at v3.3 1342 lines 34 kB view raw
1/* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the 18 Free Software Foundation, Inc., 19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22/* 23 Module: rt2x00lib 24 Abstract: rt2x00 generic device routines. 25 */ 26 27#include <linux/kernel.h> 28#include <linux/module.h> 29#include <linux/slab.h> 30#include <linux/log2.h> 31 32#include "rt2x00.h" 33#include "rt2x00lib.h" 34 35/* 36 * Utility functions. 37 */ 38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 39 struct ieee80211_vif *vif) 40{ 41 /* 42 * When in STA mode, bssidx is always 0 otherwise local_address[5] 43 * contains the bss number, see BSS_ID_MASK comments for details. 44 */ 45 if (rt2x00dev->intf_sta_count) 46 return 0; 47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 48} 49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 50 51/* 52 * Radio control handlers. 53 */ 54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 55{ 56 int status; 57 58 /* 59 * Don't enable the radio twice. 60 * And check if the hardware button has been disabled. 61 */ 62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 63 return 0; 64 65 /* 66 * Initialize all data queues. 67 */ 68 rt2x00queue_init_queues(rt2x00dev); 69 70 /* 71 * Enable radio. 72 */ 73 status = 74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 75 if (status) 76 return status; 77 78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 79 80 rt2x00leds_led_radio(rt2x00dev, true); 81 rt2x00led_led_activity(rt2x00dev, true); 82 83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 84 85 /* 86 * Enable queues. 87 */ 88 rt2x00queue_start_queues(rt2x00dev); 89 rt2x00link_start_tuner(rt2x00dev); 90 rt2x00link_start_agc(rt2x00dev); 91 92 /* 93 * Start watchdog monitoring. 94 */ 95 rt2x00link_start_watchdog(rt2x00dev); 96 97 return 0; 98} 99 100void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 101{ 102 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 103 return; 104 105 /* 106 * Stop watchdog monitoring. 107 */ 108 rt2x00link_stop_watchdog(rt2x00dev); 109 110 /* 111 * Stop all queues 112 */ 113 rt2x00link_stop_agc(rt2x00dev); 114 rt2x00link_stop_tuner(rt2x00dev); 115 rt2x00queue_stop_queues(rt2x00dev); 116 rt2x00queue_flush_queues(rt2x00dev, true); 117 118 /* 119 * Disable radio. 120 */ 121 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 122 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 123 rt2x00led_led_activity(rt2x00dev, false); 124 rt2x00leds_led_radio(rt2x00dev, false); 125} 126 127static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 128 struct ieee80211_vif *vif) 129{ 130 struct rt2x00_dev *rt2x00dev = data; 131 struct rt2x00_intf *intf = vif_to_intf(vif); 132 133 /* 134 * It is possible the radio was disabled while the work had been 135 * scheduled. If that happens we should return here immediately, 136 * note that in the spinlock protected area above the delayed_flags 137 * have been cleared correctly. 138 */ 139 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 140 return; 141 142 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) 143 rt2x00queue_update_beacon(rt2x00dev, vif); 144} 145 146static void rt2x00lib_intf_scheduled(struct work_struct *work) 147{ 148 struct rt2x00_dev *rt2x00dev = 149 container_of(work, struct rt2x00_dev, intf_work); 150 151 /* 152 * Iterate over each interface and perform the 153 * requested configurations. 154 */ 155 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 156 rt2x00lib_intf_scheduled_iter, 157 rt2x00dev); 158} 159 160static void rt2x00lib_autowakeup(struct work_struct *work) 161{ 162 struct rt2x00_dev *rt2x00dev = 163 container_of(work, struct rt2x00_dev, autowakeup_work.work); 164 165 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 166 return; 167 168 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 169 ERROR(rt2x00dev, "Device failed to wakeup.\n"); 170 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 171} 172 173/* 174 * Interrupt context handlers. 175 */ 176static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 177 struct ieee80211_vif *vif) 178{ 179 struct rt2x00_dev *rt2x00dev = data; 180 struct sk_buff *skb; 181 182 /* 183 * Only AP mode interfaces do broad- and multicast buffering 184 */ 185 if (vif->type != NL80211_IFTYPE_AP) 186 return; 187 188 /* 189 * Send out buffered broad- and multicast frames 190 */ 191 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 192 while (skb) { 193 rt2x00mac_tx(rt2x00dev->hw, skb); 194 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 195 } 196} 197 198static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 199 struct ieee80211_vif *vif) 200{ 201 struct rt2x00_dev *rt2x00dev = data; 202 203 if (vif->type != NL80211_IFTYPE_AP && 204 vif->type != NL80211_IFTYPE_ADHOC && 205 vif->type != NL80211_IFTYPE_MESH_POINT && 206 vif->type != NL80211_IFTYPE_WDS) 207 return; 208 209 /* 210 * Update the beacon without locking. This is safe on PCI devices 211 * as they only update the beacon periodically here. This should 212 * never be called for USB devices. 