at v3.3 32 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 57 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 58 59 PERF_COUNT_HW_MAX, /* non-ABI */ 60}; 61 62/* 63 * Generalized hardware cache events: 64 * 65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 66 * { read, write, prefetch } x 67 * { accesses, misses } 68 */ 69enum perf_hw_cache_id { 70 PERF_COUNT_HW_CACHE_L1D = 0, 71 PERF_COUNT_HW_CACHE_L1I = 1, 72 PERF_COUNT_HW_CACHE_LL = 2, 73 PERF_COUNT_HW_CACHE_DTLB = 3, 74 PERF_COUNT_HW_CACHE_ITLB = 4, 75 PERF_COUNT_HW_CACHE_BPU = 5, 76 PERF_COUNT_HW_CACHE_NODE = 6, 77 78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 79}; 80 81enum perf_hw_cache_op_id { 82 PERF_COUNT_HW_CACHE_OP_READ = 0, 83 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 85 86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 87}; 88 89enum perf_hw_cache_op_result_id { 90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 92 93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 94}; 95 96/* 97 * Special "software" events provided by the kernel, even if the hardware 98 * does not support performance events. These events measure various 99 * physical and sw events of the kernel (and allow the profiling of them as 100 * well): 101 */ 102enum perf_sw_ids { 103 PERF_COUNT_SW_CPU_CLOCK = 0, 104 PERF_COUNT_SW_TASK_CLOCK = 1, 105 PERF_COUNT_SW_PAGE_FAULTS = 2, 106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 107 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 111 PERF_COUNT_SW_EMULATION_FAULTS = 8, 112 113 PERF_COUNT_SW_MAX, /* non-ABI */ 114}; 115 116/* 117 * Bits that can be set in attr.sample_type to request information 118 * in the overflow packets. 119 */ 120enum perf_event_sample_format { 121 PERF_SAMPLE_IP = 1U << 0, 122 PERF_SAMPLE_TID = 1U << 1, 123 PERF_SAMPLE_TIME = 1U << 2, 124 PERF_SAMPLE_ADDR = 1U << 3, 125 PERF_SAMPLE_READ = 1U << 4, 126 PERF_SAMPLE_CALLCHAIN = 1U << 5, 127 PERF_SAMPLE_ID = 1U << 6, 128 PERF_SAMPLE_CPU = 1U << 7, 129 PERF_SAMPLE_PERIOD = 1U << 8, 130 PERF_SAMPLE_STREAM_ID = 1U << 9, 131 PERF_SAMPLE_RAW = 1U << 10, 132 133 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 134}; 135 136/* 137 * The format of the data returned by read() on a perf event fd, 138 * as specified by attr.read_format: 139 * 140 * struct read_format { 141 * { u64 value; 142 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 143 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 144 * { u64 id; } && PERF_FORMAT_ID 145 * } && !PERF_FORMAT_GROUP 146 * 147 * { u64 nr; 148 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 149 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 150 * { u64 value; 151 * { u64 id; } && PERF_FORMAT_ID 152 * } cntr[nr]; 153 * } && PERF_FORMAT_GROUP 154 * }; 155 */ 156enum perf_event_read_format { 157 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 158 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 159 PERF_FORMAT_ID = 1U << 2, 160 PERF_FORMAT_GROUP = 1U << 3, 161 162 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 163}; 164 165#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 166 167/* 168 * Hardware event_id to monitor via a performance monitoring event: 169 */ 170struct perf_event_attr { 171 172 /* 173 * Major type: hardware/software/tracepoint/etc. 174 */ 175 __u32 type; 176 177 /* 178 * Size of the attr structure, for fwd/bwd compat. 179 */ 180 __u32 size; 181 182 /* 183 * Type specific configuration information. 184 */ 185 __u64 config; 186 187 union { 188 __u64 sample_period; 189 __u64 sample_freq; 190 }; 191 192 __u64 sample_type; 193 __u64 read_format; 194 195 __u64 disabled : 1, /* off by default */ 196 inherit : 1, /* children inherit it */ 197 pinned : 1, /* must always be on PMU */ 198 exclusive : 1, /* only group on PMU */ 199 exclude_user : 1, /* don't count user */ 200 exclude_kernel : 1, /* ditto kernel */ 201 exclude_hv : 1, /* ditto hypervisor */ 202 exclude_idle : 1, /* don't count when idle */ 203 mmap : 1, /* include mmap data */ 204 comm : 1, /* include comm data */ 205 freq : 1, /* use freq, not period */ 206 inherit_stat : 1, /* per task counts */ 207 enable_on_exec : 1, /* next exec enables */ 208 task : 1, /* trace fork/exit */ 209 watermark : 1, /* wakeup_watermark */ 210 /* 211 * precise_ip: 212 * 213 * 0 - SAMPLE_IP can have arbitrary skid 214 * 1 - SAMPLE_IP must have constant skid 215 * 2 - SAMPLE_IP requested to have 0 skid 216 * 3 - SAMPLE_IP must have 0 skid 217 * 218 * See also PERF_RECORD_MISC_EXACT_IP 219 */ 220 precise_ip : 2, /* skid constraint */ 221 mmap_data : 1, /* non-exec mmap data */ 222 sample_id_all : 1, /* sample_type all events */ 223 224 exclude_host : 1, /* don't count in host */ 225 exclude_guest : 1, /* don't count in guest */ 226 227 __reserved_1 : 43; 228 229 union { 230 __u32 wakeup_events; /* wakeup every n events */ 231 __u32 wakeup_watermark; /* bytes before wakeup */ 232 }; 233 234 __u32 bp_type; 235 union { 236 __u64 bp_addr; 237 __u64 config1; /* extension of config */ 238 }; 239 union { 240 __u64 bp_len; 241 __u64 config2; /* extension of config1 */ 242 }; 243}; 244 245/* 246 * Ioctls that can be done on a perf event fd: 247 */ 248#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 249#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 250#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 251#define PERF_EVENT_IOC_RESET _IO ('$', 3) 252#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 253#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 254#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 255 256enum perf_event_ioc_flags { 257 PERF_IOC_FLAG_GROUP = 1U << 0, 258}; 259 260/* 261 * Structure of the page that can be mapped via mmap 262 */ 263struct perf_event_mmap_page { 264 __u32 version; /* version number of this structure */ 265 __u32 compat_version; /* lowest version this is compat with */ 266 267 /* 268 * Bits needed to read the hw events in user-space. 269 * 270 * u32 seq; 271 * s64 count; 272 * 273 * do { 274 * seq = pc->lock; 275 * 276 * barrier() 277 * if (pc->index) { 278 * count = pmc_read(pc->index - 1); 279 * count += pc->offset; 280 * } else 281 * goto regular_read; 282 * 283 * barrier(); 284 * } while (pc->lock != seq); 285 * 286 * NOTE: for obvious reason this only works on self-monitoring 287 * processes. 288 */ 289 __u32 lock; /* seqlock for synchronization */ 290 __u32 index; /* hardware event identifier */ 291 __s64 offset; /* add to hardware event value */ 292 __u64 time_enabled; /* time event active */ 293 __u64 time_running; /* time event on cpu */ 294 295 /* 296 * Hole for extension of the self monitor capabilities 297 */ 298 299 __u64 __reserved[123]; /* align to 1k */ 300 301 /* 302 * Control data for the mmap() data buffer. 303 * 304 * User-space reading the @data_head value should issue an rmb(), on 305 * SMP capable platforms, after reading this value -- see 306 * perf_event_wakeup(). 307 * 308 * When the mapping is PROT_WRITE the @data_tail value should be 309 * written by userspace to reflect the last read data. In this case 310 * the kernel will not over-write unread data. 311 */ 312 __u64 data_head; /* head in the data section */ 313 __u64 data_tail; /* user-space written tail */ 314}; 315 316#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 317#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 318#define PERF_RECORD_MISC_KERNEL (1 << 0) 319#define PERF_RECORD_MISC_USER (2 << 0) 320#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 321#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 322#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 323 324/* 325 * Indicates that the content of PERF_SAMPLE_IP points to 326 * the actual instruction that triggered the event. See also 327 * perf_event_attr::precise_ip. 328 */ 329#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 330/* 331 * Reserve the last bit to indicate some extended misc field 332 */ 333#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 334 335struct perf_event_header { 336 __u32 type; 337 __u16 misc; 338 __u16 size; 339}; 340 341enum perf_event_type { 342 343 /* 344 * If perf_event_attr.sample_id_all is set then all event types will 345 * have the sample_type selected fields related to where/when 346 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) 347 * described in PERF_RECORD_SAMPLE below, it will be stashed just after 348 * the perf_event_header and the fields already present for the existing 349 * fields, i.e. at the end of the payload. That way a newer perf.data 350 * file will be supported by older perf tools, with these new optional 351 * fields being ignored. 