at v3.3 71 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/dmaengine.h> 31#include <linux/hrtimer.h> 32#include <linux/dma-mapping.h> 33#include <linux/netdev_features.h> 34 35/* Don't change this without changing skb_csum_unnecessary! */ 36#define CHECKSUM_NONE 0 37#define CHECKSUM_UNNECESSARY 1 38#define CHECKSUM_COMPLETE 2 39#define CHECKSUM_PARTIAL 3 40 41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43#define SKB_WITH_OVERHEAD(X) \ 44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 45#define SKB_MAX_ORDER(X, ORDER) \ 46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 47#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 48#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 49 50/* return minimum truesize of one skb containing X bytes of data */ 51#define SKB_TRUESIZE(X) ((X) + \ 52 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 53 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 54 55/* A. Checksumming of received packets by device. 56 * 57 * NONE: device failed to checksum this packet. 58 * skb->csum is undefined. 59 * 60 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 61 * skb->csum is undefined. 62 * It is bad option, but, unfortunately, many of vendors do this. 63 * Apparently with secret goal to sell you new device, when you 64 * will add new protocol to your host. F.e. IPv6. 8) 65 * 66 * COMPLETE: the most generic way. Device supplied checksum of _all_ 67 * the packet as seen by netif_rx in skb->csum. 68 * NOTE: Even if device supports only some protocols, but 69 * is able to produce some skb->csum, it MUST use COMPLETE, 70 * not UNNECESSARY. 71 * 72 * PARTIAL: identical to the case for output below. This may occur 73 * on a packet received directly from another Linux OS, e.g., 74 * a virtualised Linux kernel on the same host. The packet can 75 * be treated in the same way as UNNECESSARY except that on 76 * output (i.e., forwarding) the checksum must be filled in 77 * by the OS or the hardware. 78 * 79 * B. Checksumming on output. 80 * 81 * NONE: skb is checksummed by protocol or csum is not required. 82 * 83 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 84 * from skb->csum_start to the end and to record the checksum 85 * at skb->csum_start + skb->csum_offset. 86 * 87 * Device must show its capabilities in dev->features, set 88 * at device setup time. 89 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 90 * everything. 91 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 92 * TCP/UDP over IPv4. Sigh. Vendors like this 93 * way by an unknown reason. Though, see comment above 94 * about CHECKSUM_UNNECESSARY. 8) 95 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 96 * 97 * Any questions? No questions, good. --ANK 98 */ 99 100struct net_device; 101struct scatterlist; 102struct pipe_inode_info; 103 104#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 105struct nf_conntrack { 106 atomic_t use; 107}; 108#endif 109 110#ifdef CONFIG_BRIDGE_NETFILTER 111struct nf_bridge_info { 112 atomic_t use; 113 struct net_device *physindev; 114 struct net_device *physoutdev; 115 unsigned int mask; 116 unsigned long data[32 / sizeof(unsigned long)]; 117}; 118#endif 119 120struct sk_buff_head { 121 /* These two members must be first. */ 122 struct sk_buff *next; 123 struct sk_buff *prev; 124 125 __u32 qlen; 126 spinlock_t lock; 127}; 128 129struct sk_buff; 130 131/* To allow 64K frame to be packed as single skb without frag_list we 132 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 133 * buffers which do not start on a page boundary. 134 * 135 * Since GRO uses frags we allocate at least 16 regardless of page 136 * size. 137 */ 138#if (65536/PAGE_SIZE + 1) < 16 139#define MAX_SKB_FRAGS 16UL 140#else 141#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 142#endif 143 144typedef struct skb_frag_struct skb_frag_t; 145 146struct skb_frag_struct { 147 struct { 148 struct page *p; 149 } page; 150#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 151 __u32 page_offset; 152 __u32 size; 153#else 154 __u16 page_offset; 155 __u16 size; 156#endif 157}; 158 159static inline unsigned int skb_frag_size(const skb_frag_t *frag) 160{ 161 return frag->size; 162} 163 164static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 165{ 166 frag->size = size; 167} 168 169static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 170{ 171 frag->size += delta; 172} 173 174static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 175{ 176 frag->size -= delta; 177} 178 179#define HAVE_HW_TIME_STAMP 180 181/** 182 * struct skb_shared_hwtstamps - hardware time stamps 183 * @hwtstamp: hardware time stamp transformed into duration 184 * since arbitrary point in time 185 * @syststamp: hwtstamp transformed to system time base 186 * 187 * Software time stamps generated by ktime_get_real() are stored in 188 * skb->tstamp. The relation between the different kinds of time 189 * stamps is as follows: 190 * 191 * syststamp and tstamp can be compared against each other in 192 * arbitrary combinations. The accuracy of a 193 * syststamp/tstamp/"syststamp from other device" comparison is 194 * limited by the accuracy of the transformation into system time 195 * base. This depends on the device driver and its underlying 196 * hardware. 197 * 198 * hwtstamps can only be compared against other hwtstamps from 199 * the same device. 200 * 201 * This structure is attached to packets as part of the 202 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 203 */ 204struct skb_shared_hwtstamps { 205 ktime_t hwtstamp; 206 ktime_t syststamp; 207}; 208 209/* Definitions for tx_flags in struct skb_shared_info */ 210enum { 211 /* generate hardware time stamp */ 212 SKBTX_HW_TSTAMP = 1 << 0, 213 214 /* generate software time stamp */ 215 SKBTX_SW_TSTAMP = 1 << 1, 216 217 /* device driver is going to provide hardware time stamp */ 218 SKBTX_IN_PROGRESS = 1 << 2, 219 220 /* ensure the originating sk reference is available on driver level */ 221 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 222 223 /* device driver supports TX zero-copy buffers */ 224 SKBTX_DEV_ZEROCOPY = 1 << 4, 225 226 /* generate wifi status information (where possible) */ 227 SKBTX_WIFI_STATUS = 1 << 5, 228}; 229 230/* 231 * The callback notifies userspace to release buffers when skb DMA is done in 232 * lower device, the skb last reference should be 0 when calling this. 233 * The desc is used to track userspace buffer index. 234 */ 235struct ubuf_info { 236 void (*callback)(void *); 237 void *arg; 238 unsigned long desc; 239}; 240 241/* This data is invariant across clones and lives at 242 * the end of the header data, ie. at skb->end. 243 */ 244struct skb_shared_info { 245 unsigned char nr_frags; 246 __u8 tx_flags; 247 unsigned short gso_size; 248 /* Warning: this field is not always filled in (UFO)! */ 249 unsigned short gso_segs; 250 unsigned short gso_type; 251 struct sk_buff *frag_list; 252 struct skb_shared_hwtstamps hwtstamps; 253 __be32 ip6_frag_id; 254 255 /* 256 * Warning : all fields before dataref are cleared in __alloc_skb() 257 */ 258 atomic_t dataref; 259 260 /* Intermediate layers must ensure that destructor_arg 261 * remains valid until skb destructor */ 262 void * destructor_arg; 263 264 /* must be last field, see pskb_expand_head() */ 265 skb_frag_t frags[MAX_SKB_FRAGS]; 266}; 267 268/* We divide dataref into two halves. The higher 16 bits hold references 269 * to the payload part of skb->data. The lower 16 bits hold references to 270 * the entire skb->data. A clone of a headerless skb holds the length of 271 * the header in skb->hdr_len. 272 * 273 * All users must obey the rule that the skb->data reference count must be 274 * greater than or equal to the payload reference count. 275 * 276 * Holding a reference to the payload part means that the user does not 277 * care about modifications to the header part of skb->data. 278 */ 279#define SKB_DATAREF_SHIFT 16 280#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 281 282 283enum { 284 SKB_FCLONE_UNAVAILABLE, 285 SKB_FCLONE_ORIG, 286 SKB_FCLONE_CLONE, 287}; 288 289enum { 290 SKB_GSO_TCPV4 = 1 << 0, 291 SKB_GSO_UDP = 1 << 1, 292 293 /* This indicates the skb is from an untrusted source. */ 294 SKB_GSO_DODGY = 1 << 2, 295 296 /* This indicates the tcp segment has CWR set. */ 297 SKB_GSO_TCP_ECN = 1 << 3, 298 299 SKB_GSO_TCPV6 = 1 << 4, 300 301 SKB_GSO_FCOE = 1 << 5, 302}; 303 304#if BITS_PER_LONG > 32 305#define NET_SKBUFF_DATA_USES_OFFSET 1 306#endif 307 308#ifdef NET_SKBUFF_DATA_USES_OFFSET 309typedef unsigned int sk_buff_data_t; 310#else 311typedef unsigned char *sk_buff_data_t; 312#endif 313 314#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 315 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 316#define NET_SKBUFF_NF_DEFRAG_NEEDED 1 317#endif 318 319/** 320 * struct sk_buff - socket buffer 321 * @next: Next buffer in list 322 * @prev: Previous buffer in list 323 * @tstamp: Time we arrived 324 * @sk: Socket we are owned by 325 * @dev: Device we arrived on/are leaving by 326 * @cb: Control buffer. Free for use by every layer. Put private vars here 327 * @_skb_refdst: destination entry (with norefcount bit) 328 * @sp: the security path, used for xfrm 329 * @len: Length of actual data 330 * @data_len: Data length 331 * @mac_len: Length of link layer header 332 * @hdr_len: writable header length of cloned skb 333 * @csum: Checksum (must include