213 */ 214 WARN_ON(rt2x00_is_usb(rt2x00dev)); 215 rt2x00queue_update_beacon_locked(rt2x00dev, vif); 216} 217 218void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 219{ 220 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 221 return; 222 223 /* send buffered bc/mc frames out for every bssid */ 224 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 225 rt2x00lib_bc_buffer_iter, 226 rt2x00dev); 227 /* 228 * Devices with pre tbtt interrupt don't need to update the beacon 229 * here as they will fetch the next beacon directly prior to 230 * transmission. 231 */ 232 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags)) 233 return; 234 235 /* fetch next beacon */ 236 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 237 rt2x00lib_beaconupdate_iter, 238 rt2x00dev); 239} 240EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 241 242void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 243{ 244 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 245 return; 246 247 /* fetch next beacon */ 248 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 249 rt2x00lib_beaconupdate_iter, 250 rt2x00dev); 251} 252EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 253 254void rt2x00lib_dmastart(struct queue_entry *entry) 255{ 256 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 257 rt2x00queue_index_inc(entry, Q_INDEX); 258} 259EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 260 261void rt2x00lib_dmadone(struct queue_entry *entry) 262{ 263 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 264 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 265 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 266} 267EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 268 269void rt2x00lib_txdone(struct queue_entry *entry, 270 struct txdone_entry_desc *txdesc) 271{ 272 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 273 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 274 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 275 unsigned int header_length, i; 276 u8 rate_idx, rate_flags, retry_rates; 277 u8 skbdesc_flags = skbdesc->flags; 278 bool success; 279 280 /* 281 * Unmap the skb. 282 */ 283 rt2x00queue_unmap_skb(entry); 284 285 /* 286 * Remove the extra tx headroom from the skb. 287 */ 288 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom); 289 290 /* 291 * Signal that the TX descriptor is no longer in the skb. 292 */ 293 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 294 295 /* 296 * Determine the length of 802.11 header. 297 */ 298 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 299 300 /* 301 * Remove L2 padding which was added during 302 */ 303 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 304 rt2x00queue_remove_l2pad(entry->skb, header_length); 305 306 /* 307 * If the IV/EIV data was stripped from the frame before it was 308 * passed to the hardware, we should now reinsert it again because 309 * mac80211 will expect the same data to be present it the 310 * frame as it was passed to us. 311 */ 312 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) 313 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 314 315 /* 316 * Send frame to debugfs immediately, after this call is completed 317 * we are going to overwrite the skb->cb array. 318 */ 319 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); 320 321 /* 322 * Determine if the frame has been successfully transmitted. 323 */ 324 success = 325 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 326 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 327 328 /* 329 * Update TX statistics. 330 */ 331 rt2x00dev->link.qual.tx_success += success; 332 rt2x00dev->link.qual.tx_failed += !success; 333 334 rate_idx = skbdesc->tx_rate_idx; 335 rate_flags = skbdesc->tx_rate_flags; 336 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 337 (txdesc->retry + 1) : 1; 338 339 /* 340 * Initialize TX status 341 */ 342 memset(&tx_info->status, 0, sizeof(tx_info->status)); 343 tx_info->status.ack_signal = 0; 344 345 /* 346 * Frame was send with retries, hardware tried 347 * different rates to send out the frame, at each 348 * retry it lowered the rate 1 step except when the 349 * lowest rate was used. 350 */ 351 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 352 tx_info->status.rates[i].idx = rate_idx - i; 353 tx_info->status.rates[i].flags = rate_flags; 354 355 if (rate_idx - i == 0) { 356 /* 357 * The lowest rate (index 0) was used until the 358 * number of max retries was reached. 