Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8#define CLONE_VM 0x00000100 /* set if VM shared between processes */
9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD 0x00010000 /* Same thread group? */
16#define CLONE_NEWNS 0x00020000 /* New namespace group? */
17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24/* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26#define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27#define CLONE_NEWIPC 0x08000000 /* New ipcs */
28#define CLONE_NEWUSER 0x10000000 /* New user namespace */
29#define CLONE_NEWPID 0x20000000 /* New pid namespace */
30#define CLONE_NEWNET 0x40000000 /* New network namespace */
31#define CLONE_IO 0x80000000 /* Clone io context */
32
33/*
34 * Scheduling policies
35 */
36#define SCHED_NORMAL 0
37#define SCHED_FIFO 1
38#define SCHED_RR 2
39#define SCHED_BATCH 3
40/* SCHED_ISO: reserved but not implemented yet */
41#define SCHED_IDLE 5
42/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43#define SCHED_RESET_ON_FORK 0x40000000
44
45#ifdef __KERNEL__
46
47struct sched_param {
48 int sched_priority;
49};
50
51#include <asm/param.h> /* for HZ */
52
53#include <linux/capability.h>
54#include <linux/threads.h>
55#include <linux/kernel.h>
56#include <linux/types.h>
57#include <linux/timex.h>
58#include <linux/jiffies.h>
59#include <linux/rbtree.h>
60#include <linux/thread_info.h>
61#include <linux/cpumask.h>
62#include <linux/errno.h>
63#include <linux/nodemask.h>
64#include <linux/mm_types.h>
65
66#include <asm/system.h>
67#include <asm/page.h>
68#include <asm/ptrace.h>
69#include <asm/cputime.h>
70
71#include <linux/smp.h>
72#include <linux/sem.h>
73#include <linux/signal.h>
74#include <linux/compiler.h>
75#include <linux/completion.h>
76#include <linux/pid.h>
77#include <linux/percpu.h>
78#include <linux/topology.h>
79#include <linux/proportions.h>
80#include <linux/seccomp.h>
81#include <linux/rcupdate.h>
82#include <linux/rculist.h>
83#include <linux/rtmutex.h>
84
85#include <linux/time.h>
86#include <linux/param.h>
87#include <linux/resource.h>
88#include <linux/timer.h>
89#include <linux/hrtimer.h>
90#include <linux/task_io_accounting.h>
91#include <linux/latencytop.h>
92#include <linux/cred.h>
93#include <linux/llist.h>
94
95#include <asm/processor.h>
96
97struct exec_domain;
98struct futex_pi_state;
99struct robust_list_head;
100struct bio_list;
101struct fs_struct;
102struct perf_event_context;
103struct blk_plug;
104
105/*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111/*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121extern unsigned long avenrun[]; /* Load averages */
122extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124#define FSHIFT 11 /* nr of bits of precision */
125#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128#define EXP_5 2014 /* 1/exp(5sec/5min) */
129#define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131#define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136extern unsigned long total_forks;
137extern int nr_threads;
138DECLARE_PER_CPU(unsigned long, process_counts);
139extern int nr_processes(void);
140extern unsigned long nr_running(void);
141extern unsigned long nr_uninterruptible(void);
142extern unsigned long nr_iowait(void);
143extern unsigned long nr_iowait_cpu(int cpu);
144extern unsigned long this_cpu_load(void);
145
146
147extern void calc_global_load(unsigned long ticks);
148
149extern unsigned long get_parent_ip(unsigned long addr);
150
151struct seq_file;
152struct cfs_rq;
153struct task_group;
154#ifdef CONFIG_SCHED_DEBUG
155extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156extern void proc_sched_set_task(struct task_struct *p);
157extern void
158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159#else
160static inline void
161proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162{
163}
164static inline void proc_sched_set_task(struct task_struct *p)
165{
166}
167static inline void
168print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169{
170}
171#endif
172
173/*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183#define TASK_RUNNING 0
184#define TASK_INTERRUPTIBLE 1
185#define TASK_UNINTERRUPTIBLE 2
186#define __TASK_STOPPED 4
187#define __TASK_TRACED 8
188/* in tsk->exit_state */
189#define EXIT_ZOMBIE 16
190#define EXIT_DEAD 32
191/* in tsk->state again */
192#define TASK_DEAD 64
193#define TASK_WAKEKILL 128
194#define TASK_WAKING 256
195#define TASK_STATE_MAX 512
196
197#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199extern char ___assert_task_state[1 - 2*!!(
200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202/* Convenience macros for the sake of set_task_state */
203#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
205#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206
207/* Convenience macros for the sake of wake_up */
208#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211/* get_task_state() */
212#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214 __TASK_TRACED)
215
216#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
217#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
218#define task_is_dead(task) ((task)->exit_state != 0)
219#define task_is_stopped_or_traced(task) \
220 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
221#define task_contributes_to_load(task) \
222 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
223 (task->flags & PF_FROZEN) == 0)
224
225#define __set_task_state(tsk, state_value) \
226 do { (tsk)->state = (state_value); } while (0)
227#define set_task_state(tsk, state_value) \
228 set_mb((tsk)->state, (state_value))
229
230/*
231 * set_current_state() includes a barrier so that the write of current->state
232 * is correctly serialised wrt the caller's subsequent test of whether to
233 * actually sleep:
234 *
235 * set_current_state(TASK_UNINTERRUPTIBLE);
236 * if (do_i_need_to_sleep())
237 * schedule();
238 *
239 * If the caller does not need such serialisation then use __set_current_state()
240 */
241#define __set_current_state(state_value) \
242 do { current->state = (state_value); } while (0)
243#define set_current_state(state_value) \
244 set_mb(current->state, (state_value))
245
246/* Task command name length */
247#define TASK_COMM_LEN 16
248
249#include <linux/spinlock.h>
250
251/*
252 * This serializes "schedule()" and also protects
253 * the run-queue from deletions/modifications (but
254 * _adding_ to the beginning of the run-queue has
255 * a separate lock).
256 */
257extern rwlock_t tasklist_lock;
258extern spinlock_t mmlist_lock;
259
260struct task_struct;
261
262#ifdef CONFIG_PROVE_RCU
263extern int lockdep_tasklist_lock_is_held(void);
264#endif /* #ifdef CONFIG_PROVE_RCU */
265
266extern void sched_init(void);
267extern void sched_init_smp(void);
268extern asmlinkage void schedule_tail(struct task_struct *prev);
269extern void init_idle(struct task_struct *idle, int cpu);
270extern void init_idle_bootup_task(struct task_struct *idle);
271
272extern int runqueue_is_locked(int cpu);
273
274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275extern void select_nohz_load_balancer(int stop_tick);
276extern void set_cpu_sd_state_idle(void);
277extern int get_nohz_timer_target(void);
278#else
279static inline void select_nohz_load_balancer(int stop_tick) { }
280static inline void set_cpu_sd_state_idle(void) { }
281#endif
282
283/*
284 * Only dump TASK_* tasks. (0 for all tasks)
285 */
286extern void show_state_filter(unsigned long state_filter);
287
288static inline void show_state(void)
289{
290 show_state_filter(0);
291}
292
293extern void show_regs(struct pt_regs *);
294
295/*
296 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
297 * task), SP is the stack pointer of the first frame that should be shown in the back
298 * trace (or NULL if the entire call-chain of the task should be shown).
299 */
300extern void show_stack(struct task_struct *task, unsigned long *sp);
301
302void io_schedule(void);
303long io_schedule_timeout(long timeout);
304
305extern void cpu_init (void);
306extern void trap_init(void);
307extern void update_process_times(int user);
308extern void scheduler_tick(void);
309
310extern void sched_show_task(struct task_struct *p);
311
312#ifdef CONFIG_LOCKUP_DETECTOR
313extern void touch_softlockup_watchdog(void);
314extern void touch_softlockup_watchdog_sync(void);
315extern void touch_all_softlockup_watchdogs(void);
316extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
317 void __user *buffer,
318 size_t *lenp, loff_t *ppos);
319extern unsigned int softlockup_panic;
320void lockup_detector_init(void);
321#else
322static inline void touch_softlockup_watchdog(void)
323{
324}
325static inline void touch_softlockup_watchdog_sync(void)
326{
327}
328static inline void touch_all_softlockup_watchdogs(void)
329{
330}
331static inline void lockup_detector_init(void)
332{
333}
334#endif
335
336#ifdef CONFIG_DETECT_HUNG_TASK
337extern unsigned int sysctl_hung_task_panic;
338extern unsigned long sysctl_hung_task_check_count;
339extern unsigned long sysctl_hung_task_timeout_secs;
340extern unsigned long sysctl_hung_task_warnings;
341extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
342 void __user *buffer,
343 size_t *lenp, loff_t *ppos);
344#else
345/* Avoid need for ifdefs elsewhere in the code */
346enum { sysctl_hung_task_timeout_secs = 0 };
347#endif
348
349/* Attach to any functions which should be ignored in wchan output. */
350#define __sched __attribute__((__section__(".sched.text")))
351
352/* Linker adds these: start and end of __sched functions */
353extern char __sched_text_start[], __sched_text_end[];
354
355/* Is this address in the __sched functions? */
356extern int in_sched_functions(unsigned long addr);
357
358#define MAX_SCHEDULE_TIMEOUT LONG_MAX
359extern signed long schedule_timeout(signed long timeout);
360extern signed long schedule_timeout_interruptible(signed long timeout);
361extern signed long schedule_timeout_killable(signed long timeout);
362extern signed long schedule_timeout_uninterruptible(signed long timeout);
363asmlinkage void schedule(void);
364extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
365
366struct nsproxy;
367struct user_namespace;
368
369/*
370 * Default maximum number of active map areas, this limits the number of vmas
371 * per mm struct. Users can overwrite this number by sysctl but there is a
372 * problem.
373 *
374 * When a program's coredump is generated as ELF format, a section is created
375 * per a vma. In ELF, the number of sections is represented in unsigned short.
376 * This means the number of sections should be smaller than 65535 at coredump.
377 * Because the kernel adds some informative sections to a image of program at
378 * generating coredump, we need some margin. The number of extra sections is
379 * 1-3 now and depends on arch. We use "5" as safe margin, here.