352 * 353 * The MMAP events record the PROT_EXEC mappings so that we can 354 * correlate userspace IPs to code. They have the following structure: 355 * 356 * struct { 357 * struct perf_event_header header; 358 * 359 * u32 pid, tid; 360 * u64 addr; 361 * u64 len; 362 * u64 pgoff; 363 * char filename[]; 364 * }; 365 */ 366 PERF_RECORD_MMAP = 1, 367 368 /* 369 * struct { 370 * struct perf_event_header header; 371 * u64 id; 372 * u64 lost; 373 * }; 374 */ 375 PERF_RECORD_LOST = 2, 376 377 /* 378 * struct { 379 * struct perf_event_header header; 380 * 381 * u32 pid, tid; 382 * char comm[]; 383 * }; 384 */ 385 PERF_RECORD_COMM = 3, 386 387 /* 388 * struct { 389 * struct perf_event_header header; 390 * u32 pid, ppid; 391 * u32 tid, ptid; 392 * u64 time; 393 * }; 394 */ 395 PERF_RECORD_EXIT = 4, 396 397 /* 398 * struct { 399 * struct perf_event_header header; 400 * u64 time; 401 * u64 id; 402 * u64 stream_id; 403 * }; 404 */ 405 PERF_RECORD_THROTTLE = 5, 406 PERF_RECORD_UNTHROTTLE = 6, 407 408 /* 409 * struct { 410 * struct perf_event_header header; 411 * u32 pid, ppid; 412 * u32 tid, ptid; 413 * u64 time; 414 * }; 415 */ 416 PERF_RECORD_FORK = 7, 417 418 /* 419 * struct { 420 * struct perf_event_header header; 421 * u32 pid, tid; 422 * 423 * struct read_format values; 424 * }; 425 */ 426 PERF_RECORD_READ = 8, 427 428 /* 429 * struct { 430 * struct perf_event_header header; 431 * 432 * { u64 ip; } && PERF_SAMPLE_IP 433 * { u32 pid, tid; } && PERF_SAMPLE_TID 434 * { u64 time; } && PERF_SAMPLE_TIME 435 * { u64 addr; } && PERF_SAMPLE_ADDR 436 * { u64 id; } && PERF_SAMPLE_ID 437 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 438 * { u32 cpu, res; } && PERF_SAMPLE_CPU 439 * { u64 period; } && PERF_SAMPLE_PERIOD 440 * 441 * { struct read_format values; } && PERF_SAMPLE_READ 442 * 443 * { u64 nr, 444 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 445 * 446 * # 447 * # The RAW record below is opaque data wrt the ABI 448 * # 449 * # That is, the ABI doesn't make any promises wrt to 450 * # the stability of its content, it may vary depending 451 * # on event, hardware, kernel version and phase of 452 * # the moon. 453 * # 454 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 455 * # 456 * 457 * { u32 size; 458 * char data[size];}&& PERF_SAMPLE_RAW 459 * }; 460 */ 461 PERF_RECORD_SAMPLE = 9, 462 463 PERF_RECORD_MAX, /* non-ABI */ 464}; 465 466enum perf_callchain_context { 467 PERF_CONTEXT_HV = (__u64)-32, 468 PERF_CONTEXT_KERNEL = (__u64)-128, 469 PERF_CONTEXT_USER = (__u64)-512, 470 471 PERF_CONTEXT_GUEST = (__u64)-2048, 472 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 473 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 474 475 PERF_CONTEXT_MAX = (__u64)-4095, 476}; 477 478#define PERF_FLAG_FD_NO_GROUP (1U << 0) 479#define PERF_FLAG_FD_OUTPUT (1U << 1) 480#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */ 481 482#ifdef __KERNEL__ 483/* 484 * Kernel-internal data types and definitions: 485 */ 486 487#ifdef CONFIG_PERF_EVENTS 488# include <linux/cgroup.h> 489# include <asm/perf_event.h> 490# include <asm/local64.h> 491#endif 492 493struct perf_guest_info_callbacks { 494 int (*is_in_guest)(void); 495 int (*is_user_mode)(void); 496 unsigned long (*get_guest_ip)(void); 497}; 498 499#ifdef CONFIG_HAVE_HW_BREAKPOINT 500#include <asm/hw_breakpoint.h> 501#endif 502 503#include <linux/list.h> 504#include <linux/mutex.h> 505#include <linux/rculist.h> 506#include <linux/rcupdate.h> 507#include <linux/spinlock.h> 508#include <linux/hrtimer.h> 509#include <linux/fs.h> 510#include <linux/pid_namespace.h> 511#include <linux/workqueue.h> 512#include <linux/ftrace.h> 513#include <linux/cpu.h> 514#include <linux/irq_work.h> 515#include <linux/jump_label.h> 516#include <linux/atomic.h> 