start/offset pair) 334 * @csum_start: Offset from skb->head where checksumming should start 335 * @csum_offset: Offset from csum_start where checksum should be stored 336 * @priority: Packet queueing priority 337 * @local_df: allow local fragmentation 338 * @cloned: Head may be cloned (check refcnt to be sure) 339 * @ip_summed: Driver fed us an IP checksum 340 * @nohdr: Payload reference only, must not modify header 341 * @nfctinfo: Relationship of this skb to the connection 342 * @pkt_type: Packet class 343 * @fclone: skbuff clone status 344 * @ipvs_property: skbuff is owned by ipvs 345 * @peeked: this packet has been seen already, so stats have been 346 * done for it, don't do them again 347 * @nf_trace: netfilter packet trace flag 348 * @protocol: Packet protocol from driver 349 * @destructor: Destruct function 350 * @nfct: Associated connection, if any 351 * @nfct_reasm: netfilter conntrack re-assembly pointer 352 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 353 * @skb_iif: ifindex of device we arrived on 354 * @tc_index: Traffic control index 355 * @tc_verd: traffic control verdict 356 * @rxhash: the packet hash computed on receive 357 * @queue_mapping: Queue mapping for multiqueue devices 358 * @ndisc_nodetype: router type (from link layer) 359 * @ooo_okay: allow the mapping of a socket to a queue to be changed 360 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 361 * ports. 362 * @wifi_acked_valid: wifi_acked was set 363 * @wifi_acked: whether frame was acked on wifi or not 364 * @dma_cookie: a cookie to one of several possible DMA operations 365 * done by skb DMA functions 366 * @secmark: security marking 367 * @mark: Generic packet mark 368 * @dropcount: total number of sk_receive_queue overflows 369 * @vlan_tci: vlan tag control information 370 * @transport_header: Transport layer header 371 * @network_header: Network layer header 372 * @mac_header: Link layer header 373 * @tail: Tail pointer 374 * @end: End pointer 375 * @head: Head of buffer 376 * @data: Data head pointer 377 * @truesize: Buffer size 378 * @users: User count - see {datagram,tcp}.c 379 */ 380 381struct sk_buff { 382 /* These two members must be first. */ 383 struct sk_buff *next; 384 struct sk_buff *prev; 385 386 ktime_t tstamp; 387 388 struct sock *sk; 389 struct net_device *dev; 390 391 /* 392 * This is the control buffer. It is free to use for every 393 * layer. Please put your private variables there. If you 394 * want to keep them across layers you have to do a skb_clone() 395 * first. This is owned by whoever has the skb queued ATM. 396 */ 397 char cb[48] __aligned(8); 398 399 unsigned long _skb_refdst; 400#ifdef CONFIG_XFRM 401 struct sec_path *sp; 402#endif 403 unsigned int len, 404 data_len; 405 __u16 mac_len, 406 hdr_len; 407 union { 408 __wsum csum; 409 struct { 410 __u16 csum_start; 411 __u16 csum_offset; 412 }; 413 }; 414 __u32 priority; 415 kmemcheck_bitfield_begin(flags1); 416 __u8 local_df:1, 417 cloned:1, 418 ip_summed:2, 419 nohdr:1, 420 nfctinfo:3; 421 __u8 pkt_type:3, 422 fclone:2, 423 ipvs_property:1, 424 peeked:1, 425 nf_trace:1; 426 kmemcheck_bitfield_end(flags1); 427 __be16 protocol; 428 429 void (*destructor)(struct sk_buff *skb); 430#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 431 struct nf_conntrack *nfct; 432#endif 433#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 434 struct sk_buff *nfct_reasm; 435#endif 436#ifdef CONFIG_BRIDGE_NETFILTER 437 struct nf_bridge_info *nf_bridge; 438#endif 439 440 int skb_iif; 441#ifdef CONFIG_NET_SCHED 442 __u16 tc_index; /* traffic control index */ 443#ifdef CONFIG_NET_CLS_ACT 444 __u16 tc_verd; /* traffic control verdict */ 445#endif 446#endif 447 448 __u32 rxhash; 449 450 __u16 queue_mapping; 451 kmemcheck_bitfield_begin(flags2); 452#ifdef CONFIG_IPV6_NDISC_NODETYPE 453 __u8 ndisc_nodetype:2; 454#endif 455 __u8 ooo_okay:1; 456 __u8 l4_rxhash:1; 457 __u8 wifi_acked_valid:1; 458 __u8 wifi_acked:1; 459 /* 10/12 bit hole (depending on ndisc_nodetype presence) */ 460 kmemcheck_bitfield_end(flags2); 461 462#ifdef CONFIG_NET_DMA 463 dma_cookie_t dma_cookie; 464#endif 465#ifdef CONFIG_NETWORK_SECMARK 466 __u32 secmark; 467#endif 468 union { 469 __u32 mark; 470 __u32 dropcount; 471 }; 472 473 __u16 vlan_tci; 474 475 sk_buff_data_t transport_header; 476 sk_buff_data_t network_header; 477 sk_buff_data_t mac_header; 478 /* These elements must be at the end, see alloc_skb() for details. */ 479 sk_buff_data_t tail; 480 sk_buff_data_t end; 481 unsigned char *head, 482 *data; 483 unsigned int truesize; 484 atomic_t users; 485}; 486 487#ifdef __KERNEL__ 488/* 489 * Handling routines are only of interest to the kernel 490 */ 491#include <linux/slab.h> 492 493#include <asm/system.h> 494 495/* 496 * skb might have a dst pointer attached, refcounted or not. 497 * _skb_refdst low order bit is set if refcount was _not_ taken 498 */ 499#define SKB_DST_NOREF 1UL 500#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 501 502/** 503 * skb_dst - returns skb dst_entry 504 * @skb: buffer 505 * 506 * Returns skb dst_entry, regardless of reference taken or not. 507 */ 508static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 509{ 510 /* If refdst was not refcounted, check we still are in a 511 * rcu_read_lock section 512 */ 513 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 514 !rcu_read_lock_held() && 515 !rcu_read_lock_bh_held()); 516 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 517} 518 519/** 520 * skb_dst_set - sets skb dst 521 * @skb: buffer 522 * @dst: dst entry 523 * 524 * Sets skb dst, assuming a reference was taken on dst and should 525 * be released by skb_dst_drop() 526 */ 527static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 528{ 529 skb->_skb_refdst = (unsigned long)dst; 530} 531 532extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 533 534/** 535 * skb_dst_is_noref - Test if skb dst isn't refcounted 536 * @skb: buffer 537 */ 538static inline bool skb_dst_is_noref(const struct sk_buff *skb) 539{ 540 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 541} 542 543static inline struct rtable *skb_rtable(const struct sk_buff *skb) 544{ 545 return (struct rtable *)skb_dst(skb); 546} 547 548extern void kfree_skb(struct sk_buff *skb); 549extern void consume_skb(struct sk_buff *skb); 550extern void __kfree_skb(struct sk_buff *skb); 551extern struct sk_buff *__alloc_skb(unsigned int size, 552 gfp_t priority, int fclone, int node); 553extern struct sk_buff *build_skb(void *data); 554static inline struct sk_buff *alloc_skb(unsigned int size, 555 gfp_t priority) 556{ 557 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 558} 559 560static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 561 gfp_t priority) 562{ 563 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 564} 565 566extern void skb_recycle(struct sk_buff *skb); 567extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 568 569extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 570extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 571extern struct sk_buff *skb_clone(struct sk_buff *skb, 572 gfp_t priority); 573extern struct sk_buff *skb_copy(const struct sk_buff *skb, 574 gfp_t priority); 575extern struct sk_buff *__pskb_copy(struct sk_buff *skb, 576 int headroom, gfp_t gfp_mask); 577 578extern int pskb_expand_head(struct sk_buff *skb, 579 int nhead, int ntail, 580 gfp_t gfp_mask); 581extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 582 unsigned int headroom); 583extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 584 int newheadroom, int newtailroom, 585 gfp_t priority); 586extern int skb_to_sgvec(struct sk_buff *skb, 587 struct scatterlist *sg, int offset, 588 int len); 589extern int skb_cow_data(struct sk_buff *skb, int tailbits, 590 struct sk_buff **trailer); 591extern int skb_pad(struct sk_buff *skb, int pad); 592#define dev_kfree_skb(a) consume_skb(a) 593 594extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 595 int getfrag(void *from, char *to, int offset, 596 int len,int odd, struct sk_buff *skb), 597 void *from, int length); 598 599struct skb_seq_state { 600 __u32 lower_offset; 601 __u32 upper_offset; 602 __u32 frag_idx; 603 __u32 stepped_offset; 604 struct sk_buff *root_skb; 605 struct sk_buff *cur_skb; 606 __u8 *frag_data; 607}; 608 609extern void skb_prepare_seq_read(struct sk_buff *skb, 610 unsigned int from, unsigned int to, 611 struct skb_seq_state *st); 612extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 613 struct skb_seq_state *st); 614extern void skb_abort_seq_read(struct skb_seq_state *st); 615 616extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 617 unsigned int to, struct ts_config *config, 618 struct ts_state *state); 619 620extern void __skb_get_rxhash(struct sk_buff *skb); 621static inline __u32 skb_get_rxhash(struct sk_buff *skb) 622{ 623 if (!skb->rxhash) 624 __skb_get_rxhash(skb); 625 626 return skb->rxhash; 627} 628 629#ifdef NET_SKBUFF_DATA_USES_OFFSET 630static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 631{ 632 return skb->head + skb->end; 633} 634#else 635static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 636{ 637 return skb->end; 638} 639#endif 640 641/* Internal */ 642#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 643 644static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 645{ 646 return &skb_shinfo(skb)->hwtstamps; 647} 648 649/** 650 * skb_queue_empty - check if a queue is empty 651 * @list: queue head 652 * 653 * Returns true if the queue is empty, false otherwise. 