359 */ 360 tx_info->status.rates[i].count = retry_rates - i; 361 i++; 362 break; 363 } 364 tx_info->status.rates[i].count = 1; 365 } 366 if (i < (IEEE80211_TX_MAX_RATES - 1)) 367 tx_info->status.rates[i].idx = -1; /* terminate */ 368 369 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 370 if (success) 371 tx_info->flags |= IEEE80211_TX_STAT_ACK; 372 else 373 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 374 } 375 376 /* 377 * Every single frame has it's own tx status, hence report 378 * every frame as ampdu of size 1. 379 * 380 * TODO: if we can find out how many frames were aggregated 381 * by the hw we could provide the real ampdu_len to mac80211 382 * which would allow the rc algorithm to better decide on 383 * which rates are suitable. 384 */ 385 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 386 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 387 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 388 tx_info->status.ampdu_len = 1; 389 tx_info->status.ampdu_ack_len = success ? 1 : 0; 390 391 if (!success) 392 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 393 } 394 395 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 396 if (success) 397 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 398 else 399 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 400 } 401 402 /* 403 * Only send the status report to mac80211 when it's a frame 404 * that originated in mac80211. If this was a extra frame coming 405 * through a mac80211 library call (RTS/CTS) then we should not 406 * send the status report back. 407 */ 408 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 409 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags)) 410 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 411 else 412 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 413 } else 414 dev_kfree_skb_any(entry->skb); 415 416 /* 417 * Make this entry available for reuse. 418 */ 419 entry->skb = NULL; 420 entry->flags = 0; 421 422 rt2x00dev->ops->lib->clear_entry(entry); 423 424 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 425 426 /* 427 * If the data queue was below the threshold before the txdone 428 * handler we must make sure the packet queue in the mac80211 stack 429 * is reenabled when the txdone handler has finished. This has to be 430 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 431 * before it was stopped. 432 */ 433 spin_lock_bh(&entry->queue->tx_lock); 434 if (!rt2x00queue_threshold(entry->queue)) 435 rt2x00queue_unpause_queue(entry->queue); 436 spin_unlock_bh(&entry->queue->tx_lock); 437} 438EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 439 440void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 441{ 442 struct txdone_entry_desc txdesc; 443 444 txdesc.flags = 0; 445 __set_bit(status, &txdesc.flags); 446 txdesc.retry = 0; 447 448 rt2x00lib_txdone(entry, &txdesc); 449} 450EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 451 452static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 453{ 454 struct ieee80211_mgmt *mgmt = (void *)data; 455 u8 *pos, *end; 456 457 pos = (u8 *)mgmt->u.beacon.variable; 458 end = data + len; 459 while (pos < end) { 460 if (pos + 2 + pos[1] > end) 461 return NULL; 462 463 if (pos[0] == ie) 464 return pos; 465 466 pos += 2 + pos[1]; 467 } 468 469 return NULL; 470} 471 472static void rt2x00lib_sleep(struct work_struct *work) 473{ 474 struct rt2x00_dev *rt2x00dev = 475 container_of(work, struct rt2x00_dev, sleep_work); 476 477 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 478 return; 479 480 /* 481 * Check again is powersaving is enabled, to prevent races from delayed 482 * work execution. 