at v3.3 37 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <generated/bounds.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42#define MIGRATE_RESERVE 3 43#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44#define MIGRATE_TYPES 5 45 46#define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50extern int page_group_by_mobility_disabled; 51 52static inline int get_pageblock_migratetype(struct page *page) 53{ 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55} 56 57struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60}; 61 62struct pglist_data; 63 64/* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70#if defined(CONFIG_SMP) 71struct zone_padding { 72 char x[0]; 73} ____cacheline_internodealigned_in_smp; 74#define ZONE_PADDING(name) struct zone_padding name; 75#else 76#define ZONE_PADDING(name) 77#endif 78 79enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 104 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 105 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 106 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 107 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 108 NR_DIRTIED, /* page dirtyings since bootup */ 109 NR_WRITTEN, /* page writings since bootup */ 110#ifdef CONFIG_NUMA 111 NUMA_HIT, /* allocated in intended node */ 112 NUMA_MISS, /* allocated in non intended node */ 113 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 114 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 115 NUMA_LOCAL, /* allocation from local node */ 116 NUMA_OTHER, /* allocation from other node */ 117#endif 118 NR_ANON_TRANSPARENT_HUGEPAGES, 119 NR_VM_ZONE_STAT_ITEMS }; 120 121/* 122 * We do arithmetic on the LRU lists in various places in the code, 123 * so it is important to keep the active lists LRU_ACTIVE higher in 124 * the array than the corresponding inactive lists, and to keep 125 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 126 * 127 * This has to be kept in sync with the statistics in zone_stat_item 128 * above and the descriptions in vmstat_text in mm/vmstat.c 129 */ 130#define LRU_BASE 0 131#define LRU_ACTIVE 1 132#define LRU_FILE 2 133 134enum lru_list { 135 LRU_INACTIVE_ANON = LRU_BASE, 136 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 137 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 138 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 139 LRU_UNEVICTABLE, 140 NR_LRU_LISTS 141}; 142 143#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 144 145#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 146 147static inline int is_file_lru(enum lru_list lru) 148{ 149 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 150} 151 152static inline int is_active_lru(enum lru_list lru) 153{ 154 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 155} 156 157static inline int is_unevictable_lru(enum lru_list lru) 158{ 159 return (lru == LRU_UNEVICTABLE); 160} 161 162struct lruvec { 163 struct list_head lists[NR_LRU_LISTS]; 164}; 165 166/* Mask used at gathering information at once (see memcontrol.c) */ 167#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 168#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 169#define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON) 170#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 171 172/* Isolate inactive pages */ 173#define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1) 174/* Isolate active pages */ 175#define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2) 176/* Isolate clean file */ 177#define ISOLATE_CLEAN ((__force isolate_mode_t)0x4) 178/* Isolate unmapped file */ 179#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8) 180/* Isolate for asynchronous migration */ 181#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x10) 182 183/* LRU Isolation modes. */ 184typedef unsigned __bitwise__ isolate_mode_t; 185 186enum zone_watermarks { 187 WMARK_MIN, 188 WMARK_LOW, 189 WMARK_HIGH, 190 NR_WMARK 191}; 192 193#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 194#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 195#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 196 197struct per_cpu_pages { 198 int count; /* number of pages in the list */ 199 int high; /* high watermark, emptying needed */ 200 int batch; /* chunk size for buddy add/remove */ 201 202 /* Lists of pages, one per migrate type stored on the pcp-lists */ 203 struct list_head lists[MIGRATE_PCPTYPES]; 204}; 205 206struct per_cpu_pageset { 207 struct per_cpu_pages pcp; 208#ifdef CONFIG_NUMA 209 s8 expire; 210#endif 211#ifdef CONFIG_SMP 212 s8 stat_threshold; 213 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 214#endif 215}; 216 217#endif /* !