at v3.3 20 kB view raw
1#ifndef _ASM_IA64_PROCESSOR_H 2#define _ASM_IA64_PROCESSOR_H 3 4/* 5 * Copyright (C) 1998-2004 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * Stephane Eranian <eranian@hpl.hp.com> 8 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> 9 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> 10 * 11 * 11/24/98 S.Eranian added ia64_set_iva() 12 * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API 13 * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support 14 */ 15 16 17#include <asm/intrinsics.h> 18#include <asm/kregs.h> 19#include <asm/ptrace.h> 20#include <asm/ustack.h> 21 22#define IA64_NUM_PHYS_STACK_REG 96 23#define IA64_NUM_DBG_REGS 8 24 25#define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000) 26#define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000) 27 28/* 29 * TASK_SIZE really is a mis-named. It really is the maximum user 30 * space address (plus one). On IA-64, there are five regions of 2TB 31 * each (assuming 8KB page size), for a total of 8TB of user virtual 32 * address space. 33 */ 34#define TASK_SIZE_OF(tsk) ((tsk)->thread.task_size) 35#define TASK_SIZE TASK_SIZE_OF(current) 36 37/* 38 * This decides where the kernel will search for a free chunk of vm 39 * space during mmap's. 40 */ 41#define TASK_UNMAPPED_BASE (current->thread.map_base) 42 43#define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */ 44#define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */ 45#define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */ 46#define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */ 47#define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */ 48#define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration 49 sync at ctx sw */ 50#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */ 51#define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */ 52 53#define IA64_THREAD_UAC_SHIFT 3 54#define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS) 55#define IA64_THREAD_FPEMU_SHIFT 6 56#define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE) 57 58 59/* 60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good 61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits 62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number). 63 */ 64#define IA64_NSEC_PER_CYC_SHIFT 30 65 66#ifndef __ASSEMBLY__ 67 68#include <linux/cache.h> 69#include <linux/compiler.h> 70#include <linux/threads.h> 71#include <linux/types.h> 72 73#include <asm/fpu.h> 74#include <asm/page.h> 75#include <asm/percpu.h> 76#include <asm/rse.h> 77#include <asm/unwind.h> 78#include <linux/atomic.h> 79#ifdef CONFIG_NUMA 80#include <asm/nodedata.h> 81#endif 82 83/* like above but expressed as bitfields for more efficient access: */ 84struct ia64_psr { 85 __u64 reserved0 : 1; 86 __u64 be : 1; 87 __u64 up : 1; 88 __u64 ac : 1; 89 __u64 mfl : 1; 90 __u64 mfh : 1; 91 __u64 reserved1 : 7; 92 __u64 ic : 1; 93 __u64 i : 1; 94 __u64 pk : 1; 95 __u64 reserved2 : 1; 96 __u64 dt : 1; 97 __u64 dfl : 1; 98 __u64 dfh : 1; 99 __u64 sp : 1; 100 __u64 pp : 1; 101 __u64 di : 1; 102 __u64 si : 1; 103 __u64 db : 1; 104 __u64 lp : 1; 105 __u64 tb : 1; 106 __u64 rt : 1; 107 __u64 reserved3 : 4; 108 __u64 cpl : 2; 109 __u64 is : 1; 110 __u64 mc : 1; 111 __u64 it : 1; 112 __u64 id : 1; 113 __u64 da : 1; 114 __u64 dd : 1; 115 __u64 ss : 1; 116 __u64 ri : 2; 117 __u64 ed : 1; 118 __u64 bn : 1; 119 __u64 reserved4 : 19; 120}; 121 122union ia64_isr { 123 __u64 val; 124 struct { 125 __u64 code : 16; 126 __u64 vector : 8; 127 __u64 reserved1 : 8; 128 __u64 x : 1; 129 __u64 w : 1; 130 __u64 r : 1; 131 __u64 na : 1; 132 __u64 sp : 1; 133 __u64 rs : 1; 134 __u64 ir : 1; 135 __u64 ni : 1; 136 __u64 so : 1; 137 __u64 ei : 2; 138 __u64 ed : 1; 139 __u64 reserved2 : 20; 140 }; 141}; 142 143union ia64_lid { 144 __u64 val; 145 struct { 146 __u64 rv : 16; 147 __u64 eid : 8; 148 __u64 id : 8; 149 __u64 ig : 32; 150 }; 151}; 152 153union ia64_tpr { 154 __u64 val; 155 struct { 156 __u64 ig0 : 4; 157 __u64 mic : 4; 158 __u64 rsv : 8; 159 __u64 mmi : 1; 160 __u64 ig1 : 47; 161 }; 162}; 163 164union ia64_itir { 165 __u64 val; 166 struct { 167 __u64 rv3 : 2; /* 0-1 */ 168 __u64 ps : 6; /* 2-7 */ 169 __u64 key : 