483 */ 484 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 485 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 486 IEEE80211_CONF_CHANGE_PS); 487} 488 489static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 490 struct sk_buff *skb, 491 struct rxdone_entry_desc *rxdesc) 492{ 493 struct ieee80211_hdr *hdr = (void *) skb->data; 494 struct ieee80211_tim_ie *tim_ie; 495 u8 *tim; 496 u8 tim_len; 497 bool cam; 498 499 /* If this is not a beacon, or if mac80211 has no powersaving 500 * configured, or if the device is already in powersaving mode 501 * we can exit now. */ 502 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 503 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 504 return; 505 506 /* min. beacon length + FCS_LEN */ 507 if (skb->len <= 40 + FCS_LEN) 508 return; 509 510 /* and only beacons from the associated BSSID, please */ 511 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 512 !rt2x00dev->aid) 513 return; 514 515 rt2x00dev->last_beacon = jiffies; 516 517 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 518 if (!tim) 519 return; 520 521 if (tim[1] < sizeof(*tim_ie)) 522 return; 523 524 tim_len = tim[1]; 525 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 526 527 /* Check whenever the PHY can be turned off again. */ 528 529 /* 1. What about buffered unicast traffic for our AID? */ 530 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 531 532 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 533 cam |= (tim_ie->bitmap_ctrl & 0x01); 534 535 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 536 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 537} 538 539static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 540 struct rxdone_entry_desc *rxdesc) 541{ 542 struct ieee80211_supported_band *sband; 543 const struct rt2x00_rate *rate; 544 unsigned int i; 545 int signal = rxdesc->signal; 546 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 547 548 switch (rxdesc->rate_mode) { 549 case RATE_MODE_CCK: 550 case RATE_MODE_OFDM: 551 /* 552 * For non-HT rates the MCS value needs to contain the 553 * actually used rate modulation (CCK or OFDM). 554 */ 555 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 556 signal = RATE_MCS(rxdesc->rate_mode, signal); 557 558 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 559 for (i = 0; i < sband->n_bitrates; i++) { 560 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 561 if (((type == RXDONE_SIGNAL_PLCP) && 562 (rate->plcp == signal)) || 563 ((type == RXDONE_SIGNAL_BITRATE) && 564 (rate->bitrate == signal)) || 565 ((type == RXDONE_SIGNAL_MCS) && 566 (rate->mcs == signal))) { 567 return i; 568 } 569 } 570 break; 571 case RATE_MODE_HT_MIX: 572 case RATE_MODE_HT_GREENFIELD: 573 if (signal >= 0 && signal <= 76) 574 return signal; 575 break; 576 default: 577 break; 578 } 579 580 WARNING(rt2x00dev, "Frame received with unrecognized signal, " 581 "mode=0x%.4x, signal=0x%.4x, type=%d.\n", 582 rxdesc->rate_mode, signal, type); 583 return 0; 584} 585 586void rt2x00lib_rxdone(struct queue_entry *entry) 587{ 588 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 589 struct rxdone_entry_desc rxdesc; 590 struct sk_buff *skb; 591 struct ieee80211_rx_status *rx_status; 592 unsigned int header_length; 593 int rate_idx; 594 595 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 596 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 597 goto submit_entry; 598 599 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 600 goto submit_entry; 601 602 /* 603 * Allocate a new sk_buffer. If no new buffer available, drop the 604 * received frame and reuse the existing buffer. 605 */ 606 skb = rt2x00queue_alloc_rxskb(entry); 607 if (!skb) 608 goto submit_entry; 609 610 /* 611 * Unmap the skb. 612 */ 613 rt2x00queue_unmap_skb(entry); 614 615 /* 616 * Extract the RXD details. 617 */ 618 memset(&rxdesc, 0, sizeof(rxdesc)); 619 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 620 621 /* 622 * Check for valid size in case we get corrupted descriptor from 623 * hardware. 624 */ 625 if (unlikely(rxdesc.size == 0 || 626 rxdesc.size > entry->queue->data_size)) { 627 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n", 628 rxdesc.size, entry->queue->data_size); 629 dev_kfree_skb(entry->skb); 630 goto renew_skb; 631 } 632 633 /* 634 * The data behind the ieee80211 header must be 635 * aligned on a 4 byte boundary. 636 */ 637 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 638 639 /* 640 * Hardware might have stripped the IV/EIV/ICV data, 641 * in that case it is possible that the data was 642 * provided separately (through hardware descriptor) 643 * in which case we should reinsert the data into the frame. 644 */ 645 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 646 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 647 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 648 &rxdesc); 649 else if (header_length && 650 (rxdesc.size > header_length) && 651 (rxdesc.dev_flags & RXDONE_L2PAD)) 652 rt2x00queue_remove_l2pad(entry->skb, header_length); 653 654 /* Trim buffer to correct size */ 655 skb_trim(entry->skb, rxdesc.size); 656 657 /* 658 * Translate the signal to the correct bitrate index. 