__GENERATING_BOUNDS.H */ 218 219enum zone_type { 220#ifdef CONFIG_ZONE_DMA 221 /* 222 * ZONE_DMA is used when there are devices that are not able 223 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 224 * carve out the portion of memory that is needed for these devices. 225 * The range is arch specific. 226 * 227 * Some examples 228 * 229 * Architecture Limit 230 * --------------------------- 231 * parisc, ia64, sparc <4G 232 * s390 <2G 233 * arm Various 234 * alpha Unlimited or 0-16MB. 235 * 236 * i386, x86_64 and multiple other arches 237 * <16M. 238 */ 239 ZONE_DMA, 240#endif 241#ifdef CONFIG_ZONE_DMA32 242 /* 243 * x86_64 needs two ZONE_DMAs because it supports devices that are 244 * only able to do DMA to the lower 16M but also 32 bit devices that 245 * can only do DMA areas below 4G. 246 */ 247 ZONE_DMA32, 248#endif 249 /* 250 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 251 * performed on pages in ZONE_NORMAL if the DMA devices support 252 * transfers to all addressable memory. 253 */ 254 ZONE_NORMAL, 255#ifdef CONFIG_HIGHMEM 256 /* 257 * A memory area that is only addressable by the kernel through 258 * mapping portions into its own address space. This is for example 259 * used by i386 to allow the kernel to address the memory beyond 260 * 900MB. The kernel will set up special mappings (page 261 * table entries on i386) for each page that the kernel needs to 262 * access. 263 */ 264 ZONE_HIGHMEM, 265#endif 266 ZONE_MOVABLE, 267 __MAX_NR_ZONES 268}; 269 270#ifndef __GENERATING_BOUNDS_H 271 272/* 273 * When a memory allocation must conform to specific limitations (such 274 * as being suitable for DMA) the caller will pass in hints to the 275 * allocator in the gfp_mask, in the zone modifier bits. These bits 276 * are used to select a priority ordered list of memory zones which 277 * match the requested limits. See gfp_zone() in include/linux/gfp.h 278 */ 279 280#if MAX_NR_ZONES < 2 281#define ZONES_SHIFT 0 282#elif MAX_NR_ZONES <= 2 283#define ZONES_SHIFT 1 284#elif MAX_NR_ZONES <= 4 285#define ZONES_SHIFT 2 286#else 287#error ZONES_SHIFT -- too many zones configured adjust calculation 288#endif 289 290struct zone_reclaim_stat { 291 /* 292 * The pageout code in vmscan.c keeps track of how many of the 293 * mem/swap backed and file backed pages are refeferenced. 294 * The higher the rotated/scanned ratio, the more valuable 295 * that cache is. 296 * 297 * The anon LRU stats live in [0], file LRU stats in [1] 298 */ 299 unsigned long recent_rotated[2]; 300 unsigned long recent_scanned[2]; 301}; 302 303struct zone { 304 /* Fields commonly accessed by the page allocator */ 305 306 /* zone watermarks, access with *_wmark_pages(zone) macros */ 307 unsigned long watermark[NR_WMARK]; 308 309 /* 310 * When free pages are below this point, additional steps are taken 311 * when reading the number of free pages to avoid per-cpu counter 312 * drift allowing watermarks to be breached 313 */ 314 unsigned long percpu_drift_mark; 315 316 /* 317 * We don't know if the memory that we're going to allocate will be freeable 318 * or/and it will be released eventually, so to avoid totally wasting several 319 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 320 * to run OOM on the lower zones despite there's tons of freeable ram 321 * on the higher zones). This array is recalculated at runtime if the 322 * sysctl_lowmem_reserve_ratio sysctl changes. 323 */ 324 unsigned long lowmem_reserve[MAX_NR_ZONES]; 325 326 /* 327 * This is a per-zone reserve of pages that should not be 328 * considered dirtyable memory. 329 */ 330 unsigned long dirty_balance_reserve; 331 332#ifdef CONFIG_NUMA 333 int node; 334 /* 335 * zone reclaim becomes active if more unmapped pages exist. 336 */ 337 unsigned long min_unmapped_pages; 338 unsigned long min_slab_pages; 339#endif 340 struct per_cpu_pageset __percpu *pageset; 341 /* 342 * free areas of different sizes 343 */ 344 spinlock_t lock; 345 int all_unreclaimable; /* All pages pinned */ 346#ifdef CONFIG_MEMORY_HOTPLUG 347 /* see spanned/present_pages for more description */ 348 seqlock_t span_seqlock; 349#endif 350 struct free_area free_area[MAX_ORDER]; 351 352#ifndef CONFIG_SPARSEMEM 353 /* 354 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 355 * In SPARSEMEM, this map is stored in struct mem_section 356 */ 357 unsigned long *pageblock_flags; 358#endif /* CONFIG_SPARSEMEM */ 359 360#ifdef CONFIG_COMPACTION 361 /* 362 * On compaction failure, 1<<compact_defer_shift compactions 363 * are skipped before trying again. The number attempted since 364 * last failure is tracked with compact_considered. 