned, on
6138 * a failure a netagive errno code is returned.
6139 *
6140 * Callers must hold the rtnl semaphore.
6141 */
6142
6143int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6144{
6145 int err;
6146
6147 ASSERT_RTNL();
6148
6149 /* Don't allow namespace local devices to be moved. */
6150 err = -EINVAL;
6151 if (dev->features & NETIF_F_NETNS_LOCAL)
6152 goto out;
6153
6154 /* Ensure the device has been registrered */
6155 err = -EINVAL;
6156 if (dev->reg_state != NETREG_REGISTERED)
6157 goto out;
6158
6159 /* Get out if there is nothing todo */
6160 err = 0;
6161 if (net_eq(dev_net(dev), net))
6162 goto out;
6163
6164 /* Pick the destination device name, and ensure
6165 * we can use it in the destination network namespace.
6166 */
6167 err = -EEXIST;
6168 if (__dev_get_by_name(net, dev->name)) {
6169 /* We get here if we can't use the current device name */
6170 if (!pat)
6171 goto out;
6172 if (dev_get_valid_name(dev, pat) < 0)
6173 goto out;
6174 }
6175
6176 /*
6177 * And now a mini version of register_netdevice unregister_netdevice.
6178 */
6179
6180 /* If device is running close it first. */
6181 dev_close(dev);
6182
6183 /* And unlink it from device chain */
6184 err = -ENODEV;
6185 unlist_netdevice(dev);
6186
6187 synchronize_net();
6188
6189 /* Shutdown queueing discipline. */
6190 dev_shutdown(dev);
6191
6192 /* Notify protocols, that we are about to destroy
6193 this device. They should clean all the things.
6194
6195 Note that dev->reg_state stays at NETREG_REGISTERED.
6196 This is wanted because this way 8021q and macvlan know
6197 the device is just moving and can keep their slaves up.
6198 */
6199 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6200 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6201 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6202
6203 /*
6204 * Flush the unicast and multicast chains
6205 */
6206 dev_uc_flush(dev);
6207 dev_mc_flush(dev);
6208
6209 /* Actually switch the network namespace */
6210 dev_net_set(dev, net);
6211
6212 /* If there is an ifindex conflict assign a new one */
6213 if (__dev_get_by_index(net, dev->ifindex)) {
6214 int iflink = (dev->iflink == dev->ifindex);
6215 dev->ifindex = dev_new_index(net);
6216 if (iflink)
6217 dev->iflink = dev->ifindex;
6218 }
6219
6220 /* Fixup kobjects */
6221 err = device_rename(&dev->dev, dev->name);
6222 WARN_ON(err);
6223
6224 /* Add the device back in the hashes */
6225 list_netdevice(dev);
6226
6227 /* Notify protocols, that a new device appeared. */
6228 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6229
6230 /*
6231 * Prevent userspace races by waiting until the network
6232 * device is fully setup before sending notifications.
6233 */
6234 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6235
6236 synchronize_net();
6237 err = 0;
6238out:
6239 return err;
6240}
6241EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6242
6243static int dev_cpu_callback(struct notifier_block *nfb,
6244 unsigned long action,
6245 void *ocpu)
6246{
6247 struct sk_buff **list_skb;
6248 struct sk_buff *skb;
6249 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6250 struct softnet_data *sd, *oldsd;
6251
6252 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6253 return NOTIFY_OK;
6254
6255 local_irq_disable();
6256 cpu = smp_processor_id();
6257 sd = &per_cpu(softnet_data, cpu);
6258 oldsd = &per_cpu(softnet_data, oldcpu);
6259
6260 /* Find end of our completion_queue. */
6261 list_skb = &sd->completion_queue;
6262 while (*list_skb)
6263 list_skb = &(*list_skb)->next;
6264 /* Append completion queue from offline CPU. */
6265 *list_skb = oldsd->completion_queue;
6266 oldsd->completion_queue = NULL;
6267
6268 /* Append output queue from offline CPU. */
6269 if (oldsd->output_queue) {
6270 *sd->output_queue_tailp = oldsd->output_queue;
6271 sd->output_queue_tailp = oldsd->output_queue_tailp;
6272 oldsd->output_queue = NULL;
6273 oldsd->output_queue_tailp = &oldsd->output_queue;
6274 }
6275 /* Append NAPI poll list from offline CPU. */
6276 if (!list_empty(&oldsd->poll_list)) {
6277 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6278 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6279 }
6280
6281 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6282 local_irq_enable();
6283
6284 /* Process offline CPU's input_pkt_queue */
6285 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6286 netif_rx(skb);
6287 input_queue_head_incr(oldsd);
6288 }
6289 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6290 netif_rx(skb);
6291 input_queue_head_incr(oldsd);
6292 }
6293
6294 return NOTIFY_OK;
6295}
6296
6297
6298/**
6299 * netdev_increment_features - increment feature set by one
6300 * @all: current feature set
6301 * @one: new feature set
6302 * @mask: mask feature set
6303 *
6304 * Computes a new feature set after adding a device with feature set
6305 * @one to the master device with current feature set @all. Will not
6306 * enable anything that is off in @mask. Returns the new feature set.