654 */ 655static inline int skb_queue_empty(const struct sk_buff_head *list) 656{ 657 return list->next == (struct sk_buff *)list; 658} 659 660/** 661 * skb_queue_is_last - check if skb is the last entry in the queue 662 * @list: queue head 663 * @skb: buffer 664 * 665 * Returns true if @skb is the last buffer on the list. 666 */ 667static inline bool skb_queue_is_last(const struct sk_buff_head *list, 668 const struct sk_buff *skb) 669{ 670 return skb->next == (struct sk_buff *)list; 671} 672 673/** 674 * skb_queue_is_first - check if skb is the first entry in the queue 675 * @list: queue head 676 * @skb: buffer 677 * 678 * Returns true if @skb is the first buffer on the list. 679 */ 680static inline bool skb_queue_is_first(const struct sk_buff_head *list, 681 const struct sk_buff *skb) 682{ 683 return skb->prev == (struct sk_buff *)list; 684} 685 686/** 687 * skb_queue_next - return the next packet in the queue 688 * @list: queue head 689 * @skb: current buffer 690 * 691 * Return the next packet in @list after @skb. It is only valid to 692 * call this if skb_queue_is_last() evaluates to false. 693 */ 694static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 695 const struct sk_buff *skb) 696{ 697 /* This BUG_ON may seem severe, but if we just return then we 698 * are going to dereference garbage. 699 */ 700 BUG_ON(skb_queue_is_last(list, skb)); 701 return skb->next; 702} 703 704/** 705 * skb_queue_prev - return the prev packet in the queue 706 * @list: queue head 707 * @skb: current buffer 708 * 709 * Return the prev packet in @list before @skb. It is only valid to 710 * call this if skb_queue_is_first() evaluates to false. 711 */ 712static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 713 const struct sk_buff *skb) 714{ 715 /* This BUG_ON may seem severe, but if we just return then we 716 * are going to dereference garbage. 717 */ 718 BUG_ON(skb_queue_is_first(list, skb)); 719 return skb->prev; 720} 721 722/** 723 * skb_get - reference buffer 724 * @skb: buffer to reference 725 * 726 * Makes another reference to a socket buffer and returns a pointer 727 * to the buffer. 728 */ 729static inline struct sk_buff *skb_get(struct sk_buff *skb) 730{ 731 atomic_inc(&skb->users); 732 return skb; 733} 734 735/* 736 * If users == 1, we are the only owner and are can avoid redundant 737 * atomic change. 738 */ 739 740/** 741 * skb_cloned - is the buffer a clone 742 * @skb: buffer to check 743 * 744 * Returns true if the buffer was generated with skb_clone() and is 745 * one of multiple shared copies of the buffer. Cloned buffers are 746 * shared data so must not be written to under normal circumstances. 747 */ 748static inline int skb_cloned(const struct sk_buff *skb) 749{ 750 return skb->cloned && 751 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 752} 753 754/** 755 * skb_header_cloned - is the header a clone 756 * @skb: buffer to check 757 * 758 * Returns true if modifying the header part of the buffer requires 759 * the data to be copied. 760 */ 761static inline int skb_header_cloned(const struct sk_buff *skb) 762{ 763 int dataref; 764 765 if (!skb->cloned) 766 return 0; 767 768 dataref = atomic_read(&skb_shinfo(skb)->dataref); 769 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 770 return dataref != 1; 771} 772 773/** 774 * skb_header_release - release reference to header 775 * @skb: buffer to operate on 776 * 777 * Drop a reference to the header part of the buffer. This is done 778 * by acquiring a payload reference. You must not read from the header 779 * part of skb->data after this. 780 */ 781static inline void skb_header_release(struct sk_buff *skb) 782{ 783 BUG_ON(skb->nohdr); 784 skb->nohdr = 1; 785 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 786} 787 788/** 789 * skb_shared - is the buffer shared 790 * @skb: buffer to check 791 * 792 * Returns true if more than one person has a reference to this 793 * buffer. 794 */ 795static inline int skb_shared(const struct sk_buff *skb) 796{ 797 return atomic_read(&skb->users) != 1; 798} 799 800/** 801 * skb_share_check - check if buffer is shared and if so clone it 802 * @skb: buffer to check 803 * @pri: priority for memory allocation 804 * 805 * If the buffer is shared the buffer is cloned and the old copy 806 * drops a reference. A new clone with a single reference is returned. 807 * If the buffer is not shared the original buffer is returned. When 808 * being called from interrupt status or with spinlocks held pri must 809 * be GFP_ATOMIC. 810 * 811 * NULL is returned on a memory allocation failure. 812 */ 813static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 814 gfp_t pri) 815{ 816 might_sleep_if(pri & __GFP_WAIT); 817 if (skb_shared(skb)) { 818 struct sk_buff *nskb = skb_clone(skb, pri); 819 kfree_skb(skb); 820 skb = nskb; 821 } 822 return skb; 823} 824 825/* 826 * Copy shared buffers into a new sk_buff. We effectively do COW on 827 * packets to handle cases where we have a local reader and forward 828 * and a couple of other messy ones. The normal one is tcpdumping 829 * a packet thats being forwarded. 830 */ 831 832/** 833 * skb_unshare - make a copy of a shared buffer 834 * @skb: buffer to check 835 * @pri: priority for memory allocation 836 * 837 * If the socket buffer is a clone then this function creates a new 838 * copy of the data, drops a reference count on the old copy and returns 839 * the new copy with the reference count at 1. If the buffer is not a clone 840 * the original buffer is returned. When called with a spinlock held or 841 * from interrupt state @pri must be %GFP_ATOMIC 842 * 843 * %NULL is returned on a memory allocation failure. 844 */ 845static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 846 gfp_t pri) 847{ 848 might_sleep_if(pri & __GFP_WAIT); 849 if (skb_cloned(skb)) { 850 struct sk_buff *nskb = skb_copy(skb, pri); 851 kfree_skb(skb); /* Free our shared copy */ 852 skb = nskb; 853 } 854 return skb; 855} 856 857/** 858 * skb_peek - peek at the head of an &sk_buff_head 859 * @list_: list to peek at 860 * 861 * Peek an &sk_buff. Unlike most other operations you _MUST_ 862 * be careful with this one. A peek leaves the buffer on the 863 * list and someone else may run off with it. You must hold 864 * the appropriate locks or have a private queue to do this. 865 * 866 * Returns %NULL for an empty list or a pointer to the head element. 867 * The reference count is not incremented and the reference is therefore 868 * volatile. Use with caution. 869 */ 870static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 871{ 872 struct sk_buff *list = ((const struct sk_buff *)list_)->next; 873 if (list == (struct sk_buff *)list_) 874 list = NULL; 875 return list; 876} 877 878/** 879 * skb_peek_tail - peek at the tail of an &sk_buff_head 880 * @list_: list to peek at 881 * 882 * Peek an &sk_buff. Unlike most other operations you _MUST_ 883 * be careful with this one. A peek leaves the buffer on the 884 * list and someone else may run off with it. You must hold 885 * the appropriate locks or have a private queue to do this. 886 * 887 * Returns %NULL for an empty list or a pointer to the tail element. 888 * The reference count is not incremented and the reference is therefore 889 * volatile. Use with caution. 890 */ 891static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 892{ 893 struct sk_buff *list = ((const struct sk_buff *)list_)->prev; 894 if (list == (struct sk_buff *)list_) 895 list = NULL; 896 return list; 897} 898 899/** 900 * skb_queue_len - get queue length 901 * @list_: list to measure 902 * 903 * Return the length of an &sk_buff queue. 904 */ 905static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 906{ 907 return list_->qlen; 908} 909 910/** 911 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 912 * @list: queue to initialize 913 * 914 * This initializes only the list and queue length aspects of 915 * an sk_buff_head object. This allows to initialize the list 916 * aspects of an sk_buff_head without reinitializing things like 917 * the spinlock. It can also be used for on-stack sk_buff_head 918 * objects where the spinlock is known to not be used. 919 */ 920static inline void __skb_queue_head_init(struct sk_buff_head *list) 921{ 922 list->prev = list->next = (struct sk_buff *)list; 923 list->qlen = 0; 924} 925 926/* 927 * This function creates a split out lock class for each invocation; 928 * this is needed for now since a whole lot of users of the skb-queue 929 * infrastructure in drivers have different locking usage (in hardirq) 930 * than the networking core (in softirq only). In the long run either the 931 * network layer or drivers should need annotation to consolidate the 932 * main types of usage into 3 classes. 933 */ 934static inline void skb_queue_head_init(struct sk_buff_head *list) 935{ 936 spin_lock_init(&list->lock); 937 __skb_queue_head_init(list); 938} 939 940static inline void skb_queue_head_init_class(struct sk_buff_head *list, 941 struct lock_class_key *class) 942{ 943 skb_queue_head_init(list); 944 lockdep_set_class(&list->lock, class); 945} 946 947/* 948 * Insert an sk_buff on a list. 949 * 950 * The "__skb_xxxx()" functions are the non-atomic ones that 951 * can only be called with interrupts disabled. 