at v3.3 15 kB view raw
1#ifndef _LINUX_PTRACE_H 2#define _LINUX_PTRACE_H 3/* ptrace.h */ 4/* structs and defines to help the user use the ptrace system call. */ 5 6/* has the defines to get at the registers. */ 7 8#define PTRACE_TRACEME 0 9#define PTRACE_PEEKTEXT 1 10#define PTRACE_PEEKDATA 2 11#define PTRACE_PEEKUSR 3 12#define PTRACE_POKETEXT 4 13#define PTRACE_POKEDATA 5 14#define PTRACE_POKEUSR 6 15#define PTRACE_CONT 7 16#define PTRACE_KILL 8 17#define PTRACE_SINGLESTEP 9 18 19#define PTRACE_ATTACH 16 20#define PTRACE_DETACH 17 21 22#define PTRACE_SYSCALL 24 23 24/* 0x4200-0x4300 are reserved for architecture-independent additions. */ 25#define PTRACE_SETOPTIONS 0x4200 26#define PTRACE_GETEVENTMSG 0x4201 27#define PTRACE_GETSIGINFO 0x4202 28#define PTRACE_SETSIGINFO 0x4203 29 30/* 31 * Generic ptrace interface that exports the architecture specific regsets 32 * using the corresponding NT_* types (which are also used in the core dump). 33 * Please note that the NT_PRSTATUS note type in a core dump contains a full 34 * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the 35 * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the 36 * other user_regset flavors, the user_regset layout and the ELF core dump note 37 * payload are exactly the same layout. 38 * 39 * This interface usage is as follows: 40 * struct iovec iov = { buf, len}; 41 * 42 * ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov); 43 * 44 * On the successful completion, iov.len will be updated by the kernel, 45 * specifying how much the kernel has written/read to/from the user's iov.buf. 46 */ 47#define PTRACE_GETREGSET 0x4204 48#define PTRACE_SETREGSET 0x4205 49 50#define PTRACE_SEIZE 0x4206 51#define PTRACE_INTERRUPT 0x4207 52#define PTRACE_LISTEN 0x4208 53 54/* flags in @data for PTRACE_SEIZE */ 55#define PTRACE_SEIZE_DEVEL 0x80000000 /* temp flag for development */ 56 57/* options set using PTRACE_SETOPTIONS */ 58#define PTRACE_O_TRACESYSGOOD 0x00000001 59#define PTRACE_O_TRACEFORK 0x00000002 60#define PTRACE_O_TRACEVFORK 0x00000004 61#define PTRACE_O_TRACECLONE 0x00000008 62#define PTRACE_O_TRACEEXEC 0x00000010 63#define PTRACE_O_TRACEVFORKDONE 0x00000020 64#define PTRACE_O_TRACEEXIT 0x00000040 65 66#define PTRACE_O_MASK 0x0000007f 67 68/* Wait extended result codes for the above trace options. */ 69#define PTRACE_EVENT_FORK 1 70#define PTRACE_EVENT_VFORK 2 71#define PTRACE_EVENT_CLONE 3 72#define PTRACE_EVENT_EXEC 4 73#define PTRACE_EVENT_VFORK_DONE 5 74#define PTRACE_EVENT_EXIT 6 75#define PTRACE_EVENT_STOP 7 76 77#include <asm/ptrace.h> 78 79#ifdef __KERNEL__ 80/* 81 * Ptrace flags 82 * 83 * The owner ship rules for task->ptrace which holds the ptrace 84 * flags is simple. When a task is running it owns it's task->ptrace 85 * flags. When the a task is stopped the ptracer owns task->ptrace. 86 */ 87 88#define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ 89#define PT_PTRACED 0x00000001 90#define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ 91#define PT_TRACESYSGOOD 0x00000004 92#define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */ 93 94/* PT_TRACE_* event enable flags */ 95#define PT_EVENT_FLAG_SHIFT 4 96#define PT_EVENT_FLAG(event) (1 << (PT_EVENT_FLAG_SHIFT + (event) - 1)) 97 98#define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) 99#define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) 100#define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) 101#define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) 102#define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) 103#define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) 104 105#define PT_TRACE_MASK 0x000003f4 106 107/* single stepping state bits (used on ARM and PA-RISC) */ 108#define PT_SINGLESTEP_BIT 31 109#define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) 110#define PT_BLOCKSTEP_BIT 30 111#define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) 112 