at v3.3 95 kB view raw
1/* 2 * RocketPort device driver for Linux 3 * 4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000. 5 * 6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of the 11 * License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23/* 24 * Kernel Synchronization: 25 * 26 * This driver has 2 kernel control paths - exception handlers (calls into the driver 27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts 28 * are not used. 29 * 30 * Critical data: 31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of 32 * serial port state information and the xmit_buf circular buffer. Protected by 33 * a per port spinlock. 34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there 35 * is data to be transmitted. Protected by atomic bit operations. 36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations. 37 * 38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against 39 * simultaneous access to the same port by more than one process. 40 */ 41 42/****** Defines ******/ 43#define ROCKET_PARANOIA_CHECK 44#define ROCKET_DISABLE_SIMUSAGE 45 46#undef ROCKET_SOFT_FLOW 47#undef ROCKET_DEBUG_OPEN 48#undef ROCKET_DEBUG_INTR 49#undef ROCKET_DEBUG_WRITE 50#undef ROCKET_DEBUG_FLOW 51#undef ROCKET_DEBUG_THROTTLE 52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT 53#undef ROCKET_DEBUG_RECEIVE 54#undef ROCKET_DEBUG_HANGUP 55#undef REV_PCI_ORDER 56#undef ROCKET_DEBUG_IO 57 58#define POLL_PERIOD HZ/100 /* Polling period .01 seconds (10ms) */ 59 60/****** Kernel includes ******/ 61 62#include <linux/module.h> 63#include <linux/errno.h> 64#include <linux/major.h> 65#include <linux/kernel.h> 66#include <linux/signal.h> 67#include <linux/slab.h> 68#include <linux/mm.h> 69#include <linux/sched.h> 70#include <linux/timer.h> 71#include <linux/interrupt.h> 72#include <linux/tty.h> 73#include <linux/tty_driver.h> 74#include <linux/tty_flip.h> 75#include <linux/serial.h> 76#include <linux/string.h> 77#include <linux/fcntl.h> 78#include <linux/ptrace.h> 79#include <linux/mutex.h> 80#include <linux/ioport.h> 81#include <linux/delay.h> 82#include <linux/completion.h> 83#include <linux/wait.h> 84#include <linux/pci.h> 85#include <linux/uaccess.h> 86#include <linux/atomic.h> 87#include <asm/unaligned.h> 88#include <linux/bitops.h> 89#include <linux/spinlock.h> 90#include <linux/init.h> 91 92/****** RocketPort includes ******/ 93 94#include "rocket_int.h" 95#include "rocket.h" 96 97#define ROCKET_VERSION "2.09" 98#define ROCKET_DATE "12-June-2003" 99 100/****** RocketPort Local Variables ******/ 101 102static void rp_do_poll(unsigned long dummy); 103 104static struct tty_driver *rocket_driver; 105 106static struct rocket_version driver_version = { 107 ROCKET_VERSION, ROCKET_DATE 108}; 109 110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */ 111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */ 112 /* eg. Bit 0 indicates port 0 has xmit data, ... */ 113static atomic_t rp_num_ports_open; /* Number of serial ports open */ 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0); 115 116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */ 117static unsigned long board2; 118static unsigned long board3; 119static unsigned long board4; 120static unsigned long controller; 121static bool support_low_speed; 122static unsigned long modem1; 123static unsigned long modem2; 124static unsigned long modem3; 125static unsigned long modem4; 126static unsigned long pc104_1[8]; 127static unsigned long pc104_2[8]; 128static unsigned long pc104_3[8]; 129static unsigned long pc104_4[8]; 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 }; 131 132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */ 133static unsigned long rcktpt_io_addr[NUM_BOARDS]; 134static int rcktpt_type[NUM_BOARDS]; 135static int is_PCI[NUM_BOARDS]; 136static rocketModel_t rocketModel[NUM_BOARDS]; 137static int max_board; 138static const struct tty_port_operations rocket_port_ops; 139 140/* 141 * The following arrays define the interrupt bits corresponding to each AIOP. 142 * These bits are different between the ISA and regular PCI boards and the 143 * Universal PCI boards. 144 */ 145 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = { 147 AIOP_INTR_BIT_0, 148 AIOP_INTR_BIT_1, 149 AIOP_INTR_BIT_2, 150 AIOP_INTR_BIT_3 151}; 152 153static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = { 154 UPCI_AIOP_INTR_BIT_0, 155 UPCI_AIOP_INTR_BIT_1, 156 UPCI_AIOP_INTR_BIT_2, 157 UPCI_AIOP_INTR_BIT_3 158}; 159 160static Byte_t RData[RDATASIZE] = { 161 0x00, 0x09, 0xf6, 0x82, 162 0x02, 0x09, 0x86, 0xfb, 163 0x04, 0x09, 0x00, 0x0a, 164 0x06, 0x09, 0x01, 0x0a, 165 0x08, 0x09, 0x8a, 0x13, 166 0x0a, 0x09, 0xc5, 0x11, 167 0x0c, 0x09, 0x86, 0x85, 168 0x0e, 0x09, 0x20, 0x0a, 169 0x10, 0x09, 0x21, 0x0a, 170 0x12, 0x09, 0x41, 0xff, 171 0x14, 0x09, 0x82, 0x00, 172 0x16, 0x09, 0x82, 0x7b, 173 0x18, 0x09, 0x8a, 0x7d, 174 0x1a, 0x09, 0x88, 0x81, 175 0x1c, 0x09, 0x86, 0x7a, 176 0x1e, 0x09, 0x84, 0x81, 177 0x20, 0x09, 0x82, 0x7c, 178 0x22, 0x09, 0x0a, 0x0a 179}; 180 181static Byte_t RRegData[RREGDATASIZE] = { 182 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 183 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 184 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 185 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 186 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 187 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 188 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 189 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 190 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 191 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 192 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 193 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 194 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ 195}; 196 197static CONTROLLER_T sController[CTL_SIZE] = { 198 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 199 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}} 206}; 207 208static Byte_t sBitMapClrTbl[8] = { 209 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f 210}; 211 212static Byte_t sBitMapSetTbl[8] = { 213 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 214}; 215 216static int sClockPrescale = 0x14; 217 218/* 219 * Line number is the ttySIx number (x), the Minor number. We 220 * assign them sequentially, starting at zero. The following 221 * array keeps track of the line number assigned to a given board/aiop/channel. 222 */ 223static unsigned char lineNumbers[MAX_RP_PORTS]; 224static unsigned long nextLineNumber; 225 226/***** RocketPort Static Prototypes *********/ 227static int __init init_ISA(int i); 228static void rp_wait_until_sent(struct tty_struct *tty, int timeout); 229static void rp_flush_buffer(struct tty_struct *tty); 230static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model); 231static unsigned char GetLineNumber(int ctrl, int aiop, int ch); 232static unsigned char SetLineNumber(int ctrl, int aiop, int ch); 233static void rp_start(struct tty_struct *tty); 234static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 235 int ChanNum); 236static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode); 237static void sFlushRxFIFO(CHANNEL_T * ChP); 238static void sFlushTxFIFO(CHANNEL_T * ChP); 239static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags); 240static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags); 241static void sModemReset(CONTROLLER_T * CtlP, int chan, int on); 242static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on); 243static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data); 244static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 245 ByteIO_t * AiopIOList, int AiopIOListSize, 246 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 247 int PeriodicOnly, int altChanRingIndicator, 248 int UPCIRingInd); 249static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 250 ByteIO_t * AiopIOList, int AiopIOListSize, 251 int IRQNum, Byte_t Frequency, int PeriodicOnly); 252static int sReadAiopID(ByteIO_t io); 253static int sReadAiopNumChan(WordIO_t io); 254 255MODULE_AUTHOR("Theodore Ts'o"); 256MODULE_DESCRIPTION("Comtrol RocketPort driver"); 257module_param(board1, ulong, 0); 258MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1"); 259module_param(board2, ulong, 0); 260MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2"); 261module_param(board3, ulong, 0); 262MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3"); 263module_param(board4, ulong, 0); 264MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4"); 265module_param(controller, ulong, 0); 266MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller"); 267module_param(support_low_speed, bool, 0); 268MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud"); 269module_param(modem1, ulong, 0); 270MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem"); 271module_param(modem2, ulong, 0); 272MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem"); 273module_param(modem3, ulong, 0); 274MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem"); 275module_param(modem4, ulong, 0); 276MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem"); 277module_param_array(pc104_1, ulong, NULL, 0); 278MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,..."); 279module_param_array(pc104_2, ulong, NULL, 0); 280MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,..."); 281module_param_array(pc104_3, ulong, NULL, 0); 282MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,..."); 283module_param_array(pc104_4, ulong, NULL, 0); 284MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,..."); 285 286static int rp_init(void); 287static void rp_cleanup_module(void); 288 289module_init(rp_init); 290module_exit(rp_cleanup_module); 291 292 293MODULE_LICENSE("Dual BSD/GPL"); 294 295/*************************************************************************/ 296/* Module code starts here */ 297 298static inline int rocket_paranoia_check(struct r_port *info, 299 const char *routine) 300{ 301#ifdef ROCKET_PARANOIA_CHECK 302 if (!info) 303 return 1; 304 if (info->magic != RPORT_MAGIC) { 305 printk(KERN_WARNING "Warning: bad magic number for rocketport " 306 "struct in %s\n", routine); 307 return 1; 308 } 309#endif 310 return 0; 311} 312 313 314/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals 315 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the 316 * tty layer. 317 */ 318static void rp_do_receive(struct r_port *info, 319 struct tty_struct *tty, 320 CHANNEL_t * cp, unsigned int ChanStatus) 321{ 322 unsigned int CharNStat; 323 int ToRecv, wRecv, space; 324 unsigned char *cbuf; 325 326 ToRecv = sGetRxCnt(cp); 327#ifdef ROCKET_DEBUG_INTR 328 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv); 329#endif 330 if (ToRecv == 0) 331 return; 332 333 /* 334 * if status indicates there are errored characters in the 335 * FIFO, then enter status mode (a word in FIFO holds 336 * character and status). 337 */ 338 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { 339 if (!(ChanStatus & STATMODE)) { 340#ifdef ROCKET_DEBUG_RECEIVE 341 printk(KERN_INFO "Entering STATMODE...\n"); 342#endif 343 ChanStatus |= STATMODE; 344 sEnRxStatusMode(cp); 345 } 346 } 347 348 /* 349 * if we previously entered status mode, then read down the 350 * FIFO one word at a time, pulling apart the character and 351 * the status. Update error counters depending on status 352 */ 353 if (ChanStatus & STATMODE) { 354#ifdef ROCKET_DEBUG_RECEIVE 355 printk(KERN_INFO "Ignore %x, read %x...\n", 356 info->ignore_status_mask, info->read_status_mask); 357#endif 358 while (ToRecv) { 359 char flag; 360 361 CharNStat = sInW(sGetTxRxDataIO(cp)); 362#ifdef ROCKET_DEBUG_RECEIVE 363 printk(KERN_INFO "%x...\n", CharNStat); 364#endif 365 if (CharNStat & STMBREAKH) 366 CharNStat &= ~(STMFRAMEH | STMPARITYH); 367 if (CharNStat & info->ignore_status_mask) { 368 ToRecv--; 369 continue; 370 } 371 CharNStat &= info->read_status_mask; 372 if (CharNStat & STMBREAKH) 373 flag = TTY_BREAK; 374 else if (CharNStat & STMPARITYH) 375 flag = TTY_PARITY; 376 else if (CharNStat & STMFRAMEH) 377 flag = TTY_FRAME; 378 else if (CharNStat & STMRCVROVRH) 379 flag = TTY_OVERRUN; 380 else 381 flag = TTY_NORMAL; 382 tty_insert_flip_char(tty, CharNStat & 0xff, flag); 383 ToRecv--; 384 } 385 386 /* 387 * after we've emptied the FIFO in status mode, turn 388 * status mode back off 389 */ 390 if (sGetRxCnt(cp) == 0) { 391#ifdef ROCKET_DEBUG_RECEIVE 392 printk(KERN_INFO "Status mode off.