952 */ 953extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 954static inline void __skb_insert(struct sk_buff *newsk, 955 struct sk_buff *prev, struct sk_buff *next, 956 struct sk_buff_head *list) 957{ 958 newsk->next = next; 959 newsk->prev = prev; 960 next->prev = prev->next = newsk; 961 list->qlen++; 962} 963 964static inline void __skb_queue_splice(const struct sk_buff_head *list, 965 struct sk_buff *prev, 966 struct sk_buff *next) 967{ 968 struct sk_buff *first = list->next; 969 struct sk_buff *last = list->prev; 970 971 first->prev = prev; 972 prev->next = first; 973 974 last->next = next; 975 next->prev = last; 976} 977 978/** 979 * skb_queue_splice - join two skb lists, this is designed for stacks 980 * @list: the new list to add 981 * @head: the place to add it in the first list 982 */ 983static inline void skb_queue_splice(const struct sk_buff_head *list, 984 struct sk_buff_head *head) 985{ 986 if (!skb_queue_empty(list)) { 987 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 988 head->qlen += list->qlen; 989 } 990} 991 992/** 993 * skb_queue_splice - join two skb lists and reinitialise the emptied list 994 * @list: the new list to add 995 * @head: the place to add it in the first list 996 * 997 * The list at @list is reinitialised 998 */ 999static inline void skb_queue_splice_init(struct sk_buff_head *list, 1000 struct sk_buff_head *head) 1001{ 1002 if (!skb_queue_empty(list)) { 1003 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1004 head->qlen += list->qlen; 1005 __skb_queue_head_init(list); 1006 } 1007} 1008 1009/** 1010 * skb_queue_splice_tail - join two skb lists, each list being a queue 1011 * @list: the new list to add 1012 * @head: the place to add it in the first list 1013 */ 1014static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1015 struct sk_buff_head *head) 1016{ 1017 if (!skb_queue_empty(list)) { 1018 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1019 head->qlen += list->qlen; 1020 } 1021} 1022 1023/** 1024 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 1025 * @list: the new list to add 1026 * @head: the place to add it in the first list 1027 * 1028 * Each of the lists is a queue. 1029 * The list at @list is reinitialised 1030 */ 1031static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1032 struct sk_buff_head *head) 1033{ 1034 if (!skb_queue_empty(list)) { 1035 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1036 head->qlen += list->qlen; 1037 __skb_queue_head_init(list); 1038 } 1039} 1040 1041/** 1042 * __skb_queue_after - queue a buffer at the list head 1043 * @list: list to use 1044 * @prev: place after this buffer 1045 * @newsk: buffer to queue 1046 * 1047 * Queue a buffer int the middle of a list. This function takes no locks 1048 * and you must therefore hold required locks before calling it. 1049 * 1050 * A buffer cannot be placed on two lists at the same time. 1051 */ 1052static inline void __skb_queue_after(struct sk_buff_head *list, 1053 struct sk_buff *prev, 1054 struct sk_buff *newsk) 1055{ 1056 __skb_insert(newsk, prev, prev->next, list); 1057} 1058 1059extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1060 struct sk_buff_head *list); 1061 1062static inline void __skb_queue_before(struct sk_buff_head *list, 1063 struct sk_buff *next, 1064 struct sk_buff *newsk) 1065{ 1066 __skb_insert(newsk, next->prev, next, list); 1067} 1068 1069/** 1070 * __skb_queue_head - queue a buffer at the list head 1071 * @list: list to use 1072 * @newsk: buffer to queue 1073 * 1074 * Queue a buffer at the start of a list. This function takes no locks 1075 * and you must therefore hold required locks before calling it. 1076 * 1077 * A buffer cannot be placed on two lists at the same time. 1078 */ 1079extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1080static inline void __skb_queue_head(struct sk_buff_head *list, 1081 struct sk_buff *newsk) 1082{ 1083 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1084} 1085 1086/** 1087 * __skb_queue_tail - queue a buffer at the list tail 1088 * @list: list to use 1089 * @newsk: buffer to queue 1090 * 1091 * Queue a buffer at the end of a list. This function takes no locks 1092 * and you must therefore hold required locks before calling it. 1093 * 1094 * A buffer cannot be placed on two lists at the same time. 1095 */ 1096extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1097static inline void __skb_queue_tail(struct sk_buff_head *list, 1098 struct sk_buff *newsk) 1099{ 1100 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1101} 1102 1103/* 1104 * remove sk_buff from list. _Must_ be called atomically, and with 1105 * the list known.. 1106 */ 1107extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1108static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1109{ 1110 struct sk_buff *next, *prev; 1111 1112 list->qlen--; 1113 next = skb->next; 1114 prev = skb->prev; 1115 skb->next = skb->prev = NULL; 1116 next->prev = prev; 1117 prev->next = next; 1118} 1119 1120/** 1121 * __skb_dequeue - remove from the head of the queue 1122 * @list: list to dequeue from 1123 * 1124 * Remove the head of the list. This function does not take any locks 1125 * so must be used with appropriate locks held only. The head item is 1126 * returned or %NULL if the list is empty. 1127 */ 1128extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1129static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1130{ 1131 struct sk_buff *skb = skb_peek(list); 1132 if (skb) 1133 __skb_unlink(skb, list); 1134 return skb; 1135} 1136 1137/** 1138 * __skb_dequeue_tail - remove from the tail of the queue 1139 * @list: list to dequeue from 1140 * 1141 * Remove the tail of the list. This function does not take any locks 1142 * so must be used with appropriate locks held only. The tail item is 1143 * returned or %NULL if the list is empty. 1144 */ 1145extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1146static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1147{ 1148 struct sk_buff *skb = skb_peek_tail(list); 1149 if (skb) 1150 __skb_unlink(skb, list); 1151 return skb; 1152} 1153 1154 1155static inline int skb_is_nonlinear(const struct sk_buff *skb) 1156{ 1157 return skb->data_len; 1158} 1159 1160static inline unsigned int skb_headlen(const struct sk_buff *skb) 1161{ 1162 return skb->len - skb->data_len; 1163} 1164 1165static inline int skb_pagelen(const struct sk_buff *skb) 1166{ 1167 int i, len = 0; 1168 1169 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1170 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1171 return len + skb_headlen(skb); 1172} 1173 1174/** 1175 * __skb_fill_page_desc - initialise a paged fragment in an skb 1176 * @skb: buffer containing fragment to be initialised 1177 * @i: paged fragment index to initialise 1178 * @page: the page to use for this fragment 1179 * @off: the offset to the data with @page 1180 * @size: the length of the data 1181 * 1182 * Initialises the @i'th fragment of @skb to point to &size bytes at 1183 * offset @off within @page. 1184 * 1185 * Does not take any additional reference on the fragment. 1186 */ 1187static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1188 struct page *page, int off, int size) 1189{ 1190 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1191 1192 frag->page.p = page; 1193 frag->page_offset = off; 1194 skb_frag_size_set(frag, size); 1195} 1196 1197/** 1198 * skb_fill_page_desc - initialise a paged fragment in an skb 1199 * @skb: buffer containing fragment to be initialised 1200 * @i: paged fragment index to initialise 1201 * @page: the page to use for this fragment 1202 * @off: the offset to the data with @page 1203 * @size: the length of the data 1204 * 1205 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1206 * @skb to point to &size bytes at offset @off within @page. In 1207 * addition updates @skb such that @i is the last fragment. 1208 * 1209 * Does not take any additional reference on the fragment. 1210 */ 1211static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1212 struct page *page, int off, int size) 1213{ 1214 __skb_fill_page_desc(skb, i, page, off, size); 1215 skb_shinfo(skb)->nr_frags = i + 1; 1216} 1217 1218extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1219 int off, int size); 1220 1221#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1222#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1223#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1224 1225#ifdef NET_SKBUFF_DATA_USES_OFFSET 1226static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1227{ 1228 return skb->head + skb->tail; 1229} 1230 1231static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1232{ 1233 skb->tail = skb->data - skb->head; 1234} 1235 1236static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1237{ 1238 skb_reset_tail_pointer(skb); 1239 skb->tail += offset; 1240} 1241#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1242static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1243{ 1244 return skb->tail; 1245} 1246 1247static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1248{ 1249 skb->tail = skb->data; 1250} 1251 1252static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1253{ 1254 skb->tail = skb->data + offset; 1255} 1256 1257#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1258 1259/* 1260 * Add data to an sk_buff 1261 */ 1262extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1263static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1264{ 