365 */ 366 unsigned int compact_considered; 367 unsigned int compact_defer_shift; 368#endif 369 370 ZONE_PADDING(_pad1_) 371 372 /* Fields commonly accessed by the page reclaim scanner */ 373 spinlock_t lru_lock; 374 struct lruvec lruvec; 375 376 struct zone_reclaim_stat reclaim_stat; 377 378 unsigned long pages_scanned; /* since last reclaim */ 379 unsigned long flags; /* zone flags, see below */ 380 381 /* Zone statistics */ 382 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 383 384 /* 385 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 386 * this zone's LRU. Maintained by the pageout code. 387 */ 388 unsigned int inactive_ratio; 389 390 391 ZONE_PADDING(_pad2_) 392 /* Rarely used or read-mostly fields */ 393 394 /* 395 * wait_table -- the array holding the hash table 396 * wait_table_hash_nr_entries -- the size of the hash table array 397 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 398 * 399 * The purpose of all these is to keep track of the people 400 * waiting for a page to become available and make them 401 * runnable again when possible. The trouble is that this 402 * consumes a lot of space, especially when so few things 403 * wait on pages at a given time. So instead of using 404 * per-page waitqueues, we use a waitqueue hash table. 405 * 406 * The bucket discipline is to sleep on the same queue when 407 * colliding and wake all in that wait queue when removing. 408 * When something wakes, it must check to be sure its page is 409 * truly available, a la thundering herd. The cost of a 410 * collision is great, but given the expected load of the 411 * table, they should be so rare as to be outweighed by the 412 * benefits from the saved space. 413 * 414 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 415 * primary users of these fields, and in mm/page_alloc.c 416 * free_area_init_core() performs the initialization of them. 417 */ 418 wait_queue_head_t * wait_table; 419 unsigned long wait_table_hash_nr_entries; 420 unsigned long wait_table_bits; 421 422 /* 423 * Discontig memory support fields. 424 */ 425 struct pglist_data *zone_pgdat; 426 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 427 unsigned long zone_start_pfn; 428 429 /* 430 * zone_start_pfn, spanned_pages and present_pages are all 431 * protected by span_seqlock. It is a seqlock because it has 432 * to be read outside of zone->lock, and it is done in the main 433 * allocator path. But, it is written quite infrequently. 434 * 435 * The lock is declared along with zone->lock because it is 436 * frequently read in proximity to zone->lock. It's good to 437 * give them a chance of being in the same cacheline. 438 */ 439 unsigned long spanned_pages; /* total size, including holes */ 440 unsigned long present_pages; /* amount of memory (excluding holes) */ 441 442 /* 443 * rarely used fields: 444 */ 445 const char *name; 446} ____cacheline_internodealigned_in_smp; 447 448typedef enum { 449 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 450 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 451 ZONE_CONGESTED, /* zone has many dirty pages backed by 452 * a congested BDI 453 */ 454} zone_flags_t; 455 456static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 457{ 458 set_bit(flag, &zone->flags); 459} 460 461static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 462{ 463 return test_and_set_bit(flag, &zone->flags); 464} 465 466static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 467{ 468 clear_bit(flag, &zone->flags); 469} 470 471static inline int zone_is_reclaim_congested(const struct zone *zone) 472{ 473 return test_bit(ZONE_CONGESTED, &zone->flags); 474} 475 476static inline int zone_is_reclaim_locked(const struct zone *zone) 477{ 478 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 479} 480 481static inline int zone_is_oom_locked(const struct zone *zone) 482{ 483 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 484} 485 486/* 487 * The "priority" of VM scanning is how much of the queues we will scan in one 488 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 489 * queues ("queue_length >> 12") during an aging round. 490 */ 491#define DEF_PRIORITY 12 492 493/* Maximum number of zones on a zonelist */ 494#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 495 496#ifdef CONFIG_NUMA 497 498/* 499 * The NUMA zonelists are doubled because we need zonelists that restrict the 500 * allocations to a single node for GFP_THISNODE. 