\n"); 393#endif 394 sDisRxStatusMode(cp); 395 } 396 } else { 397 /* 398 * we aren't in status mode, so read down the FIFO two 399 * characters at time by doing repeated word IO 400 * transfer. 401 */ 402 space = tty_prepare_flip_string(tty, &cbuf, ToRecv); 403 if (space < ToRecv) { 404#ifdef ROCKET_DEBUG_RECEIVE 405 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space); 406#endif 407 if (space <= 0) 408 return; 409 ToRecv = space; 410 } 411 wRecv = ToRecv >> 1; 412 if (wRecv) 413 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv); 414 if (ToRecv & 1) 415 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp)); 416 } 417 /* Push the data up to the tty layer */ 418 tty_flip_buffer_push(tty); 419} 420 421/* 422 * Serial port transmit data function. Called from the timer polling loop as a 423 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready 424 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is 425 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks. 426 */ 427static void rp_do_transmit(struct r_port *info) 428{ 429 int c; 430 CHANNEL_t *cp = &info->channel; 431 struct tty_struct *tty; 432 unsigned long flags; 433 434#ifdef ROCKET_DEBUG_INTR 435 printk(KERN_DEBUG "%s\n", __func__); 436#endif 437 if (!info) 438 return; 439 tty = tty_port_tty_get(&info->port); 440 441 if (tty == NULL) { 442 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__); 443 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 444 return; 445 } 446 447 spin_lock_irqsave(&info->slock, flags); 448 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 449 450 /* Loop sending data to FIFO until done or FIFO full */ 451 while (1) { 452 if (tty->stopped || tty->hw_stopped) 453 break; 454 c = min(info->xmit_fifo_room, info->xmit_cnt); 455 c = min(c, XMIT_BUF_SIZE - info->xmit_tail); 456 if (c <= 0 || info->xmit_fifo_room <= 0) 457 break; 458 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2); 459 if (c & 1) 460 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]); 461 info->xmit_tail += c; 462 info->xmit_tail &= XMIT_BUF_SIZE - 1; 463 info->xmit_cnt -= c; 464 info->xmit_fifo_room -= c; 465#ifdef ROCKET_DEBUG_INTR 466 printk(KERN_INFO "tx %d chars...\n", c); 467#endif 468 } 469 470 if (info->xmit_cnt == 0) 471 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 472 473 if (info->xmit_cnt < WAKEUP_CHARS) { 474 tty_wakeup(tty); 475#ifdef ROCKETPORT_HAVE_POLL_WAIT 476 wake_up_interruptible(&tty->poll_wait); 477#endif 478 } 479 480 spin_unlock_irqrestore(&info->slock, flags); 481 tty_kref_put(tty); 482 483#ifdef ROCKET_DEBUG_INTR 484 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head, 485 info->xmit_tail, info->xmit_fifo_room); 486#endif 487} 488 489/* 490 * Called when a serial port signals it has read data in it's RX FIFO. 491 * It checks what interrupts are pending and services them, including 492 * receiving serial data. 493 */ 494static void rp_handle_port(struct r_port *info) 495{ 496 CHANNEL_t *cp; 497 struct tty_struct *tty; 498 unsigned int IntMask, ChanStatus; 499 500 if (!info) 501 return; 502 503 if ((info->port.flags & ASYNC_INITIALIZED) == 0) { 504 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 505 "info->flags & NOT_INIT\n"); 506 return; 507 } 508 tty = tty_port_tty_get(&info->port); 509 if (!tty) { 510 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 511 "tty==NULL\n"); 512 return; 513 } 514 cp = &info->channel; 515 516 IntMask = sGetChanIntID(cp) & info->intmask; 517#ifdef ROCKET_DEBUG_INTR 518 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask); 519#endif 520 ChanStatus = sGetChanStatus(cp); 521 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */ 522 rp_do_receive(info, tty, cp, ChanStatus); 523 } 524 if (IntMask & DELTA_CD) { /* CD change */ 525#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP)) 526 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line, 527 (ChanStatus & CD_ACT) ? "on" : "off"); 528#endif 529 if (!(ChanStatus & CD_ACT) && info->cd_status) { 530#ifdef ROCKET_DEBUG_HANGUP 531 printk(KERN_INFO "CD drop, calling hangup.\n"); 532#endif 533 tty_hangup(tty); 534 } 535 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0; 536 wake_up_interruptible(&info->port.open_wait); 537 } 538#ifdef ROCKET_DEBUG_INTR 539 if (IntMask & DELTA_CTS) { /* CTS change */ 540 printk(KERN_INFO "CTS change...\n"); 541 } 542 if (IntMask & DELTA_DSR) { /* DSR change */ 543 printk(KERN_INFO "DSR change...\n"); 544 } 545#endif 546 tty_kref_put(tty); 547} 548 549/* 550 * The top level polling routine. Repeats every 1/100 HZ (10ms). 551 */ 552static void rp_do_poll(unsigned long dummy) 553{ 554 CONTROLLER_t *ctlp; 555 int ctrl, aiop, ch, line; 556 unsigned int xmitmask, i; 557 unsigned int CtlMask; 558 unsigned char AiopMask; 559 Word_t bit; 560 561 /* Walk through all the boards (ctrl's) */ 562 for (ctrl = 0; ctrl < max_board; ctrl++) { 563 if (rcktpt_io_addr[ctrl] <= 0) 564 continue; 565 566 /* Get a ptr to the board's control struct */ 567 ctlp = sCtlNumToCtlPtr(ctrl); 568 569 /* Get the interrupt status from the board */ 570#ifdef CONFIG_PCI 571 if (ctlp->BusType == isPCI) 572 CtlMask = sPCIGetControllerIntStatus(ctlp); 573 else 574#endif 575 CtlMask = sGetControllerIntStatus(ctlp); 576 577 /* Check if any AIOP read bits are set */ 578 for (aiop = 0; CtlMask; aiop++) { 579 bit = ctlp->AiopIntrBits[aiop]; 580 if (CtlMask & bit) { 581 CtlMask &= ~bit; 582 AiopMask = sGetAiopIntStatus(ctlp, aiop); 583 584 /* Check if any port read bits are set */ 585 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) { 586 if (AiopMask & 1) { 587 588 /* Get the line number (/dev/ttyRx number). */ 589 /* Read the data from the port. */ 590 line = GetLineNumber(ctrl, aiop, ch); 591 rp_handle_port(rp_table[line]); 592 } 593 } 594 } 595 } 596 597 xmitmask = xmit_flags[ctrl]; 598 599 /* 600 * xmit_flags contains bit-significant flags, indicating there is data 601 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 602 * 1, ... (32 total possible). The variable i has the aiop and ch 603 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc). 604 */ 605 if (xmitmask) { 606 for (i = 0; i < rocketModel[ctrl].numPorts; i++) { 607 if (xmitmask & (1 << i)) { 608 aiop = (i & 0x18) >> 3; 609 ch = i & 0x07; 610 line = GetLineNumber(ctrl, aiop, ch); 611 rp_do_transmit(rp_table[line]); 612 } 613 } 614 } 615 } 616 617 /* 618 * Reset the timer so we get called at the next clock tick (10ms). 619 */ 620 if (atomic_read(&rp_num_ports_open)) 621 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 622} 623 624/* 625 * Initializes the r_port structure for a port, as well as enabling the port on 626 * the board. 627 * Inputs: board, aiop, chan numbers 628 */ 629static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev) 630{ 631 unsigned rocketMode; 632 struct r_port *info; 633 int line; 634 CONTROLLER_T *ctlp; 635 636 /* Get the next available line number */ 637 line = SetLineNumber(board, aiop, chan); 638 639 ctlp = sCtlNumToCtlPtr(board); 640 641 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */ 642 info = kzalloc(sizeof (struct r_port), GFP_KERNEL); 643 if (!info) { 644 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n", 645 line); 646 return; 647 } 648 649 info->magic = RPORT_MAGIC; 650 info->line = line; 651 info->ctlp = ctlp; 652 info->board = board; 653 info->aiop = aiop; 654 info->chan = chan; 655 tty_port_init(&info->port); 656 info->port.ops = &rocket_port_ops; 657 init_completion(&info->close_wait); 658 info->flags &= ~ROCKET_MODE_MASK; 659 switch (pc104[board][line]) { 660 case 422: 661 info->flags |= ROCKET_MODE_RS422; 662 break; 663 case 485: 664 info->flags |= ROCKET_MODE_RS485; 665 break; 666 case 232: 667 default: 668 info->flags |= ROCKET_MODE_RS232; 669 break; 670 } 671 672 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; 673 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) { 674 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n", 675 board, aiop, chan); 676 kfree(info); 677 return; 678 } 679 680 rocketMode = info->flags & ROCKET_MODE_MASK; 681 682 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485)) 683 sEnRTSToggle(&info->channel); 684 else 685 sDisRTSToggle(&info->channel); 686 687 if (ctlp->boardType == ROCKET_TYPE_PC104) { 688 switch (rocketMode) { 689 case ROCKET_MODE_RS485: 690 sSetInterfaceMode(&info->channel, InterfaceModeRS485); 691 break; 692 case ROCKET_MODE_RS422: 693 sSetInterfaceMode(&info->channel, InterfaceModeRS422); 694 break; 695 case ROCKET_MODE_RS232: 696 default: 697 if (info->flags & ROCKET_RTS_TOGGLE) 698 sSetInterfaceMode(&info->channel, InterfaceModeRS232T); 699 else 700 sSetInterfaceMode(&info->channel, InterfaceModeRS232); 701 break; 702 } 703 } 704 spin_lock_init(&info->slock); 705 mutex_init(&info->write_mtx); 706 rp_table[line] = info; 707 tty_register_device(rocket_driver, line, pci_dev ? &pci_dev->dev : 708 NULL); 709} 710 711/* 712 * Configures a rocketport port according to its termio settings. Called from 713 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected. 714 */ 715static void configure_r_port(struct tty_struct *tty, struct r_port *info, 716 struct ktermios *old_termios) 717{ 718 unsigned cflag; 719 unsigned long flags; 720 unsigned rocketMode; 721 int bits, baud, divisor; 722 CHANNEL_t *cp; 723 struct ktermios *t = tty->termios; 724 725 cp = &info->channel; 726 cflag = t->c_cflag; 727 728 /* Byte size and parity */ 729 if ((cflag & CSIZE) == CS8) { 730 sSetData8(cp); 731 bits = 10; 732 } else { 733 sSetData7(cp); 734 bits = 9; 735 } 736 if (cflag & CSTOPB) { 737 sSetStop2(cp); 738 bits++; 739 } else { 740 sSetStop1(cp); 741 } 742 743 if (cflag & PARENB) { 744 sEnParity(cp); 745 bits++; 746 if (cflag & PARODD) { 747 sSetOddParity(cp); 748 } else { 749 sSetEvenParity(cp); 750 } 751 } else { 752 sDisParity(cp); 753 } 754 755 /* baud rate */ 756 baud = tty_get_baud_rate(tty); 757 if (!baud) 758 baud = 9600; 759 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1; 760 if ((divisor >= 8192 || divisor < 0) && old_termios) { 761 baud = tty_termios_baud_rate(old_termios); 762 if (!baud) 763 baud = 9600; 764 divisor = (rp_baud_base[info->board] / baud) - 1; 765 } 766 if (divisor >= 8192 || divisor < 0) { 767 baud = 9600; 768 divisor = (rp_baud_base[info->board] / baud) - 1; 769 } 770 info->cps = baud / bits; 771 sSetBaud(cp, divisor); 772 773 /* FIXME: Should really back compute a baud rate from the divisor */ 774 tty_encode_baud_rate(tty, baud, baud); 775 776 if (cflag & CRTSCTS) { 777 info->intmask |= DELTA_CTS; 778 sEnCTSFlowCtl(cp); 779 } else { 780 info->intmask &= ~DELTA_CTS; 781 sDisCTSFlowCtl(cp); 782 } 783 if (cflag & CLOCAL) { 784 info->intmask &= ~DELTA_CD; 785 } else { 786 spin_lock_irqsave(&info->slock, flags); 787 if (sGetChanStatus(cp) & CD_ACT) 788 info->cd_status = 1; 789 else 790 info->cd_status = 0; 791 info->intmask |= DELTA_CD; 792 spin_unlock_irqrestore(&info->slock, flags); 793 } 794 795 /* 796 * Handle software flow control in the board 797 */ 798#ifdef ROCKET_SOFT_FLOW 799 if (I_IXON(tty)) { 800 sEnTxSoftFlowCtl(cp); 801 if (I_IXANY(tty)) { 802 sEnIXANY(cp); 803 } else { 804 sDisIXANY(cp); 805 } 806 sSetTxXONChar(cp, START_CHAR(tty)); 807 sSetTxXOFFChar(cp, STOP_CHAR(tty)); 808 } else { 809 sDisTxSoftFlowCtl(cp); 810 sDisIXANY(cp); 811 sClrTxXOFF(cp); 812 } 813#endif 814 815 /* 816 * Set up ignore/read mask words 817 */ 818 info->read_status_mask = STMRCVROVRH | 0xFF; 819 if (I_INPCK(tty)) 820 info->read_status_mask |= STMFRAMEH | STMPARITYH; 821 if (I_BRKINT(tty) || I_PARMRK(tty)) 822 info->read_status_mask |= STMBREAKH; 823 824 /* 825 * Characters to ignore 826 */ 827 info->ignore_status_mask = 0; 828 if (I_IGNPAR(tty)) 829 info->ignore_status_mask |= STMFRAMEH | STMPARITYH; 830 if (I_IGNBRK(tty)) { 831 info->ignore_status_mask |= STMBREAKH; 832 /* 833 * If we're ignoring parity and break indicators, 834 * ignore overruns too. (For real raw support). 