380 */
381#define MAPCOUNT_ELF_CORE_MARGIN (5)
382#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
383
384extern int sysctl_max_map_count;
385
386#include <linux/aio.h>
387
388#ifdef CONFIG_MMU
389extern void arch_pick_mmap_layout(struct mm_struct *mm);
390extern unsigned long
391arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
392 unsigned long, unsigned long);
393extern unsigned long
394arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
395 unsigned long len, unsigned long pgoff,
396 unsigned long flags);
397extern void arch_unmap_area(struct mm_struct *, unsigned long);
398extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
399#else
400static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
401#endif
402
403
404extern void set_dumpable(struct mm_struct *mm, int value);
405extern int get_dumpable(struct mm_struct *mm);
406
407/* mm flags */
408/* dumpable bits */
409#define MMF_DUMPABLE 0 /* core dump is permitted */
410#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
411
412#define MMF_DUMPABLE_BITS 2
413#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
414
415/* coredump filter bits */
416#define MMF_DUMP_ANON_PRIVATE 2
417#define MMF_DUMP_ANON_SHARED 3
418#define MMF_DUMP_MAPPED_PRIVATE 4
419#define MMF_DUMP_MAPPED_SHARED 5
420#define MMF_DUMP_ELF_HEADERS 6
421#define MMF_DUMP_HUGETLB_PRIVATE 7
422#define MMF_DUMP_HUGETLB_SHARED 8
423
424#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
425#define MMF_DUMP_FILTER_BITS 7
426#define MMF_DUMP_FILTER_MASK \
427 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
428#define MMF_DUMP_FILTER_DEFAULT \
429 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
430 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
431
432#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
433# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
434#else
435# define MMF_DUMP_MASK_DEFAULT_ELF 0
436#endif
437 /* leave room for more dump flags */
438#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
439#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
440
441#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
442
443struct sighand_struct {
444 atomic_t count;
445 struct k_sigaction action[_NSIG];
446 spinlock_t siglock;
447 wait_queue_head_t signalfd_wqh;
448};
449
450struct pacct_struct {
451 int ac_flag;
452 long ac_exitcode;
453 unsigned long ac_mem;
454 cputime_t ac_utime, ac_stime;
455 unsigned long ac_minflt, ac_majflt;
456};
457
458struct cpu_itimer {
459 cputime_t expires;
460 cputime_t incr;
461 u32 error;
462 u32 incr_error;
463};
464
465/**
466 * struct task_cputime - collected CPU time counts
467 * @utime: time spent in user mode, in &cputime_t units
468 * @stime: time spent in kernel mode, in &cputime_t units
469 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
470 *
471 * This structure groups together three kinds of CPU time that are
472 * tracked for threads and thread groups. Most things considering
473 * CPU time want to group these counts together and treat all three
474 * of them in parallel.
475 */
476struct task_cputime {
477 cputime_t utime;
478 cputime_t stime;
479 unsigned long long sum_exec_runtime;
480};
481/* Alternate field names when used to cache expirations. */
482#define prof_exp stime
483#define virt_exp utime
484#define sched_exp sum_exec_runtime
485
486#define INIT_CPUTIME \
487 (struct task_cputime) { \
488 .utime = 0, \
489 .stime = 0, \
490 .sum_exec_runtime = 0, \
491 }
492
493/*
494 * Disable preemption until the scheduler is running.
495 * Reset by start_kernel()->sched_init()->init_idle().
496 *
497 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
498 * before the scheduler is active -- see should_resched().
499 */
500#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
501
502/**
503 * struct thread_group_cputimer - thread group interval timer counts
504 * @cputime: thread group interval timers.
505 * @running: non-zero when there are timers running and
506 * @cputime receives updates.
507 * @lock: lock for fields in this struct.
508 *
509 * This structure contains the version of task_cputime, above, that is
510 * used for thread group CPU timer calculations.
511 */
512struct thread_group_cputimer {
513 struct task_cputime cputime;
514 int running;
515 raw_spinlock_t lock;
516};
517
518#include <linux/rwsem.h>
519struct autogroup;
520
521/*
522 * NOTE! "signal_struct" does not have its own
523 * locking, because a shared signal_struct always
524 * implies a shared sighand_struct, so locking
525 * sighand_struct is always a proper superset of
526 * the locking of signal_struct.
527 */
528struct signal_struct {
529 atomic_t sigcnt;
530 atomic_t live;
531 int nr_threads;
532
533 wait_queue_head_t wait_chldexit; /* for wait4() */
534
535 /* current thread group signal load-balancing target: */
536 struct task_struct *curr_target;
537
538 /* shared signal handling: */
539 struct sigpending shared_pending;
540
541 /* thread group exit support */
542 int group_exit_code;
543 /* overloaded:
544 * - notify group_exit_task when ->count is equal to notify_count
545 * - everyone except group_exit_task is stopped during signal delivery
546 * of fatal signals, group_exit_task processes the signal.
547 */
548 int notify_count;
549 struct task_struct *group_exit_task;
550
551 /* thread group stop support, overloads group_exit_code too */
552 int group_stop_count;
553 unsigned int flags; /* see SIGNAL_* flags below */
554
555 /* POSIX.1b Interval Timers */
556 struct list_head posix_timers;
557
558 /* ITIMER_REAL timer for the process */
559 struct hrtimer real_timer;
560 struct pid *leader_pid;
561 ktime_t it_real_incr;
562
563 /*
564 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
565 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
566 * values are defined to 0 and 1 respectively
567 */
568 struct cpu_itimer it[2];
569
570 /*
571 * Thread group totals for process CPU timers.
572 * See thread_group_cputimer(), et al, for details.
573 */
574 struct thread_group_cputimer cputimer;
575
576 /* Earliest-expiration cache. */
577 struct task_cputime cputime_expires;
578
579 struct list_head cpu_timers[3];
580
581 struct pid *tty_old_pgrp;
582
583 /* boolean value for session group leader */
584 int leader;
585
586 struct tty_struct *tty; /* NULL if no tty */
587
588#ifdef CONFIG_SCHED_AUTOGROUP
589 struct autogroup *autogroup;
590#endif
591 /*
592 * Cumulative resource counters for dead threads in the group,
593 * and for reaped dead child processes forked by this group.
594 * Live threads maintain their own counters and add to these
595 * in __exit_signal, except for the group leader.
596 */
597 cputime_t utime, stime, cutime, cstime;
598 cputime_t gtime;
599 cputime_t cgtime;
600#ifndef CONFIG_VIRT_CPU_ACCOUNTING
601 cputime_t prev_utime, prev_stime;
602#endif
603 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
604 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
605 unsigned long inblock, oublock, cinblock, coublock;
606 unsigned long maxrss, cmaxrss;
607 struct task_io_accounting ioac;
608
609 /*
610 * Cumulative ns of schedule CPU time fo dead threads in the
611 * group, not including a zombie group leader, (This only differs
612 * from jiffies_to_ns(utime + stime) if sched_clock uses something
613 * other than jiffies.)
614 */
615 unsigned long long sum_sched_runtime;
616
617 /*
618 * We don't bother to synchronize most readers of this at all,
619 * because there is no reader checking a limit that actually needs
620 * to get both rlim_cur and rlim_max atomically, and either one
621 * alone is a single word that can safely be read normally.
622 * getrlimit/setrlimit use task_lock(current->group_leader) to
623 * protect this instead of the siglock, because they really
624 * have no need to disable irqs.
625 */
626 struct rlimit rlim[RLIM_NLIMITS];
627
628#ifdef CONFIG_BSD_PROCESS_ACCT
629 struct pacct_struct pacct; /* per-process accounting information */
630#endif
631#ifdef CONFIG_TASKSTATS
632 struct taskstats *stats;
633#endif
634#ifdef CONFIG_AUDIT
635 unsigned audit_tty;
636 struct tty_audit_buf *tty_audit_buf;
637#endif
638#ifdef CONFIG_CGROUPS
639 /*
640 * group_rwsem prevents new tasks from entering the threadgroup and
641 * member tasks from exiting,a more specifically, setting of
642 * PF_EXITING. fork and exit paths are protected with this rwsem
643 * using threadgroup_change_begin/end(). Users which require
644 * threadgroup to remain stable should use threadgroup_[un]lock()
645 * which also takes care of exec path. Currently, cgroup is the
646 * only user.
647 */
648 struct rw_semaphore group_rwsem;
649#endif
650
651 int oom_adj; /* OOM kill score adjustment (bit shift) */
652 int oom_score_adj; /* OOM kill score adjustment */
653 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
654 * Only settable by CAP_SYS_RESOURCE. */
655
656 struct mutex cred_guard_mutex; /* guard against foreign influences on
657 * credential calculations
658 * (notably. ptrace) */
659};
660
661/* Context switch must be unlocked if interrupts are to be enabled */
662#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
663# define __ARCH_WANT_UNLOCKED_CTXSW
664#endif
665
666/*
667 * Bits in flags field of signal_struct.
668 */
669#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
670#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
671#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
672/*
673 * Pending notifications to parent.
674 */
675#define SIGNAL_CLD_STOPPED 0x00000010
676#define SIGNAL_CLD_CONTINUED 0x00000020
677#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
678
679#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
680
681/* If true, all threads except ->group_exit_task have pending SIGKILL */
682static inline int signal_group_exit(const struct signal_struct *sig)
683{
684 return (sig->flags & SIGNAL_GROUP_EXIT) ||
685 (sig->group_exit_task != NULL);
686}
687
688/*
689 * Some day this will be a full-fledged user tracking system..