659 */ 660 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 661 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 662 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 663 rxdesc.flags |= RX_FLAG_HT; 664 665 /* 666 * Check if this is a beacon, and more frames have been 667 * buffered while we were in powersaving mode. 668 */ 669 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 670 671 /* 672 * Update extra components 673 */ 674 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 675 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 676 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); 677 678 /* 679 * Initialize RX status information, and send frame 680 * to mac80211. 681 */ 682 rx_status = IEEE80211_SKB_RXCB(entry->skb); 683 rx_status->mactime = rxdesc.timestamp; 684 rx_status->band = rt2x00dev->curr_band; 685 rx_status->freq = rt2x00dev->curr_freq; 686 rx_status->rate_idx = rate_idx; 687 rx_status->signal = rxdesc.rssi; 688 rx_status->flag = rxdesc.flags; 689 rx_status->antenna = rt2x00dev->link.ant.active.rx; 690 691 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 692 693renew_skb: 694 /* 695 * Replace the skb with the freshly allocated one. 696 */ 697 entry->skb = skb; 698 699submit_entry: 700 entry->flags = 0; 701 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 702 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 703 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 704 rt2x00dev->ops->lib->clear_entry(entry); 705} 706EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 707 708/* 709 * Driver initialization handlers. 710 */ 711const struct rt2x00_rate rt2x00_supported_rates[12] = { 712 { 713 .flags = DEV_RATE_CCK, 714 .bitrate = 10, 715 .ratemask = BIT(0), 716 .plcp = 0x00, 717 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 718 }, 719 { 720 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 721 .bitrate = 20, 722 .ratemask = BIT(1), 723 .plcp = 0x01, 724 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 725 }, 726 { 727 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 728 .bitrate = 55, 729 .ratemask = BIT(2), 730 .plcp = 0x02, 731 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 732 }, 733 { 734 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 735 .bitrate = 110, 736 .ratemask = BIT(3), 737 .plcp = 0x03, 738 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 739 }, 740 { 741 .flags = DEV_RATE_OFDM, 742 .bitrate = 60, 743 .ratemask = BIT(4), 744 .plcp = 0x0b, 745 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 746 }, 747 { 748 .flags = DEV_RATE_OFDM, 749 .bitrate = 90, 750 .ratemask = BIT(5), 751 .plcp = 0x0f, 752 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 753 }, 754 { 755 .flags = DEV_RATE_OFDM, 756 .bitrate = 120, 757 .ratemask = BIT(6), 758 .plcp = 0x0a, 759 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 760 }, 761 { 762 .flags = DEV_RATE_OFDM, 763 .bitrate = 180, 764 .ratemask = BIT(7), 765 .plcp = 0x0e, 766 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 767 }, 768 { 769 .flags = DEV_RATE_OFDM, 770 .bitrate = 240, 771 .ratemask = BIT(8), 772 .plcp = 0x09, 773 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 774 }, 775 { 776 .flags = DEV_RATE_OFDM, 777 .bitrate = 360, 778 .ratemask = BIT(9), 779 .plcp = 0x0d, 780 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 781 }, 782 { 783 .flags = DEV_RATE_OFDM, 784 .bitrate = 480, 785 .ratemask = BIT(10), 786 .plcp = 0x08, 787 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 788 }, 789 { 790 .flags = DEV_RATE_OFDM, 791 .bitrate = 540, 792 .ratemask = BIT(11), 793 .plcp = 0x0c, 794 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 795 }, 796}; 797 798static void rt2x00lib_channel(struct ieee80211_channel *entry, 799 const int channel, const int tx_power, 800 const int value) 801{ 802 /* XXX: this assumption about the band is wrong for 802.11j */ 803 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 804 entry->center_freq = ieee80211_channel_to_frequency(channel, 805 entry->band); 806 entry->hw_value = value; 807 entry->max_power = tx_power; 808 entry->max_antenna_gain = 0xff; 809} 810 811static void rt2x00lib_rate(struct ieee80211_rate *entry, 812 const u16 index, const struct rt2x00_rate *rate) 813{ 814 entry->flags = 0; 815 entry->bitrate = rate->bitrate; 816 entry->hw_value = index; 817 entry->hw_value_short = index; 818 819 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 820 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 821} 822 823static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 824 struct hw_mode_spec *spec) 