835 */ 836 if (I_IGNPAR(tty)) 837 info->ignore_status_mask |= STMRCVROVRH; 838 } 839 840 rocketMode = info->flags & ROCKET_MODE_MASK; 841 842 if ((info->flags & ROCKET_RTS_TOGGLE) 843 || (rocketMode == ROCKET_MODE_RS485)) 844 sEnRTSToggle(cp); 845 else 846 sDisRTSToggle(cp); 847 848 sSetRTS(&info->channel); 849 850 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) { 851 switch (rocketMode) { 852 case ROCKET_MODE_RS485: 853 sSetInterfaceMode(cp, InterfaceModeRS485); 854 break; 855 case ROCKET_MODE_RS422: 856 sSetInterfaceMode(cp, InterfaceModeRS422); 857 break; 858 case ROCKET_MODE_RS232: 859 default: 860 if (info->flags & ROCKET_RTS_TOGGLE) 861 sSetInterfaceMode(cp, InterfaceModeRS232T); 862 else 863 sSetInterfaceMode(cp, InterfaceModeRS232); 864 break; 865 } 866 } 867} 868 869static int carrier_raised(struct tty_port *port) 870{ 871 struct r_port *info = container_of(port, struct r_port, port); 872 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0; 873} 874 875static void dtr_rts(struct tty_port *port, int on) 876{ 877 struct r_port *info = container_of(port, struct r_port, port); 878 if (on) { 879 sSetDTR(&info->channel); 880 sSetRTS(&info->channel); 881 } else { 882 sClrDTR(&info->channel); 883 sClrRTS(&info->channel); 884 } 885} 886 887/* 888 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in 889 * port's r_port struct. Initializes the port hardware. 890 */ 891static int rp_open(struct tty_struct *tty, struct file *filp) 892{ 893 struct r_port *info; 894 struct tty_port *port; 895 int line = 0, retval; 896 CHANNEL_t *cp; 897 unsigned long page; 898 899 line = tty->index; 900 if (line < 0 || line >= MAX_RP_PORTS || ((info = rp_table[line]) == NULL)) 901 return -ENXIO; 902 port = &info->port; 903 904 page = __get_free_page(GFP_KERNEL); 905 if (!page) 906 return -ENOMEM; 907 908 if (port->flags & ASYNC_CLOSING) { 909 retval = wait_for_completion_interruptible(&info->close_wait); 910 free_page(page); 911 if (retval) 912 return retval; 913 return ((port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); 914 } 915 916 /* 917 * We must not sleep from here until the port is marked fully in use. 918 */ 919 if (info->xmit_buf) 920 free_page(page); 921 else 922 info->xmit_buf = (unsigned char *) page; 923 924 tty->driver_data = info; 925 tty_port_tty_set(port, tty); 926 927 if (port->count++ == 0) { 928 atomic_inc(&rp_num_ports_open); 929 930#ifdef ROCKET_DEBUG_OPEN 931 printk(KERN_INFO "rocket mod++ = %d...\n", 932 atomic_read(&rp_num_ports_open)); 933#endif 934 } 935#ifdef ROCKET_DEBUG_OPEN 936 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count); 937#endif 938 939 /* 940 * Info->count is now 1; so it's safe to sleep now. 941 */ 942 if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) { 943 cp = &info->channel; 944 sSetRxTrigger(cp, TRIG_1); 945 if (sGetChanStatus(cp) & CD_ACT) 946 info->cd_status = 1; 947 else 948 info->cd_status = 0; 949 sDisRxStatusMode(cp); 950 sFlushRxFIFO(cp); 951 sFlushTxFIFO(cp); 952 953 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 954 sSetRxTrigger(cp, TRIG_1); 955 956 sGetChanStatus(cp); 957 sDisRxStatusMode(cp); 958 sClrTxXOFF(cp); 959 960 sDisCTSFlowCtl(cp); 961 sDisTxSoftFlowCtl(cp); 962 963 sEnRxFIFO(cp); 964 sEnTransmit(cp); 965 966 set_bit(ASYNCB_INITIALIZED, &info->port.flags); 967 968 /* 969 * Set up the tty->alt_speed kludge 970 */ 971 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 972 tty->alt_speed = 57600; 973 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 974 tty->alt_speed = 115200; 975 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 976 tty->alt_speed = 230400; 977 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 978 tty->alt_speed = 460800; 979 980 configure_r_port(tty, info, NULL); 981 if (tty->termios->c_cflag & CBAUD) { 982 sSetDTR(cp); 983 sSetRTS(cp); 984 } 985 } 986 /* Starts (or resets) the maint polling loop */ 987 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 988 989 retval = tty_port_block_til_ready(port, tty, filp); 990 if (retval) { 991#ifdef ROCKET_DEBUG_OPEN 992 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval); 993#endif 994 return retval; 995 } 996 return 0; 997} 998 999/* 1000 * Exception handler that closes a serial port. info->port.count is considered critical. 1001 */ 1002static void rp_close(struct tty_struct *tty, struct file *filp) 1003{ 1004 struct r_port *info = tty->driver_data; 1005 struct tty_port *port = &info->port; 1006 int timeout; 1007 CHANNEL_t *cp; 1008 1009 if (rocket_paranoia_check(info, "rp_close")) 1010 return; 1011 1012#ifdef ROCKET_DEBUG_OPEN 1013 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count); 1014#endif 1015 1016 if (tty_port_close_start(port, tty, filp) == 0) 1017 return; 1018 1019 mutex_lock(&port->mutex); 1020 cp = &info->channel; 1021 /* 1022 * Before we drop DTR, make sure the UART transmitter 1023 * has completely drained; this is especially 1024 * important if there is a transmit FIFO! 1025 */ 1026 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps; 1027 if (timeout == 0) 1028 timeout = 1; 1029 rp_wait_until_sent(tty, timeout); 1030 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1031 1032 sDisTransmit(cp); 1033 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1034 sDisCTSFlowCtl(cp); 1035 sDisTxSoftFlowCtl(cp); 1036 sClrTxXOFF(cp); 1037 sFlushRxFIFO(cp); 1038 sFlushTxFIFO(cp); 1039 sClrRTS(cp); 1040 if (C_HUPCL(tty)) 1041 sClrDTR(cp); 1042 1043 rp_flush_buffer(tty); 1044 1045 tty_ldisc_flush(tty); 1046 1047 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1048 1049 /* We can't yet use tty_port_close_end as the buffer handling in this 1050 driver is a bit different to the usual */ 1051 1052 if (port->blocked_open) { 1053 if (port->close_delay) { 1054 msleep_interruptible(jiffies_to_msecs(port->close_delay)); 1055 } 1056 wake_up_interruptible(&port->open_wait); 1057 } else { 1058 if (info->xmit_buf) { 1059 free_page((unsigned long) info->xmit_buf); 1060 info->xmit_buf = NULL; 1061 } 1062 } 1063 spin_lock_irq(&port->lock); 1064 info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_CLOSING | ASYNC_NORMAL_ACTIVE); 1065 tty->closing = 0; 1066 spin_unlock_irq(&port->lock); 1067 mutex_unlock(&port->mutex); 1068 tty_port_tty_set(port, NULL); 1069 1070 wake_up_interruptible(&port->close_wait); 1071 complete_all(&info->close_wait); 1072 atomic_dec(&rp_num_ports_open); 1073 1074#ifdef ROCKET_DEBUG_OPEN 1075 printk(KERN_INFO "rocket mod-- = %d...\n", 1076 atomic_read(&rp_num_ports_open)); 1077 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line); 1078#endif 1079 1080} 1081 1082static void rp_set_termios(struct tty_struct *tty, 1083 struct ktermios *old_termios) 1084{ 1085 struct r_port *info = tty->driver_data; 1086 CHANNEL_t *cp; 1087 unsigned cflag; 1088 1089 if (rocket_paranoia_check(info, "rp_set_termios")) 1090 return; 1091 1092 cflag = tty->termios->c_cflag; 1093 1094 /* 1095 * This driver doesn't support CS5 or CS6 1096 */ 1097 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6)) 1098 tty->termios->c_cflag = 1099 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE)); 1100 /* Or CMSPAR */ 1101 tty->termios->c_cflag &= ~CMSPAR; 1102 1103 configure_r_port(tty, info, old_termios); 1104 1105 cp = &info->channel; 1106 1107 /* Handle transition to B0 status */ 1108 if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) { 1109 sClrDTR(cp); 1110 sClrRTS(cp); 1111 } 1112 1113 /* Handle transition away from B0 status */ 1114 if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) { 1115 if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS)) 1116 sSetRTS(cp); 1117 sSetDTR(cp); 1118 } 1119 1120 if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { 1121 tty->hw_stopped = 0; 1122 rp_start(tty); 1123 } 1124} 1125 1126static int rp_break(struct tty_struct *tty, int break_state) 1127{ 1128 struct r_port *info = tty->driver_data; 1129 unsigned long flags; 1130 1131 if (rocket_paranoia_check(info, "rp_break")) 1132 return -EINVAL; 1133 1134 spin_lock_irqsave(&info->slock, flags); 1135 if (break_state == -1) 1136 sSendBreak(&info->channel); 1137 else 1138 sClrBreak(&info->channel); 1139 spin_unlock_irqrestore(&info->slock, flags); 1140 return 0; 1141} 1142 1143/* 1144 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for 1145 * the UPCI boards was added, it was decided to make this a function because 1146 * the macro was getting too complicated. All cases except the first one 1147 * (UPCIRingInd) are taken directly from the original macro. 1148 */ 1149static int sGetChanRI(CHANNEL_T * ChP) 1150{ 1151 CONTROLLER_t *CtlP = ChP->CtlP; 1152 int ChanNum = ChP->ChanNum; 1153 int RingInd = 0; 1154 1155 if (CtlP->UPCIRingInd) 1156 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]); 1157 else if (CtlP->AltChanRingIndicator) 1158 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT; 1159 else if (CtlP->boardType == ROCKET_TYPE_PC104) 1160 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]); 1161 1162 return RingInd; 1163} 1164 1165/********************************************************************************************/ 1166/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */ 1167 1168/* 1169 * Returns the state of the serial modem control lines. These next 2 functions 1170 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs. 1171 */ 1172static int rp_tiocmget(struct tty_struct *tty) 1173{ 1174 struct r_port *info = tty->driver_data; 1175 unsigned int control, result, ChanStatus; 1176 1177 ChanStatus = sGetChanStatusLo(&info->channel); 1178 control = info->channel.TxControl[3]; 1179 result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 1180 ((control & SET_DTR) ? TIOCM_DTR : 0) | 1181 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) | 1182 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) | 1183 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) | 1184 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0); 1185 1186 return result; 1187} 1188 1189/* 1190 * Sets the modem control lines 1191 */ 1192static int rp_tiocmset(struct tty_struct *tty, 1193 unsigned int set, unsigned int clear) 1194{ 1195 struct r_port *info = tty->driver_data; 1196 1197 if (set & TIOCM_RTS) 1198 info->channel.TxControl[3] |= SET_RTS; 1199 if (set & TIOCM_DTR) 1200 info->channel.TxControl[3] |= SET_DTR; 1201 if (clear & TIOCM_RTS) 1202 info->channel.TxControl[3] &= ~SET_RTS; 1203 if (clear & TIOCM_DTR) 1204 info->channel.TxControl[3] &= ~SET_DTR; 1205 1206 out32(info->channel.IndexAddr, info->channel.TxControl); 1207 return 0; 1208} 1209 1210static int get_config(struct r_port *info, struct rocket_config __user *retinfo) 1211{ 1212 struct rocket_config tmp; 1213 1214 if (!retinfo) 1215 return -EFAULT; 1216 memset(&tmp, 0, sizeof (tmp)); 1217 mutex_lock(&info->port.mutex); 1218 tmp.line = info->line; 1219 tmp.flags = info->flags; 1220 tmp.close_delay = info->port.close_delay; 1221 tmp.closing_wait = info->port.closing_wait; 1222 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3]; 1223 mutex_unlock(&info->port.mutex); 1224 1225 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo))) 1226 return -EFAULT; 1227 return 0; 1228} 1229 1230static int set_config(struct tty_struct *tty, struct r_port *info, 1231 struct rocket_config __user *new_info) 1232{ 1233 struct rocket_config new_serial; 1234 1235 if (copy_from_user(&new_serial, new_info, sizeof (new_serial))) 1236 return -EFAULT; 1237 1238 mutex_lock(&info->port.mutex); 1239 if (!capable(CAP_SYS_ADMIN)) 1240 { 1241 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) { 1242 mutex_unlock(&info->port.mutex); 1243 return -EPERM; 1244 } 1245 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK)); 1246 configure_r_port(tty, info, NULL); 1247 mutex_unlock(&info->port.mutex); 1248 return 0; 1249 } 1250 1251 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS)); 1252 info->port.close_delay = new_serial.close_delay; 1253 info->port.closing_wait = new_serial.closing_wait; 1254 1255 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 1256 tty->alt_speed = 57600; 1257 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 1258 tty->alt_speed = 115200; 1259 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 1260 tty->alt_speed = 230400; 1261 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 1262 tty->alt_speed = 460800; 1263 mutex_unlock(&info->port.mutex); 1264 1265 configure_r_port(tty, info, NULL); 1266 return 0; 1267} 1268 1269/* 1270 * This function fills in a rocket_ports struct with information 1271 * about what boards/ports are in the system. This info is passed 1272 * to user space. See setrocket.c where the info is used to create 1273 * the /dev/ttyRx ports. 