1265 unsigned char *tmp = skb_tail_pointer(skb); 1266 SKB_LINEAR_ASSERT(skb); 1267 skb->tail += len; 1268 skb->len += len; 1269 return tmp; 1270} 1271 1272extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1273static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1274{ 1275 skb->data -= len; 1276 skb->len += len; 1277 return skb->data; 1278} 1279 1280extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1281static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1282{ 1283 skb->len -= len; 1284 BUG_ON(skb->len < skb->data_len); 1285 return skb->data += len; 1286} 1287 1288static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1289{ 1290 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1291} 1292 1293extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1294 1295static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1296{ 1297 if (len > skb_headlen(skb) && 1298 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1299 return NULL; 1300 skb->len -= len; 1301 return skb->data += len; 1302} 1303 1304static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1305{ 1306 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1307} 1308 1309static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1310{ 1311 if (likely(len <= skb_headlen(skb))) 1312 return 1; 1313 if (unlikely(len > skb->len)) 1314 return 0; 1315 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1316} 1317 1318/** 1319 * skb_headroom - bytes at buffer head 1320 * @skb: buffer to check 1321 * 1322 * Return the number of bytes of free space at the head of an &sk_buff. 1323 */ 1324static inline unsigned int skb_headroom(const struct sk_buff *skb) 1325{ 1326 return skb->data - skb->head; 1327} 1328 1329/** 1330 * skb_tailroom - bytes at buffer end 1331 * @skb: buffer to check 1332 * 1333 * Return the number of bytes of free space at the tail of an sk_buff 1334 */ 1335static inline int skb_tailroom(const struct sk_buff *skb) 1336{ 1337 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1338} 1339 1340/** 1341 * skb_reserve - adjust headroom 1342 * @skb: buffer to alter 1343 * @len: bytes to move 1344 * 1345 * Increase the headroom of an empty &sk_buff by reducing the tail 1346 * room. This is only allowed for an empty buffer. 1347 */ 1348static inline void skb_reserve(struct sk_buff *skb, int len) 1349{ 1350 skb->data += len; 1351 skb->tail += len; 1352} 1353 1354static inline void skb_reset_mac_len(struct sk_buff *skb) 1355{ 1356 skb->mac_len = skb->network_header - skb->mac_header; 1357} 1358 1359#ifdef NET_SKBUFF_DATA_USES_OFFSET 1360static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1361{ 1362 return skb->head + skb->transport_header; 1363} 1364 1365static inline void skb_reset_transport_header(struct sk_buff *skb) 1366{ 1367 skb->transport_header = skb->data - skb->head; 1368} 1369 1370static inline void skb_set_transport_header(struct sk_buff *skb, 1371 const int offset) 1372{ 1373 skb_reset_transport_header(skb); 1374 skb->transport_header += offset; 1375} 1376 1377static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1378{ 1379 return skb->head + skb->network_header; 1380} 1381 1382static inline void skb_reset_network_header(struct sk_buff *skb) 1383{ 1384 skb->network_header = skb->data - skb->head; 1385} 1386 1387static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1388{ 1389 skb_reset_network_header(skb); 1390 skb->network_header += offset; 1391} 1392 1393static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1394{ 1395 return skb->head + skb->mac_header; 1396} 1397 1398static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1399{ 1400 return skb->mac_header != ~0U; 1401} 1402 1403static inline void skb_reset_mac_header(struct sk_buff *skb) 1404{ 1405 skb->mac_header = skb->data - skb->head; 1406} 1407 1408static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1409{ 1410 skb_reset_mac_header(skb); 1411 skb->mac_header += offset; 1412} 1413 1414#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1415 1416static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1417{ 1418 return skb->transport_header; 1419} 1420 1421static inline void skb_reset_transport_header(struct sk_buff *skb) 1422{ 1423 skb->transport_header = skb->data; 1424} 1425 1426static inline void skb_set_transport_header(struct sk_buff *skb, 1427 const int offset) 1428{ 1429 skb->transport_header = skb->data + offset; 1430} 1431 1432static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1433{ 1434 return skb->network_header; 1435} 1436 1437static inline void skb_reset_network_header(struct sk_buff *skb) 1438{ 1439 skb->network_header = skb->data; 1440} 1441 1442static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1443{ 1444 skb->network_header = skb->data + offset; 1445} 1446 1447static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1448{ 1449 return skb->mac_header; 1450} 1451 1452static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1453{ 1454 return skb->mac_header != NULL; 1455} 1456 1457static inline void skb_reset_mac_header(struct sk_buff *skb) 1458{ 1459 skb->mac_header = skb->data; 1460} 1461 1462static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1463{ 1464 skb->mac_header = skb->data + offset; 1465} 1466#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1467 1468static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1469{ 1470 if (skb_mac_header_was_set(skb)) { 1471 const unsigned char *old_mac = skb_mac_header(skb); 1472 1473 skb_set_mac_header(skb, -skb->mac_len); 1474 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1475 } 1476} 1477 1478static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1479{ 1480 return skb->csum_start - skb_headroom(skb); 1481} 1482 1483static inline int skb_transport_offset(const struct sk_buff *skb) 1484{ 1485 return skb_transport_header(skb) - skb->data; 1486} 1487 1488static inline u32 skb_network_header_len(const struct sk_buff *skb) 1489{ 1490 return skb->transport_header - skb->network_header; 1491} 1492 1493static inline int skb_network_offset(const struct sk_buff *skb) 1494{ 1495 return skb_network_header(skb) - skb->data; 1496} 1497 1498static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1499{ 1500 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1501} 1502 1503/* 1504 * CPUs often take a performance hit when accessing unaligned memory 1505 * locations. The actual performance hit varies, it can be small if the 1506 * hardware handles it or large if we have to take an exception and fix it 1507 * in software. 1508 * 1509 * Since an ethernet header is 14 bytes network drivers often end up with 1510 * the IP header at an unaligned offset. The IP header can be aligned by 1511 * shifting the start of the packet by 2 bytes. Drivers should do this 1512 * with: 1513 * 1514 * skb_reserve(skb, NET_IP_ALIGN); 1515 * 1516 * The downside to this alignment of the IP header is that the DMA is now 1517 * unaligned. On some architectures the cost of an unaligned DMA is high 1518 * and this cost outweighs the gains made by aligning the IP header. 1519 * 1520 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1521 * to be overridden. 1522 */ 1523#ifndef NET_IP_ALIGN 1524#define NET_IP_ALIGN 2 1525#endif 1526 1527/* 1528 * The networking layer reserves some headroom in skb data (via 1529 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1530 * the header has to grow. In the default case, if the header has to grow 1531 * 32 bytes or less we avoid the reallocation. 1532 * 1533 * Unfortunately this headroom changes the DMA alignment of the resulting 1534 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1535 * on some architectures. An architecture can override this value, 1536 * perhaps setting it to a cacheline in size (since that will maintain 1537 * cacheline alignment of the DMA). It must be a power of 2. 1538 * 1539 * Various parts of the networking layer expect at least 32 bytes of 1540 * headroom, you should not reduce this. 1541 * 1542 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1543 * to reduce average number of cache lines per packet. 1544 * get_rps_cpus() for example only access one 64 bytes aligned block : 1545 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1546 */ 1547#ifndef NET_SKB_PAD 1548#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1549#endif 1550 1551extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1552 1553static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1554{ 1555 if (unlikely(skb_is_nonlinear(skb))) { 1556 WARN_ON(1); 1557 return; 1558 } 1559 skb->len = len; 1560 skb_set_tail_pointer(skb, len); 1561} 1562 1563extern void skb_trim(struct sk_buff *skb, unsigned int len); 1564 1565static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1566{ 1567 if (skb->data_len) 1568 return ___pskb_trim(skb, len); 1569 __skb_trim(skb, len); 1570 return 0; 1571} 1572 1573static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1574{ 1575 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1576} 1577 1578/** 1579 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1580 * @skb: buffer to alter 1581 * @len: new length 1582 * 1583 * This is identical to pskb_trim except that the caller knows that 1584 * the skb is not cloned so we should never get an error due to out- 1585 * of-memory. 