690 */
691struct user_struct {
692 atomic_t __count; /* reference count */
693 atomic_t processes; /* How many processes does this user have? */
694 atomic_t files; /* How many open files does this user have? */
695 atomic_t sigpending; /* How many pending signals does this user have? */
696#ifdef CONFIG_INOTIFY_USER
697 atomic_t inotify_watches; /* How many inotify watches does this user have? */
698 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
699#endif
700#ifdef CONFIG_FANOTIFY
701 atomic_t fanotify_listeners;
702#endif
703#ifdef CONFIG_EPOLL
704 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
705#endif
706#ifdef CONFIG_POSIX_MQUEUE
707 /* protected by mq_lock */
708 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
709#endif
710 unsigned long locked_shm; /* How many pages of mlocked shm ? */
711
712#ifdef CONFIG_KEYS
713 struct key *uid_keyring; /* UID specific keyring */
714 struct key *session_keyring; /* UID's default session keyring */
715#endif
716
717 /* Hash table maintenance information */
718 struct hlist_node uidhash_node;
719 uid_t uid;
720 struct user_namespace *user_ns;
721
722#ifdef CONFIG_PERF_EVENTS
723 atomic_long_t locked_vm;
724#endif
725};
726
727extern int uids_sysfs_init(void);
728
729extern struct user_struct *find_user(uid_t);
730
731extern struct user_struct root_user;
732#define INIT_USER (&root_user)
733
734
735struct backing_dev_info;
736struct reclaim_state;
737
738#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
739struct sched_info {
740 /* cumulative counters */
741 unsigned long pcount; /* # of times run on this cpu */
742 unsigned long long run_delay; /* time spent waiting on a runqueue */
743
744 /* timestamps */
745 unsigned long long last_arrival,/* when we last ran on a cpu */
746 last_queued; /* when we were last queued to run */
747};
748#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
749
750#ifdef CONFIG_TASK_DELAY_ACCT
751struct task_delay_info {
752 spinlock_t lock;
753 unsigned int flags; /* Private per-task flags */
754
755 /* For each stat XXX, add following, aligned appropriately
756 *
757 * struct timespec XXX_start, XXX_end;
758 * u64 XXX_delay;
759 * u32 XXX_count;
760 *
761 * Atomicity of updates to XXX_delay, XXX_count protected by
762 * single lock above (split into XXX_lock if contention is an issue).
763 */
764
765 /*
766 * XXX_count is incremented on every XXX operation, the delay
767 * associated with the operation is added to XXX_delay.
768 * XXX_delay contains the accumulated delay time in nanoseconds.
769 */
770 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
771 u64 blkio_delay; /* wait for sync block io completion */
772 u64 swapin_delay; /* wait for swapin block io completion */
773 u32 blkio_count; /* total count of the number of sync block */
774 /* io operations performed */
775 u32 swapin_count; /* total count of the number of swapin block */
776 /* io operations performed */
777
778 struct timespec freepages_start, freepages_end;
779 u64 freepages_delay; /* wait for memory reclaim */
780 u32 freepages_count; /* total count of memory reclaim */
781};
782#endif /* CONFIG_TASK_DELAY_ACCT */
783
784static inline int sched_info_on(void)
785{
786#ifdef CONFIG_SCHEDSTATS
787 return 1;
788#elif defined(CONFIG_TASK_DELAY_ACCT)
789 extern int delayacct_on;
790 return delayacct_on;
791#else
792 return 0;
793#endif
794}
795
796enum cpu_idle_type {
797 CPU_IDLE,
798 CPU_NOT_IDLE,
799 CPU_NEWLY_IDLE,
800 CPU_MAX_IDLE_TYPES
801};
802
803/*
804 * Increase resolution of nice-level calculations for 64-bit architectures.
805 * The extra resolution improves shares distribution and load balancing of
806 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
807 * hierarchies, especially on larger systems. This is not a user-visible change
808 * and does not change the user-interface for setting shares/weights.
809 *
810 * We increase resolution only if we have enough bits to allow this increased
811 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
812 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
813 * increased costs.
814 */
815#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
816# define SCHED_LOAD_RESOLUTION 10
817# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
818# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
819#else
820# define SCHED_LOAD_RESOLUTION 0
821# define scale_load(w) (w)
822# define scale_load_down(w) (w)
823#endif
824
825#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
826#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
827
828/*
829 * Increase resolution of cpu_power calculations
830 */
831#define SCHED_POWER_SHIFT 10
832#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
833
834/*
835 * sched-domains (multiprocessor balancing) declarations:
836 */
837#ifdef CONFIG_SMP
838#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
839#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
840#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
841#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
842#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
843#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
844#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
845#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
846#define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
847#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
848#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
849#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
850#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
851#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
852
853enum powersavings_balance_level {
854 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
855 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
856 * first for long running threads
857 */
858 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
859 * cpu package for power savings
860 */
861 MAX_POWERSAVINGS_BALANCE_LEVELS
862};
863
864extern int sched_mc_power_savings, sched_smt_power_savings;
865
866static inline int sd_balance_for_mc_power(void)
867{
868 if (sched_smt_power_savings)
869 return SD_POWERSAVINGS_BALANCE;
870
871 if (!sched_mc_power_savings)
872 return SD_PREFER_SIBLING;
873
874 return 0;
875}
876
877static inline int sd_balance_for_package_power(void)
878{
879 if (sched_mc_power_savings | sched_smt_power_savings)
880 return SD_POWERSAVINGS_BALANCE;
881
882 return SD_PREFER_SIBLING;
883}
884
885extern int __weak arch_sd_sibiling_asym_packing(void);
886
887/*
888 * Optimise SD flags for power savings:
889 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
890 * Keep default SD flags if sched_{smt,mc}_power_saving=0
891 */
892
893static inline int sd_power_saving_flags(void)
894{
895 if (sched_mc_power_savings | sched_smt_power_savings)
896 return SD_BALANCE_NEWIDLE;
897
898 return 0;
899}
900
901struct sched_group_power {
902 atomic_t ref;
903 /*
904 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
905 * single CPU.
906 */
907 unsigned int power, power_orig;
908 /*
909 * Number of busy cpus in this group.
910 */
911 atomic_t nr_busy_cpus;
912};
913
914struct sched_group {
915 struct sched_group *next; /* Must be a circular list */
916 atomic_t ref;
917
918 unsigned int group_weight;
919 struct sched_group_power *sgp;
920
921 /*
922 * The CPUs this group covers.
923 *
924 * NOTE: this field is variable length. (Allocated dynamically
925 * by attaching extra space to the end of the structure,
926 * depending on how many CPUs the kernel has booted up with)
927 */
928 unsigned long cpumask[0];
929};
930
931static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
932{
933 return to_cpumask(sg->cpumask);
934}
935
936/**
937 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
938 * @group: The group whose first cpu is to be returned.
939 */
940static inline unsigned int group_first_cpu(struct sched_group *group)
941{
942 return cpumask_first(sched_group_cpus(group));
943}
944
945struct sched_domain_attr {
946 int relax_domain_level;
947};
948
949#define SD_ATTR_INIT (struct sched_domain_attr) { \
950 .relax_domain_level = -1, \
951}
952
953extern int sched_domain_level_max;
954
955struct sched_domain {
956 /* These fields must be setup */
957 struct sched_domain *parent; /* top domain must be null terminated */
958 struct sched_domain *child; /* bottom domain must be null terminated */
959 struct sched_group *groups; /* the balancing groups of the domain */
960 unsigned long min_interval; /* Minimum balance interval ms */
961 unsigned long max_interval; /* Maximum balance interval ms */
962 unsigned int busy_factor; /* less balancing by factor if busy */
963 unsigned int imbalance_pct; /* No balance until over watermark */
964 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
965 unsigned int busy_idx;
966 unsigned int idle_idx;
967 unsigned int newidle_idx;
968 unsigned int wake_idx;
969 unsigned int forkexec_idx;
970 unsigned int smt_gain;
971 int flags; /* See SD_* */
972 int level;
973
974 /* Runtime fields. */
975 unsigned long last_balance; /* init to jiffies. units in jiffies */
976 unsigned int balance_interval; /* initialise to 1. units in ms. */
977 unsigned int nr_balance_failed; /* initialise to 0 */
978
979 u64 last_update;
980
981#ifdef CONFIG_SCHEDSTATS
982 /* load_balance() stats */
983 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
984 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
985 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
986 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
987 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
988 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
989 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
990 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
991
992 /* Active load balancing */
993 unsigned int alb_count;
994 unsigned int alb_failed;
995 unsigned int alb_pushed;
996
997 /* SD_BALANCE_EXEC stats */
998 unsigned int sbe_count;
999 unsigned int sbe_balanced;
1000 unsigned int sbe_pushed;
1001
1002 /* SD_BALANCE_FORK stats */
1003 unsigned int sbf_count;
1004 unsigned int sbf_balanced;
1005 unsigned int sbf_pushed;
1006
1007 /* try_to_wake_up() stats */
1008 unsigned int ttwu_wake_remote;
1009 unsigned int ttwu_move_affine;
1010 unsigned int ttwu_move_balance;
1011#endif
1012#ifdef CONFIG_SCHED_DEBUG
1013 char *name;
1014#endif
1015 union {
1016 void *private; /* used during construction */
1017 struct rcu_head rcu; /* used during destruction */
1018 };
1019
1020 unsigned int span_weight;
1021 /*
1022 * Span of all CPUs in this domain.