1274 */ 1275static int get_ports(struct r_port *info, struct rocket_ports __user *retports) 1276{ 1277 struct rocket_ports tmp; 1278 int board; 1279 1280 if (!retports) 1281 return -EFAULT; 1282 memset(&tmp, 0, sizeof (tmp)); 1283 tmp.tty_major = rocket_driver->major; 1284 1285 for (board = 0; board < 4; board++) { 1286 tmp.rocketModel[board].model = rocketModel[board].model; 1287 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString); 1288 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts; 1289 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2; 1290 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber; 1291 } 1292 if (copy_to_user(retports, &tmp, sizeof (*retports))) 1293 return -EFAULT; 1294 return 0; 1295} 1296 1297static int reset_rm2(struct r_port *info, void __user *arg) 1298{ 1299 int reset; 1300 1301 if (!capable(CAP_SYS_ADMIN)) 1302 return -EPERM; 1303 1304 if (copy_from_user(&reset, arg, sizeof (int))) 1305 return -EFAULT; 1306 if (reset) 1307 reset = 1; 1308 1309 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII && 1310 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII) 1311 return -EINVAL; 1312 1313 if (info->ctlp->BusType == isISA) 1314 sModemReset(info->ctlp, info->chan, reset); 1315 else 1316 sPCIModemReset(info->ctlp, info->chan, reset); 1317 1318 return 0; 1319} 1320 1321static int get_version(struct r_port *info, struct rocket_version __user *retvers) 1322{ 1323 if (copy_to_user(retvers, &driver_version, sizeof (*retvers))) 1324 return -EFAULT; 1325 return 0; 1326} 1327 1328/* IOCTL call handler into the driver */ 1329static int rp_ioctl(struct tty_struct *tty, 1330 unsigned int cmd, unsigned long arg) 1331{ 1332 struct r_port *info = tty->driver_data; 1333 void __user *argp = (void __user *)arg; 1334 int ret = 0; 1335 1336 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl")) 1337 return -ENXIO; 1338 1339 switch (cmd) { 1340 case RCKP_GET_STRUCT: 1341 if (copy_to_user(argp, info, sizeof (struct r_port))) 1342 ret = -EFAULT; 1343 break; 1344 case RCKP_GET_CONFIG: 1345 ret = get_config(info, argp); 1346 break; 1347 case RCKP_SET_CONFIG: 1348 ret = set_config(tty, info, argp); 1349 break; 1350 case RCKP_GET_PORTS: 1351 ret = get_ports(info, argp); 1352 break; 1353 case RCKP_RESET_RM2: 1354 ret = reset_rm2(info, argp); 1355 break; 1356 case RCKP_GET_VERSION: 1357 ret = get_version(info, argp); 1358 break; 1359 default: 1360 ret = -ENOIOCTLCMD; 1361 } 1362 return ret; 1363} 1364 1365static void rp_send_xchar(struct tty_struct *tty, char ch) 1366{ 1367 struct r_port *info = tty->driver_data; 1368 CHANNEL_t *cp; 1369 1370 if (rocket_paranoia_check(info, "rp_send_xchar")) 1371 return; 1372 1373 cp = &info->channel; 1374 if (sGetTxCnt(cp)) 1375 sWriteTxPrioByte(cp, ch); 1376 else 1377 sWriteTxByte(sGetTxRxDataIO(cp), ch); 1378} 1379 1380static void rp_throttle(struct tty_struct *tty) 1381{ 1382 struct r_port *info = tty->driver_data; 1383 1384#ifdef ROCKET_DEBUG_THROTTLE 1385 printk(KERN_INFO "throttle %s: %d....\n", tty->name, 1386 tty->ldisc.chars_in_buffer(tty)); 1387#endif 1388 1389 if (rocket_paranoia_check(info, "rp_throttle")) 1390 return; 1391 1392 if (I_IXOFF(tty)) 1393 rp_send_xchar(tty, STOP_CHAR(tty)); 1394 1395 sClrRTS(&info->channel); 1396} 1397 1398static void rp_unthrottle(struct tty_struct *tty) 1399{ 1400 struct r_port *info = tty->driver_data; 1401#ifdef ROCKET_DEBUG_THROTTLE 1402 printk(KERN_INFO "unthrottle %s: %d....\n", tty->name, 1403 tty->ldisc.chars_in_buffer(tty)); 1404#endif 1405 1406 if (rocket_paranoia_check(info, "rp_throttle")) 1407 return; 1408 1409 if (I_IXOFF(tty)) 1410 rp_send_xchar(tty, START_CHAR(tty)); 1411 1412 sSetRTS(&info->channel); 1413} 1414 1415/* 1416 * ------------------------------------------------------------ 1417 * rp_stop() and rp_start() 1418 * 1419 * This routines are called before setting or resetting tty->stopped. 1420 * They enable or disable transmitter interrupts, as necessary. 1421 * ------------------------------------------------------------ 1422 */ 1423static void rp_stop(struct tty_struct *tty) 1424{ 1425 struct r_port *info = tty->driver_data; 1426 1427#ifdef ROCKET_DEBUG_FLOW 1428 printk(KERN_INFO "stop %s: %d %d....\n", tty->name, 1429 info->xmit_cnt, info->xmit_fifo_room); 1430#endif 1431 1432 if (rocket_paranoia_check(info, "rp_stop")) 1433 return; 1434 1435 if (sGetTxCnt(&info->channel)) 1436 sDisTransmit(&info->channel); 1437} 1438 1439static void rp_start(struct tty_struct *tty) 1440{ 1441 struct r_port *info = tty->driver_data; 1442 1443#ifdef ROCKET_DEBUG_FLOW 1444 printk(KERN_INFO "start %s: %d %d....\n", tty->name, 1445 info->xmit_cnt, info->xmit_fifo_room); 1446#endif 1447 1448 if (rocket_paranoia_check(info, "rp_stop")) 1449 return; 1450 1451 sEnTransmit(&info->channel); 1452 set_bit((info->aiop * 8) + info->chan, 1453 (void *) &xmit_flags[info->board]); 1454} 1455 1456/* 1457 * rp_wait_until_sent() --- wait until the transmitter is empty 1458 */ 1459static void rp_wait_until_sent(struct tty_struct *tty, int timeout) 1460{ 1461 struct r_port *info = tty->driver_data; 1462 CHANNEL_t *cp; 1463 unsigned long orig_jiffies; 1464 int check_time, exit_time; 1465 int txcnt; 1466 1467 if (rocket_paranoia_check(info, "rp_wait_until_sent")) 1468 return; 1469 1470 cp = &info->channel; 1471 1472 orig_jiffies = jiffies; 1473#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1474 printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout, 1475 jiffies); 1476 printk(KERN_INFO "cps=%d...\n", info->cps); 1477#endif 1478 while (1) { 1479 txcnt = sGetTxCnt(cp); 1480 if (!txcnt) { 1481 if (sGetChanStatusLo(cp) & TXSHRMT) 1482 break; 1483 check_time = (HZ / info->cps) / 5; 1484 } else { 1485 check_time = HZ * txcnt / info->cps; 1486 } 1487 if (timeout) { 1488 exit_time = orig_jiffies + timeout - jiffies; 1489 if (exit_time <= 0) 1490 break; 1491 if (exit_time < check_time) 1492 check_time = exit_time; 1493 } 1494 if (check_time == 0) 1495 check_time = 1; 1496#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1497 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt, 1498 jiffies, check_time); 1499#endif 1500 msleep_interruptible(jiffies_to_msecs(check_time)); 1501 if (signal_pending(current)) 1502 break; 1503 } 1504 __set_current_state(TASK_RUNNING); 1505#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1506 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies); 1507#endif 1508} 1509 1510/* 1511 * rp_hangup() --- called by tty_hangup() when a hangup is signaled. 1512 */ 1513static void rp_hangup(struct tty_struct *tty) 1514{ 1515 CHANNEL_t *cp; 1516 struct r_port *info = tty->driver_data; 1517 unsigned long flags; 1518 1519 if (rocket_paranoia_check(info, "rp_hangup")) 1520 return; 1521 1522#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP)) 1523 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line); 1524#endif 1525 rp_flush_buffer(tty); 1526 spin_lock_irqsave(&info->port.lock, flags); 1527 if (info->port.flags & ASYNC_CLOSING) { 1528 spin_unlock_irqrestore(&info->port.lock, flags); 1529 return; 1530 } 1531 if (info->port.count) 1532 atomic_dec(&rp_num_ports_open); 1533 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1534 spin_unlock_irqrestore(&info->port.lock, flags); 1535 1536 tty_port_hangup(&info->port); 1537 1538 cp = &info->channel; 1539 sDisRxFIFO(cp); 1540 sDisTransmit(cp); 1541 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1542 sDisCTSFlowCtl(cp); 1543 sDisTxSoftFlowCtl(cp); 1544 sClrTxXOFF(cp); 1545 clear_bit(ASYNCB_INITIALIZED, &info->port.flags); 1546 1547 wake_up_interruptible(&info->port.open_wait); 1548} 1549 1550/* 1551 * Exception handler - write char routine. The RocketPort driver uses a 1552 * double-buffering strategy, with the twist that if the in-memory CPU 1553 * buffer is empty, and there's space in the transmit FIFO, the 1554 * writing routines will write directly to transmit FIFO. 1555 * Write buffer and counters protected by spinlocks 1556 */ 1557static int rp_put_char(struct tty_struct *tty, unsigned char ch) 1558{ 1559 struct r_port *info = tty->driver_data; 1560 CHANNEL_t *cp; 1561 unsigned long flags; 1562 1563 if (rocket_paranoia_check(info, "rp_put_char")) 1564 return 0; 1565 1566 /* 1567 * Grab the port write mutex, locking out other processes that try to 1568 * write to this port 1569 */ 1570 mutex_lock(&info->write_mtx); 1571 1572#ifdef ROCKET_DEBUG_WRITE 1573 printk(KERN_INFO "rp_put_char %c...\n", ch); 1574#endif 1575 1576 spin_lock_irqsave(&info->slock, flags); 1577 cp = &info->channel; 1578 1579 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0) 1580 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1581 1582 if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) { 1583 info->xmit_buf[info->xmit_head++] = ch; 1584 info->xmit_head &= XMIT_BUF_SIZE - 1; 1585 info->xmit_cnt++; 1586 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1587 } else { 1588 sOutB(sGetTxRxDataIO(cp), ch); 1589 info->xmit_fifo_room--; 1590 } 1591 spin_unlock_irqrestore(&info->slock, flags); 1592 mutex_unlock(&info->write_mtx); 1593 return 1; 1594} 1595 1596/* 1597 * Exception handler - write routine, called when user app writes to the device. 1598 * A per port write mutex is used to protect from another process writing to 1599 * this port at the same time. This other process could be running on the other CPU 1600 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 1601 * Spinlocks protect the info xmit members. 1602 */ 1603static int rp_write(struct tty_struct *tty, 1604 const unsigned char *buf, int count) 1605{ 1606 struct r_port *info = tty->driver_data; 1607 CHANNEL_t *cp; 1608 const unsigned char *b; 1609 int c, retval = 0; 1610 unsigned long flags; 1611 1612 if (count <= 0 || rocket_paranoia_check(info, "rp_write")) 1613 return 0; 1614 1615 if (mutex_lock_interruptible(&info->write_mtx)) 1616 return -ERESTARTSYS; 1617 1618#ifdef ROCKET_DEBUG_WRITE 1619 printk(KERN_INFO "rp_write %d chars...\n", count); 1620#endif 1621 cp = &info->channel; 1622 1623 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count) 1624 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1625 1626 /* 1627 * If the write queue for the port is empty, and there is FIFO space, stuff bytes 1628 * into FIFO. Use the write queue for temp storage. 1629 */ 1630 if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) { 1631 c = min(count, info->xmit_fifo_room); 1632 b = buf; 1633 1634 /* Push data into FIFO, 2 bytes at a time */ 1635 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2); 1636 1637 /* If there is a byte remaining, write it */ 1638 if (c & 1) 1639 sOutB(sGetTxRxDataIO(cp), b[c - 1]); 1640 1641 retval += c; 1642 buf += c; 1643 count -= c; 1644 1645 spin_lock_irqsave(&info->slock, flags); 1646 info->xmit_fifo_room -= c; 1647 spin_unlock_irqrestore(&info->slock, flags); 1648 } 1649 1650 /* If count is zero, we wrote it all and are done */ 1651 if (!count) 1652 goto end; 1653 1654 /* Write remaining data into the port's xmit_buf */ 1655 while (1) { 1656 /* Hung up ? */ 1657 if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags)) 1658 goto end; 1659 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1); 1660 c = min(c, XMIT_BUF_SIZE - info->xmit_head); 1661 if (c <= 0) 1662 break; 1663 1664 b = buf; 1665 memcpy(info->xmit_buf + info->xmit_head, b, c); 1666 1667 spin_lock_irqsave(&info->slock, flags); 1668 info->xmit_head = 1669 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1); 1670 info->xmit_cnt += c; 1671 spin_unlock_irqrestore(&info->slock, flags); 1672 1673 buf += c; 1674 count -= c; 1675 retval += c; 1676 } 1677 1678 if ((retval > 0) && !tty->stopped && !tty->hw_stopped) 1679 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1680 1681end: 1682 if (info->xmit_cnt < WAKEUP_CHARS) { 1683 tty_wakeup(tty); 1684#ifdef ROCKETPORT_HAVE_POLL_WAIT 1685 wake_up_interruptible(&tty->poll_wait); 1686#endif 1687 } 1688 mutex_unlock(&info->write_mtx); 1689 return retval; 1690} 1691 1692/* 1693 * Return the number of characters that can be sent. We estimate 1694 * only using the in-memory transmit buffer only, and ignore the 1695 * potential space in the transmit FIFO. 1696 */ 1697static int rp_write_room(struct tty_struct *tty) 1698{ 1699 struct r_port *info = tty->driver_data; 1700 int ret; 1701 1702 if (rocket_paranoia_check(info, "rp_write_room")) 1703 return 0; 1704 1705 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1; 1706 if (ret < 0) 1707 ret = 0; 1708#ifdef ROCKET_DEBUG_WRITE 1709 printk(KERN_INFO "rp_write_room returns %d...