517#include <asm/local.h> 518 519#define PERF_MAX_STACK_DEPTH 255 520 521struct perf_callchain_entry { 522 __u64 nr; 523 __u64 ip[PERF_MAX_STACK_DEPTH]; 524}; 525 526struct perf_raw_record { 527 u32 size; 528 void *data; 529}; 530 531struct perf_branch_entry { 532 __u64 from; 533 __u64 to; 534 __u64 flags; 535}; 536 537struct perf_branch_stack { 538 __u64 nr; 539 struct perf_branch_entry entries[0]; 540}; 541 542struct task_struct; 543 544/* 545 * extra PMU register associated with an event 546 */ 547struct hw_perf_event_extra { 548 u64 config; /* register value */ 549 unsigned int reg; /* register address or index */ 550 int alloc; /* extra register already allocated */ 551 int idx; /* index in shared_regs->regs[] */ 552}; 553 554/** 555 * struct hw_perf_event - performance event hardware details: 556 */ 557struct hw_perf_event { 558#ifdef CONFIG_PERF_EVENTS 559 union { 560 struct { /* hardware */ 561 u64 config; 562 u64 last_tag; 563 unsigned long config_base; 564 unsigned long event_base; 565 int idx; 566 int last_cpu; 567 struct hw_perf_event_extra extra_reg; 568 }; 569 struct { /* software */ 570 struct hrtimer hrtimer; 571 }; 572#ifdef CONFIG_HAVE_HW_BREAKPOINT 573 struct { /* breakpoint */ 574 struct arch_hw_breakpoint info; 575 struct list_head bp_list; 576 /* 577 * Crufty hack to avoid the chicken and egg 578 * problem hw_breakpoint has with context 579 * creation and event initalization. 580 */ 581 struct task_struct *bp_target; 582 }; 583#endif 584 }; 585 int state; 586 local64_t prev_count; 587 u64 sample_period; 588 u64 last_period; 589 local64_t period_left; 590 u64 interrupts_seq; 591 u64 interrupts; 592 593 u64 freq_time_stamp; 594 u64 freq_count_stamp; 595#endif 596}; 597 598/* 599 * hw_perf_event::state flags 600 */ 601#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 602#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 603#define PERF_HES_ARCH 0x04 604 605struct perf_event; 606 607/* 608 * Common implementation detail of pmu::{start,commit,cancel}_txn 609 */ 610#define PERF_EVENT_TXN 0x1 611 612/** 613 * struct pmu - generic performance monitoring unit 614 */ 615struct pmu { 616 struct list_head entry; 617 618 struct device *dev; 619 char *name; 620 int type; 621 622 int * __percpu pmu_disable_count; 623 struct perf_cpu_context * __percpu pmu_cpu_context; 624 int task_ctx_nr; 625 626 /* 627 * Fully disable/enable this PMU, can be used to protect from the PMI 628 * as well as for lazy/batch writing of the MSRs. 629 */ 630 void (*pmu_enable) (struct pmu *pmu); /* optional */ 631 void (*pmu_disable) (struct pmu *pmu); /* optional */ 632 633 /* 634 * Try and initialize the event for this PMU. 635 * Should return -ENOENT when the @event doesn't match this PMU. 636 */ 637 int (*event_init) (struct perf_event *event); 638 639#define PERF_EF_START 0x01 /* start the counter when adding */ 640#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 641#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 642 643 /* 644 * Adds/Removes a counter to/from the PMU, can be done inside 645 * a transaction, see the ->*_txn() methods. 646 */ 647 int (*add) (struct perf_event *event, int flags); 648 void (*del) (struct perf_event *event, int flags); 649 650 /* 651 * Starts/Stops a counter present on the PMU. The PMI handler 652 * should stop the counter when perf_event_overflow() returns 653 * !0. ->start() will be used to continue. 654 */ 655 void (*start) (struct perf_event *event, int flags); 656 void (*stop) (struct perf_event *event, int flags); 657 658 /* 659 * Updates the counter value of the event. 660 */ 661 void (*read) (struct perf_event *event); 662 663 /* 664 * Group events scheduling is treated as a transaction, add 665 * group events as a whole and perform one schedulability test. 666 * If the test fails, roll back the whole group 667 * 668 * Start the transaction, after this ->add() doesn't need to 669 * do schedulability tests. 670 */ 671 void (*start_txn) (struct pmu *pmu); /* optional */ 672 /* 673 * If ->start_txn() disabled the ->add() schedulability test 674 * then ->commit_txn() is required to perform one. On success 675 * the transaction is closed. On error the transaction is kept 676 * open until ->cancel_txn() is called. 