1023 *
1024 * NOTE: this field is variable length. (Allocated dynamically
1025 * by attaching extra space to the end of the structure,
1026 * depending on how many CPUs the kernel has booted up with)
1027 */
1028 unsigned long span[0];
1029};
1030
1031static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1032{
1033 return to_cpumask(sd->span);
1034}
1035
1036extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1037 struct sched_domain_attr *dattr_new);
1038
1039/* Allocate an array of sched domains, for partition_sched_domains(). */
1040cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1041void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1042
1043/* Test a flag in parent sched domain */
1044static inline int test_sd_parent(struct sched_domain *sd, int flag)
1045{
1046 if (sd->parent && (sd->parent->flags & flag))
1047 return 1;
1048
1049 return 0;
1050}
1051
1052unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1053unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1054
1055#else /* CONFIG_SMP */
1056
1057struct sched_domain_attr;
1058
1059static inline void
1060partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1061 struct sched_domain_attr *dattr_new)
1062{
1063}
1064#endif /* !CONFIG_SMP */
1065
1066
1067struct io_context; /* See blkdev.h */
1068
1069
1070#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1071extern void prefetch_stack(struct task_struct *t);
1072#else
1073static inline void prefetch_stack(struct task_struct *t) { }
1074#endif
1075
1076struct audit_context; /* See audit.c */
1077struct mempolicy;
1078struct pipe_inode_info;
1079struct uts_namespace;
1080
1081struct rq;
1082struct sched_domain;
1083
1084/*
1085 * wake flags
1086 */
1087#define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1088#define WF_FORK 0x02 /* child wakeup after fork */
1089#define WF_MIGRATED 0x04 /* internal use, task got migrated */
1090
1091#define ENQUEUE_WAKEUP 1
1092#define ENQUEUE_HEAD 2
1093#ifdef CONFIG_SMP
1094#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1095#else
1096#define ENQUEUE_WAKING 0
1097#endif
1098
1099#define DEQUEUE_SLEEP 1
1100
1101struct sched_class {
1102 const struct sched_class *next;
1103
1104 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1105 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1106 void (*yield_task) (struct rq *rq);
1107 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1108
1109 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1110
1111 struct task_struct * (*pick_next_task) (struct rq *rq);
1112 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1113
1114#ifdef CONFIG_SMP
1115 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1116
1117 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1118 void (*post_schedule) (struct rq *this_rq);
1119 void (*task_waking) (struct task_struct *task);
1120 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1121
1122 void (*set_cpus_allowed)(struct task_struct *p,
1123 const struct cpumask *newmask);
1124
1125 void (*rq_online)(struct rq *rq);
1126 void (*rq_offline)(struct rq *rq);
1127#endif
1128
1129 void (*set_curr_task) (struct rq *rq);
1130 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1131 void (*task_fork) (struct task_struct *p);
1132
1133 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1134 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1135 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1136 int oldprio);
1137
1138 unsigned int (*get_rr_interval) (struct rq *rq,
1139 struct task_struct *task);
1140
1141#ifdef CONFIG_FAIR_GROUP_SCHED
1142 void (*task_move_group) (struct task_struct *p, int on_rq);
1143#endif
1144};
1145
1146struct load_weight {
1147 unsigned long weight, inv_weight;
1148};
1149
1150#ifdef CONFIG_SCHEDSTATS
1151struct sched_statistics {
1152 u64 wait_start;
1153 u64 wait_max;
1154 u64 wait_count;
1155 u64 wait_sum;
1156 u64 iowait_count;
1157 u64 iowait_sum;
1158
1159 u64 sleep_start;
1160 u64 sleep_max;
1161 s64 sum_sleep_runtime;
1162
1163 u64 block_start;
1164 u64 block_max;
1165 u64 exec_max;
1166 u64 slice_max;
1167
1168 u64 nr_migrations_cold;
1169 u64 nr_failed_migrations_affine;
1170 u64 nr_failed_migrations_running;
1171 u64 nr_failed_migrations_hot;
1172 u64 nr_forced_migrations;
1173
1174 u64 nr_wakeups;
1175 u64 nr_wakeups_sync;
1176 u64 nr_wakeups_migrate;
1177 u64 nr_wakeups_local;
1178 u64 nr_wakeups_remote;
1179 u64 nr_wakeups_affine;
1180 u64 nr_wakeups_affine_attempts;
1181 u64 nr_wakeups_passive;
1182 u64 nr_wakeups_idle;
1183};
1184#endif
1185
1186struct sched_entity {
1187 struct load_weight load; /* for load-balancing */
1188 struct rb_node run_node;
1189 struct list_head group_node;
1190 unsigned int on_rq;
1191
1192 u64 exec_start;
1193 u64 sum_exec_runtime;
1194 u64 vruntime;
1195 u64 prev_sum_exec_runtime;
1196
1197 u64 nr_migrations;
1198
1199#ifdef CONFIG_SCHEDSTATS
1200 struct sched_statistics statistics;
1201#endif
1202
1203#ifdef CONFIG_FAIR_GROUP_SCHED
1204 struct sched_entity *parent;
1205 /* rq on which this entity is (to be) queued: */
1206 struct cfs_rq *cfs_rq;
1207 /* rq "owned" by this entity/group: */
1208 struct cfs_rq *my_q;
1209#endif
1210};
1211
1212struct sched_rt_entity {
1213 struct list_head run_list;
1214 unsigned long timeout;
1215 unsigned int time_slice;
1216 int nr_cpus_allowed;
1217
1218 struct sched_rt_entity *back;
1219#ifdef CONFIG_RT_GROUP_SCHED
1220 struct sched_rt_entity *parent;
1221 /* rq on which this entity is (to be) queued: */
1222 struct rt_rq *rt_rq;
1223 /* rq "owned" by this entity/group: */
1224 struct rt_rq *my_q;
1225#endif
1226};
1227
1228struct rcu_node;
1229
1230enum perf_event_task_context {
1231 perf_invalid_context = -1,
1232 perf_hw_context = 0,
1233 perf_sw_context,
1234 perf_nr_task_contexts,
1235};
1236
1237struct task_struct {
1238 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1239 void *stack;
1240 atomic_t usage;
1241 unsigned int flags; /* per process flags, defined below */
1242 unsigned int ptrace;
1243
1244#ifdef CONFIG_SMP
1245 struct llist_node wake_entry;
1246 int on_cpu;
1247#endif
1248 int on_rq;
1249
1250 int prio, static_prio, normal_prio;
1251 unsigned int rt_priority;
1252 const struct sched_class *sched_class;
1253 struct sched_entity se;
1254 struct sched_rt_entity rt;
1255
1256#ifdef CONFIG_PREEMPT_NOTIFIERS
1257 /* list of struct preempt_notifier: */
1258 struct hlist_head preempt_notifiers;
1259#endif
1260
1261 /*
1262 * fpu_counter contains the number of consecutive context switches
1263 * that the FPU is used. If this is over a threshold, the lazy fpu
1264 * saving becomes unlazy to save the trap. This is an unsigned char
1265 * so that after 256 times the counter wraps and the behavior turns
1266 * lazy again; this to deal with bursty apps that only use FPU for
1267 * a short time
1268 */
1269 unsigned char fpu_counter;
1270#ifdef CONFIG_BLK_DEV_IO_TRACE
1271 unsigned int btrace_seq;
1272#endif
1273
1274 unsigned int policy;
1275 cpumask_t cpus_allowed;
1276
1277#ifdef CONFIG_PREEMPT_RCU
1278 int rcu_read_lock_nesting;
1279 char rcu_read_unlock_special;
1280 struct list_head rcu_node_entry;
1281#endif /* #ifdef CONFIG_PREEMPT_RCU */
1282#ifdef CONFIG_TREE_PREEMPT_RCU
1283 struct rcu_node *rcu_blocked_node;
1284#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1285#ifdef CONFIG_RCU_BOOST
1286 struct rt_mutex *rcu_boost_mutex;
1287#endif /* #ifdef CONFIG_RCU_BOOST */
1288
1289#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1290 struct sched_info sched_info;
1291#endif
1292
1293 struct list_head tasks;
1294#ifdef CONFIG_SMP
1295 struct plist_node pushable_tasks;
1296#endif
1297
1298 struct mm_struct *mm, *active_mm;
1299#ifdef CONFIG_COMPAT_BRK
1300 unsigned brk_randomized:1;
1301#endif
1302#if defined(SPLIT_RSS_COUNTING)
1303 struct task_rss_stat rss_stat;
1304#endif
1305/* task state */
1306 int exit_state;
1307 int exit_code, exit_signal;
1308 int pdeath_signal; /* The signal sent when the parent dies */
1309 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1310 /* ??? */
1311 unsigned int personality;
1312 unsigned did_exec:1;
1313 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1314 * execve */
1315 unsigned in_iowait:1;
1316
1317
1318 /* Revert to default priority/policy when forking */
1319 unsigned sched_reset_on_fork:1;
1320 unsigned sched_contributes_to_load:1;
1321
1322 pid_t pid;
1323 pid_t tgid;
1324
1325#ifdef CONFIG_CC_STACKPROTECTOR
1326 /* Canary value for the -fstack-protector gcc feature */
1327 unsigned long stack_canary;
1328#endif
1329
1330 /*
1331 * pointers to (original) parent process, youngest child, younger sibling,
1332 * older sibling, respectively. (p->father can be replaced with
1333 * p->real_parent->pid)
1334 */
1335 struct task_struct __rcu *real_parent; /* real parent process */
1336 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1337 /*
1338 * children/sibling forms the list of my natural children
1339 */
1340 struct list_head children; /* list of my children */
1341 struct list_head sibling; /* linkage in my parent's children list */
1342 struct task_struct *group_leader; /* threadgroup leader */
1343
1344 /*
1345 * ptraced is the list of tasks this task is using ptrace on.
1346 * This includes both natural children and PTRACE_ATTACH targets.