\n", ret); 1710#endif 1711 return ret; 1712} 1713 1714/* 1715 * Return the number of characters in the buffer. Again, this only 1716 * counts those characters in the in-memory transmit buffer. 1717 */ 1718static int rp_chars_in_buffer(struct tty_struct *tty) 1719{ 1720 struct r_port *info = tty->driver_data; 1721 1722 if (rocket_paranoia_check(info, "rp_chars_in_buffer")) 1723 return 0; 1724 1725#ifdef ROCKET_DEBUG_WRITE 1726 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt); 1727#endif 1728 return info->xmit_cnt; 1729} 1730 1731/* 1732 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the 1733 * r_port struct for the port. Note that spinlock are used to protect info members, 1734 * do not call this function if the spinlock is already held. 1735 */ 1736static void rp_flush_buffer(struct tty_struct *tty) 1737{ 1738 struct r_port *info = tty->driver_data; 1739 CHANNEL_t *cp; 1740 unsigned long flags; 1741 1742 if (rocket_paranoia_check(info, "rp_flush_buffer")) 1743 return; 1744 1745 spin_lock_irqsave(&info->slock, flags); 1746 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; 1747 spin_unlock_irqrestore(&info->slock, flags); 1748 1749#ifdef ROCKETPORT_HAVE_POLL_WAIT 1750 wake_up_interruptible(&tty->poll_wait); 1751#endif 1752 tty_wakeup(tty); 1753 1754 cp = &info->channel; 1755 sFlushTxFIFO(cp); 1756} 1757 1758#ifdef CONFIG_PCI 1759 1760static struct pci_device_id __devinitdata __used rocket_pci_ids[] = { 1761 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_ANY_ID) }, 1762 { } 1763}; 1764MODULE_DEVICE_TABLE(pci, rocket_pci_ids); 1765 1766/* 1767 * Called when a PCI card is found. Retrieves and stores model information, 1768 * init's aiopic and serial port hardware. 1769 * Inputs: i is the board number (0-n) 1770 */ 1771static __init int register_PCI(int i, struct pci_dev *dev) 1772{ 1773 int num_aiops, aiop, max_num_aiops, num_chan, chan; 1774 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 1775 CONTROLLER_t *ctlp; 1776 1777 int fast_clock = 0; 1778 int altChanRingIndicator = 0; 1779 int ports_per_aiop = 8; 1780 WordIO_t ConfigIO = 0; 1781 ByteIO_t UPCIRingInd = 0; 1782 1783 if (!dev || pci_enable_device(dev)) 1784 return 0; 1785 1786 rcktpt_io_addr[i] = pci_resource_start(dev, 0); 1787 1788 rcktpt_type[i] = ROCKET_TYPE_NORMAL; 1789 rocketModel[i].loadrm2 = 0; 1790 rocketModel[i].startingPortNumber = nextLineNumber; 1791 1792 /* Depending on the model, set up some config variables */ 1793 switch (dev->device) { 1794 case PCI_DEVICE_ID_RP4QUAD: 1795 max_num_aiops = 1; 1796 ports_per_aiop = 4; 1797 rocketModel[i].model = MODEL_RP4QUAD; 1798 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable"); 1799 rocketModel[i].numPorts = 4; 1800 break; 1801 case PCI_DEVICE_ID_RP8OCTA: 1802 max_num_aiops = 1; 1803 rocketModel[i].model = MODEL_RP8OCTA; 1804 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable"); 1805 rocketModel[i].numPorts = 8; 1806 break; 1807 case PCI_DEVICE_ID_URP8OCTA: 1808 max_num_aiops = 1; 1809 rocketModel[i].model = MODEL_UPCI_RP8OCTA; 1810 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable"); 1811 rocketModel[i].numPorts = 8; 1812 break; 1813 case PCI_DEVICE_ID_RP8INTF: 1814 max_num_aiops = 1; 1815 rocketModel[i].model = MODEL_RP8INTF; 1816 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F"); 1817 rocketModel[i].numPorts = 8; 1818 break; 1819 case PCI_DEVICE_ID_URP8INTF: 1820 max_num_aiops = 1; 1821 rocketModel[i].model = MODEL_UPCI_RP8INTF; 1822 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F"); 1823 rocketModel[i].numPorts = 8; 1824 break; 1825 case PCI_DEVICE_ID_RP8J: 1826 max_num_aiops = 1; 1827 rocketModel[i].model = MODEL_RP8J; 1828 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors"); 1829 rocketModel[i].numPorts = 8; 1830 break; 1831 case PCI_DEVICE_ID_RP4J: 1832 max_num_aiops = 1; 1833 ports_per_aiop = 4; 1834 rocketModel[i].model = MODEL_RP4J; 1835 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors"); 1836 rocketModel[i].numPorts = 4; 1837 break; 1838 case PCI_DEVICE_ID_RP8SNI: 1839 max_num_aiops = 1; 1840 rocketModel[i].model = MODEL_RP8SNI; 1841 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78"); 1842 rocketModel[i].numPorts = 8; 1843 break; 1844 case PCI_DEVICE_ID_RP16SNI: 1845 max_num_aiops = 2; 1846 rocketModel[i].model = MODEL_RP16SNI; 1847 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78"); 1848 rocketModel[i].numPorts = 16; 1849 break; 1850 case PCI_DEVICE_ID_RP16INTF: 1851 max_num_aiops = 2; 1852 rocketModel[i].model = MODEL_RP16INTF; 1853 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F"); 1854 rocketModel[i].numPorts = 16; 1855 break; 1856 case PCI_DEVICE_ID_URP16INTF: 1857 max_num_aiops = 2; 1858 rocketModel[i].model = MODEL_UPCI_RP16INTF; 1859 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F"); 1860 rocketModel[i].numPorts = 16; 1861 break; 1862 case PCI_DEVICE_ID_CRP16INTF: 1863 max_num_aiops = 2; 1864 rocketModel[i].model = MODEL_CPCI_RP16INTF; 1865 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F"); 1866 rocketModel[i].numPorts = 16; 1867 break; 1868 case PCI_DEVICE_ID_RP32INTF: 1869 max_num_aiops = 4; 1870 rocketModel[i].model = MODEL_RP32INTF; 1871 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F"); 1872 rocketModel[i].numPorts = 32; 1873 break; 1874 case PCI_DEVICE_ID_URP32INTF: 1875 max_num_aiops = 4; 1876 rocketModel[i].model = MODEL_UPCI_RP32INTF; 1877 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F"); 1878 rocketModel[i].numPorts = 32; 1879 break; 1880 case PCI_DEVICE_ID_RPP4: 1881 max_num_aiops = 1; 1882 ports_per_aiop = 4; 1883 altChanRingIndicator++; 1884 fast_clock++; 1885 rocketModel[i].model = MODEL_RPP4; 1886 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port"); 1887 rocketModel[i].numPorts = 4; 1888 break; 1889 case PCI_DEVICE_ID_RPP8: 1890 max_num_aiops = 2; 1891 ports_per_aiop = 4; 1892 altChanRingIndicator++; 1893 fast_clock++; 1894 rocketModel[i].model = MODEL_RPP8; 1895 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port"); 1896 rocketModel[i].numPorts = 8; 1897 break; 1898 case PCI_DEVICE_ID_RP2_232: 1899 max_num_aiops = 1; 1900 ports_per_aiop = 2; 1901 altChanRingIndicator++; 1902 fast_clock++; 1903 rocketModel[i].model = MODEL_RP2_232; 1904 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232"); 1905 rocketModel[i].numPorts = 2; 1906 break; 1907 case PCI_DEVICE_ID_RP2_422: 1908 max_num_aiops = 1; 1909 ports_per_aiop = 2; 1910 altChanRingIndicator++; 1911 fast_clock++; 1912 rocketModel[i].model = MODEL_RP2_422; 1913 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422"); 1914 rocketModel[i].numPorts = 2; 1915 break; 1916 case PCI_DEVICE_ID_RP6M: 1917 1918 max_num_aiops = 1; 1919 ports_per_aiop = 6; 1920 1921 /* If revision is 1, the rocketmodem flash must be loaded. 1922 * If it is 2 it is a "socketed" version. */ 1923 if (dev->revision == 1) { 1924 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 1925 rocketModel[i].loadrm2 = 1; 1926 } else { 1927 rcktpt_type[i] = ROCKET_TYPE_MODEM; 1928 } 1929 1930 rocketModel[i].model = MODEL_RP6M; 1931 strcpy(rocketModel[i].modelString, "RocketModem 6 port"); 1932 rocketModel[i].numPorts = 6; 1933 break; 1934 case PCI_DEVICE_ID_RP4M: 1935 max_num_aiops = 1; 1936 ports_per_aiop = 4; 1937 if (dev->revision == 1) { 1938 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 1939 rocketModel[i].loadrm2 = 1; 1940 } else { 1941 rcktpt_type[i] = ROCKET_TYPE_MODEM; 1942 } 1943 1944 rocketModel[i].model = MODEL_RP4M; 1945 strcpy(rocketModel[i].modelString, "RocketModem 4 port"); 1946 rocketModel[i].numPorts = 4; 1947 break; 1948 default: 1949 max_num_aiops = 0; 1950 break; 1951 } 1952 1953 /* 1954 * Check for UPCI boards. 1955 */ 1956 1957 switch (dev->device) { 1958 case PCI_DEVICE_ID_URP32INTF: 1959 case PCI_DEVICE_ID_URP8INTF: 1960 case PCI_DEVICE_ID_URP16INTF: 1961 case PCI_DEVICE_ID_CRP16INTF: 1962 case PCI_DEVICE_ID_URP8OCTA: 1963 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 1964 ConfigIO = pci_resource_start(dev, 1); 1965 if (dev->device == PCI_DEVICE_ID_URP8OCTA) { 1966 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 1967 1968 /* 1969 * Check for octa or quad cable. 1970 */ 1971 if (! 1972 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) & 1973 PCI_GPIO_CTRL_8PORT)) { 1974 ports_per_aiop = 4; 1975 rocketModel[i].numPorts = 4; 1976 } 1977 } 1978 break; 1979 case PCI_DEVICE_ID_UPCI_RM3_8PORT: 1980 max_num_aiops = 1; 1981 rocketModel[i].model = MODEL_UPCI_RM3_8PORT; 1982 strcpy(rocketModel[i].modelString, "RocketModem III 8 port"); 1983 rocketModel[i].numPorts = 8; 1984 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 1985 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 1986 ConfigIO = pci_resource_start(dev, 1); 1987 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 1988 break; 1989 case PCI_DEVICE_ID_UPCI_RM3_4PORT: 1990 max_num_aiops = 1; 1991 rocketModel[i].model = MODEL_UPCI_RM3_4PORT; 1992 strcpy(rocketModel[i].modelString, "RocketModem III 4 port"); 1993 rocketModel[i].numPorts = 4; 1994 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 1995 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 1996 ConfigIO = pci_resource_start(dev, 1); 1997 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 1998 break; 1999 default: 2000 break; 2001 } 2002 2003 if (fast_clock) { 2004 sClockPrescale = 0x12; /* mod 2 (divide by 3) */ 2005 rp_baud_base[i] = 921600; 2006 } else { 2007 /* 2008 * If support_low_speed is set, use the slow clock 2009 * prescale, which supports 50 bps 2010 */ 2011 if (support_low_speed) { 2012 /* mod 9 (divide by 10) prescale */ 2013 sClockPrescale = 0x19; 2014 rp_baud_base[i] = 230400; 2015 } else { 2016 /* mod 4 (divide by 5) prescale */ 2017 sClockPrescale = 0x14; 2018 rp_baud_base[i] = 460800; 2019 } 2020 } 2021 2022 for (aiop = 0; aiop < max_num_aiops; aiop++) 2023 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40); 2024 ctlp = sCtlNumToCtlPtr(i); 2025 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd); 2026 for (aiop = 0; aiop < max_num_aiops; aiop++) 2027 ctlp->AiopNumChan[aiop] = ports_per_aiop; 2028 2029 dev_info(&dev->dev, "comtrol PCI controller #%d found at " 2030 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n", 2031 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString, 2032 rocketModel[i].startingPortNumber, 2033 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1); 2034 2035 if (num_aiops <= 0) { 2036 rcktpt_io_addr[i] = 0; 2037 return (0); 2038 } 2039 is_PCI[i] = 1; 2040 2041 /* Reset the AIOPIC, init the serial ports */ 2042 for (aiop = 0; aiop < num_aiops; aiop++) { 2043 sResetAiopByNum(ctlp, aiop); 2044 num_chan = ports_per_aiop; 2045 for (chan = 0; chan < num_chan; chan++) 2046 init_r_port(i, aiop, chan, dev); 2047 } 2048 2049 /* Rocket modems must be reset */ 2050 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || 2051 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) || 2052 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) { 2053 num_chan = ports_per_aiop; 2054 for (chan = 0; chan < num_chan; chan++) 2055 sPCIModemReset(ctlp, chan, 1); 2056 msleep(500); 2057 for (chan = 0; chan < num_chan; chan++) 2058 sPCIModemReset(ctlp, chan, 0); 2059 msleep(500); 2060 rmSpeakerReset(ctlp, rocketModel[i].model); 2061 } 2062 return (1); 2063} 2064 2065/* 2066 * Probes for PCI cards, inits them if found 2067 * Input: board_found = number of ISA boards already found, or the 2068 * starting board number 2069 * Returns: Number of PCI boards found 2070 */ 2071static int __init init_PCI(int boards_found) 2072{ 2073 struct pci_dev *dev = NULL; 2074 int count = 0; 2075 2076 /* Work through the PCI device list, pulling out ours */ 2077 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) { 2078 if (register_PCI(count + boards_found, dev)) 2079 count++; 2080 } 2081 return (count); 2082} 2083 2084#endif /* CONFIG_PCI */ 2085 2086/* 2087 * Probes for ISA cards 2088 * Input: i = the board number to look for 2089 * Returns: 1 if board found, 0 else 2090 */ 2091static int __init init_ISA(int i) 2092{ 2093 int num_aiops, num_chan = 0, total_num_chan = 0; 2094 int aiop, chan; 2095 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 2096 CONTROLLER_t *ctlp; 2097 char *type_string; 2098 2099 /* If io_addr is zero, no board configured */ 2100 if (rcktpt_io_addr[i] == 0) 2101 return (0); 2102 2103 /* Reserve the IO region */ 2104 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) { 2105 printk(KERN_ERR "Unable to reserve IO region for configured " 2106 "ISA RocketPort at address 0x%lx, board not " 2107 "installed...