677 */ 678 int (*commit_txn) (struct pmu *pmu); /* optional */ 679 /* 680 * Will cancel the transaction, assumes ->del() is called 681 * for each successful ->add() during the transaction. 682 */ 683 void (*cancel_txn) (struct pmu *pmu); /* optional */ 684}; 685 686/** 687 * enum perf_event_active_state - the states of a event 688 */ 689enum perf_event_active_state { 690 PERF_EVENT_STATE_ERROR = -2, 691 PERF_EVENT_STATE_OFF = -1, 692 PERF_EVENT_STATE_INACTIVE = 0, 693 PERF_EVENT_STATE_ACTIVE = 1, 694}; 695 696struct file; 697struct perf_sample_data; 698 699typedef void (*perf_overflow_handler_t)(struct perf_event *, 700 struct perf_sample_data *, 701 struct pt_regs *regs); 702 703enum perf_group_flag { 704 PERF_GROUP_SOFTWARE = 0x1, 705}; 706 707#define SWEVENT_HLIST_BITS 8 708#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 709 710struct swevent_hlist { 711 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 712 struct rcu_head rcu_head; 713}; 714 715#define PERF_ATTACH_CONTEXT 0x01 716#define PERF_ATTACH_GROUP 0x02 717#define PERF_ATTACH_TASK 0x04 718 719#ifdef CONFIG_CGROUP_PERF 720/* 721 * perf_cgroup_info keeps track of time_enabled for a cgroup. 722 * This is a per-cpu dynamically allocated data structure. 723 */ 724struct perf_cgroup_info { 725 u64 time; 726 u64 timestamp; 727}; 728 729struct perf_cgroup { 730 struct cgroup_subsys_state css; 731 struct perf_cgroup_info *info; /* timing info, one per cpu */ 732}; 733#endif 734 735struct ring_buffer; 736 737/** 738 * struct perf_event - performance event kernel representation: 739 */ 740struct perf_event { 741#ifdef CONFIG_PERF_EVENTS 742 struct list_head group_entry; 743 struct list_head event_entry; 744 struct list_head sibling_list; 745 struct hlist_node hlist_entry; 746 int nr_siblings; 747 int group_flags; 748 struct perf_event *group_leader; 749 struct pmu *pmu; 750 751 enum perf_event_active_state state; 752 unsigned int attach_state; 753 local64_t count; 754 atomic64_t child_count; 755 756 /* 757 * These are the total time in nanoseconds that the event 758 * has been enabled (i.e. eligible to run, and the task has 759 * been scheduled in, if this is a per-task event) 760 * and running (scheduled onto the CPU), respectively. 761 * 762 * They are computed from tstamp_enabled, tstamp_running and 763 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 764 */ 765 u64 total_time_enabled; 766 u64 total_time_running; 767 768 /* 769 * These are timestamps used for computing total_time_enabled 770 * and total_time_running when the event is in INACTIVE or 771 * ACTIVE state, measured in nanoseconds from an arbitrary point 772 * in time. 773 * tstamp_enabled: the notional time when the event was enabled 774 * tstamp_running: the notional time when the event was scheduled on 775 * tstamp_stopped: in INACTIVE state, the notional time when the 776 * event was scheduled off. 777 */ 778 u64 tstamp_enabled; 779 u64 tstamp_running; 780 u64 tstamp_stopped; 781 782 /* 783 * timestamp shadows the actual context timing but it can 784 * be safely used in NMI interrupt context. It reflects the 785 * context time as it was when the event was last scheduled in. 786 * 787 * ctx_time already accounts for ctx->timestamp. Therefore to 788 * compute ctx_time for a sample, simply add perf_clock(). 789 */ 790 u64 shadow_ctx_time; 791 792 struct perf_event_attr attr; 793 u16 header_size; 794 u16 id_header_size; 795 u16 read_size; 796 struct hw_perf_event hw; 797 798 struct perf_event_context *ctx; 799 struct file *filp; 800 801 /* 802 * These accumulate total time (in nanoseconds) that children 803 * events have been enabled and running, respectively. 