1347 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1348 */
1349 struct list_head ptraced;
1350 struct list_head ptrace_entry;
1351
1352 /* PID/PID hash table linkage. */
1353 struct pid_link pids[PIDTYPE_MAX];
1354 struct list_head thread_group;
1355
1356 struct completion *vfork_done; /* for vfork() */
1357 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1358 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1359
1360 cputime_t utime, stime, utimescaled, stimescaled;
1361 cputime_t gtime;
1362#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1363 cputime_t prev_utime, prev_stime;
1364#endif
1365 unsigned long nvcsw, nivcsw; /* context switch counts */
1366 struct timespec start_time; /* monotonic time */
1367 struct timespec real_start_time; /* boot based time */
1368/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1369 unsigned long min_flt, maj_flt;
1370
1371 struct task_cputime cputime_expires;
1372 struct list_head cpu_timers[3];
1373
1374/* process credentials */
1375 const struct cred __rcu *real_cred; /* objective and real subjective task
1376 * credentials (COW) */
1377 const struct cred __rcu *cred; /* effective (overridable) subjective task
1378 * credentials (COW) */
1379 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1380
1381 char comm[TASK_COMM_LEN]; /* executable name excluding path
1382 - access with [gs]et_task_comm (which lock
1383 it with task_lock())
1384 - initialized normally by setup_new_exec */
1385/* file system info */
1386 int link_count, total_link_count;
1387#ifdef CONFIG_SYSVIPC
1388/* ipc stuff */
1389 struct sysv_sem sysvsem;
1390#endif
1391#ifdef CONFIG_DETECT_HUNG_TASK
1392/* hung task detection */
1393 unsigned long last_switch_count;
1394#endif
1395/* CPU-specific state of this task */
1396 struct thread_struct thread;
1397/* filesystem information */
1398 struct fs_struct *fs;
1399/* open file information */
1400 struct files_struct *files;
1401/* namespaces */
1402 struct nsproxy *nsproxy;
1403/* signal handlers */
1404 struct signal_struct *signal;
1405 struct sighand_struct *sighand;
1406
1407 sigset_t blocked, real_blocked;
1408 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1409 struct sigpending pending;
1410
1411 unsigned long sas_ss_sp;
1412 size_t sas_ss_size;
1413 int (*notifier)(void *priv);
1414 void *notifier_data;
1415 sigset_t *notifier_mask;
1416 struct audit_context *audit_context;
1417#ifdef CONFIG_AUDITSYSCALL
1418 uid_t loginuid;
1419 unsigned int sessionid;
1420#endif
1421 seccomp_t seccomp;
1422
1423/* Thread group tracking */
1424 u32 parent_exec_id;
1425 u32 self_exec_id;
1426/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1427 * mempolicy */
1428 spinlock_t alloc_lock;
1429
1430#ifdef CONFIG_GENERIC_HARDIRQS
1431 /* IRQ handler threads */
1432 struct irqaction *irqaction;
1433#endif
1434
1435 /* Protection of the PI data structures: */
1436 raw_spinlock_t pi_lock;
1437
1438#ifdef CONFIG_RT_MUTEXES
1439 /* PI waiters blocked on a rt_mutex held by this task */
1440 struct plist_head pi_waiters;
1441 /* Deadlock detection and priority inheritance handling */
1442 struct rt_mutex_waiter *pi_blocked_on;
1443#endif
1444
1445#ifdef CONFIG_DEBUG_MUTEXES
1446 /* mutex deadlock detection */
1447 struct mutex_waiter *blocked_on;
1448#endif
1449#ifdef CONFIG_TRACE_IRQFLAGS
1450 unsigned int irq_events;
1451 unsigned long hardirq_enable_ip;
1452 unsigned long hardirq_disable_ip;
1453 unsigned int hardirq_enable_event;
1454 unsigned int hardirq_disable_event;
1455 int hardirqs_enabled;
1456 int hardirq_context;
1457 unsigned long softirq_disable_ip;
1458 unsigned long softirq_enable_ip;
1459 unsigned int softirq_disable_event;
1460 unsigned int softirq_enable_event;
1461 int softirqs_enabled;
1462 int softirq_context;
1463#endif
1464#ifdef CONFIG_LOCKDEP
1465# define MAX_LOCK_DEPTH 48UL
1466 u64 curr_chain_key;
1467 int lockdep_depth;
1468 unsigned int lockdep_recursion;
1469 struct held_lock held_locks[MAX_LOCK_DEPTH];
1470 gfp_t lockdep_reclaim_gfp;
1471#endif
1472
1473/* journalling filesystem info */
1474 void *journal_info;
1475
1476/* stacked block device info */
1477 struct bio_list *bio_list;
1478
1479#ifdef CONFIG_BLOCK
1480/* stack plugging */
1481 struct blk_plug *plug;
1482#endif
1483
1484/* VM state */
1485 struct reclaim_state *reclaim_state;
1486
1487 struct backing_dev_info *backing_dev_info;
1488
1489 struct io_context *io_context;
1490
1491 unsigned long ptrace_message;
1492 siginfo_t *last_siginfo; /* For ptrace use. */
1493 struct task_io_accounting ioac;
1494#if defined(CONFIG_TASK_XACCT)
1495 u64 acct_rss_mem1; /* accumulated rss usage */
1496 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1497 cputime_t acct_timexpd; /* stime + utime since last update */
1498#endif
1499#ifdef CONFIG_CPUSETS
1500 nodemask_t mems_allowed; /* Protected by alloc_lock */
1501 int mems_allowed_change_disable;
1502 int cpuset_mem_spread_rotor;
1503 int cpuset_slab_spread_rotor;
1504#endif
1505#ifdef CONFIG_CGROUPS
1506 /* Control Group info protected by css_set_lock */
1507 struct css_set __rcu *cgroups;
1508 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1509 struct list_head cg_list;
1510#endif
1511#ifdef CONFIG_FUTEX
1512 struct robust_list_head __user *robust_list;
1513#ifdef CONFIG_COMPAT
1514 struct compat_robust_list_head __user *compat_robust_list;
1515#endif
1516 struct list_head pi_state_list;
1517 struct futex_pi_state *pi_state_cache;
1518#endif
1519#ifdef CONFIG_PERF_EVENTS
1520 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1521 struct mutex perf_event_mutex;
1522 struct list_head perf_event_list;
1523#endif
1524#ifdef CONFIG_NUMA
1525 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1526 short il_next;
1527 short pref_node_fork;
1528#endif
1529 struct rcu_head rcu;
1530
1531 /*
1532 * cache last used pipe for splice
1533 */
1534 struct pipe_inode_info *splice_pipe;
1535#ifdef CONFIG_TASK_DELAY_ACCT
1536 struct task_delay_info *delays;
1537#endif
1538#ifdef CONFIG_FAULT_INJECTION
1539 int make_it_fail;
1540#endif
1541 /*
1542 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1543 * balance_dirty_pages() for some dirty throttling pause
1544 */
1545 int nr_dirtied;
1546 int nr_dirtied_pause;
1547 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1548
1549#ifdef CONFIG_LATENCYTOP
1550 int latency_record_count;
1551 struct latency_record latency_record[LT_SAVECOUNT];
1552#endif
1553 /*
1554 * time slack values; these are used to round up poll() and
1555 * select() etc timeout values. These are in nanoseconds.
1556 */
1557 unsigned long timer_slack_ns;
1558 unsigned long default_timer_slack_ns;
1559
1560 struct list_head *scm_work_list;
1561#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1562 /* Index of current stored address in ret_stack */
1563 int curr_ret_stack;
1564 /* Stack of return addresses for return function tracing */
1565 struct ftrace_ret_stack *ret_stack;
1566 /* time stamp for last schedule */
1567 unsigned long long ftrace_timestamp;
1568 /*
1569 * Number of functions that haven't been traced
1570 * because of depth overrun.
1571 */
1572 atomic_t trace_overrun;
1573 /* Pause for the tracing */
1574 atomic_t tracing_graph_pause;
1575#endif
1576#ifdef CONFIG_TRACING
1577 /* state flags for use by tracers */
1578 unsigned long trace;
1579 /* bitmask and counter of trace recursion */
1580 unsigned long trace_recursion;
1581#endif /* CONFIG_TRACING */
1582#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1583 struct memcg_batch_info {
1584 int do_batch; /* incremented when batch uncharge started */
1585 struct mem_cgroup *memcg; /* target memcg of uncharge */
1586 unsigned long nr_pages; /* uncharged usage */
1587 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1588 } memcg_batch;
1589#endif
1590#ifdef CONFIG_HAVE_HW_BREAKPOINT
1591 atomic_t ptrace_bp_refcnt;
1592#endif
1593};
1594
1595/* Future-safe accessor for struct task_struct's cpus_allowed. */
1596#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1597
1598/*
1599 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1600 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1601 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1602 * values are inverted: lower p->prio value means higher priority.
1603 *
1604 * The MAX_USER_RT_PRIO value allows the actual maximum
1605 * RT priority to be separate from the value exported to
1606 * user-space. This allows kernel threads to set their
1607 * priority to a value higher than any user task. Note:
1608 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1609 */
1610
1611#define MAX_USER_RT_PRIO 100
1612#define MAX_RT_PRIO MAX_USER_RT_PRIO
1613
1614#define MAX_PRIO (MAX_RT_PRIO + 40)
1615#define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1616
1617static inline int rt_prio(int prio)
1618{
1619 if (unlikely(prio < MAX_RT_PRIO))
1620 return 1;
1621 return 0;
1622}
1623
1624static inline int rt_task(struct task_struct *p)
1625{
1626 return rt_prio(p->prio);
1627}
1628
1629static inline struct pid *task_pid(struct task_struct *task)
1630{
1631 return task->pids[PIDTYPE_PID].pid;
1632}
1633
1634static inline struct pid *task_tgid(struct task_struct *task)
1635{
1636 return task->group_leader->pids[PIDTYPE_PID].pid;
1637}
1638
1639/*
1640 * Without tasklist or rcu lock it is not safe to dereference
1641 * the result of task_pgrp/task_session even if task == current,
1642 * we can race with another thread doing sys_setsid/sys_setpgid.
1643 */
1644static inline struct pid *task_pgrp(struct task_struct *task)
1645{
1646 return task->group_leader->pids[PIDTYPE_PGID].pid;
1647}
1648
1649static inline struct pid *task_session(struct task_struct *task)
1650{
1651 return task->group_leader->pids[PIDTYPE_SID].pid;
1652}
1653
1654struct pid_namespace;
1655
1656/*
1657 * the helpers to get the task's different pids as they are seen
1658 * from various namespaces
1659 *
1660 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1661 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1662 * current.
1663 * task_xid_nr_ns() : id seen from the ns specified;
1664 *
1665 * set_task_vxid() : assigns a virtual id to a task;
1666 *
1667 * see also pid_nr() etc in include/linux/pid.h
1668 */
1669pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1670 struct pid_namespace *ns);
1671
1672static inline pid_t task_pid_nr(struct task_struct *tsk)
1673{
1674 return tsk->pid;
1675}
1676
1677static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1678 struct pid_namespace *ns)
1679{
1680 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1681}
1682
1683static inline pid_t task_pid_vnr(struct task_struct *tsk)
1684{
1685 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1686}
1687
1688
1689static inline pid_t task_tgid_nr(struct task_struct *tsk)
1690{
1691 return tsk->tgid;
1692}
1693
1694pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1695
1696static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1697{
1698 return pid_vnr(task_tgid(tsk));
1699}
1700
1701
1702static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1703 struct pid_namespace *ns)
1704{
1705 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1706}
1707
1708static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1709{
1710 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1711}
1712
1713
1714static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1715 struct pid_namespace *ns)
1716{
1717 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1718}
1719
1720static inline pid_t task_session_vnr(struct task_struct *tsk)
1721{
1722 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1723}
1724
1725/* obsolete, do not use */
1726static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1727{
1728 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1729}
1730
1731/**
1732 * pid_alive - check that a task structure is not stale
1733 * @p: Task structure to be checked.
1734 *
1735 * Test if a process is not yet dead (at most zombie state)
1736 * If pid_alive fails, then pointers within the task structure
1737 * can be stale and must not be dereferenced.
1738 */
1739static inline int pid_alive(struct task_struct *p)
1740{
1741 return p->pids[PIDTYPE_PID].pid != NULL;
1742}
1743
1744/**
1745 * is_global_init - check if a task structure is init
1746 * @tsk: Task structure to be checked.