\n", rcktpt_io_addr[i]); 2108 rcktpt_io_addr[i] = 0; 2109 return (0); 2110 } 2111 2112 ctlp = sCtlNumToCtlPtr(i); 2113 2114 ctlp->boardType = rcktpt_type[i]; 2115 2116 switch (rcktpt_type[i]) { 2117 case ROCKET_TYPE_PC104: 2118 type_string = "(PC104)"; 2119 break; 2120 case ROCKET_TYPE_MODEM: 2121 type_string = "(RocketModem)"; 2122 break; 2123 case ROCKET_TYPE_MODEMII: 2124 type_string = "(RocketModem II)"; 2125 break; 2126 default: 2127 type_string = ""; 2128 break; 2129 } 2130 2131 /* 2132 * If support_low_speed is set, use the slow clock prescale, 2133 * which supports 50 bps 2134 */ 2135 if (support_low_speed) { 2136 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */ 2137 rp_baud_base[i] = 230400; 2138 } else { 2139 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */ 2140 rp_baud_base[i] = 460800; 2141 } 2142 2143 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++) 2144 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400); 2145 2146 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); 2147 2148 if (ctlp->boardType == ROCKET_TYPE_PC104) { 2149 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */ 2150 sEnAiop(ctlp, 3); /* CSels used for other stuff */ 2151 } 2152 2153 /* If something went wrong initing the AIOP's release the ISA IO memory */ 2154 if (num_aiops <= 0) { 2155 release_region(rcktpt_io_addr[i], 64); 2156 rcktpt_io_addr[i] = 0; 2157 return (0); 2158 } 2159 2160 rocketModel[i].startingPortNumber = nextLineNumber; 2161 2162 for (aiop = 0; aiop < num_aiops; aiop++) { 2163 sResetAiopByNum(ctlp, aiop); 2164 sEnAiop(ctlp, aiop); 2165 num_chan = sGetAiopNumChan(ctlp, aiop); 2166 total_num_chan += num_chan; 2167 for (chan = 0; chan < num_chan; chan++) 2168 init_r_port(i, aiop, chan, NULL); 2169 } 2170 is_PCI[i] = 0; 2171 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) { 2172 num_chan = sGetAiopNumChan(ctlp, 0); 2173 total_num_chan = num_chan; 2174 for (chan = 0; chan < num_chan; chan++) 2175 sModemReset(ctlp, chan, 1); 2176 msleep(500); 2177 for (chan = 0; chan < num_chan; chan++) 2178 sModemReset(ctlp, chan, 0); 2179 msleep(500); 2180 strcpy(rocketModel[i].modelString, "RocketModem ISA"); 2181 } else { 2182 strcpy(rocketModel[i].modelString, "RocketPort ISA"); 2183 } 2184 rocketModel[i].numPorts = total_num_chan; 2185 rocketModel[i].model = MODEL_ISA; 2186 2187 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 2188 i, rcktpt_io_addr[i], num_aiops, type_string); 2189 2190 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n", 2191 rocketModel[i].modelString, 2192 rocketModel[i].startingPortNumber, 2193 rocketModel[i].startingPortNumber + 2194 rocketModel[i].numPorts - 1); 2195 2196 return (1); 2197} 2198 2199static const struct tty_operations rocket_ops = { 2200 .open = rp_open, 2201 .close = rp_close, 2202 .write = rp_write, 2203 .put_char = rp_put_char, 2204 .write_room = rp_write_room, 2205 .chars_in_buffer = rp_chars_in_buffer, 2206 .flush_buffer = rp_flush_buffer, 2207 .ioctl = rp_ioctl, 2208 .throttle = rp_throttle, 2209 .unthrottle = rp_unthrottle, 2210 .set_termios = rp_set_termios, 2211 .stop = rp_stop, 2212 .start = rp_start, 2213 .hangup = rp_hangup, 2214 .break_ctl = rp_break, 2215 .send_xchar = rp_send_xchar, 2216 .wait_until_sent = rp_wait_until_sent, 2217 .tiocmget = rp_tiocmget, 2218 .tiocmset = rp_tiocmset, 2219}; 2220 2221static const struct tty_port_operations rocket_port_ops = { 2222 .carrier_raised = carrier_raised, 2223 .dtr_rts = dtr_rts, 2224}; 2225 2226/* 2227 * The module "startup" routine; it's run when the module is loaded. 2228 */ 2229static int __init rp_init(void) 2230{ 2231 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i; 2232 2233 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n", 2234 ROCKET_VERSION, ROCKET_DATE); 2235 2236 rocket_driver = alloc_tty_driver(MAX_RP_PORTS); 2237 if (!rocket_driver) 2238 goto err; 2239 2240 /* 2241 * If board 1 is non-zero, there is at least one ISA configured. If controller is 2242 * zero, use the default controller IO address of board1 + 0x40. 2243 */ 2244 if (board1) { 2245 if (controller == 0) 2246 controller = board1 + 0x40; 2247 } else { 2248 controller = 0; /* Used as a flag, meaning no ISA boards */ 2249 } 2250 2251 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */ 2252 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) { 2253 printk(KERN_ERR "Unable to reserve IO region for first " 2254 "configured ISA RocketPort controller 0x%lx. " 2255 "Driver exiting\n", controller); 2256 ret = -EBUSY; 2257 goto err_tty; 2258 } 2259 2260 /* Store ISA variable retrieved from command line or .conf file. */ 2261 rcktpt_io_addr[0] = board1; 2262 rcktpt_io_addr[1] = board2; 2263 rcktpt_io_addr[2] = board3; 2264 rcktpt_io_addr[3] = board4; 2265 2266 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2267 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0]; 2268 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2269 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1]; 2270 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2271 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2]; 2272 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2273 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3]; 2274 2275 /* 2276 * Set up the tty driver structure and then register this 2277 * driver with the tty layer. 2278 */ 2279 2280 rocket_driver->owner = THIS_MODULE; 2281 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV; 2282 rocket_driver->name = "ttyR"; 2283 rocket_driver->driver_name = "Comtrol RocketPort"; 2284 rocket_driver->major = TTY_ROCKET_MAJOR; 2285 rocket_driver->minor_start = 0; 2286 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL; 2287 rocket_driver->subtype = SERIAL_TYPE_NORMAL; 2288 rocket_driver->init_termios = tty_std_termios; 2289 rocket_driver->init_termios.c_cflag = 2290 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 2291 rocket_driver->init_termios.c_ispeed = 9600; 2292 rocket_driver->init_termios.c_ospeed = 9600; 2293#ifdef ROCKET_SOFT_FLOW 2294 rocket_driver->flags |= TTY_DRIVER_REAL_RAW; 2295#endif 2296 tty_set_operations(rocket_driver, &rocket_ops); 2297 2298 ret = tty_register_driver(rocket_driver); 2299 if (ret < 0) { 2300 printk(KERN_ERR "Couldn't install tty RocketPort driver\n"); 2301 goto err_controller; 2302 } 2303 2304#ifdef ROCKET_DEBUG_OPEN 2305 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major); 2306#endif 2307 2308 /* 2309 * OK, let's probe each of the controllers looking for boards. Any boards found 2310 * will be initialized here. 2311 */ 2312 isa_boards_found = 0; 2313 pci_boards_found = 0; 2314 2315 for (i = 0; i < NUM_BOARDS; i++) { 2316 if (init_ISA(i)) 2317 isa_boards_found++; 2318 } 2319 2320#ifdef CONFIG_PCI 2321 if (isa_boards_found < NUM_BOARDS) 2322 pci_boards_found = init_PCI(isa_boards_found); 2323#endif 2324 2325 max_board = pci_boards_found + isa_boards_found; 2326 2327 if (max_board == 0) { 2328 printk(KERN_ERR "No rocketport ports found; unloading driver\n"); 2329 ret = -ENXIO; 2330 goto err_ttyu; 2331 } 2332 2333 return 0; 2334err_ttyu: 2335 tty_unregister_driver(rocket_driver); 2336err_controller: 2337 if (controller) 2338 release_region(controller, 4); 2339err_tty: 2340 put_tty_driver(rocket_driver); 2341err: 2342 return ret; 2343} 2344 2345 2346static void rp_cleanup_module(void) 2347{ 2348 int retval; 2349 int i; 2350 2351 del_timer_sync(&rocket_timer); 2352 2353 retval = tty_unregister_driver(rocket_driver); 2354 if (retval) 2355 printk(KERN_ERR "Error %d while trying to unregister " 2356 "rocketport driver\n", -retval); 2357 2358 for (i = 0; i < MAX_RP_PORTS; i++) 2359 if (rp_table[i]) { 2360 tty_unregister_device(rocket_driver, i); 2361 kfree(rp_table[i]); 2362 } 2363 2364 put_tty_driver(rocket_driver); 2365 2366 for (i = 0; i < NUM_BOARDS; i++) { 2367 if (rcktpt_io_addr[i] <= 0 || is_PCI[i]) 2368 continue; 2369 release_region(rcktpt_io_addr[i], 64); 2370 } 2371 if (controller) 2372 release_region(controller, 4); 2373} 2374 2375/*************************************************************************** 2376Function: sInitController 2377Purpose: Initialization of controller global registers and controller 2378 structure. 2379Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize, 2380 IRQNum,Frequency,PeriodicOnly) 2381 CONTROLLER_T *CtlP; Ptr to controller structure 2382 int CtlNum; Controller number 2383 ByteIO_t MudbacIO; Mudbac base I/O address. 2384 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2385 This list must be in the order the AIOPs will be found on the 2386 controller. Once an AIOP in the list is not found, it is 2387 assumed that there are no more AIOPs on the controller. 2388 int AiopIOListSize; Number of addresses in AiopIOList 2389 int IRQNum; Interrupt Request number. Can be any of the following: 2390 0: Disable global interrupts 2391 3: IRQ 3 2392 4: IRQ 4 2393 5: IRQ 5 2394 9: IRQ 9 2395 10: IRQ 10 2396 11: IRQ 11 2397 12: IRQ 12 2398 15: IRQ 15 2399 Byte_t Frequency: A flag identifying the frequency 2400 of the periodic interrupt, can be any one of the following: 2401 FREQ_DIS - periodic interrupt disabled 2402 FREQ_137HZ - 137 Hertz 2403 FREQ_69HZ - 69 Hertz 2404 FREQ_34HZ - 34 Hertz 2405 FREQ_17HZ - 17 Hertz 2406 FREQ_9HZ - 9 Hertz 2407 FREQ_4HZ - 4 Hertz 2408 If IRQNum is set to 0 the Frequency parameter is 2409 overidden, it is forced to a value of FREQ_DIS. 2410 int PeriodicOnly: 1 if all interrupts except the periodic 2411 interrupt are to be blocked. 2412 0 is both the periodic interrupt and 2413 other channel interrupts are allowed. 2414 If IRQNum is set to 0 the PeriodicOnly parameter is 2415 overidden, it is forced to a value of 0. 2416Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2417 initialization failed. 2418 2419Comments: 2420 If periodic interrupts are to be disabled but AIOP interrupts 2421 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2422 2423 If interrupts are to be completely disabled set IRQNum to 0. 2424 2425 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2426 invalid combination. 2427 2428 This function performs initialization of global interrupt modes, 2429 but it does not actually enable global interrupts. To enable 2430 and disable global interrupts use functions sEnGlobalInt() and 2431 sDisGlobalInt(). Enabling of global interrupts is normally not 2432 done until all other initializations are complete. 2433 2434 Even if interrupts are globally enabled, they must also be 2435 individually enabled for each channel that is to generate 2436 interrupts. 2437 2438Warnings: No range checking on any of the parameters is done. 2439 2440 No context switches are allowed while executing this function. 2441 2442 After this function all AIOPs on the controller are disabled, 2443 they can be enabled with sEnAiop(). 