804 */ 805 atomic64_t child_total_time_enabled; 806 atomic64_t child_total_time_running; 807 808 /* 809 * Protect attach/detach and child_list: 810 */ 811 struct mutex child_mutex; 812 struct list_head child_list; 813 struct perf_event *parent; 814 815 int oncpu; 816 int cpu; 817 818 struct list_head owner_entry; 819 struct task_struct *owner; 820 821 /* mmap bits */ 822 struct mutex mmap_mutex; 823 atomic_t mmap_count; 824 int mmap_locked; 825 struct user_struct *mmap_user; 826 struct ring_buffer *rb; 827 struct list_head rb_entry; 828 829 /* poll related */ 830 wait_queue_head_t waitq; 831 struct fasync_struct *fasync; 832 833 /* delayed work for NMIs and such */ 834 int pending_wakeup; 835 int pending_kill; 836 int pending_disable; 837 struct irq_work pending; 838 839 atomic_t event_limit; 840 841 void (*destroy)(struct perf_event *); 842 struct rcu_head rcu_head; 843 844 struct pid_namespace *ns; 845 u64 id; 846 847 perf_overflow_handler_t overflow_handler; 848 void *overflow_handler_context; 849 850#ifdef CONFIG_EVENT_TRACING 851 struct ftrace_event_call *tp_event; 852 struct event_filter *filter; 853#endif 854 855#ifdef CONFIG_CGROUP_PERF 856 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 857 int cgrp_defer_enabled; 858#endif 859 860#endif /* CONFIG_PERF_EVENTS */ 861}; 862 863enum perf_event_context_type { 864 task_context, 865 cpu_context, 866}; 867 868/** 869 * struct perf_event_context - event context structure 870 * 871 * Used as a container for task events and CPU events as well: 872 */ 873struct perf_event_context { 874 struct pmu *pmu; 875 enum perf_event_context_type type; 876 /* 877 * Protect the states of the events in the list, 878 * nr_active, and the list: 879 */ 880 raw_spinlock_t lock; 881 /* 882 * Protect the list of events. Locking either mutex or lock 883 * is sufficient to ensure the list doesn't change; to change 884 * the list you need to lock both the mutex and the spinlock. 885 */ 886 struct mutex mutex; 887 888 struct list_head pinned_groups; 889 struct list_head flexible_groups; 890 struct list_head event_list; 891 int nr_events; 892 int nr_active; 893 int is_active; 894 int nr_stat; 895 int nr_freq; 896 int rotate_disable; 897 atomic_t refcount; 898 struct task_struct *task; 899 900 /* 901 * Context clock, runs when context enabled. 902 */ 903 u64 time; 904 u64 timestamp; 905 906 /* 907 * These fields let us detect when two contexts have both 908 * been cloned (inherited) from a common ancestor. 909 */ 910 struct perf_event_context *parent_ctx; 911 u64 parent_gen; 912 u64 generation; 913 int pin_count; 914 int nr_cgroups; /* cgroup events present */ 915 struct rcu_head rcu_head; 916}; 917 918/* 919 * Number of contexts where an event can trigger: 920 * task, softirq, hardirq, nmi. 921 */ 922#define PERF_NR_CONTEXTS 4 923 924/** 925 * struct perf_event_cpu_context - per cpu event context structure 926 */ 927struct perf_cpu_context { 928 struct perf_event_context ctx; 929 struct perf_event_context *task_ctx; 930 int active_oncpu; 931 int exclusive; 932 struct list_head rotation_list; 933 int jiffies_interval; 934 struct pmu *active_pmu; 935 struct perf_cgroup *cgrp; 936}; 937 938struct perf_output_handle { 939 struct perf_event *event; 940 struct ring_buffer *rb; 941 unsigned long wakeup; 942 unsigned long size; 943 void *addr; 944 int page; 945}; 946 947#ifdef CONFIG_PERF_EVENTS 948 949extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 950extern void perf_pmu_unregister(struct pmu *pmu); 951 952extern int perf_num_counters(void); 953extern const char *perf_pmu_name(void); 954extern void __perf_event_task_sched_in(struct task_struct *prev, 955 struct task_struct *task); 956extern void __perf_event_task_sched_out(struct task_struct *prev, 957 struct task_struct *next); 958extern int perf_event_init_task(struct task_struct *child); 959extern void perf_event_exit_task(struct task_struct *child); 960extern void perf_event_free_task(struct task_struct *task); 961extern void perf_event_delayed_put(struct task_struct *task); 962extern void perf_event_print_debug(void); 963extern void perf_pmu_disable(struct pmu *pmu); 964extern void perf_pmu_enable(struct pmu *pmu); 965extern int perf_event_task_disable(void); 966extern int perf_event_task_enable(void); 967extern int perf_event_refresh(struct perf_event *event, int refresh); 968extern void perf_event_update_userpage(struct perf_event *event); 969extern int perf_event_release_kernel(struct perf_event *event); 