501 * 502 * [0] : Zonelist with fallback 503 * [1] : No fallback (GFP_THISNODE) 504 */ 505#define MAX_ZONELISTS 2 506 507 508/* 509 * We cache key information from each zonelist for smaller cache 510 * footprint when scanning for free pages in get_page_from_freelist(). 511 * 512 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 513 * up short of free memory since the last time (last_fullzone_zap) 514 * we zero'd fullzones. 515 * 2) The array z_to_n[] maps each zone in the zonelist to its node 516 * id, so that we can efficiently evaluate whether that node is 517 * set in the current tasks mems_allowed. 518 * 519 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 520 * indexed by a zones offset in the zonelist zones[] array. 521 * 522 * The get_page_from_freelist() routine does two scans. During the 523 * first scan, we skip zones whose corresponding bit in 'fullzones' 524 * is set or whose corresponding node in current->mems_allowed (which 525 * comes from cpusets) is not set. During the second scan, we bypass 526 * this zonelist_cache, to ensure we look methodically at each zone. 527 * 528 * Once per second, we zero out (zap) fullzones, forcing us to 529 * reconsider nodes that might have regained more free memory. 530 * The field last_full_zap is the time we last zapped fullzones. 531 * 532 * This mechanism reduces the amount of time we waste repeatedly 533 * reexaming zones for free memory when they just came up low on 534 * memory momentarilly ago. 535 * 536 * The zonelist_cache struct members logically belong in struct 537 * zonelist. However, the mempolicy zonelists constructed for 538 * MPOL_BIND are intentionally variable length (and usually much 539 * shorter). A general purpose mechanism for handling structs with 540 * multiple variable length members is more mechanism than we want 541 * here. We resort to some special case hackery instead. 542 * 543 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 544 * part because they are shorter), so we put the fixed length stuff 545 * at the front of the zonelist struct, ending in a variable length 546 * zones[], as is needed by MPOL_BIND. 547 * 548 * Then we put the optional zonelist cache on the end of the zonelist 549 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 550 * the fixed length portion at the front of the struct. This pointer 551 * both enables us to find the zonelist cache, and in the case of 552 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 553 * to know that the zonelist cache is not there. 554 * 555 * The end result is that struct zonelists come in two flavors: 556 * 1) The full, fixed length version, shown below, and 557 * 2) The custom zonelists for MPOL_BIND. 558 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 559 * 560 * Even though there may be multiple CPU cores on a node modifying 561 * fullzones or last_full_zap in the same zonelist_cache at the same 562 * time, we don't lock it. This is just hint data - if it is wrong now 563 * and then, the allocator will still function, perhaps a bit slower. 564 */ 565 566 567struct zonelist_cache { 568 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 569 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 570 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 571}; 572#else 573#define MAX_ZONELISTS 1 574struct zonelist_cache; 575#endif 576 577/* 578 * This struct contains information about a zone in a zonelist. It is stored 579 * here to avoid dereferences into large structures and lookups of tables 580 */ 581struct zoneref { 582 struct zone *zone; /* Pointer to actual zone */ 583 int zone_idx; /* zone_idx(zoneref->zone) */ 584}; 585 586/* 587 * One allocation request operates on a zonelist. A zonelist 588 * is a list of zones, the first one is the 'goal' of the 589 * allocation, the other zones are fallback zones, in decreasing 590 * priority. 591 * 592 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 593 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 594 * * 595 * To speed the reading of the zonelist, the zonerefs contain the zone index 596 * of the entry being read. Helper functions to access information given 597 * a struct zoneref are 598 * 599 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 600 * zonelist_zone_idx() - Return the index of the zone for an entry 601 * zonelist_node_idx() - Return the index of the node for an entry 602 */ 603struct zonelist { 604 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 605 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 606#ifdef CONFIG_NUMA 607 struct zonelist_cache zlcache; // optional ... 