2444*/ 2445static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 2446 ByteIO_t * AiopIOList, int AiopIOListSize, 2447 int IRQNum, Byte_t Frequency, int PeriodicOnly) 2448{ 2449 int i; 2450 ByteIO_t io; 2451 int done; 2452 2453 CtlP->AiopIntrBits = aiop_intr_bits; 2454 CtlP->AltChanRingIndicator = 0; 2455 CtlP->CtlNum = CtlNum; 2456 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2457 CtlP->BusType = isISA; 2458 CtlP->MBaseIO = MudbacIO; 2459 CtlP->MReg1IO = MudbacIO + 1; 2460 CtlP->MReg2IO = MudbacIO + 2; 2461 CtlP->MReg3IO = MudbacIO + 3; 2462#if 1 2463 CtlP->MReg2 = 0; /* interrupt disable */ 2464 CtlP->MReg3 = 0; /* no periodic interrupts */ 2465#else 2466 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */ 2467 CtlP->MReg2 = 0; /* interrupt disable */ 2468 CtlP->MReg3 = 0; /* no periodic interrupts */ 2469 } else { 2470 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */ 2471 CtlP->MReg3 = Frequency; /* set frequency */ 2472 if (PeriodicOnly) { /* periodic interrupt only */ 2473 CtlP->MReg3 |= PERIODIC_ONLY; 2474 } 2475 } 2476#endif 2477 sOutB(CtlP->MReg2IO, CtlP->MReg2); 2478 sOutB(CtlP->MReg3IO, CtlP->MReg3); 2479 sControllerEOI(CtlP); /* clear EOI if warm init */ 2480 /* Init AIOPs */ 2481 CtlP->NumAiop = 0; 2482 for (i = done = 0; i < AiopIOListSize; i++) { 2483 io = AiopIOList[i]; 2484 CtlP->AiopIO[i] = (WordIO_t) io; 2485 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2486 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */ 2487 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */ 2488 if (done) 2489 continue; 2490 sEnAiop(CtlP, i); /* enable the AIOP */ 2491 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2492 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2493 done = 1; /* done looking for AIOPs */ 2494 else { 2495 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2496 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2497 sOutB(io + _INDX_DATA, sClockPrescale); 2498 CtlP->NumAiop++; /* bump count of AIOPs */ 2499 } 2500 sDisAiop(CtlP, i); /* disable AIOP */ 2501 } 2502 2503 if (CtlP->NumAiop == 0) 2504 return (-1); 2505 else 2506 return (CtlP->NumAiop); 2507} 2508 2509/*************************************************************************** 2510Function: sPCIInitController 2511Purpose: Initialization of controller global registers and controller 2512 structure. 2513Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize, 2514 IRQNum,Frequency,PeriodicOnly) 2515 CONTROLLER_T *CtlP; Ptr to controller structure 2516 int CtlNum; Controller number 2517 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2518 This list must be in the order the AIOPs will be found on the 2519 controller. Once an AIOP in the list is not found, it is 2520 assumed that there are no more AIOPs on the controller. 2521 int AiopIOListSize; Number of addresses in AiopIOList 2522 int IRQNum; Interrupt Request number. Can be any of the following: 2523 0: Disable global interrupts 2524 3: IRQ 3 2525 4: IRQ 4 2526 5: IRQ 5 2527 9: IRQ 9 2528 10: IRQ 10 2529 11: IRQ 11 2530 12: IRQ 12 2531 15: IRQ 15 2532 Byte_t Frequency: A flag identifying the frequency 2533 of the periodic interrupt, can be any one of the following: 2534 FREQ_DIS - periodic interrupt disabled 2535 FREQ_137HZ - 137 Hertz 2536 FREQ_69HZ - 69 Hertz 2537 FREQ_34HZ - 34 Hertz 2538 FREQ_17HZ - 17 Hertz 2539 FREQ_9HZ - 9 Hertz 2540 FREQ_4HZ - 4 Hertz 2541 If IRQNum is set to 0 the Frequency parameter is 2542 overidden, it is forced to a value of FREQ_DIS. 2543 int PeriodicOnly: 1 if all interrupts except the periodic 2544 interrupt are to be blocked. 2545 0 is both the periodic interrupt and 2546 other channel interrupts are allowed. 2547 If IRQNum is set to 0 the PeriodicOnly parameter is 2548 overidden, it is forced to a value of 0. 2549Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2550 initialization failed. 2551 2552Comments: 2553 If periodic interrupts are to be disabled but AIOP interrupts 2554 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2555 2556 If interrupts are to be completely disabled set IRQNum to 0. 2557 2558 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2559 invalid combination. 2560 2561 This function performs initialization of global interrupt modes, 2562 but it does not actually enable global interrupts. To enable 2563 and disable global interrupts use functions sEnGlobalInt() and 2564 sDisGlobalInt(). Enabling of global interrupts is normally not 2565 done until all other initializations are complete. 2566 2567 Even if interrupts are globally enabled, they must also be 2568 individually enabled for each channel that is to generate 2569 interrupts. 2570 2571Warnings: No range checking on any of the parameters is done. 2572 2573 No context switches are allowed while executing this function. 2574 2575 After this function all AIOPs on the controller are disabled, 2576 they can be enabled with sEnAiop(). 2577*/ 2578static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 2579 ByteIO_t * AiopIOList, int AiopIOListSize, 2580 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 2581 int PeriodicOnly, int altChanRingIndicator, 2582 int UPCIRingInd) 2583{ 2584 int i; 2585 ByteIO_t io; 2586 2587 CtlP->AltChanRingIndicator = altChanRingIndicator; 2588 CtlP->UPCIRingInd = UPCIRingInd; 2589 CtlP->CtlNum = CtlNum; 2590 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2591 CtlP->BusType = isPCI; /* controller release 1 */ 2592 2593 if (ConfigIO) { 2594 CtlP->isUPCI = 1; 2595 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL; 2596 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL; 2597 CtlP->AiopIntrBits = upci_aiop_intr_bits; 2598 } else { 2599 CtlP->isUPCI = 0; 2600 CtlP->PCIIO = 2601 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC); 2602 CtlP->AiopIntrBits = aiop_intr_bits; 2603 } 2604 2605 sPCIControllerEOI(CtlP); /* clear EOI if warm init */ 2606 /* Init AIOPs */ 2607 CtlP->NumAiop = 0; 2608 for (i = 0; i < AiopIOListSize; i++) { 2609 io = AiopIOList[i]; 2610 CtlP->AiopIO[i] = (WordIO_t) io; 2611 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2612 2613 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2614 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2615 break; /* done looking for AIOPs */ 2616 2617 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2618 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2619 sOutB(io + _INDX_DATA, sClockPrescale); 2620 CtlP->NumAiop++; /* bump count of AIOPs */ 2621 } 2622 2623 if (CtlP->NumAiop == 0) 2624 return (-1); 2625 else 2626 return (CtlP->NumAiop); 2627} 2628 2629/*************************************************************************** 2630Function: sReadAiopID 2631Purpose: Read the AIOP idenfication number directly from an AIOP. 2632Call: sReadAiopID(io) 2633 ByteIO_t io: AIOP base I/O address 2634Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X 2635 is replace by an identifying number. 2636 Flag AIOPID_NULL if no valid AIOP is found 2637Warnings: No context switches are allowed while executing this function. 2638 2639*/ 2640static int sReadAiopID(ByteIO_t io) 2641{ 2642 Byte_t AiopID; /* ID byte from AIOP */ 2643 2644 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */ 2645 sOutB(io + _CMD_REG, 0x0); 2646 AiopID = sInW(io + _CHN_STAT0) & 0x07; 2647 if (AiopID == 0x06) 2648 return (1); 2649 else /* AIOP does not exist */ 2650 return (-1); 2651} 2652 2653/*************************************************************************** 2654Function: sReadAiopNumChan 2655Purpose: Read the number of channels available in an AIOP directly from 2656 an AIOP. 2657Call: sReadAiopNumChan(io) 2658 WordIO_t io: AIOP base I/O address 2659Return: int: The number of channels available 2660Comments: The number of channels is determined by write/reads from identical 2661 offsets within the SRAM address spaces for channels 0 and 4. 2662 If the channel 4 space is mirrored to channel 0 it is a 4 channel 2663 AIOP, otherwise it is an 8 channel. 2664Warnings: No context switches are allowed while executing this function. 2665*/ 2666static int sReadAiopNumChan(WordIO_t io) 2667{ 2668 Word_t x; 2669 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 }; 2670 2671 /* write to chan 0 SRAM */ 2672 out32((DWordIO_t) io + _INDX_ADDR, R); 2673 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */ 2674 x = sInW(io + _INDX_DATA); 2675 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */ 2676 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */ 2677 return (8); 2678 else 2679 return (4); 2680} 2681 2682/*************************************************************************** 2683Function: sInitChan 2684Purpose: Initialization of a channel and channel structure 2685Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) 2686 CONTROLLER_T *CtlP; Ptr to controller structure 2687 CHANNEL_T *ChP; Ptr to channel structure 2688 int AiopNum; AIOP number within controller 2689 int ChanNum; Channel number within AIOP 2690Return: int: 1 if initialization succeeded, 0 if it fails because channel 2691 number exceeds number of channels available in AIOP. 2692Comments: This function must be called before a channel can be used. 2693Warnings: No range checking on any of the parameters is done. 2694 2695 No context switches are allowed while executing this function. 2696*/ 2697static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 2698 int ChanNum) 2699{ 2700 int i; 2701 WordIO_t AiopIO; 2702 WordIO_t ChIOOff; 2703 Byte_t *ChR; 2704 Word_t ChOff; 2705 static Byte_t R[4]; 2706 int brd9600; 2707 2708 if (ChanNum >= CtlP->AiopNumChan[AiopNum]) 2709 return 0; /* exceeds num chans in AIOP */ 2710 2711 /* Channel, AIOP, and controller identifiers */ 2712 ChP->CtlP = CtlP; 2713 ChP->ChanID = CtlP->AiopID[AiopNum]; 2714 ChP->AiopNum = AiopNum; 2715 ChP->ChanNum = ChanNum; 2716 2717 /* Global direct addresses */ 2718 AiopIO = CtlP->AiopIO[AiopNum]; 2719 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG; 2720 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN; 2721 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK; 2722 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR; 2723 ChP->IndexData = AiopIO + _INDX_DATA; 2724 2725 /* Channel direct addresses */ 2726 ChIOOff = AiopIO + ChP->ChanNum * 2; 2727 ChP->TxRxData = ChIOOff + _TD0; 2728 ChP->ChanStat = ChIOOff + _CHN_STAT0; 2729 ChP->TxRxCount = ChIOOff + _FIFO_CNT0; 2730 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0; 2731 2732 /* Initialize the channel from the RData array */ 2733 for (i = 0; i < RDATASIZE; i += 4) { 2734 R[0] = RData[i]; 2735 R[1] = RData[i + 1] + 0x10 * ChanNum; 2736 R[2] = RData[i + 2]; 2737 R[3] = RData[i + 3]; 2738 out32(ChP->IndexAddr, R); 2739 } 2740 2741 ChR = ChP->R; 2742 for (i = 0; i < RREGDATASIZE; i += 4) { 2743 ChR[i] = RRegData[i]; 2744 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum; 2745 ChR[i + 2] = RRegData[i + 2]; 2746 ChR[i + 3] = RRegData[i + 3]; 2747 } 2748 2749 /* Indexed registers */ 2750 ChOff = (Word_t) ChanNum *0x1000; 2751 2752 if (sClockPrescale == 0x14) 2753 brd9600 = 47; 2754 else 2755 brd9600 = 23; 2756 2757 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD); 2758 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8); 2759 ChP->BaudDiv[2] = (Byte_t) brd9600; 2760 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8); 2761 out32(ChP->IndexAddr, ChP->BaudDiv); 2762 2763 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL); 2764 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8); 2765 ChP->TxControl[2] = 0; 2766 ChP->TxControl[3] = 0; 2767 out32(ChP->IndexAddr, ChP->TxControl); 2768 2769 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL); 2770 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8); 2771 ChP->RxControl[2] = 0; 2772 ChP->RxControl[3] = 0; 2773 out32(ChP->IndexAddr, ChP->RxControl); 2774 2775 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS); 2776 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8); 2777 ChP->TxEnables[2] = 0; 2778 ChP->TxEnables[3] = 0; 2779 out32(ChP->IndexAddr, ChP->TxEnables); 2780 2781 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1); 2782 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8); 2783 ChP->TxCompare[2] = 0; 2784 ChP->TxCompare[3] = 0; 2785 out32(ChP->IndexAddr, ChP->TxCompare); 2786 2787 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1); 2788 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8); 2789 ChP->TxReplace1[2] = 0; 2790 ChP->TxReplace1[3] = 0; 2791 out32(ChP->IndexAddr, ChP->TxReplace1); 2792 2793 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2); 2794 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8); 2795 ChP->TxReplace2[2] = 0; 2796 ChP->TxReplace2[3] = 0; 2797 out32(ChP->IndexAddr, ChP->TxReplace2); 2798 2799 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; 2800 ChP->TxFIFO = ChOff + _TX_FIFO; 2801 2802 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ 2803 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */ 2804 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2805 sOutW(ChP->IndexData, 0); 2806 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; 2807 ChP->RxFIFO = ChOff + _RX_FIFO; 2808 2809 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ 2810 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */ 2811 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2812 sOutW(ChP->IndexData, 0); 2813 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2814 sOutW(ChP->IndexData, 0); 2815 ChP->TxPrioCnt = ChOff + _TXP_CNT; 2816 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt); 2817 sOutB(ChP->IndexData, 0); 2818 ChP->TxPrioPtr = ChOff + _TXP_PNTR; 2819 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr); 2820 sOutB(ChP->IndexData, 0); 2821 ChP->TxPrioBuf = ChOff + _TXP_BUF; 2822 sEnRxProcessor(ChP); /* start the Rx processor */ 2823 2824 return 1; 2825} 2826 2827/*************************************************************************** 2828Function: sStopRxProcessor 2829Purpose: Stop the receive processor from processing a channel. 