113#include <linux/compiler.h> /* For unlikely. */ 114#include <linux/sched.h> /* For struct task_struct. */ 115#include <linux/err.h> /* for IS_ERR_VALUE */ 116 117 118extern long arch_ptrace(struct task_struct *child, long request, 119 unsigned long addr, unsigned long data); 120extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); 121extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); 122extern void ptrace_disable(struct task_struct *); 123extern int ptrace_check_attach(struct task_struct *task, bool ignore_state); 124extern int ptrace_request(struct task_struct *child, long request, 125 unsigned long addr, unsigned long data); 126extern void ptrace_notify(int exit_code); 127extern void __ptrace_link(struct task_struct *child, 128 struct task_struct *new_parent); 129extern void __ptrace_unlink(struct task_struct *child); 130extern void exit_ptrace(struct task_struct *tracer); 131#define PTRACE_MODE_READ 0x01 132#define PTRACE_MODE_ATTACH 0x02 133#define PTRACE_MODE_NOAUDIT 0x04 134/* Returns 0 on success, -errno on denial. */ 135extern int __ptrace_may_access(struct task_struct *task, unsigned int mode); 136/* Returns true on success, false on denial. */ 137extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); 138 139static inline int ptrace_reparented(struct task_struct *child) 140{ 141 return !same_thread_group(child->real_parent, child->parent); 142} 143 144static inline void ptrace_unlink(struct task_struct *child) 145{ 146 if (unlikely(child->ptrace)) 147 __ptrace_unlink(child); 148} 149 150int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 151 unsigned long data); 152int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 153 unsigned long data); 154 155/** 156 * ptrace_parent - return the task that is tracing the given task 157 * @task: task to consider 158 * 159 * Returns %NULL if no one is tracing @task, or the &struct task_struct 160 * pointer to its tracer. 161 * 162 * Must called under rcu_read_lock(). The pointer returned might be kept 163 * live only by RCU. During exec, this may be called with task_lock() held 164 * on @task, still held from when check_unsafe_exec() was called. 165 */ 166static inline struct task_struct *ptrace_parent(struct task_struct *task) 167{ 168 if (unlikely(task->ptrace)) 169 return rcu_dereference(task->parent); 170 return NULL; 171} 172 173/** 174 * ptrace_event_enabled - test whether a ptrace event is enabled 175 * @task: ptracee of interest 176 * @event: %PTRACE_EVENT_* to test 177 * 178 * Test whether @event is enabled for ptracee @task. 179 * 180 * Returns %true if @event is enabled, %false otherwise. 181 */ 182static inline bool ptrace_event_enabled(struct task_struct *task, int event) 183{ 184 return task->ptrace & PT_EVENT_FLAG(event); 185} 186 187/** 188 * ptrace_event - possibly stop for a ptrace event notification 189 * @event: %PTRACE_EVENT_* value to report 190 * @message: value for %PTRACE_GETEVENTMSG to return 191 * 192 * Check whether @event is enabled and, if so, report @event and @message 193 * to the ptrace parent. 194 * 195 * Called without locks. 196 */ 197static inline void ptrace_event(int event, unsigned long message) 198{ 199 if (unlikely(ptrace_event_enabled(current, event))) { 200 current->ptrace_message = message; 201 ptrace_notify((event << 8) | SIGTRAP); 202 } else if (event == PTRACE_EVENT_EXEC && unlikely(current->ptrace)) { 203 /* legacy EXEC report via SIGTRAP */ 204 send_sig(SIGTRAP, current, 0); 205 } 206} 207 208/** 209 * ptrace_init_task - initialize ptrace state for a new child 210 * @child: new child task 211 * @ptrace: true if child should be ptrace'd by parent's tracer 212 * 213 * This is called immediately after adding @child to its parent's children 214 * list. @ptrace is false in the normal case, and true to ptrace @child. 