1747 *
1748 * Check if a task structure is the first user space task the kernel created.
1749 */
1750static inline int is_global_init(struct task_struct *tsk)
1751{
1752 return tsk->pid == 1;
1753}
1754
1755/*
1756 * is_container_init:
1757 * check whether in the task is init in its own pid namespace.
1758 */
1759extern int is_container_init(struct task_struct *tsk);
1760
1761extern struct pid *cad_pid;
1762
1763extern void free_task(struct task_struct *tsk);
1764#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1765
1766extern void __put_task_struct(struct task_struct *t);
1767
1768static inline void put_task_struct(struct task_struct *t)
1769{
1770 if (atomic_dec_and_test(&t->usage))
1771 __put_task_struct(t);
1772}
1773
1774extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1775extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1776
1777/*
1778 * Per process flags
1779 */
1780#define PF_EXITING 0x00000004 /* getting shut down */
1781#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1782#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1783#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1784#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1785#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1786#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1787#define PF_DUMPCORE 0x00000200 /* dumped core */
1788#define PF_SIGNALED 0x00000400 /* killed by a signal */
1789#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1790#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1791#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1792#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1793#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1794#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1795#define PF_KSWAPD 0x00040000 /* I am kswapd */
1796#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1797#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1798#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1799#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1800#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1801#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1802#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1803#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1804#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1805#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1806#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1807
1808/*
1809 * Only the _current_ task can read/write to tsk->flags, but other
1810 * tasks can access tsk->flags in readonly mode for example
1811 * with tsk_used_math (like during threaded core dumping).
1812 * There is however an exception to this rule during ptrace
1813 * or during fork: the ptracer task is allowed to write to the
1814 * child->flags of its traced child (same goes for fork, the parent
1815 * can write to the child->flags), because we're guaranteed the
1816 * child is not running and in turn not changing child->flags
1817 * at the same time the parent does it.
1818 */
1819#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1820#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1821#define clear_used_math() clear_stopped_child_used_math(current)
1822#define set_used_math() set_stopped_child_used_math(current)
1823#define conditional_stopped_child_used_math(condition, child) \
1824 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1825#define conditional_used_math(condition) \
1826 conditional_stopped_child_used_math(condition, current)
1827#define copy_to_stopped_child_used_math(child) \
1828 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1829/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1830#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1831#define used_math() tsk_used_math(current)
1832
1833/*
1834 * task->jobctl flags
1835 */
1836#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1837
1838#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1839#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1840#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1841#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1842#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1843#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1844#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1845
1846#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1847#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1848#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1849#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1850#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1851#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1852#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1853
1854#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1855#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1856
1857extern bool task_set_jobctl_pending(struct task_struct *task,
1858 unsigned int mask);
1859extern void task_clear_jobctl_trapping(struct task_struct *task);
1860extern void task_clear_jobctl_pending(struct task_struct *task,
1861 unsigned int mask);
1862
1863#ifdef CONFIG_PREEMPT_RCU
1864
1865#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1866#define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1867#define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1868
1869static inline void rcu_copy_process(struct task_struct *p)
1870{
1871 p->rcu_read_lock_nesting = 0;
1872 p->rcu_read_unlock_special = 0;
1873#ifdef CONFIG_TREE_PREEMPT_RCU
1874 p->rcu_blocked_node = NULL;
1875#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1876#ifdef CONFIG_RCU_BOOST
1877 p->rcu_boost_mutex = NULL;
1878#endif /* #ifdef CONFIG_RCU_BOOST */
1879 INIT_LIST_HEAD(&p->rcu_node_entry);
1880}
1881
1882#else
1883
1884static inline void rcu_copy_process(struct task_struct *p)
1885{
1886}
1887
1888#endif
1889
1890#ifdef CONFIG_SMP
1891extern void do_set_cpus_allowed(struct task_struct *p,
1892 const struct cpumask *new_mask);
1893
1894extern int set_cpus_allowed_ptr(struct task_struct *p,
1895 const struct cpumask *new_mask);
1896#else
1897static inline void do_set_cpus_allowed(struct task_struct *p,
1898 const struct cpumask *new_mask)
1899{
1900}
1901static inline int set_cpus_allowed_ptr(struct task_struct *p,
1902 const struct cpumask *new_mask)
1903{
1904 if (!cpumask_test_cpu(0, new_mask))
1905 return -EINVAL;
1906 return 0;
1907}
1908#endif
1909
1910#ifndef CONFIG_CPUMASK_OFFSTACK
1911static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1912{
1913 return set_cpus_allowed_ptr(p, &new_mask);
1914}
1915#endif
1916
1917/*
1918 * Do not use outside of architecture code which knows its limitations.
1919 *
1920 * sched_clock() has no promise of monotonicity or bounded drift between
1921 * CPUs, use (which you should not) requires disabling IRQs.
1922 *
1923 * Please use one of the three interfaces below.
1924 */
1925extern unsigned long long notrace sched_clock(void);
1926/*
1927 * See the comment in kernel/sched_clock.c
1928 */
1929extern u64 cpu_clock(int cpu);
1930extern u64 local_clock(void);
1931extern u64 sched_clock_cpu(int cpu);
1932
1933
1934extern void sched_clock_init(void);
1935
1936#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1937static inline void sched_clock_tick(void)
1938{
1939}
1940
1941static inline void sched_clock_idle_sleep_event(void)
1942{
1943}
1944
1945static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1946{
1947}
1948#else
1949/*
1950 * Architectures can set this to 1 if they have specified
1951 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1952 * but then during bootup it turns out that sched_clock()
1953 * is reliable after all:
1954 */
1955extern int sched_clock_stable;
1956
1957extern void sched_clock_tick(void);
1958extern void sched_clock_idle_sleep_event(void);
1959extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1960#endif
1961
1962#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1963/*
1964 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1965 * The reason for this explicit opt-in is not to have perf penalty with
1966 * slow sched_clocks.
1967 */
1968extern void enable_sched_clock_irqtime(void);
1969extern void disable_sched_clock_irqtime(void);
1970#else
1971static inline void enable_sched_clock_irqtime(void) {}
1972static inline void disable_sched_clock_irqtime(void) {}
1973#endif
1974
1975extern unsigned long long
1976task_sched_runtime(struct task_struct *task);
1977
1978/* sched_exec is called by processes performing an exec */
1979#ifdef CONFIG_SMP
1980extern void sched_exec(void);
1981#else
1982#define sched_exec() {}
1983#endif
1984
1985extern void sched_clock_idle_sleep_event(void);
1986extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1987
1988#ifdef CONFIG_HOTPLUG_CPU
1989extern void idle_task_exit(void);
1990#else
1991static inline void idle_task_exit(void) {}
1992#endif
1993
1994#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1995extern void wake_up_idle_cpu(int cpu);
1996#else
1997static inline void wake_up_idle_cpu(int cpu) { }
1998#endif
1999
2000extern unsigned int sysctl_sched_latency;
2001extern unsigned int sysctl_sched_min_granularity;
2002extern unsigned int sysctl_sched_wakeup_granularity;
2003extern unsigned int sysctl_sched_child_runs_first;
2004
2005enum sched_tunable_scaling {
2006 SCHED_TUNABLESCALING_NONE,
2007 SCHED_TUNABLESCALING_LOG,
2008 SCHED_TUNABLESCALING_LINEAR,
2009 SCHED_TUNABLESCALING_END,
2010};
2011extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2012
2013#ifdef CONFIG_SCHED_DEBUG
2014extern unsigned int sysctl_sched_migration_cost;
2015extern unsigned int sysctl_sched_nr_migrate;
2016extern unsigned int sysctl_sched_time_avg;
2017extern unsigned int sysctl_timer_migration;
2018extern unsigned int sysctl_sched_shares_window;
2019
2020int sched_proc_update_handler(struct ctl_table *table, int write,
2021 void __user *buffer, size_t *length,
2022 loff_t *ppos);
2023#endif
2024#ifdef CONFIG_SCHED_DEBUG
2025static inline unsigned int get_sysctl_timer_migration(void)
2026{
2027 return sysctl_timer_migration;
2028}
2029#else
2030static inline unsigned int get_sysctl_timer_migration(void)
2031{
2032 return 1;
2033}
2034#endif
2035extern unsigned int sysctl_sched_rt_period;
2036extern int sysctl_sched_rt_runtime;
2037
2038int sched_rt_handler(struct ctl_table *table, int write,
2039 void __user *buffer, size_t *lenp,
2040 loff_t *ppos);
2041
2042#ifdef CONFIG_SCHED_AUTOGROUP
2043extern unsigned int sysctl_sched_autogroup_enabled;
2044
2045extern void sched_autogroup_create_attach(struct task_struct *p);
2046extern void sched_autogroup_detach(struct task_struct *p);
2047extern void sched_autogroup_fork(struct signal_struct *sig);
2048extern void sched_autogroup_exit(struct signal_struct *sig);
2049#ifdef CONFIG_PROC_FS
2050extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2051extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
2052#endif
2053#else
2054static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2055static inline void sched_autogroup_detach(struct task_struct *p) { }
2056static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2057static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2058#endif
2059
2060#ifdef CONFIG_CFS_BANDWIDTH
2061extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2062#endif
2063
2064#ifdef CONFIG_RT_MUTEXES
2065extern int rt_mutex_getprio(struct task_struct *p);
2066extern void rt_mutex_setprio(struct task_struct *p, int prio);
2067extern void rt_mutex_adjust_pi(struct task_struct *p);
2068#else
2069static inline int rt_mutex_getprio(struct task_struct *p)
2070{
2071 return p->normal_prio;
2072}
2073# define rt_mutex_adjust_pi(p) do { } while (0)
2074#endif
2075
2076extern bool yield_to(struct task_struct *p, bool preempt);
2077extern void set_user_nice(struct task_struct *p, long nice);
2078extern int task_prio(const struct task_struct *p);
2079extern int task_nice(const struct task_struct *p);
2080extern int can_nice(const struct task_struct *p, const int nice);
2081extern int task_curr(const struct task_struct *p);
2082extern int idle_cpu(int cpu);
2083extern int sched_setscheduler(struct task_struct *, int,
2084 const struct sched_param *);
2085extern int sched_setscheduler_nocheck(struct task_struct *, int,
2086 const struct sched_param *);
2087extern struct task_struct *idle_task(int cpu);
2088/**
2089 * is_idle_task - is the specified task an idle task?