2830Call: sStopRxProcessor(ChP) 2831 CHANNEL_T *ChP; Ptr to channel structure 2832 2833Comments: The receive processor can be started again with sStartRxProcessor(). 2834 This function causes the receive processor to skip over the 2835 stopped channel. It does not stop it from processing other channels. 2836 2837Warnings: No context switches are allowed while executing this function. 2838 2839 Do not leave the receive processor stopped for more than one 2840 character time. 2841 2842 After calling this function a delay of 4 uS is required to ensure 2843 that the receive processor is no longer processing this channel. 2844*/ 2845static void sStopRxProcessor(CHANNEL_T * ChP) 2846{ 2847 Byte_t R[4]; 2848 2849 R[0] = ChP->R[0]; 2850 R[1] = ChP->R[1]; 2851 R[2] = 0x0a; 2852 R[3] = ChP->R[3]; 2853 out32(ChP->IndexAddr, R); 2854} 2855 2856/*************************************************************************** 2857Function: sFlushRxFIFO 2858Purpose: Flush the Rx FIFO 2859Call: sFlushRxFIFO(ChP) 2860 CHANNEL_T *ChP; Ptr to channel structure 2861Return: void 2862Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2863 while it is being flushed the receive processor is stopped 2864 and the transmitter is disabled. After these operations a 2865 4 uS delay is done before clearing the pointers to allow 2866 the receive processor to stop. These items are handled inside 2867 this function. 2868Warnings: No context switches are allowed while executing this function. 2869*/ 2870static void sFlushRxFIFO(CHANNEL_T * ChP) 2871{ 2872 int i; 2873 Byte_t Ch; /* channel number within AIOP */ 2874 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */ 2875 2876 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ 2877 return; /* don't need to flush */ 2878 2879 RxFIFOEnabled = 0; 2880 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */ 2881 RxFIFOEnabled = 1; 2882 sDisRxFIFO(ChP); /* disable it */ 2883 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */ 2884 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2885 } 2886 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ 2887 Ch = (Byte_t) sGetChanNum(ChP); 2888 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */ 2889 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */ 2890 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2891 sOutW(ChP->IndexData, 0); 2892 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2893 sOutW(ChP->IndexData, 0); 2894 if (RxFIFOEnabled) 2895 sEnRxFIFO(ChP); /* enable Rx FIFO */ 2896} 2897 2898/*************************************************************************** 2899Function: sFlushTxFIFO 2900Purpose: Flush the Tx FIFO 2901Call: sFlushTxFIFO(ChP) 2902 CHANNEL_T *ChP; Ptr to channel structure 2903Return: void 2904Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2905 while it is being flushed the receive processor is stopped 2906 and the transmitter is disabled. After these operations a 2907 4 uS delay is done before clearing the pointers to allow 2908 the receive processor to stop. These items are handled inside 2909 this function. 2910Warnings: No context switches are allowed while executing this function. 2911*/ 2912static void sFlushTxFIFO(CHANNEL_T * ChP) 2913{ 2914 int i; 2915 Byte_t Ch; /* channel number within AIOP */ 2916 int TxEnabled; /* 1 if transmitter enabled */ 2917 2918 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ 2919 return; /* don't need to flush */ 2920 2921 TxEnabled = 0; 2922 if (ChP->TxControl[3] & TX_ENABLE) { 2923 TxEnabled = 1; 2924 sDisTransmit(ChP); /* disable transmitter */ 2925 } 2926 sStopRxProcessor(ChP); /* stop Rx processor */ 2927 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */ 2928 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2929 Ch = (Byte_t) sGetChanNum(ChP); 2930 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */ 2931 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */ 2932 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2933 sOutW(ChP->IndexData, 0); 2934 if (TxEnabled) 2935 sEnTransmit(ChP); /* enable transmitter */ 2936 sStartRxProcessor(ChP); /* restart Rx processor */ 2937} 2938 2939/*************************************************************************** 2940Function: sWriteTxPrioByte 2941Purpose: Write a byte of priority transmit data to a channel 2942Call: sWriteTxPrioByte(ChP,Data) 2943 CHANNEL_T *ChP; Ptr to channel structure 2944 Byte_t Data; The transmit data byte 2945 2946Return: int: 1 if the bytes is successfully written, otherwise 0. 2947 2948Comments: The priority byte is transmitted before any data in the Tx FIFO. 2949 2950Warnings: No context switches are allowed while executing this function. 2951*/ 2952static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data) 2953{ 2954 Byte_t DWBuf[4]; /* buffer for double word writes */ 2955 Word_t *WordPtr; /* must be far because Win SS != DS */ 2956 register DWordIO_t IndexAddr; 2957 2958 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */ 2959 IndexAddr = ChP->IndexAddr; 2960 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */ 2961 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */ 2962 return (0); /* nothing sent */ 2963 2964 WordPtr = (Word_t *) (&DWBuf[0]); 2965 *WordPtr = ChP->TxPrioBuf; /* data byte address */ 2966 2967 DWBuf[2] = Data; /* data byte value */ 2968 out32(IndexAddr, DWBuf); /* write it out */ 2969 2970 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */ 2971 2972 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ 2973 DWBuf[3] = 0; /* priority buffer pointer */ 2974 out32(IndexAddr, DWBuf); /* write it out */ 2975 } else { /* write it to Tx FIFO */ 2976 2977 sWriteTxByte(sGetTxRxDataIO(ChP), Data); 2978 } 2979 return (1); /* 1 byte sent */ 2980} 2981 2982/*************************************************************************** 2983Function: sEnInterrupts 2984Purpose: Enable one or more interrupts for a channel 2985Call: sEnInterrupts(ChP,Flags) 2986 CHANNEL_T *ChP; Ptr to channel structure 2987 Word_t Flags: Interrupt enable flags, can be any combination 2988 of the following flags: 2989 TXINT_EN: Interrupt on Tx FIFO empty 2990 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 2991 sSetRxTrigger()) 2992 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 2993 MCINT_EN: Interrupt on modem input change 2994 CHANINT_EN: Allow channel interrupt signal to the AIOP's 2995 Interrupt Channel Register. 2996Return: void 2997Comments: If an interrupt enable flag is set in Flags, that interrupt will be 2998 enabled. If an interrupt enable flag is not set in Flags, that 2999 interrupt will not be changed. Interrupts can be disabled with 3000 function sDisInterrupts(). 3001 3002 This function sets the appropriate bit for the channel in the AIOP's 3003 Interrupt Mask Register if the CHANINT_EN flag is set. This allows 3004 this channel's bit to be set in the AIOP's Interrupt Channel Register. 3005 3006 Interrupts must also be globally enabled before channel interrupts 3007 will be passed on to the host. This is done with function 3008 sEnGlobalInt(). 3009 3010 In some cases it may be desirable to disable interrupts globally but 3011 enable channel interrupts. This would allow the global interrupt 3012 status register to be used to determine which AIOPs need service. 3013*/ 3014static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags) 3015{ 3016 Byte_t Mask; /* Interrupt Mask Register */ 3017 3018 ChP->RxControl[2] |= 3019 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3020 3021 out32(ChP->IndexAddr, ChP->RxControl); 3022 3023 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN); 3024 3025 out32(ChP->IndexAddr, ChP->TxControl); 3026 3027 if (Flags & CHANINT_EN) { 3028 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum]; 3029 sOutB(ChP->IntMask, Mask); 3030 } 3031} 3032 3033/*************************************************************************** 3034Function: sDisInterrupts 3035Purpose: Disable one or more interrupts for a channel 3036Call: sDisInterrupts(ChP,Flags) 3037 CHANNEL_T *ChP; Ptr to channel structure 3038 Word_t Flags: Interrupt flags, can be any combination 3039 of the following flags: 3040 TXINT_EN: Interrupt on Tx FIFO empty 3041 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3042 sSetRxTrigger()) 3043 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3044 MCINT_EN: Interrupt on modem input change 3045 CHANINT_EN: Disable channel interrupt signal to the 3046 AIOP's Interrupt Channel Register. 3047Return: void 3048Comments: If an interrupt flag is set in Flags, that interrupt will be 3049 disabled. If an interrupt flag is not set in Flags, that 3050 interrupt will not be changed. Interrupts can be enabled with 3051 function sEnInterrupts(). 3052 3053 This function clears the appropriate bit for the channel in the AIOP's 3054 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks 3055 this channel's bit from being set in the AIOP's Interrupt Channel 3056 Register. 3057*/ 3058static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags) 3059{ 3060 Byte_t Mask; /* Interrupt Mask Register */ 3061 3062 ChP->RxControl[2] &= 3063 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3064 out32(ChP->IndexAddr, ChP->RxControl); 3065 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN); 3066 out32(ChP->IndexAddr, ChP->TxControl); 3067 3068 if (Flags & CHANINT_EN) { 3069 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum]; 3070 sOutB(ChP->IntMask, Mask); 3071 } 3072} 3073 3074static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode) 3075{ 3076 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum); 3077} 3078 3079/* 3080 * Not an official SSCI function, but how to reset RocketModems. 3081 * ISA bus version 3082 */ 3083static void sModemReset(CONTROLLER_T * CtlP, int chan, int on) 3084{ 3085 ByteIO_t addr; 3086 Byte_t val; 3087 3088 addr = CtlP->AiopIO[0] + 0x400; 3089 val = sInB(CtlP->MReg3IO); 3090 /* if AIOP[1] is not enabled, enable it */ 3091 if ((val & 2) == 0) { 3092 val = sInB(CtlP->MReg2IO); 3093 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03)); 3094 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6)); 3095 } 3096 3097 sEnAiop(CtlP, 1); 3098 if (!on) 3099 addr += 8; 3100 sOutB(addr + chan, 0); /* apply or remove reset */ 3101 sDisAiop(CtlP, 1); 3102} 3103 3104/* 3105 * Not an official SSCI function, but how to reset RocketModems. 3106 * PCI bus version 3107 */ 3108static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on) 3109{ 3110 ByteIO_t addr; 3111 3112 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */ 3113 if (!on) 3114 addr += 8; 3115 sOutB(addr + chan, 0); /* apply or remove reset */ 3116} 3117 3118/* Resets the speaker controller on RocketModem II and III devices */ 3119static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model) 3120{ 3121 ByteIO_t addr; 3122 3123 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */ 3124 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) { 3125 addr = CtlP->AiopIO[0] + 0x4F; 3126 sOutB(addr, 0); 3127 } 3128 3129 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */ 3130 if ((model == MODEL_UPCI_RM3_8PORT) 3131 || (model == MODEL_UPCI_RM3_4PORT)) { 3132 addr = CtlP->AiopIO[0] + 0x88; 3133 sOutB(addr, 0); 3134 } 3135} 3136 3137/* Returns the line number given the controller (board), aiop and channel number */ 3138static unsigned char GetLineNumber(int ctrl, int aiop, int ch) 3139{ 3140 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch]; 3141} 3142 3143/* 3144 * Stores the line number associated with a given controller (board), aiop 3145 * and channel number. 3146 * Returns: The line number assigned 3147 */ 3148static unsigned char SetLineNumber(int ctrl, int aiop, int ch) 3149{ 3150 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++; 3151 return (nextLineNumber - 1); 3152}