608#endif 609}; 610 611#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 612struct node_active_region { 613 unsigned long start_pfn; 614 unsigned long end_pfn; 615 int nid; 616}; 617#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 618 619#ifndef CONFIG_DISCONTIGMEM 620/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 621extern struct page *mem_map; 622#endif 623 624/* 625 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 626 * (mostly NUMA machines?) to denote a higher-level memory zone than the 627 * zone denotes. 628 * 629 * On NUMA machines, each NUMA node would have a pg_data_t to describe 630 * it's memory layout. 631 * 632 * Memory statistics and page replacement data structures are maintained on a 633 * per-zone basis. 634 */ 635struct bootmem_data; 636typedef struct pglist_data { 637 struct zone node_zones[MAX_NR_ZONES]; 638 struct zonelist node_zonelists[MAX_ZONELISTS]; 639 int nr_zones; 640#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 641 struct page *node_mem_map; 642#ifdef CONFIG_CGROUP_MEM_RES_CTLR 643 struct page_cgroup *node_page_cgroup; 644#endif 645#endif 646#ifndef CONFIG_NO_BOOTMEM 647 struct bootmem_data *bdata; 648#endif 649#ifdef CONFIG_MEMORY_HOTPLUG 650 /* 651 * Must be held any time you expect node_start_pfn, node_present_pages 652 * or node_spanned_pages stay constant. Holding this will also 653 * guarantee that any pfn_valid() stays that way. 654 * 655 * Nests above zone->lock and zone->size_seqlock. 656 */ 657 spinlock_t node_size_lock; 658#endif 659 unsigned long node_start_pfn; 660 unsigned long node_present_pages; /* total number of physical pages */ 661 unsigned long node_spanned_pages; /* total size of physical page 662 range, including holes */ 663 int node_id; 664 wait_queue_head_t kswapd_wait; 665 struct task_struct *kswapd; 666 int kswapd_max_order; 667 enum zone_type classzone_idx; 668} pg_data_t; 669 670#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 671#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 672#ifdef CONFIG_FLAT_NODE_MEM_MAP 673#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 674#else 675#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 676#endif 677#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 678 679#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 680 681#define node_end_pfn(nid) ({\ 682 pg_data_t *__pgdat = NODE_DATA(nid);\ 683 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\ 684}) 685 686#include <linux/memory_hotplug.h> 687 688extern struct mutex zonelists_mutex; 689void build_all_zonelists(void *data); 690void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 691bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 692 int classzone_idx, int alloc_flags); 693bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 694 int classzone_idx, int alloc_flags); 695enum memmap_context { 696 MEMMAP_EARLY, 697 MEMMAP_HOTPLUG, 698}; 699extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 700 unsigned long size, 701 enum memmap_context context); 702 703#ifdef CONFIG_HAVE_MEMORY_PRESENT 704void memory_present(int nid, unsigned long start, unsigned long end); 705#else 706static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 707#endif 708 709#ifdef CONFIG_HAVE_MEMORYLESS_NODES 710int local_memory_node(int node_id); 711#else 712static inline int local_memory_node(int node_id) { return node_id; }; 713#endif 714 715#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 716unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 717#endif 718 719/* 720 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 721 */ 722#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 723 724static inline int populated_zone(struct zone *zone) 725{ 726 return (!!zone->present_pages); 727} 728 729extern int movable_zone; 730 731static inline int zone_movable_is_highmem(void) 732{ 733#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE) 734 return movable_zone == ZONE_HIGHMEM; 735#else 736 return 0; 737#endif 738} 739 740static inline int is_highmem_idx(enum zone_type idx) 741{ 742#ifdef CONFIG_HIGHMEM 743 return (idx == ZONE_HIGHMEM || 744 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 745#else 746 return 0; 747#endif 748} 749 750static inline int is_normal_idx(enum zone_type idx) 751{ 752 return (idx == ZONE_NORMAL); 753} 754 755/** 756 * is_highmem - helper function to quickly check if a struct zone is a 757 * highmem zone or not. This is an attempt to keep references 758 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 759 * @zone - pointer to struct zone variable 760 */ 761static inline int is_highmem(struct zone *zone) 762{ 763#ifdef CONFIG_HIGHMEM 764 