6307 */
6308netdev_features_t netdev_increment_features(netdev_features_t all,
6309 netdev_features_t one, netdev_features_t mask)
6310{
6311 if (mask & NETIF_F_GEN_CSUM)
6312 mask |= NETIF_F_ALL_CSUM;
6313 mask |= NETIF_F_VLAN_CHALLENGED;
6314
6315 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6316 all &= one | ~NETIF_F_ALL_FOR_ALL;
6317
6318 /* If one device supports hw checksumming, set for all. */
6319 if (all & NETIF_F_GEN_CSUM)
6320 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6321
6322 return all;
6323}
6324EXPORT_SYMBOL(netdev_increment_features);
6325
6326static struct hlist_head *netdev_create_hash(void)
6327{
6328 int i;
6329 struct hlist_head *hash;
6330
6331 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6332 if (hash != NULL)
6333 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6334 INIT_HLIST_HEAD(&hash[i]);
6335
6336 return hash;
6337}
6338
6339/* Initialize per network namespace state */
6340static int __net_init netdev_init(struct net *net)
6341{
6342 INIT_LIST_HEAD(&net->dev_base_head);
6343
6344 net->dev_name_head = netdev_create_hash();
6345 if (net->dev_name_head == NULL)
6346 goto err_name;
6347
6348 net->dev_index_head = netdev_create_hash();
6349 if (net->dev_index_head == NULL)
6350 goto err_idx;
6351
6352 return 0;
6353
6354err_idx:
6355 kfree(net->dev_name_head);
6356err_name:
6357 return -ENOMEM;
6358}
6359
6360/**
6361 * netdev_drivername - network driver for the device
6362 * @dev: network device
6363 *
6364 * Determine network driver for device.
6365 */
6366const char *netdev_drivername(const struct net_device *dev)
6367{
6368 const struct device_driver *driver;
6369 const struct device *parent;
6370 const char *empty = "";
6371
6372 parent = dev->dev.parent;
6373 if (!parent)
6374 return empty;
6375
6376 driver = parent->driver;
6377 if (driver && driver->name)
6378 return driver->name;
6379 return empty;
6380}
6381
6382int __netdev_printk(const char *level, const struct net_device *dev,
6383 struct va_format *vaf)
6384{
6385 int r;
6386
6387 if (dev && dev->dev.parent)
6388 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6389 netdev_name(dev), vaf);
6390 else if (dev)
6391 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6392 else
6393 r = printk("%s(NULL net_device): %pV", level, vaf);
6394
6395 return r;
6396}
6397EXPORT_SYMBOL(__netdev_printk);
6398
6399int netdev_printk(const char *level, const struct net_device *dev,
6400 const char *format, ...)
6401{
6402 struct va_format vaf;
6403 va_list args;
6404 int r;
6405
6406 va_start(args, format);
6407
6408 vaf.fmt = format;
6409 vaf.va = &args;
6410
6411 r = __netdev_printk(level, dev, &vaf);
6412 va_end(args);
6413
6414 return r;
6415}
6416EXPORT_SYMBOL(netdev_printk);
6417
6418#define define_netdev_printk_level(func, level) \
6419int func(const struct net_device *dev, const char *fmt, ...) \
6420{ \
6421 int r; \
6422 struct va_format vaf; \
6423 va_list args; \
6424 \
6425 va_start(args, fmt); \
6426 \
6427 vaf.fmt = fmt; \
6428 vaf.va = &args; \
6429 \
6430 r = __netdev_printk(level, dev, &vaf); \
6431 va_end(args); \
6432 \
6433 return r; \
6434} \
6435EXPORT_SYMBOL(func);
6436
6437define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6438define_netdev_printk_level(netdev_alert, KERN_ALERT);
6439define_netdev_printk_level(netdev_crit, KERN_CRIT);
6440define_netdev_printk_level(netdev_err, KERN_ERR);
6441define_netdev_printk_level(netdev_warn, KERN_WARNING);
6442define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6443define_netdev_printk_level(netdev_info, KERN_INFO);
6444
6445static void __net_exit netdev_exit(struct net *net)
6446{
6447 kfree(net->dev_name_head);
6448 kfree(net->dev_index_head);
6449}
6450
6451static struct pernet_operations __net_initdata netdev_net_ops = {
6452 .init = netdev_init,
6453 .exit = netdev_exit,
6454};
6455
6456static void __net_exit default_device_exit(struct net *net)
6457{
6458 struct net_device *dev, *aux;
6459 /*
6460 * Push all migratable network devices back to the
6461 * initial network namespace
6462 */
6463 rtnl_lock();
6464 for_each_netdev_safe(net, dev, aux) {
6465 int err;
6466 char fb_name[IFNAMSIZ];
6467
6468 /* Ignore unmoveable devices (i.e. loopback) */
6469 if (dev->features & NETIF_F_NETNS_LOCAL)
6470 continue;
6471
6472 /* Leave virtual devices for the generic cleanup */
6473 if (dev->rtnl_link_ops)
6474 continue;
6475
6476 /* Push remaining network devices to init_net */
6477 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6478 err = dev_change_net_namespace(dev, &init_net, fb_name);
6479 if (err) {
6480 pr_emerg("%s: failed to move %s to init_net: %d\n",
6481 __func__, dev->name, err);
6482 BUG();
6483 }
6484 }
6485 rtnl_unlock();
6486}
6487
6488static void __net_exit default_device_exit_batch(struct list_head *net_list)
6489{
6490 /* At exit all network devices most be removed from a network
6491 * namespace. Do this in the reverse order of registration.