970extern struct perf_event * 971perf_event_create_kernel_counter(struct perf_event_attr *attr, 972 int cpu, 973 struct task_struct *task, 974 perf_overflow_handler_t callback, 975 void *context); 976extern u64 perf_event_read_value(struct perf_event *event, 977 u64 *enabled, u64 *running); 978 979struct perf_sample_data { 980 u64 type; 981 982 u64 ip; 983 struct { 984 u32 pid; 985 u32 tid; 986 } tid_entry; 987 u64 time; 988 u64 addr; 989 u64 id; 990 u64 stream_id; 991 struct { 992 u32 cpu; 993 u32 reserved; 994 } cpu_entry; 995 u64 period; 996 struct perf_callchain_entry *callchain; 997 struct perf_raw_record *raw; 998}; 999 1000static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr) 1001{ 1002 data->addr = addr; 1003 data->raw = NULL; 1004} 1005 1006extern void perf_output_sample(struct perf_output_handle *handle, 1007 struct perf_event_header *header, 1008 struct perf_sample_data *data, 1009 struct perf_event *event); 1010extern void perf_prepare_sample(struct perf_event_header *header, 1011 struct perf_sample_data *data, 1012 struct perf_event *event, 1013 struct pt_regs *regs); 1014 1015extern int perf_event_overflow(struct perf_event *event, 1016 struct perf_sample_data *data, 1017 struct pt_regs *regs); 1018 1019static inline bool is_sampling_event(struct perf_event *event) 1020{ 1021 return event->attr.sample_period != 0; 1022} 1023 1024/* 1025 * Return 1 for a software event, 0 for a hardware event 1026 */ 1027static inline int is_software_event(struct perf_event *event) 1028{ 1029 return event->pmu->task_ctx_nr == perf_sw_context; 1030} 1031 1032extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1033 1034extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1035 1036#ifndef perf_arch_fetch_caller_regs 1037static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1038#endif 1039 1040/* 1041 * Take a snapshot of the regs. Skip ip and frame pointer to 1042 * the nth caller. We only need a few of the regs: 1043 * - ip for PERF_SAMPLE_IP 1044 * - cs for user_mode() tests 1045 * - bp for callchains 1046 * - eflags, for future purposes, just in case 1047 */ 1048static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1049{ 1050 memset(regs, 0, sizeof(*regs)); 1051 1052 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1053} 1054 1055static __always_inline void 1056perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1057{ 1058 struct pt_regs hot_regs; 1059 1060 if (static_branch(&perf_swevent_enabled[event_id])) { 1061 if (!regs) { 1062 perf_fetch_caller_regs(&hot_regs); 1063 regs = &hot_regs; 1064 } 1065 __perf_sw_event(event_id, nr, regs, addr); 1066 } 1067} 1068 1069extern struct jump_label_key_deferred perf_sched_events; 1070 1071static inline void perf_event_task_sched_in(struct task_struct *prev, 1072 struct task_struct *task) 1073{ 1074 if (static_branch(&perf_sched_events.key)) 1075 __perf_event_task_sched_in(prev, task); 1076} 1077 1078static inline void perf_event_task_sched_out(struct task_struct *prev, 1079 struct task_struct *next) 1080{ 1081 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 1082 1083 if (static_branch(&perf_sched_events.key)) 1084 __perf_event_task_sched_out(prev, next); 1085} 1086 1087extern void perf_event_mmap(struct vm_area_struct *vma); 1088extern struct perf_guest_info_callbacks *perf_guest_cbs; 1089extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1090extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1091 1092extern void perf_event_comm(struct task_struct *tsk); 1093extern void perf_event_fork(struct task_struct *tsk); 1094 1095/* Callchains */ 1096DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1097 1098extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 1099extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 1100 1101static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1102{ 1103 if (entry->nr < PERF_MAX_STACK_DEPTH) 1104 entry->ip[entry->nr++] = ip; 1105} 1106 1107extern int sysctl_perf_event_paranoid; 1108extern int sysctl_perf_event_mlock; 1109extern int sysctl_perf_event_sample_rate; 1110 1111extern int perf_proc_update_handler(struct ctl_table *table, int write, 1112 void __user *buffer, size_t *lenp, 1113 loff_t *ppos); 1114 1115static inline bool perf_paranoid_tracepoint_raw(void) 1116{ 1117 return sysctl_perf_event_paranoid > -1; 1118} 1119 1120static inline bool perf_paranoid_cpu(void) 1121{ 1122 return sysctl_perf_event_paranoid > 0; 1123} 1124 1125static inline bool perf_paranoid_kernel(void) 1126{ 1127 return sysctl_perf_event_paranoid > 1; 1128} 1129 1130extern void perf_event_init(void); 1131extern void perf_tp_event(u64 addr, u64 count, void *record, 1132 int entry_size, struct pt_regs *regs, 1133 struct hlist_head *head, int rctx); 1134extern void perf_bp_event(struct perf_event *event, void *data); 1135 1136#ifndef perf_misc_flags 1137# define perf_misc_flags(regs) \ 1138 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1139# define perf_instruction_pointer(regs) instruction_pointer(regs) 1140#endif 1141 1142extern int perf_output_begin(struct perf_output_handle *handle, 1143 struct perf_event *event, unsigned int size); 1144extern void perf_output_end(struct perf_output_handle *handle); 1145extern void perf_output_copy(struct perf_output_handle *handle, 1146 const void *buf, unsigned int len); 1147extern int perf_swevent_get_recursion_context(void); 1148extern void perf_swevent_put_recursion_context(int rctx); 1149extern void perf_event_enable(struct perf_event *event); 1150extern void perf_event_disable(struct perf_event *event); 1151extern void perf_event_task_tick(void); 1152#else 1153static inline void 1154perf_event_task_sched_in(struct task_struct *prev, 1155 struct task_struct *task) { } 1156static inline void 1157perf_event_task_sched_out(struct task_struct *prev, 1158 struct task_struct *next) { } 1159static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1160static inline void perf_event_exit_task(struct task_struct *child) { } 1161static inline void perf_event_free_task(struct task_struct *task) { } 1162static inline void perf_event_delayed_put(struct task_struct *task) { } 1163static inline void perf_event_print_debug(void) { } 1164static inline int perf_event_task_disable(void) { return -EINVAL; } 1165static inline int perf_event_task_enable(void) { return -EINVAL; } 1166static inline int perf_event_refresh(struct perf_event *event, int refresh) 1167{ 1168 return -EINVAL; 1169} 1170 1171static inline void 1172perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1173static inline void 1174perf_bp_event(struct perf_event *event, void *data) { } 1175 1176static inline int perf_register_guest_info_callbacks 1177(struct perf_guest_info_callbacks *callbacks) { return 0; } 1178static inline int perf_unregister_guest_info_callbacks 1179(struct perf_guest_info_callbacks *callbacks) { return 0; } 1180 1181static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1182static inline void perf_event_comm(struct task_struct *tsk) { } 1183static inline void perf_event_fork(struct task_struct *tsk) { } 1184static inline void perf_event_init(void) { } 1185static inline int perf_swevent_get_recursion_context(void) { return -1; } 1186static inline void perf_swevent_put_recursion_context(int rctx) { } 1187static inline void perf_event_enable(struct perf_event *event) { } 1188static inline void perf_event_disable(struct perf_event *event) { } 1189static inline void perf_event_task_tick(void) { } 1190#endif 1191 1192#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1193 1194/* 1195 * This has to have a higher priority than migration_notifier in sched.c. 1196 */ 1197#define perf_cpu_notifier(fn) \ 1198do { \ 1199 static struct notifier_block fn##_nb __cpuinitdata = \ 1200 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1201 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1202 (void *)(unsigned long)smp_processor_id()); \ 1203 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1204 (void *)(unsigned long)smp_processor_id()); \ 1205 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1206 (void *)(unsigned long)smp_processor_id()); \ 1207 register_cpu_notifier(&fn##_nb); \ 1208} while (0) 1209 1210#endif /* __KERNEL__ */ 1211#endif /* _LINUX_PERF_EVENT_H */