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 765 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 766 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 767 zone_movable_is_highmem()); 768#else 769 return 0; 770#endif 771} 772 773static inline int is_normal(struct zone *zone) 774{ 775 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 776} 777 778static inline int is_dma32(struct zone *zone) 779{ 780#ifdef CONFIG_ZONE_DMA32 781 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 782#else 783 return 0; 784#endif 785} 786 787static inline int is_dma(struct zone *zone) 788{ 789#ifdef CONFIG_ZONE_DMA 790 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 791#else 792 return 0; 793#endif 794} 795 796/* These two functions are used to setup the per zone pages min values */ 797struct ctl_table; 798int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 799 void __user *, size_t *, loff_t *); 800extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 801int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 802 void __user *, size_t *, loff_t *); 803int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 804 void __user *, size_t *, loff_t *); 805int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 806 void __user *, size_t *, loff_t *); 807int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 808 void __user *, size_t *, loff_t *); 809 810extern int numa_zonelist_order_handler(struct ctl_table *, int, 811 void __user *, size_t *, loff_t *); 812extern char numa_zonelist_order[]; 813#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 814 815#ifndef CONFIG_NEED_MULTIPLE_NODES 816 817extern struct pglist_data contig_page_data; 818#define NODE_DATA(nid) (&contig_page_data) 819#define NODE_MEM_MAP(nid) mem_map 820 821#else /* CONFIG_NEED_MULTIPLE_NODES */ 822 823#include <asm/mmzone.h> 824 825#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 826 827extern struct pglist_data *first_online_pgdat(void); 828extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 829extern struct zone *next_zone(struct zone *zone); 830 831/** 832 * for_each_online_pgdat - helper macro to iterate over all online nodes 833 * @pgdat - pointer to a pg_data_t variable 834 */ 835#define for_each_online_pgdat(pgdat) \ 836 for (pgdat = first_online_pgdat(); \ 837 pgdat; \ 838 pgdat = next_online_pgdat(pgdat)) 839/** 840 * for_each_zone - helper macro to iterate over all memory zones 841 * @zone - pointer to struct zone variable 842 * 843 * The user only needs to declare the zone variable, for_each_zone 844 * fills it in. 845 */ 846#define for_each_zone(zone) \ 847 for (zone = (first_online_pgdat())->node_zones; \ 848 zone; \ 849 zone = next_zone(zone)) 850 851#define for_each_populated_zone(zone) \ 852 for (zone = (first_online_pgdat())->node_zones; \ 853 zone; \ 854 zone = next_zone(zone)) \ 855 if (!populated_zone(zone)) \ 856 ; /* do nothing */ \ 857 else 858 859static inline struct zone *zonelist_zone(struct zoneref *zoneref) 860{ 861 return zoneref->zone; 862} 863 864static inline int zonelist_zone_idx(struct zoneref *zoneref) 865{ 866 return zoneref->zone_idx; 867} 868 869static inline int zonelist_node_idx(struct zoneref *zoneref) 870{ 871#ifdef CONFIG_NUMA 872 /* zone_to_nid not available in this context */ 873 return zoneref->zone->node; 874#else 875 return 0; 876#endif /* CONFIG_NUMA */ 877} 878 879/** 880 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 881 * @z - The cursor used as a starting point for the search 882 * @highest_zoneidx - The zone index of the highest zone to return 883 * @nodes - An optional nodemask to filter the zonelist with 884 * @zone - The first suitable zone found is returned via this parameter 885 * 886 * This function returns the next zone at or below a given zone index that is 887 * within the allowed nodemask using a cursor as the starting point for the 888 * search. The zoneref returned is a cursor that represents the current zone 889 * being examined. It should be advanced by one before calling 890 * next_zones_zonelist again. 891 */ 892struct zoneref *next_zones_zonelist(struct zoneref *z, 893 enum zone_type highest_zoneidx, 894 nodemask_t *nodes, 895 struct zone **zone); 896 897/** 898 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 899 * @zonelist - The zonelist to search for a suitable zone 900 * @highest_zoneidx - The zone index of the highest zone to return 901 * @nodes - An optional nodemask to filter the zonelist with 902 * @zone - The first suitable zone found is returned via this parameter 903 * 904 * This function returns the first zone at or below a given zone index that is 905 * within the allowed nodemask. The zoneref returned is a cursor that can be 906 * used to iterate the zonelist with next_zones_zonelist by advancing it by 907 * one before calling. 