1586 */ 1587static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1588{ 1589 int err = pskb_trim(skb, len); 1590 BUG_ON(err); 1591} 1592 1593/** 1594 * skb_orphan - orphan a buffer 1595 * @skb: buffer to orphan 1596 * 1597 * If a buffer currently has an owner then we call the owner's 1598 * destructor function and make the @skb unowned. The buffer continues 1599 * to exist but is no longer charged to its former owner. 1600 */ 1601static inline void skb_orphan(struct sk_buff *skb) 1602{ 1603 if (skb->destructor) 1604 skb->destructor(skb); 1605 skb->destructor = NULL; 1606 skb->sk = NULL; 1607} 1608 1609/** 1610 * __skb_queue_purge - empty a list 1611 * @list: list to empty 1612 * 1613 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1614 * the list and one reference dropped. This function does not take the 1615 * list lock and the caller must hold the relevant locks to use it. 1616 */ 1617extern void skb_queue_purge(struct sk_buff_head *list); 1618static inline void __skb_queue_purge(struct sk_buff_head *list) 1619{ 1620 struct sk_buff *skb; 1621 while ((skb = __skb_dequeue(list)) != NULL) 1622 kfree_skb(skb); 1623} 1624 1625/** 1626 * __dev_alloc_skb - allocate an skbuff for receiving 1627 * @length: length to allocate 1628 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1629 * 1630 * Allocate a new &sk_buff and assign it a usage count of one. The 1631 * buffer has unspecified headroom built in. Users should allocate 1632 * the headroom they think they need without accounting for the 1633 * built in space. The built in space is used for optimisations. 1634 * 1635 * %NULL is returned if there is no free memory. 1636 */ 1637static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1638 gfp_t gfp_mask) 1639{ 1640 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1641 if (likely(skb)) 1642 skb_reserve(skb, NET_SKB_PAD); 1643 return skb; 1644} 1645 1646extern struct sk_buff *dev_alloc_skb(unsigned int length); 1647 1648extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1649 unsigned int length, gfp_t gfp_mask); 1650 1651/** 1652 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1653 * @dev: network device to receive on 1654 * @length: length to allocate 1655 * 1656 * Allocate a new &sk_buff and assign it a usage count of one. The 1657 * buffer has unspecified headroom built in. Users should allocate 1658 * the headroom they think they need without accounting for the 1659 * built in space. The built in space is used for optimisations. 1660 * 1661 * %NULL is returned if there is no free memory. Although this function 1662 * allocates memory it can be called from an interrupt. 1663 */ 1664static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1665 unsigned int length) 1666{ 1667 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1668} 1669 1670static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1671 unsigned int length, gfp_t gfp) 1672{ 1673 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1674 1675 if (NET_IP_ALIGN && skb) 1676 skb_reserve(skb, NET_IP_ALIGN); 1677 return skb; 1678} 1679 1680static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1681 unsigned int length) 1682{ 1683 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1684} 1685 1686/** 1687 * skb_frag_page - retrieve the page refered to by a paged fragment 1688 * @frag: the paged fragment 1689 * 1690 * Returns the &struct page associated with @frag. 1691 */ 1692static inline struct page *skb_frag_page(const skb_frag_t *frag) 1693{ 1694 return frag->page.p; 1695} 1696 1697/** 1698 * __skb_frag_ref - take an addition reference on a paged fragment. 1699 * @frag: the paged fragment 1700 * 1701 * Takes an additional reference on the paged fragment @frag. 1702 */ 1703static inline void __skb_frag_ref(skb_frag_t *frag) 1704{ 1705 get_page(skb_frag_page(frag)); 1706} 1707 1708/** 1709 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 1710 * @skb: the buffer 1711 * @f: the fragment offset. 1712 * 1713 * Takes an additional reference on the @f'th paged fragment of @skb. 1714 */ 1715static inline void skb_frag_ref(struct sk_buff *skb, int f) 1716{ 1717 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 1718} 1719 1720/** 1721 * __skb_frag_unref - release a reference on a paged fragment. 1722 * @frag: the paged fragment 1723 * 1724 * Releases a reference on the paged fragment @frag. 1725 */ 1726static inline void __skb_frag_unref(skb_frag_t *frag) 1727{ 1728 put_page(skb_frag_page(frag)); 1729} 1730 1731/** 1732 * skb_frag_unref - release a reference on a paged fragment of an skb. 1733 * @skb: the buffer 1734 * @f: the fragment offset 1735 * 1736 * Releases a reference on the @f'th paged fragment of @skb. 1737 */ 1738static inline void skb_frag_unref(struct sk_buff *skb, int f) 1739{ 1740 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 1741} 1742 1743/** 1744 * skb_frag_address - gets the address of the data contained in a paged fragment 1745 * @frag: the paged fragment buffer 1746 * 1747 * Returns the address of the data within @frag. The page must already 1748 * be mapped. 1749 */ 1750static inline void *skb_frag_address(const skb_frag_t *frag) 1751{ 1752 return page_address(skb_frag_page(frag)) + frag->page_offset; 1753} 1754 1755/** 1756 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 1757 * @frag: the paged fragment buffer 1758 * 1759 * Returns the address of the data within @frag. Checks that the page 1760 * is mapped and returns %NULL otherwise. 1761 */ 1762static inline void *skb_frag_address_safe(const skb_frag_t *frag) 1763{ 1764 void *ptr = page_address(skb_frag_page(frag)); 1765 if (unlikely(!ptr)) 1766 return NULL; 1767 1768 return ptr + frag->page_offset; 1769} 1770 1771/** 1772 * __skb_frag_set_page - sets the page contained in a paged fragment 1773 * @frag: the paged fragment 1774 * @page: the page to set 1775 * 1776 * Sets the fragment @frag to contain @page. 1777 */ 1778static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 1779{ 1780 frag->page.p = page; 1781} 1782 1783/** 1784 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 1785 * @skb: the buffer 1786 * @f: the fragment offset 1787 * @page: the page to set 1788 * 1789 * Sets the @f'th fragment of @skb to contain @page. 1790 */ 1791static inline void skb_frag_set_page(struct sk_buff *skb, int f, 1792 struct page *page) 1793{ 1794 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 1795} 1796 1797/** 1798 * skb_frag_dma_map - maps a paged fragment via the DMA API 1799 * @dev: the device to map the fragment to 1800 * @frag: the paged fragment to map 1801 * @offset: the offset within the fragment (starting at the 1802 * fragment's own offset) 1803 * @size: the number of bytes to map 1804 * @dir: the direction of the mapping (%PCI_DMA_*) 1805 * 1806 * Maps the page associated with @frag to @device. 1807 */ 1808static inline dma_addr_t skb_frag_dma_map(struct device *dev, 1809 const skb_frag_t *frag, 1810 size_t offset, size_t size, 1811 enum dma_data_direction dir) 1812{ 1813 return dma_map_page(dev, skb_frag_page(frag), 1814 frag->page_offset + offset, size, dir); 1815} 1816 1817static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 1818 gfp_t gfp_mask) 1819{ 1820 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 1821} 1822 1823/** 1824 * skb_clone_writable - is the header of a clone writable 1825 * @skb: buffer to check 1826 * @len: length up to which to write 1827 * 1828 * Returns true if modifying the header part of the cloned buffer 1829 * does not requires the data to be copied. 1830 */ 1831static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 1832{ 1833 return !skb_header_cloned(skb) && 1834 skb_headroom(skb) + len <= skb->hdr_len; 1835} 1836 1837static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1838 int cloned) 1839{ 1840 int delta = 0; 1841 1842 if (headroom < NET_SKB_PAD) 1843 headroom = NET_SKB_PAD; 1844 if (headroom > skb_headroom(skb)) 1845 delta = headroom - skb_headroom(skb); 1846 1847 if (delta || cloned) 1848 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1849 GFP_ATOMIC); 1850 return 0; 1851} 1852 1853/** 1854 * skb_cow - copy header of skb when it is required 1855 * @skb: buffer to cow 1856 * @headroom: needed headroom 1857 * 1858 * If the skb passed lacks sufficient headroom or its data part 1859 * is shared, data is reallocated. If reallocation fails, an error 1860 * is returned and original skb is not changed. 1861 * 1862 * The result is skb with writable area skb->head...skb->tail 1863 * and at least @headroom of space at head. 1864 */ 1865static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1866{ 1867 return __skb_cow(skb, headroom, skb_cloned(skb)); 1868} 1869 1870/** 1871 * skb_cow_head - skb_cow but only making the head writable 1872 * @skb: buffer to cow 1873 * @headroom: needed headroom 1874 * 1875 * This function is identical to skb_cow except that we replace the 1876 * skb_cloned check by skb_header_cloned. It should be used when 1877 * you only need to push on some header and do not need to modify 1878 * the data. 1879 */ 1880static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1881{ 1882 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1883} 1884 1885/** 1886 * skb_padto - pad an skbuff up to a minimal size 1887 * @skb: buffer to pad 1888 * @len: minimal length 1889 * 1890 * Pads up a buffer to ensure the trailing bytes exist and are 1891 * blanked. If the buffer already contains sufficient data it 1892 * is untouched. Otherwise it is extended. Returns zero on 1893 * success. The skb is freed on error. 