2090 * @p: the task in question.
2091 */
2092static inline bool is_idle_task(const struct task_struct *p)
2093{
2094 return p->pid == 0;
2095}
2096extern struct task_struct *curr_task(int cpu);
2097extern void set_curr_task(int cpu, struct task_struct *p);
2098
2099void yield(void);
2100
2101/*
2102 * The default (Linux) execution domain.
2103 */
2104extern struct exec_domain default_exec_domain;
2105
2106union thread_union {
2107 struct thread_info thread_info;
2108 unsigned long stack[THREAD_SIZE/sizeof(long)];
2109};
2110
2111#ifndef __HAVE_ARCH_KSTACK_END
2112static inline int kstack_end(void *addr)
2113{
2114 /* Reliable end of stack detection:
2115 * Some APM bios versions misalign the stack
2116 */
2117 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2118}
2119#endif
2120
2121extern union thread_union init_thread_union;
2122extern struct task_struct init_task;
2123
2124extern struct mm_struct init_mm;
2125
2126extern struct pid_namespace init_pid_ns;
2127
2128/*
2129 * find a task by one of its numerical ids
2130 *
2131 * find_task_by_pid_ns():
2132 * finds a task by its pid in the specified namespace
2133 * find_task_by_vpid():
2134 * finds a task by its virtual pid
2135 *
2136 * see also find_vpid() etc in include/linux/pid.h
2137 */
2138
2139extern struct task_struct *find_task_by_vpid(pid_t nr);
2140extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2141 struct pid_namespace *ns);
2142
2143extern void __set_special_pids(struct pid *pid);
2144
2145/* per-UID process charging. */
2146extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2147static inline struct user_struct *get_uid(struct user_struct *u)
2148{
2149 atomic_inc(&u->__count);
2150 return u;
2151}
2152extern void free_uid(struct user_struct *);
2153extern void release_uids(struct user_namespace *ns);
2154
2155#include <asm/current.h>
2156
2157extern void xtime_update(unsigned long ticks);
2158
2159extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2160extern int wake_up_process(struct task_struct *tsk);
2161extern void wake_up_new_task(struct task_struct *tsk);
2162#ifdef CONFIG_SMP
2163 extern void kick_process(struct task_struct *tsk);
2164#else
2165 static inline void kick_process(struct task_struct *tsk) { }
2166#endif
2167extern void sched_fork(struct task_struct *p);
2168extern void sched_dead(struct task_struct *p);
2169
2170extern void proc_caches_init(void);
2171extern void flush_signals(struct task_struct *);
2172extern void __flush_signals(struct task_struct *);
2173extern void ignore_signals(struct task_struct *);
2174extern void flush_signal_handlers(struct task_struct *, int force_default);
2175extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2176
2177static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2178{
2179 unsigned long flags;
2180 int ret;
2181
2182 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2183 ret = dequeue_signal(tsk, mask, info);
2184 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2185
2186 return ret;
2187}
2188
2189extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2190 sigset_t *mask);
2191extern void unblock_all_signals(void);
2192extern void release_task(struct task_struct * p);
2193extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2194extern int force_sigsegv(int, struct task_struct *);
2195extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2196extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2197extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2198extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2199 const struct cred *, u32);
2200extern int kill_pgrp(struct pid *pid, int sig, int priv);
2201extern int kill_pid(struct pid *pid, int sig, int priv);
2202extern int kill_proc_info(int, struct siginfo *, pid_t);
2203extern __must_check bool do_notify_parent(struct task_struct *, int);
2204extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2205extern void force_sig(int, struct task_struct *);
2206extern int send_sig(int, struct task_struct *, int);
2207extern int zap_other_threads(struct task_struct *p);
2208extern struct sigqueue *sigqueue_alloc(void);
2209extern void sigqueue_free(struct sigqueue *);
2210extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2211extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2212extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2213
2214static inline int kill_cad_pid(int sig, int priv)
2215{
2216 return kill_pid(cad_pid, sig, priv);
2217}
2218
2219/* These can be the second arg to send_sig_info/send_group_sig_info. */
2220#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2221#define SEND_SIG_PRIV ((struct siginfo *) 1)
2222#define SEND_SIG_FORCED ((struct siginfo *) 2)
2223
2224/*
2225 * True if we are on the alternate signal stack.
2226 */
2227static inline int on_sig_stack(unsigned long sp)
2228{
2229#ifdef CONFIG_STACK_GROWSUP
2230 return sp >= current->sas_ss_sp &&
2231 sp - current->sas_ss_sp < current->sas_ss_size;
2232#else
2233 return sp > current->sas_ss_sp &&
2234 sp - current->sas_ss_sp <= current->sas_ss_size;
2235#endif
2236}
2237
2238static inline int sas_ss_flags(unsigned long sp)
2239{
2240 return (current->sas_ss_size == 0 ? SS_DISABLE
2241 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2242}
2243
2244/*
2245 * Routines for handling mm_structs
2246 */
2247extern struct mm_struct * mm_alloc(void);
2248
2249/* mmdrop drops the mm and the page tables */
2250extern void __mmdrop(struct mm_struct *);
2251static inline void mmdrop(struct mm_struct * mm)
2252{
2253 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2254 __mmdrop(mm);
2255}
2256
2257/* mmput gets rid of the mappings and all user-space */
2258extern void mmput(struct mm_struct *);
2259/* Grab a reference to a task's mm, if it is not already going away */
2260extern struct mm_struct *get_task_mm(struct task_struct *task);
2261/*
2262 * Grab a reference to a task's mm, if it is not already going away
2263 * and ptrace_may_access with the mode parameter passed to it
2264 * succeeds.
2265 */
2266extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2267/* Remove the current tasks stale references to the old mm_struct */
2268extern void mm_release(struct task_struct *, struct mm_struct *);
2269/* Allocate a new mm structure and copy contents from tsk->mm */
2270extern struct mm_struct *dup_mm(struct task_struct *tsk);
2271
2272extern int copy_thread(unsigned long, unsigned long, unsigned long,
2273 struct task_struct *, struct pt_regs *);
2274extern void flush_thread(void);
2275extern void exit_thread(void);
2276
2277extern void exit_files(struct task_struct *);
2278extern void __cleanup_sighand(struct sighand_struct *);
2279
2280extern void exit_itimers(struct signal_struct *);
2281extern void flush_itimer_signals(void);
2282
2283extern void do_group_exit(int);
2284
2285extern void daemonize(const char *, ...);
2286extern int allow_signal(int);
2287extern int disallow_signal(int);
2288
2289extern int do_execve(const char *,
2290 const char __user * const __user *,
2291 const char __user * const __user *, struct pt_regs *);
2292extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2293struct task_struct *fork_idle(int);
2294
2295extern void set_task_comm(struct task_struct *tsk, char *from);
2296extern char *get_task_comm(char *to, struct task_struct *tsk);
2297
2298#ifdef CONFIG_SMP
2299void scheduler_ipi(void);
2300extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2301#else
2302static inline void scheduler_ipi(void) { }
2303static inline unsigned long wait_task_inactive(struct task_struct *p,
2304 long match_state)
2305{
2306 return 1;
2307}
2308#endif
2309
2310#define next_task(p) \
2311 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2312
2313#define for_each_process(p) \
2314 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2315
2316extern bool current_is_single_threaded(void);
2317
2318/*
2319 * Careful: do_each_thread/while_each_thread is a double loop so
2320 * 'break' will not work as expected - use goto instead.
2321 */
2322#define do_each_thread(g, t) \
2323 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2324
2325#define while_each_thread(g, t) \
2326 while ((t = next_thread(t)) != g)
2327
2328static inline int get_nr_threads(struct task_struct *tsk)
2329{
2330 return tsk->signal->nr_threads;
2331}
2332
2333static inline bool thread_group_leader(struct task_struct *p)
2334{
2335 return p->exit_signal >= 0;
2336}
2337
2338/* Do to the insanities of de_thread it is possible for a process
2339 * to have the pid of the thread group leader without actually being
2340 * the thread group leader. For iteration through the pids in proc
2341 * all we care about is that we have a task with the appropriate
2342 * pid, we don't actually care if we have the right task.
2343 */
2344static inline int has_group_leader_pid(struct task_struct *p)
2345{
2346 return p->pid == p->tgid;
2347}
2348
2349static inline
2350int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2351{
2352 return p1->tgid == p2->tgid;
2353}
2354
2355static inline struct task_struct *next_thread(const struct task_struct *p)
2356{
2357 return list_entry_rcu(p->thread_group.next,
2358 struct task_struct, thread_group);
2359}
2360
2361static inline int thread_group_empty(struct task_struct *p)
2362{
2363 return list_empty(&p->thread_group);
2364}
2365
2366#define delay_group_leader(p) \
2367 (thread_group_leader(p) && !thread_group_empty(p))
2368
2369/*
2370 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2371 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2372 * pins the final release of task.io_context. Also protects ->cpuset and
2373 * ->cgroup.subsys[]. And ->vfork_done.
2374 *
2375 * Nests both inside and outside of read_lock(&tasklist_lock).
2376 * It must not be nested with write_lock_irq(&tasklist_lock),
2377 * neither inside nor outside.
2378 */
2379static inline void task_lock(struct task_struct *p)
2380{
2381 spin_lock(&p->alloc_lock);
2382}
2383
2384static inline void task_unlock(struct task_struct *p)
2385{
2386 spin_unlock(&p->alloc_lock);
2387}
2388
2389extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2390 unsigned long *flags);
2391
2392#define lock_task_sighand(tsk, flags) \
2393({ struct sighand_struct *__ss; \
2394 __cond_lock(&(tsk)->sighand->siglock, \
2395 (__ss = __lock_task_sighand(tsk, flags))); \
2396 __ss; \
2397}) \
2398
2399static inline void unlock_task_sighand(struct task_struct *tsk,
2400 unsigned long *flags)
2401{
2402 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2403}
2404
2405#ifdef CONFIG_CGROUPS
2406static inline void threadgroup_change_begin(struct task_struct *tsk)
2407{
2408 down_read(&tsk->signal->group_rwsem);
2409}
2410static inline void threadgroup_change_end(struct task_struct *tsk)
2411{
2412 up_read(&tsk->signal->group_rwsem);
2413}
2414
2415/**
2416 * threadgroup_lock - lock threadgroup
2417 * @tsk: member task of the threadgroup to lock
2418 *
2419 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2420 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2421 * perform exec. This is useful for cases where the threadgroup needs to
2422 * stay stable across blockable operations.