908 */ 909static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 910 enum zone_type highest_zoneidx, 911 nodemask_t *nodes, 912 struct zone **zone) 913{ 914 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 915 zone); 916} 917 918/** 919 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 920 * @zone - The current zone in the iterator 921 * @z - The current pointer within zonelist->zones being iterated 922 * @zlist - The zonelist being iterated 923 * @highidx - The zone index of the highest zone to return 924 * @nodemask - Nodemask allowed by the allocator 925 * 926 * This iterator iterates though all zones at or below a given zone index and 927 * within a given nodemask 928 */ 929#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 930 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 931 zone; \ 932 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 933 934/** 935 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 936 * @zone - The current zone in the iterator 937 * @z - The current pointer within zonelist->zones being iterated 938 * @zlist - The zonelist being iterated 939 * @highidx - The zone index of the highest zone to return 940 * 941 * This iterator iterates though all zones at or below a given zone index. 942 */ 943#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 944 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 945 946#ifdef CONFIG_SPARSEMEM 947#include <asm/sparsemem.h> 948#endif 949 950#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 951 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 952static inline unsigned long early_pfn_to_nid(unsigned long pfn) 953{ 954 return 0; 955} 956#endif 957 958#ifdef CONFIG_FLATMEM 959#define pfn_to_nid(pfn) (0) 960#endif 961 962#ifdef CONFIG_SPARSEMEM 963 964/* 965 * SECTION_SHIFT #bits space required to store a section # 966 * 967 * PA_SECTION_SHIFT physical address to/from section number 968 * PFN_SECTION_SHIFT pfn to/from section number 969 */ 970#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 971 972#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 973#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 974 975#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 976 977#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 978#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 979 980#define SECTION_BLOCKFLAGS_BITS \ 981 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 982 983#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 984#error Allocator MAX_ORDER exceeds SECTION_SIZE 985#endif 986 987#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 988#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 989 990#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 991#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 992 993struct page; 994struct page_cgroup; 995struct mem_section { 996 /* 997 * This is, logically, a pointer to an array of struct 998 * pages. However, it is stored with some other magic. 999 * (see sparse.c::sparse_init_one_section()) 1000 * 1001 * Additionally during early boot we encode node id of 1002 * the location of the section here to guide allocation. 1003 * (see sparse.c::memory_present()) 1004 * 1005 * Making it a UL at least makes someone do a cast 1006 * before using it wrong. 1007 */ 1008 unsigned long section_mem_map; 1009 1010 /* See declaration of similar field in struct zone */ 1011 unsigned long *pageblock_flags; 1012#ifdef CONFIG_CGROUP_MEM_RES_CTLR 1013 /* 1014 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1015 * section. (see memcontrol.h/page_cgroup.h about this.) 1016 */ 1017 struct page_cgroup *page_cgroup; 1018 unsigned long pad; 1019#endif 1020}; 1021 1022#ifdef CONFIG_SPARSEMEM_EXTREME 1023#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1024#else 1025#define SECTIONS_PER_ROOT 1 1026#endif 1027 1028#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1029#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1030#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1031 1032#ifdef CONFIG_SPARSEMEM_EXTREME 1033extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1034#else 1035extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1036#endif 1037 1038static inline struct mem_section *__nr_to_section(unsigned long nr) 1039{ 1040 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1041 return NULL; 1042 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1043} 1044extern int __section_nr(struct mem_section* ms); 1045extern unsigned long usemap_size(void); 1046 1047/* 1048 * We use the lower bits of the mem_map pointer to store 1049 * a little bit of information. There should be at least 1050 * 3 bits here due to 32-bit alignment. 