825{ 826 struct ieee80211_hw *hw = rt2x00dev->hw; 827 struct ieee80211_channel *channels; 828 struct ieee80211_rate *rates; 829 unsigned int num_rates; 830 unsigned int i; 831 832 num_rates = 0; 833 if (spec->supported_rates & SUPPORT_RATE_CCK) 834 num_rates += 4; 835 if (spec->supported_rates & SUPPORT_RATE_OFDM) 836 num_rates += 8; 837 838 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 839 if (!channels) 840 return -ENOMEM; 841 842 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 843 if (!rates) 844 goto exit_free_channels; 845 846 /* 847 * Initialize Rate list. 848 */ 849 for (i = 0; i < num_rates; i++) 850 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 851 852 /* 853 * Initialize Channel list. 854 */ 855 for (i = 0; i < spec->num_channels; i++) { 856 rt2x00lib_channel(&channels[i], 857 spec->channels[i].channel, 858 spec->channels_info[i].max_power, i); 859 } 860 861 /* 862 * Intitialize 802.11b, 802.11g 863 * Rates: CCK, OFDM. 864 * Channels: 2.4 GHz 865 */ 866 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 867 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; 868 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; 869 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; 870 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; 871 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = 872 &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; 873 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap, 874 &spec->ht, sizeof(spec->ht)); 875 } 876 877 /* 878 * Intitialize 802.11a 879 * Rates: OFDM. 880 * Channels: OFDM, UNII, HiperLAN2. 881 */ 882 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 883 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = 884 spec->num_channels - 14; 885 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = 886 num_rates - 4; 887 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; 888 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; 889 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = 890 &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; 891 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap, 892 &spec->ht, sizeof(spec->ht)); 893 } 894 895 return 0; 896 897 exit_free_channels: 898 kfree(channels); 899 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); 900 return -ENOMEM; 901} 902 903static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 904{ 905 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 906 ieee80211_unregister_hw(rt2x00dev->hw); 907 908 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { 909 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); 910 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); 911 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; 912 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; 913 } 914 915 kfree(rt2x00dev->spec.channels_info); 916} 917 918static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 919{ 920 struct hw_mode_spec *spec = &rt2x00dev->spec; 921 int status; 922 923 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 924 return 0; 925 926 /* 927 * Initialize HW modes. 928 */ 929 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 930 if (status) 931 return status; 932 933 /* 934 * Initialize HW fields. 935 */ 936 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 937 938 /* 939 * Initialize extra TX headroom required. 940 */ 941 rt2x00dev->hw->extra_tx_headroom = 942 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 943 rt2x00dev->ops->extra_tx_headroom); 944 945 /* 946 * Take TX headroom required for alignment into account. 947 */ 948 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 949 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 950 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) 951 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 952 953 /* 954 * Tell mac80211 about the size of our private STA structure. 955 */ 956 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 957 958 /* 959 * Allocate tx status FIFO for driver use. 960 */ 961 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) { 962 /* 963 * Allocate the txstatus fifo. In the worst case the tx 964 * status fifo has to hold the tx status of all entries 965 * in all tx queues. Hence, calculate the kfifo size as 966 * tx_queues * entry_num and round up to the nearest 967 * power of 2. 