2423 *
2424 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2425 * synchronization. While held, no new task will be added to threadgroup
2426 * and no existing live task will have its PF_EXITING set.
2427 *
2428 * During exec, a task goes and puts its thread group through unusual
2429 * changes. After de-threading, exclusive access is assumed to resources
2430 * which are usually shared by tasks in the same group - e.g. sighand may
2431 * be replaced with a new one. Also, the exec'ing task takes over group
2432 * leader role including its pid. Exclude these changes while locked by
2433 * grabbing cred_guard_mutex which is used to synchronize exec path.
2434 */
2435static inline void threadgroup_lock(struct task_struct *tsk)
2436{
2437 /*
2438 * exec uses exit for de-threading nesting group_rwsem inside
2439 * cred_guard_mutex. Grab cred_guard_mutex first.
2440 */
2441 mutex_lock(&tsk->signal->cred_guard_mutex);
2442 down_write(&tsk->signal->group_rwsem);
2443}
2444
2445/**
2446 * threadgroup_unlock - unlock threadgroup
2447 * @tsk: member task of the threadgroup to unlock
2448 *
2449 * Reverse threadgroup_lock().
2450 */
2451static inline void threadgroup_unlock(struct task_struct *tsk)
2452{
2453 up_write(&tsk->signal->group_rwsem);
2454 mutex_unlock(&tsk->signal->cred_guard_mutex);
2455}
2456#else
2457static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2458static inline void threadgroup_change_end(struct task_struct *tsk) {}
2459static inline void threadgroup_lock(struct task_struct *tsk) {}
2460static inline void threadgroup_unlock(struct task_struct *tsk) {}
2461#endif
2462
2463#ifndef __HAVE_THREAD_FUNCTIONS
2464
2465#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2466#define task_stack_page(task) ((task)->stack)
2467
2468static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2469{
2470 *task_thread_info(p) = *task_thread_info(org);
2471 task_thread_info(p)->task = p;
2472}
2473
2474static inline unsigned long *end_of_stack(struct task_struct *p)
2475{
2476 return (unsigned long *)(task_thread_info(p) + 1);
2477}
2478
2479#endif
2480
2481static inline int object_is_on_stack(void *obj)
2482{
2483 void *stack = task_stack_page(current);
2484
2485 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2486}
2487
2488extern void thread_info_cache_init(void);
2489
2490#ifdef CONFIG_DEBUG_STACK_USAGE
2491static inline unsigned long stack_not_used(struct task_struct *p)
2492{
2493 unsigned long *n = end_of_stack(p);
2494
2495 do { /* Skip over canary */
2496 n++;
2497 } while (!*n);
2498
2499 return (unsigned long)n - (unsigned long)end_of_stack(p);
2500}
2501#endif
2502
2503/* set thread flags in other task's structures
2504 * - see asm/thread_info.h for TIF_xxxx flags available
2505 */
2506static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2507{
2508 set_ti_thread_flag(task_thread_info(tsk), flag);
2509}
2510
2511static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2512{
2513 clear_ti_thread_flag(task_thread_info(tsk), flag);
2514}
2515
2516static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2517{
2518 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2519}
2520
2521static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2522{
2523 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2524}
2525
2526static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2527{
2528 return test_ti_thread_flag(task_thread_info(tsk), flag);
2529}
2530
2531static inline void set_tsk_need_resched(struct task_struct *tsk)
2532{
2533 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2534}
2535
2536static inline void clear_tsk_need_resched(struct task_struct *tsk)
2537{
2538 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2539}
2540
2541static inline int test_tsk_need_resched(struct task_struct *tsk)
2542{
2543 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2544}
2545
2546static inline int restart_syscall(void)
2547{
2548 set_tsk_thread_flag(current, TIF_SIGPENDING);
2549 return -ERESTARTNOINTR;
2550}
2551
2552static inline int signal_pending(struct task_struct *p)
2553{
2554 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2555}
2556
2557static inline int __fatal_signal_pending(struct task_struct *p)
2558{
2559 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2560}
2561
2562static inline int fatal_signal_pending(struct task_struct *p)
2563{
2564 return signal_pending(p) && __fatal_signal_pending(p);
2565}
2566
2567static inline int signal_pending_state(long state, struct task_struct *p)
2568{
2569 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2570 return 0;
2571 if (!signal_pending(p))
2572 return 0;
2573
2574 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2575}
2576
2577static inline int need_resched(void)
2578{
2579 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2580}
2581
2582/*
2583 * cond_resched() and cond_resched_lock(): latency reduction via
2584 * explicit rescheduling in places that are safe. The return
2585 * value indicates whether a reschedule was done in fact.
2586 * cond_resched_lock() will drop the spinlock before scheduling,
2587 * cond_resched_softirq() will enable bhs before scheduling.
2588 */
2589extern int _cond_resched(void);
2590
2591#define cond_resched() ({ \
2592 __might_sleep(__FILE__, __LINE__, 0); \
2593 _cond_resched(); \
2594})
2595
2596extern int __cond_resched_lock(spinlock_t *lock);
2597
2598#ifdef CONFIG_PREEMPT_COUNT
2599#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2600#else
2601#define PREEMPT_LOCK_OFFSET 0
2602#endif
2603
2604#define cond_resched_lock(lock) ({ \
2605 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2606 __cond_resched_lock(lock); \
2607})
2608
2609extern int __cond_resched_softirq(void);
2610
2611#define cond_resched_softirq() ({ \
2612 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2613 __cond_resched_softirq(); \
2614})
2615
2616/*
2617 * Does a critical section need to be broken due to another
2618 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2619 * but a general need for low latency)
2620 */
2621static inline int spin_needbreak(spinlock_t *lock)
2622{
2623#ifdef CONFIG_PREEMPT
2624 return spin_is_contended(lock);
2625#else
2626 return 0;
2627#endif
2628}
2629
2630/*
2631 * Thread group CPU time accounting.
2632 */
2633void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2634void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2635
2636static inline void thread_group_cputime_init(struct signal_struct *sig)
2637{
2638 raw_spin_lock_init(&sig->cputimer.lock);
2639}
2640
2641/*
2642 * Reevaluate whether the task has signals pending delivery.
2643 * Wake the task if so.
2644 * This is required every time the blocked sigset_t changes.
2645 * callers must hold sighand->siglock.
2646 */
2647extern void recalc_sigpending_and_wake(struct task_struct *t);
2648extern void recalc_sigpending(void);
2649
2650extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2651
2652/*
2653 * Wrappers for p->thread_info->cpu access. No-op on UP.
2654 */
2655#ifdef CONFIG_SMP
2656
2657static inline unsigned int task_cpu(const struct task_struct *p)
2658{
2659 return task_thread_info(p)->cpu;
2660}
2661
2662extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2663
2664#else
2665
2666static inline unsigned int task_cpu(const struct task_struct *p)
2667{
2668 return 0;
2669}
2670
2671static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2672{
2673}
2674
2675#endif /* CONFIG_SMP */
2676
2677extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2678extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2679
2680extern void normalize_rt_tasks(void);
2681
2682#ifdef CONFIG_CGROUP_SCHED
2683
2684extern struct task_group root_task_group;
2685
2686extern struct task_group *sched_create_group(struct task_group *parent);
2687extern void sched_destroy_group(struct task_group *tg);
2688extern void sched_move_task(struct task_struct *tsk);
2689#ifdef CONFIG_FAIR_GROUP_SCHED
2690extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2691extern unsigned long sched_group_shares(struct task_group *tg);
2692#endif
2693#ifdef CONFIG_RT_GROUP_SCHED
2694extern int sched_group_set_rt_runtime(struct task_group *tg,
2695 long rt_runtime_us);
2696extern long sched_group_rt_runtime(struct task_group *tg);
2697extern int sched_group_set_rt_period(struct task_group *tg,
2698 long rt_period_us);
2699extern long sched_group_rt_period(struct task_group *tg);
2700extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2701#endif
2702#endif
2703
2704extern int task_can_switch_user(struct user_struct *up,
2705 struct task_struct *tsk);
2706
2707#ifdef CONFIG_TASK_XACCT
2708static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2709{
2710 tsk->ioac.rchar += amt;
2711}
2712
2713static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2714{
2715 tsk->ioac.wchar += amt;
2716}
2717
2718static inline void inc_syscr(struct task_struct *tsk)
2719{
2720 tsk->ioac.syscr++;
2721}
2722
2723static inline void inc_syscw(struct task_struct *tsk)
2724{
2725 tsk->ioac.syscw++;
2726}
2727#else
2728static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2729{
2730}
2731
2732static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2733{
2734}
2735
2736static inline void inc_syscr(struct task_struct *tsk)
2737{
2738}
2739
2740static inline void inc_syscw(struct task_struct *tsk)
2741{
2742}
2743#endif
2744
2745#ifndef TASK_SIZE_OF
2746#define TASK_SIZE_OF(tsk) TASK_SIZE
2747#endif
2748
2749#ifdef CONFIG_MM_OWNER
2750extern void mm_update_next_owner(struct mm_struct *mm);
2751extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2752#else
2753static inline void mm_update_next_owner(struct mm_struct *mm)
2754{
2755}
2756
2757static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2758{
2759}
2760#endif /* CONFIG_MM_OWNER */
2761
2762static inline unsigned long task_rlimit(const struct task_struct *tsk,
2763 unsigned int limit)
2764{
2765 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2766}
2767
2768static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2769 unsigned int limit)
2770{
2771 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2772}
2773
2774static inline unsigned long rlimit(unsigned int limit)
2775{
2776 return task_rlimit(current, limit);
2777}
2778
2779static inline unsigned long rlimit_max(unsigned int limit)
2780{
2781 return task_rlimit_max(current, limit);
2782}
2783
2784#endif /* __KERNEL__ */
2785
2786#endif