1894 */ 1895 1896static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1897{ 1898 unsigned int size = skb->len; 1899 if (likely(size >= len)) 1900 return 0; 1901 return skb_pad(skb, len - size); 1902} 1903 1904static inline int skb_add_data(struct sk_buff *skb, 1905 char __user *from, int copy) 1906{ 1907 const int off = skb->len; 1908 1909 if (skb->ip_summed == CHECKSUM_NONE) { 1910 int err = 0; 1911 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1912 copy, 0, &err); 1913 if (!err) { 1914 skb->csum = csum_block_add(skb->csum, csum, off); 1915 return 0; 1916 } 1917 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1918 return 0; 1919 1920 __skb_trim(skb, off); 1921 return -EFAULT; 1922} 1923 1924static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1925 const struct page *page, int off) 1926{ 1927 if (i) { 1928 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1929 1930 return page == skb_frag_page(frag) && 1931 off == frag->page_offset + skb_frag_size(frag); 1932 } 1933 return 0; 1934} 1935 1936static inline int __skb_linearize(struct sk_buff *skb) 1937{ 1938 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1939} 1940 1941/** 1942 * skb_linearize - convert paged skb to linear one 1943 * @skb: buffer to linarize 1944 * 1945 * If there is no free memory -ENOMEM is returned, otherwise zero 1946 * is returned and the old skb data released. 1947 */ 1948static inline int skb_linearize(struct sk_buff *skb) 1949{ 1950 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1951} 1952 1953/** 1954 * skb_linearize_cow - make sure skb is linear and writable 1955 * @skb: buffer to process 1956 * 1957 * If there is no free memory -ENOMEM is returned, otherwise zero 1958 * is returned and the old skb data released. 1959 */ 1960static inline int skb_linearize_cow(struct sk_buff *skb) 1961{ 1962 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1963 __skb_linearize(skb) : 0; 1964} 1965 1966/** 1967 * skb_postpull_rcsum - update checksum for received skb after pull 1968 * @skb: buffer to update 1969 * @start: start of data before pull 1970 * @len: length of data pulled 1971 * 1972 * After doing a pull on a received packet, you need to call this to 1973 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1974 * CHECKSUM_NONE so that it can be recomputed from scratch. 1975 */ 1976 1977static inline void skb_postpull_rcsum(struct sk_buff *skb, 1978 const void *start, unsigned int len) 1979{ 1980 if (skb->ip_summed == CHECKSUM_COMPLETE) 1981 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1982} 1983 1984unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1985 1986/** 1987 * pskb_trim_rcsum - trim received skb and update checksum 1988 * @skb: buffer to trim 1989 * @len: new length 1990 * 1991 * This is exactly the same as pskb_trim except that it ensures the 1992 * checksum of received packets are still valid after the operation. 1993 */ 1994 1995static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1996{ 1997 if (likely(len >= skb->len)) 1998 return 0; 1999 if (skb->ip_summed == CHECKSUM_COMPLETE) 2000 skb->ip_summed = CHECKSUM_NONE; 2001 return __pskb_trim(skb, len); 2002} 2003 2004#define skb_queue_walk(queue, skb) \ 2005 for (skb = (queue)->next; \ 2006 skb != (struct sk_buff *)(queue); \ 2007 skb = skb->next) 2008 2009#define skb_queue_walk_safe(queue, skb, tmp) \ 2010 for (skb = (queue)->next, tmp = skb->next; \ 2011 skb != (struct sk_buff *)(queue); \ 2012 skb = tmp, tmp = skb->next) 2013 2014#define skb_queue_walk_from(queue, skb) \ 2015 for (; skb != (struct sk_buff *)(queue); \ 2016 skb = skb->next) 2017 2018#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2019 for (tmp = skb->next; \ 2020 skb != (struct sk_buff *)(queue); \ 2021 skb = tmp, tmp = skb->next) 2022 2023#define skb_queue_reverse_walk(queue, skb) \ 2024 for (skb = (queue)->prev; \ 2025 skb != (struct sk_buff *)(queue); \ 2026 skb = skb->prev) 2027 2028#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2029 for (skb = (queue)->prev, tmp = skb->prev; \ 2030 skb != (struct sk_buff *)(queue); \ 2031 skb = tmp, tmp = skb->prev) 2032 2033#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2034 for (tmp = skb->prev; \ 2035 skb != (struct sk_buff *)(queue); \ 2036 skb = tmp, tmp = skb->prev) 2037 2038static inline bool skb_has_frag_list(const struct sk_buff *skb) 2039{ 2040 return skb_shinfo(skb)->frag_list != NULL; 2041} 2042 2043static inline void skb_frag_list_init(struct sk_buff *skb) 2044{ 2045 skb_shinfo(skb)->frag_list = NULL; 2046} 2047 2048static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2049{ 2050 frag->next = skb_shinfo(skb)->frag_list; 2051 skb_shinfo(skb)->frag_list = frag; 2052} 2053 2054#define skb_walk_frags(skb, iter) \ 2055 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2056 2057extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2058 int *peeked, int *err); 2059extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 2060 int noblock, int *err); 2061extern unsigned int datagram_poll(struct file *file, struct socket *sock, 2062 struct poll_table_struct *wait); 2063extern int skb_copy_datagram_iovec(const struct sk_buff *from, 2064 int offset, struct iovec *to, 2065 int size); 2066extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 2067 int hlen, 2068 struct iovec *iov); 2069extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 2070 int offset, 2071 const struct iovec *from, 2072 int from_offset, 2073 int len); 2074extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 2075 int offset, 2076 const struct iovec *to, 2077 int to_offset, 2078 int size); 2079extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2080extern void skb_free_datagram_locked(struct sock *sk, 2081 struct sk_buff *skb); 2082extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 2083 unsigned int flags); 2084extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 2085 int len, __wsum csum); 2086extern int skb_copy_bits(const struct sk_buff *skb, int offset, 2087 void *to, int len); 2088extern int skb_store_bits(struct sk_buff *skb, int offset, 2089 const void *from, int len); 2090extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 2091 int offset, u8 *to, int len, 2092 __wsum csum); 2093extern int skb_splice_bits(struct sk_buff *skb, 2094 unsigned int offset, 2095 struct pipe_inode_info *pipe, 2096 unsigned int len, 2097 unsigned int flags); 2098extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2099extern void skb_split(struct sk_buff *skb, 2100 struct sk_buff *skb1, const u32 len); 2101extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 2102 int shiftlen); 2103 2104extern struct sk_buff *skb_segment(struct sk_buff *skb, 2105 netdev_features_t features); 2106 2107static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2108 int len, void *buffer) 2109{ 2110 int hlen = skb_headlen(skb); 2111 2112 if (hlen - offset >= len) 2113 return skb->data + offset; 2114 2115 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2116 return NULL; 2117 2118 return buffer; 2119} 2120 2121static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2122 void *to, 2123 const unsigned int len) 2124{ 2125 memcpy(to, skb->data, len); 2126} 2127 2128static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2129 const int offset, void *to, 2130 const unsigned int len) 2131{ 2132 memcpy(to, skb->data + offset, len); 2133} 2134 2135static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2136 const void *from, 2137 const unsigned int len) 2138{ 2139 memcpy(skb->data, from, len); 2140} 2141 2142static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2143 const int offset, 2144 const void *from, 2145 const unsigned int len) 2146{ 2147 memcpy(skb->data + offset, from, len); 2148} 2149 2150extern void skb_init(void); 2151 2152static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2153{ 2154 return skb->tstamp; 2155} 2156 2157/** 2158 * skb_get_timestamp - get timestamp from a skb 2159 * @skb: skb to get stamp from 2160 * @stamp: pointer to struct timeval to store stamp in 2161 * 2162 * Timestamps are stored in the skb as offsets to a base timestamp. 2163 * This function converts the offset back to a struct timeval and stores 2164 * it in stamp. 2165 */ 2166static inline void skb_get_timestamp(const struct sk_buff *skb, 2167 struct timeval *stamp) 2168{ 2169 *stamp = ktime_to_timeval(skb->tstamp); 2170} 2171 2172static inline void skb_get_timestampns(const struct sk_buff *skb, 2173 struct timespec *stamp) 2174{ 2175 *stamp = ktime_to_timespec(skb->tstamp); 2176} 2177 2178static inline void __net_timestamp(struct sk_buff *skb) 2179{ 2180 skb->tstamp = ktime_get_real(); 2181} 2182 2183static inline ktime_t net_timedelta(ktime_t t) 2184{ 2185 return ktime_sub(ktime_get_real(), t); 2186} 2187 2188static inline ktime_t net_invalid_timestamp(void) 2189{ 2190 return ktime_set(0, 0); 2191} 2192 2193extern void skb_timestamping_init(void); 2194 2195#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2196 2197extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2198extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2199 2200#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2201 2202static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2203{ 2204} 2205 2206static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2207{ 2208 return false; 2209} 2210 2211#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2212 2213/** 2214 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2215 * 2216 * PHY drivers may accept clones of transmitted packets for 2217 * timestamping via their phy_driver.txtstamp method. These drivers 2218 * must call this function to return the skb back to the stack, with 2219 * or without a timestamp. 