1051 */ 1052#define SECTION_MARKED_PRESENT (1UL<<0) 1053#define SECTION_HAS_MEM_MAP (1UL<<1) 1054#define SECTION_MAP_LAST_BIT (1UL<<2) 1055#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1056#define SECTION_NID_SHIFT 2 1057 1058static inline struct page *__section_mem_map_addr(struct mem_section *section) 1059{ 1060 unsigned long map = section->section_mem_map; 1061 map &= SECTION_MAP_MASK; 1062 return (struct page *)map; 1063} 1064 1065static inline int present_section(struct mem_section *section) 1066{ 1067 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1068} 1069 1070static inline int present_section_nr(unsigned long nr) 1071{ 1072 return present_section(__nr_to_section(nr)); 1073} 1074 1075static inline int valid_section(struct mem_section *section) 1076{ 1077 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1078} 1079 1080static inline int valid_section_nr(unsigned long nr) 1081{ 1082 return valid_section(__nr_to_section(nr)); 1083} 1084 1085static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1086{ 1087 return __nr_to_section(pfn_to_section_nr(pfn)); 1088} 1089 1090#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1091static inline int pfn_valid(unsigned long pfn) 1092{ 1093 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1094 return 0; 1095 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1096} 1097#endif 1098 1099static inline int pfn_present(unsigned long pfn) 1100{ 1101 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1102 return 0; 1103 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1104} 1105 1106/* 1107 * These are _only_ used during initialisation, therefore they 1108 * can use __initdata ... They could have names to indicate 1109 * this restriction. 1110 */ 1111#ifdef CONFIG_NUMA 1112#define pfn_to_nid(pfn) \ 1113({ \ 1114 unsigned long __pfn_to_nid_pfn = (pfn); \ 1115 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1116}) 1117#else 1118#define pfn_to_nid(pfn) (0) 1119#endif 1120 1121#define early_pfn_valid(pfn) pfn_valid(pfn) 1122void sparse_init(void); 1123#else 1124#define sparse_init() do {} while (0) 1125#define sparse_index_init(_sec, _nid) do {} while (0) 1126#endif /* CONFIG_SPARSEMEM */ 1127 1128#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1129bool early_pfn_in_nid(unsigned long pfn, int nid); 1130#else 1131#define early_pfn_in_nid(pfn, nid) (1) 1132#endif 1133 1134#ifndef early_pfn_valid 1135#define early_pfn_valid(pfn) (1) 1136#endif 1137 1138void memory_present(int nid, unsigned long start, unsigned long end); 1139unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1140 1141/* 1142 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1143 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1144 * pfn_valid_within() should be used in this case; we optimise this away 1145 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1146 */ 1147#ifdef CONFIG_HOLES_IN_ZONE 1148#define pfn_valid_within(pfn) pfn_valid(pfn) 1149#else 1150#define pfn_valid_within(pfn) (1) 1151#endif 1152 1153#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1154/* 1155 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1156 * associated with it or not. In FLATMEM, it is expected that holes always 1157 * have valid memmap as long as there is valid PFNs either side of the hole. 1158 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1159 * entire section. 1160 * 1161 * However, an ARM, and maybe other embedded architectures in the future 1162 * free memmap backing holes to save memory on the assumption the memmap is 1163 * never used. The page_zone linkages are then broken even though pfn_valid() 1164 * returns true. A walker of the full memmap must then do this additional 1165 * check to ensure the memmap they are looking at is sane by making sure 1166 * the zone and PFN linkages are still valid. This is expensive, but walkers 1167 * of the full memmap are extremely rare. 1168 */ 1169int memmap_valid_within(unsigned long pfn, 1170 struct page *page, struct zone *zone); 1171#else 1172static inline int memmap_valid_within(unsigned long pfn, 1173 struct page *page, struct zone *zone) 1174{ 1175 return 1; 1176} 1177#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1178 1179#endif /* !__GENERATING_BOUNDS.H */ 1180#endif /* !__ASSEMBLY__ */ 1181#endif /* _LINUX_MMZONE_H */