968 */ 969 int kfifo_size = 970 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 971 rt2x00dev->ops->tx->entry_num * 972 sizeof(u32)); 973 974 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 975 GFP_KERNEL); 976 if (status) 977 return status; 978 } 979 980 /* 981 * Initialize tasklets if used by the driver. Tasklets are 982 * disabled until the interrupts are turned on. The driver 983 * has to handle that. 984 */ 985#define RT2X00_TASKLET_INIT(taskletname) \ 986 if (rt2x00dev->ops->lib->taskletname) { \ 987 tasklet_init(&rt2x00dev->taskletname, \ 988 rt2x00dev->ops->lib->taskletname, \ 989 (unsigned long)rt2x00dev); \ 990 } 991 992 RT2X00_TASKLET_INIT(txstatus_tasklet); 993 RT2X00_TASKLET_INIT(pretbtt_tasklet); 994 RT2X00_TASKLET_INIT(tbtt_tasklet); 995 RT2X00_TASKLET_INIT(rxdone_tasklet); 996 RT2X00_TASKLET_INIT(autowake_tasklet); 997 998#undef RT2X00_TASKLET_INIT 999 1000 /* 1001 * Register HW. 1002 */ 1003 status = ieee80211_register_hw(rt2x00dev->hw); 1004 if (status) 1005 return status; 1006 1007 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1008 1009 return 0; 1010} 1011 1012/* 1013 * Initialization/uninitialization handlers. 1014 */ 1015static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1016{ 1017 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1018 return; 1019 1020 /* 1021 * Unregister extra components. 1022 */ 1023 rt2x00rfkill_unregister(rt2x00dev); 1024 1025 /* 1026 * Allow the HW to uninitialize. 1027 */ 1028 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1029 1030 /* 1031 * Free allocated queue entries. 1032 */ 1033 rt2x00queue_uninitialize(rt2x00dev); 1034} 1035 1036static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1037{ 1038 int status; 1039 1040 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1041 return 0; 1042 1043 /* 1044 * Allocate all queue entries. 1045 */ 1046 status = rt2x00queue_initialize(rt2x00dev); 1047 if (status) 1048 return status; 1049 1050 /* 1051 * Initialize the device. 1052 */ 1053 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1054 if (status) { 1055 rt2x00queue_uninitialize(rt2x00dev); 1056 return status; 1057 } 1058 1059 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1060 1061 /* 1062 * Register the extra components. 1063 */ 1064 rt2x00rfkill_register(rt2x00dev); 1065 1066 return 0; 1067} 1068 1069int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1070{ 1071 int retval; 1072 1073 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1074 return 0; 1075 1076 /* 1077 * If this is the first interface which is added, 1078 * we should load the firmware now. 1079 */ 1080 retval = rt2x00lib_load_firmware(rt2x00dev); 1081 if (retval) 1082 return retval; 1083 1084 /* 1085 * Initialize the device. 1086 */ 1087 retval = rt2x00lib_initialize(rt2x00dev); 1088 if (retval) 1089 return retval; 1090 1091 rt2x00dev->intf_ap_count = 0; 1092 rt2x00dev->intf_sta_count = 0; 1093 rt2x00dev->intf_associated = 0; 1094 1095 /* Enable the radio */ 1096 retval = rt2x00lib_enable_radio(rt2x00dev); 1097 if (retval) 1098 return retval; 1099 1100 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1101 1102 return 0; 1103} 1104 1105void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1106{ 1107 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1108 return; 1109 1110 /* 1111 * Perhaps we can add something smarter here, 1112 * but for now just disabling the radio should do. 1113 */ 1114 rt2x00lib_disable_radio(rt2x00dev); 1115 1116 rt2x00dev->intf_ap_count = 0; 1117 rt2x00dev->intf_sta_count = 0; 1118 rt2x00dev->intf_associated = 0; 1119} 1120 1121/* 1122 * driver allocation handlers. 1123 */ 1124int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1125{ 1126 int retval = -ENOMEM; 1127 1128 spin_lock_init(&rt2x00dev->irqmask_lock); 1129 mutex_init(&rt2x00dev->csr_mutex); 1130 1131 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1132 1133 /* 1134 * Make room for rt2x00_intf inside the per-interface 1135 * structure ieee80211_vif. 1136 */ 1137 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1138 1139 /* 1140 * Determine which operating modes are supported, all modes 1141 * which require beaconing, depend on the availability of 1142 * beacon entries. 1143 */ 1144 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1145 if (rt2x00dev->ops->bcn->entry_num > 0) 1146 rt2x00dev->hw->wiphy->interface_modes |= 1147 BIT(NL80211_IFTYPE_ADHOC) | 1148 BIT(NL80211_IFTYPE_AP) | 1149 BIT(NL80211_IFTYPE_MESH_POINT) | 1150 BIT(NL80211_IFTYPE_WDS); 1151 1152 /* 1153 * Initialize work. 1154 */ 1155 rt2x00dev->workqueue = 1156 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0); 1157 if (!rt2x00dev->workqueue) { 1158 retval = -ENOMEM; 1159 goto exit; 1160 } 1161 1162 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1163 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1164 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1165 1166 /* 1167 * Let the driver probe the device to detect the capabilities. 