6492 * Do this across as many network namespaces as possible to
6493 * improve batching efficiency.
6494 */
6495 struct net_device *dev;
6496 struct net *net;
6497 LIST_HEAD(dev_kill_list);
6498
6499 rtnl_lock();
6500 list_for_each_entry(net, net_list, exit_list) {
6501 for_each_netdev_reverse(net, dev) {
6502 if (dev->rtnl_link_ops)
6503 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6504 else
6505 unregister_netdevice_queue(dev, &dev_kill_list);
6506 }
6507 }
6508 unregister_netdevice_many(&dev_kill_list);
6509 list_del(&dev_kill_list);
6510 rtnl_unlock();
6511}
6512
6513static struct pernet_operations __net_initdata default_device_ops = {
6514 .exit = default_device_exit,
6515 .exit_batch = default_device_exit_batch,
6516};
6517
6518/*
6519 * Initialize the DEV module. At boot time this walks the device list and
6520 * unhooks any devices that fail to initialise (normally hardware not
6521 * present) and leaves us with a valid list of present and active devices.
6522 *
6523 */
6524
6525/*
6526 * This is called single threaded during boot, so no need
6527 * to take the rtnl semaphore.
6528 */
6529static int __init net_dev_init(void)
6530{
6531 int i, rc = -ENOMEM;
6532
6533 BUG_ON(!dev_boot_phase);
6534
6535 if (dev_proc_init())
6536 goto out;
6537
6538 if (netdev_kobject_init())
6539 goto out;
6540
6541 INIT_LIST_HEAD(&ptype_all);
6542 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6543 INIT_LIST_HEAD(&ptype_base[i]);
6544
6545 if (register_pernet_subsys(&netdev_net_ops))
6546 goto out;
6547
6548 /*
6549 * Initialise the packet receive queues.
6550 */
6551
6552 for_each_possible_cpu(i) {
6553 struct softnet_data *sd = &per_cpu(softnet_data, i);
6554
6555 memset(sd, 0, sizeof(*sd));
6556 skb_queue_head_init(&sd->input_pkt_queue);
6557 skb_queue_head_init(&sd->process_queue);
6558 sd->completion_queue = NULL;
6559 INIT_LIST_HEAD(&sd->poll_list);
6560 sd->output_queue = NULL;
6561 sd->output_queue_tailp = &sd->output_queue;
6562#ifdef CONFIG_RPS
6563 sd->csd.func = rps_trigger_softirq;
6564 sd->csd.info = sd;
6565 sd->csd.flags = 0;
6566 sd->cpu = i;
6567#endif
6568
6569 sd->backlog.poll = process_backlog;
6570 sd->backlog.weight = weight_p;
6571 sd->backlog.gro_list = NULL;
6572 sd->backlog.gro_count = 0;
6573 }
6574
6575 dev_boot_phase = 0;
6576
6577 /* The loopback device is special if any other network devices
6578 * is present in a network namespace the loopback device must
6579 * be present. Since we now dynamically allocate and free the
6580 * loopback device ensure this invariant is maintained by
6581 * keeping the loopback device as the first device on the
6582 * list of network devices. Ensuring the loopback devices
6583 * is the first device that appears and the last network device
6584 * that disappears.
6585 */
6586 if (register_pernet_device(&loopback_net_ops))
6587 goto out;
6588
6589 if (register_pernet_device(&default_device_ops))
6590 goto out;
6591
6592 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6593 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6594
6595 hotcpu_notifier(dev_cpu_callback, 0);
6596 dst_init();
6597 dev_mcast_init();
6598 rc = 0;
6599out:
6600 return rc;
6601}
6602
6603subsys_initcall(net_dev_init);
6604
6605static int __init initialize_hashrnd(void)
6606{
6607 get_random_bytes(&hashrnd, sizeof(hashrnd));
6608 return 0;
6609}
6610
6611late_initcall_sync(initialize_hashrnd);
6612