215 * 216 * Called with current's siglock and write_lock_irq(&tasklist_lock) held. 217 */ 218static inline void ptrace_init_task(struct task_struct *child, bool ptrace) 219{ 220 INIT_LIST_HEAD(&child->ptrace_entry); 221 INIT_LIST_HEAD(&child->ptraced); 222#ifdef CONFIG_HAVE_HW_BREAKPOINT 223 atomic_set(&child->ptrace_bp_refcnt, 1); 224#endif 225 child->jobctl = 0; 226 child->ptrace = 0; 227 child->parent = child->real_parent; 228 229 if (unlikely(ptrace) && current->ptrace) { 230 child->ptrace = current->ptrace; 231 __ptrace_link(child, current->parent); 232 233 if (child->ptrace & PT_SEIZED) 234 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); 235 else 236 sigaddset(&child->pending.signal, SIGSTOP); 237 238 set_tsk_thread_flag(child, TIF_SIGPENDING); 239 } 240} 241 242/** 243 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped 244 * @task: task in %EXIT_DEAD state 245 * 246 * Called with write_lock(&tasklist_lock) held. 247 */ 248static inline void ptrace_release_task(struct task_struct *task) 249{ 250 BUG_ON(!list_empty(&task->ptraced)); 251 ptrace_unlink(task); 252 BUG_ON(!list_empty(&task->ptrace_entry)); 253} 254 255#ifndef force_successful_syscall_return 256/* 257 * System call handlers that, upon successful completion, need to return a 258 * negative value should call force_successful_syscall_return() right before 259 * returning. On architectures where the syscall convention provides for a 260 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly 261 * others), this macro can be used to ensure that the error flag will not get 262 * set. On architectures which do not support a separate error flag, the macro 263 * is a no-op and the spurious error condition needs to be filtered out by some 264 * other means (e.g., in user-level, by passing an extra argument to the 265 * syscall handler, or something along those lines). 266 */ 267#define force_successful_syscall_return() do { } while (0) 268#endif 269 270#ifndef is_syscall_success 271/* 272 * On most systems we can tell if a syscall is a success based on if the retval 273 * is an error value. On some systems like ia64 and powerpc they have different 274 * indicators of success/failure and must define their own. 275 */ 276#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) 277#endif 278 279/* 280 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. 281 * 282 * These do-nothing inlines are used when the arch does not 283 * implement single-step. The kerneldoc comments are here 284 * to document the interface for all arch definitions. 285 */ 286 287#ifndef arch_has_single_step 288/** 289 * arch_has_single_step - does this CPU support user-mode single-step? 290 * 291 * If this is defined, then there must be function declarations or 292 * inlines for user_enable_single_step() and user_disable_single_step(). 293 * arch_has_single_step() should evaluate to nonzero iff the machine 294 * supports instruction single-step for user mode. 295 * It can be a constant or it can test a CPU feature bit. 296 */ 297#define arch_has_single_step() (0) 298 299/** 300 * user_enable_single_step - single-step in user-mode task 301 * @task: either current or a task stopped in %TASK_TRACED 302 * 303 * This can only be called when arch_has_single_step() has returned nonzero. 304 * Set @task so that when it returns to user mode, it will trap after the 305 * next single instruction executes. If arch_has_block_step() is defined, 306 * this must clear the effects of user_enable_block_step() too. 307 */ 308static inline void user_enable_single_step(struct task_struct *task) 309{ 310 BUG(); /* This can never be called. */ 311} 312 313/** 314 * user_disable_single_step - cancel user-mode single-step 315 * @task: either current or a task stopped in %TASK_TRACED 316 * 317 * Clear @task of the effects of user_enable_single_step() and 318 * user_enable_block_step(). This can be called whether or not either 319 * of those was ever called on @task, and even if arch_has_single_step() 320 * returned zero. 321 */ 322static inline void user_disable_single_step(struct