2220 * 2221 * @skb: clone of the the original outgoing packet 2222 * @hwtstamps: hardware time stamps, may be NULL if not available 2223 * 2224 */ 2225void skb_complete_tx_timestamp(struct sk_buff *skb, 2226 struct skb_shared_hwtstamps *hwtstamps); 2227 2228/** 2229 * skb_tstamp_tx - queue clone of skb with send time stamps 2230 * @orig_skb: the original outgoing packet 2231 * @hwtstamps: hardware time stamps, may be NULL if not available 2232 * 2233 * If the skb has a socket associated, then this function clones the 2234 * skb (thus sharing the actual data and optional structures), stores 2235 * the optional hardware time stamping information (if non NULL) or 2236 * generates a software time stamp (otherwise), then queues the clone 2237 * to the error queue of the socket. Errors are silently ignored. 2238 */ 2239extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2240 struct skb_shared_hwtstamps *hwtstamps); 2241 2242static inline void sw_tx_timestamp(struct sk_buff *skb) 2243{ 2244 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2245 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2246 skb_tstamp_tx(skb, NULL); 2247} 2248 2249/** 2250 * skb_tx_timestamp() - Driver hook for transmit timestamping 2251 * 2252 * Ethernet MAC Drivers should call this function in their hard_xmit() 2253 * function immediately before giving the sk_buff to the MAC hardware. 2254 * 2255 * @skb: A socket buffer. 2256 */ 2257static inline void skb_tx_timestamp(struct sk_buff *skb) 2258{ 2259 skb_clone_tx_timestamp(skb); 2260 sw_tx_timestamp(skb); 2261} 2262 2263/** 2264 * skb_complete_wifi_ack - deliver skb with wifi status 2265 * 2266 * @skb: the original outgoing packet 2267 * @acked: ack status 2268 * 2269 */ 2270void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2271 2272extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2273extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2274 2275static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2276{ 2277 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2278} 2279 2280/** 2281 * skb_checksum_complete - Calculate checksum of an entire packet 2282 * @skb: packet to process 2283 * 2284 * This function calculates the checksum over the entire packet plus 2285 * the value of skb->csum. The latter can be used to supply the 2286 * checksum of a pseudo header as used by TCP/UDP. It returns the 2287 * checksum. 2288 * 2289 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2290 * this function can be used to verify that checksum on received 2291 * packets. In that case the function should return zero if the 2292 * checksum is correct. In particular, this function will return zero 2293 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2294 * hardware has already verified the correctness of the checksum. 2295 */ 2296static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2297{ 2298 return skb_csum_unnecessary(skb) ? 2299 0 : __skb_checksum_complete(skb); 2300} 2301 2302#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2303extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2304static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2305{ 2306 if (nfct && atomic_dec_and_test(&nfct->use)) 2307 nf_conntrack_destroy(nfct); 2308} 2309static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2310{ 2311 if (nfct) 2312 atomic_inc(&nfct->use); 2313} 2314#endif 2315#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2316static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2317{ 2318 if (skb) 2319 atomic_inc(&skb->users); 2320} 2321static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2322{ 2323 if (skb) 2324 kfree_skb(skb); 2325} 2326#endif 2327#ifdef CONFIG_BRIDGE_NETFILTER 2328static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2329{ 2330 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2331 kfree(nf_bridge); 2332} 2333static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2334{ 2335 if (nf_bridge) 2336 atomic_inc(&nf_bridge->use); 2337} 2338#endif /* CONFIG_BRIDGE_NETFILTER */ 2339static inline void nf_reset(struct sk_buff *skb) 2340{ 2341#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2342 nf_conntrack_put(skb->nfct); 2343 skb->nfct = NULL; 2344#endif 2345#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2346 nf_conntrack_put_reasm(skb->nfct_reasm); 2347 skb->nfct_reasm = NULL; 2348#endif 2349#ifdef CONFIG_BRIDGE_NETFILTER 2350 nf_bridge_put(skb->nf_bridge); 2351 skb->nf_bridge = NULL; 2352#endif 2353} 2354 2355/* Note: This doesn't put any conntrack and bridge info in dst. */ 2356static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2357{ 2358#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2359 dst->nfct = src->nfct; 2360 nf_conntrack_get(src->nfct); 2361 dst->nfctinfo = src->nfctinfo; 2362#endif 2363#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2364 dst->nfct_reasm = src->nfct_reasm; 2365 nf_conntrack_get_reasm(src->nfct_reasm); 2366#endif 2367#ifdef CONFIG_BRIDGE_NETFILTER 2368 dst->nf_bridge = src->nf_bridge; 2369 nf_bridge_get(src->nf_bridge); 2370#endif 2371} 2372 2373static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2374{ 2375#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2376 nf_conntrack_put(dst->nfct); 2377#endif 2378#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2379 nf_conntrack_put_reasm(dst->nfct_reasm); 2380#endif 2381#ifdef CONFIG_BRIDGE_NETFILTER 2382 nf_bridge_put(dst->nf_bridge); 2383#endif 2384 __nf_copy(dst, src); 2385} 2386 2387#ifdef CONFIG_NETWORK_SECMARK 2388static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2389{ 2390 to->secmark = from->secmark; 2391} 2392 2393static inline void skb_init_secmark(struct sk_buff *skb) 2394{ 2395 skb->secmark = 0; 2396} 2397#else 2398static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2399{ } 2400 2401static inline void skb_init_secmark(struct sk_buff *skb) 2402{ } 2403#endif 2404 2405static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2406{ 2407 skb->queue_mapping = queue_mapping; 2408} 2409 2410static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2411{ 2412 return skb->queue_mapping; 2413} 2414 2415static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2416{ 2417 to->queue_mapping = from->queue_mapping; 2418} 2419 2420static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2421{ 2422 skb->queue_mapping = rx_queue + 1; 2423} 2424 2425static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2426{ 2427 return skb->queue_mapping - 1; 2428} 2429 2430static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2431{ 2432 return skb->queue_mapping != 0; 2433} 2434 2435extern u16 __skb_tx_hash(const struct net_device *dev, 2436 const struct sk_buff *skb, 2437 unsigned int num_tx_queues); 2438 2439#ifdef CONFIG_XFRM 2440static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2441{ 2442 return skb->sp; 2443} 2444#else 2445static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2446{ 2447 return NULL; 2448} 2449#endif 2450 2451static inline int skb_is_gso(const struct sk_buff *skb) 2452{ 2453 return skb_shinfo(skb)->gso_size; 2454} 2455 2456static inline int skb_is_gso_v6(const struct sk_buff *skb) 2457{ 2458 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2459} 2460 2461extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2462 2463static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2464{ 2465 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2466 * wanted then gso_type will be set. */ 2467 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2468 2469 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2470 unlikely(shinfo->gso_type == 0)) { 2471 __skb_warn_lro_forwarding(skb); 2472 return true; 2473 } 2474 return false; 2475} 2476 2477static inline void skb_forward_csum(struct sk_buff *skb) 2478{ 2479 /* Unfortunately we don't support this one. Any brave souls? */ 2480 if (skb->ip_summed == CHECKSUM_COMPLETE) 2481 skb->ip_summed = CHECKSUM_NONE; 2482} 2483 2484/** 2485 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2486 * @skb: skb to check 2487 * 2488 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2489 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2490 * use this helper, to document places where we make this assertion. 2491 */ 2492static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2493{ 2494#ifdef DEBUG 2495 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2496#endif 2497} 2498 2499bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2500 2501static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size) 2502{ 2503 if (irqs_disabled()) 2504 return false; 2505 2506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) 2507 return false; 2508 2509 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 2510 return false; 2511 2512 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 2513 if (skb_end_pointer(skb) - skb->head < skb_size) 2514 return false; 2515 2516 if (skb_shared(skb) || skb_cloned(skb)) 2517 return false; 2518 2519 return true; 2520} 2521#endif /* __KERNEL__ */ 2522#endif /* _LINUX_SKBUFF_H */