1168 */ 1169 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1170 if (retval) { 1171 ERROR(rt2x00dev, "Failed to allocate device.\n"); 1172 goto exit; 1173 } 1174 1175 /* 1176 * Allocate queue array. 1177 */ 1178 retval = rt2x00queue_allocate(rt2x00dev); 1179 if (retval) 1180 goto exit; 1181 1182 /* 1183 * Initialize ieee80211 structure. 1184 */ 1185 retval = rt2x00lib_probe_hw(rt2x00dev); 1186 if (retval) { 1187 ERROR(rt2x00dev, "Failed to initialize hw.\n"); 1188 goto exit; 1189 } 1190 1191 /* 1192 * Register extra components. 1193 */ 1194 rt2x00link_register(rt2x00dev); 1195 rt2x00leds_register(rt2x00dev); 1196 rt2x00debug_register(rt2x00dev); 1197 1198 return 0; 1199 1200exit: 1201 rt2x00lib_remove_dev(rt2x00dev); 1202 1203 return retval; 1204} 1205EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1206 1207void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1208{ 1209 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1210 1211 /* 1212 * Disable radio. 1213 */ 1214 rt2x00lib_disable_radio(rt2x00dev); 1215 1216 /* 1217 * Stop all work. 1218 */ 1219 cancel_work_sync(&rt2x00dev->intf_work); 1220 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1221 cancel_work_sync(&rt2x00dev->sleep_work); 1222 if (rt2x00_is_usb(rt2x00dev)) { 1223 del_timer_sync(&rt2x00dev->txstatus_timer); 1224 cancel_work_sync(&rt2x00dev->rxdone_work); 1225 cancel_work_sync(&rt2x00dev->txdone_work); 1226 } 1227 if (rt2x00dev->workqueue) 1228 destroy_workqueue(rt2x00dev->workqueue); 1229 1230 /* 1231 * Free the tx status fifo. 1232 */ 1233 kfifo_free(&rt2x00dev->txstatus_fifo); 1234 1235 /* 1236 * Kill the tx status tasklet. 1237 */ 1238 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1239 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1240 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1241 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1242 tasklet_kill(&rt2x00dev->autowake_tasklet); 1243 1244 /* 1245 * Uninitialize device. 1246 */ 1247 rt2x00lib_uninitialize(rt2x00dev); 1248 1249 /* 1250 * Free extra components 1251 */ 1252 rt2x00debug_deregister(rt2x00dev); 1253 rt2x00leds_unregister(rt2x00dev); 1254 1255 /* 1256 * Free ieee80211_hw memory. 1257 */ 1258 rt2x00lib_remove_hw(rt2x00dev); 1259 1260 /* 1261 * Free firmware image. 1262 */ 1263 rt2x00lib_free_firmware(rt2x00dev); 1264 1265 /* 1266 * Free queue structures. 1267 */ 1268 rt2x00queue_free(rt2x00dev); 1269} 1270EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1271 1272/* 1273 * Device state handlers 1274 */ 1275#ifdef CONFIG_PM 1276int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1277{ 1278 NOTICE(rt2x00dev, "Going to sleep.\n"); 1279 1280 /* 1281 * Prevent mac80211 from accessing driver while suspended. 1282 */ 1283 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1284 return 0; 1285 1286 /* 1287 * Cleanup as much as possible. 1288 */ 1289 rt2x00lib_uninitialize(rt2x00dev); 1290 1291 /* 1292 * Suspend/disable extra components. 1293 */ 1294 rt2x00leds_suspend(rt2x00dev); 1295 rt2x00debug_deregister(rt2x00dev); 1296 1297 /* 1298 * Set device mode to sleep for power management, 1299 * on some hardware this call seems to consistently fail. 1300 * From the specifications it is hard to tell why it fails, 1301 * and if this is a "bad thing". 1302 * Overall it is safe to just ignore the failure and 1303 * continue suspending. The only downside is that the 1304 * device will not be in optimal power save mode, but with 1305 * the radio and the other components already disabled the 1306 * device is as good as disabled. 1307 */ 1308 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1309 WARNING(rt2x00dev, "Device failed to enter sleep state, " 1310 "continue suspending.\n"); 1311 1312 return 0; 1313} 1314EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1315 1316int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1317{ 1318 NOTICE(rt2x00dev, "Waking up.\n"); 1319 1320 /* 1321 * Restore/enable extra components. 1322 */ 1323 rt2x00debug_register(rt2x00dev); 1324 rt2x00leds_resume(rt2x00dev); 1325 1326 /* 1327 * We are ready again to receive requests from mac80211. 1328 */ 1329 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1330 1331 return 0; 1332} 1333EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1334#endif /* CONFIG_PM */ 1335 1336/* 1337 * rt2x00lib module information. 1338 */ 1339MODULE_AUTHOR(DRV_PROJECT); 1340MODULE_VERSION(DRV_VERSION); 1341MODULE_DESCRIPTION("rt2x00 library"); 1342MODULE_LICENSE("GPL");