task_struct *task) 323{ 324} 325#else 326extern void user_enable_single_step(struct task_struct *); 327extern void user_disable_single_step(struct task_struct *); 328#endif /* arch_has_single_step */ 329 330#ifndef arch_has_block_step 331/** 332 * arch_has_block_step - does this CPU support user-mode block-step? 333 * 334 * If this is defined, then there must be a function declaration or inline 335 * for user_enable_block_step(), and arch_has_single_step() must be defined 336 * too. arch_has_block_step() should evaluate to nonzero iff the machine 337 * supports step-until-branch for user mode. It can be a constant or it 338 * can test a CPU feature bit. 339 */ 340#define arch_has_block_step() (0) 341 342/** 343 * user_enable_block_step - step until branch in user-mode task 344 * @task: either current or a task stopped in %TASK_TRACED 345 * 346 * This can only be called when arch_has_block_step() has returned nonzero, 347 * and will never be called when single-instruction stepping is being used. 348 * Set @task so that when it returns to user mode, it will trap after the 349 * next branch or trap taken. 350 */ 351static inline void user_enable_block_step(struct task_struct *task) 352{ 353 BUG(); /* This can never be called. */ 354} 355#else 356extern void user_enable_block_step(struct task_struct *); 357#endif /* arch_has_block_step */ 358 359#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO 360extern void user_single_step_siginfo(struct task_struct *tsk, 361 struct pt_regs *regs, siginfo_t *info); 362#else 363static inline void user_single_step_siginfo(struct task_struct *tsk, 364 struct pt_regs *regs, siginfo_t *info) 365{ 366 memset(info, 0, sizeof(*info)); 367 info->si_signo = SIGTRAP; 368} 369#endif 370 371#ifndef arch_ptrace_stop_needed 372/** 373 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called 374 * @code: current->exit_code value ptrace will stop with 375 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 376 * 377 * This is called with the siglock held, to decide whether or not it's 378 * necessary to release the siglock and call arch_ptrace_stop() with the 379 * same @code and @info arguments. It can be defined to a constant if 380 * arch_ptrace_stop() is never required, or always is. On machines where 381 * this makes sense, it should be defined to a quick test to optimize out 382 * calling arch_ptrace_stop() when it would be superfluous. For example, 383 * if the thread has not been back to user mode since the last stop, the 384 * thread state might indicate that nothing needs to be done. 385 */ 386#define arch_ptrace_stop_needed(code, info) (0) 387#endif 388 389#ifndef arch_ptrace_stop 390/** 391 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace 392 * @code: current->exit_code value ptrace will stop with 393 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 394 * 395 * This is called with no locks held when arch_ptrace_stop_needed() has 396 * just returned nonzero. It is allowed to block, e.g. for user memory 397 * access. The arch can have machine-specific work to be done before 398 * ptrace stops. On ia64, register backing store gets written back to user 399 * memory here. Since this can be costly (requires dropping the siglock), 400 * we only do it when the arch requires it for this particular stop, as 401 * indicated by arch_ptrace_stop_needed(). 402 */ 403#define arch_ptrace_stop(code, info) do { } while (0) 404#endif 405 406extern int task_current_syscall(struct task_struct *target, long *callno, 407 unsigned long args[6], unsigned int maxargs, 408 unsigned long *sp, unsigned long *pc); 409 410#ifdef CONFIG_HAVE_HW_BREAKPOINT 411extern int ptrace_get_breakpoints(struct task_struct *tsk); 412extern void ptrace_put_breakpoints(struct task_struct *tsk); 413#else 414static inline void ptrace_put_breakpoints(struct task_struct *tsk) { } 415#endif /* CONFIG_HAVE_HW_BREAKPOINT */ 416 417#endif /* __KERNEL */ 418 419#endif