24; /* 8-31 */ 170 __u64 rv4 : 32; /* 32-63 */ 171 }; 172}; 173 174union ia64_rr { 175 __u64 val; 176 struct { 177 __u64 ve : 1; /* enable hw walker */ 178 __u64 reserved0: 1; /* reserved */ 179 __u64 ps : 6; /* log page size */ 180 __u64 rid : 24; /* region id */ 181 __u64 reserved1: 32; /* reserved */ 182 }; 183}; 184 185/* 186 * CPU type, hardware bug flags, and per-CPU state. Frequently used 187 * state comes earlier: 188 */ 189struct cpuinfo_ia64 { 190 unsigned int softirq_pending; 191 unsigned long itm_delta; /* # of clock cycles between clock ticks */ 192 unsigned long itm_next; /* interval timer mask value to use for next clock tick */ 193 unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */ 194 unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */ 195 unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */ 196 unsigned long itc_freq; /* frequency of ITC counter */ 197 unsigned long proc_freq; /* frequency of processor */ 198 unsigned long cyc_per_usec; /* itc_freq/1000000 */ 199 unsigned long ptce_base; 200 unsigned int ptce_count[2]; 201 unsigned int ptce_stride[2]; 202 struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */ 203 204#ifdef CONFIG_SMP 205 unsigned long loops_per_jiffy; 206 int cpu; 207 unsigned int socket_id; /* physical processor socket id */ 208 unsigned short core_id; /* core id */ 209 unsigned short thread_id; /* thread id */ 210 unsigned short num_log; /* Total number of logical processors on 211 * this socket that were successfully booted */ 212 unsigned char cores_per_socket; /* Cores per processor socket */ 213 unsigned char threads_per_core; /* Threads per core */ 214#endif 215 216 /* CPUID-derived information: */ 217 unsigned long ppn; 218 unsigned long features; 219 unsigned char number; 220 unsigned char revision; 221 unsigned char model; 222 unsigned char family; 223 unsigned char archrev; 224 char vendor[16]; 225 char *model_name; 226 227#ifdef CONFIG_NUMA 228 struct ia64_node_data *node_data; 229#endif 230}; 231 232DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info); 233 234/* 235 * The "local" data variable. It refers to the per-CPU data of the currently executing 236 * CPU, much like "current" points to the per-task data of the currently executing task. 237 * Do not use the address of local_cpu_data, since it will be different from 238 * cpu_data(smp_processor_id())! 239 */ 240#define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info)) 241#define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu)) 242 243extern void print_cpu_info (struct cpuinfo_ia64 *); 244 245typedef struct { 246 unsigned long seg; 247} mm_segment_t; 248 249#define SET_UNALIGN_CTL(task,value) \ 250({ \ 251 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \ 252 | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \ 253 0; \ 254}) 255#define GET_UNALIGN_CTL(task,addr) \ 256({ \ 257 put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \ 258 (int __user *) (addr)); \ 259}) 260 261#define SET_FPEMU_CTL(task,value) \ 262({ \ 263 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \ 264 | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \ 265 0; \ 266}) 267#define GET_FPEMU_CTL(task,addr) \ 268({ \ 269 put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \ 270 (int __user *) (addr)); \ 271}) 272 273struct thread_struct { 274 __u32 flags; /* various thread flags (see IA64_THREAD_*) */ 275 /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */ 276 __u8 on_ustack; /* executing on user-stacks? */ 277 __u8 pad[3]; 278 __u64 ksp; /* kernel stack pointer */ 279 __u64 map_base; /* base address for get_unmapped_area() */ 280 __u64 task_size; /* limit for task size */ 281 __u64 rbs_bot; /* the base address for the RBS */ 282 int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */ 283 284#ifdef CONFIG_PERFMON 285 void *pfm_context; /* pointer to detailed PMU context */ 286 unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */ 287# define INIT_THREAD_PM .pfm_context = NULL, \ 288 .pfm_needs_checking = 0UL, 289#else 290# define INIT_THREAD_PM 291#endif 292 unsigned long dbr[IA64_NUM_DBG_REGS]; 293 unsigned long ibr[IA64_NUM_DBG_REGS]; 294 struct ia64_fpreg fph[96]; /* saved/loaded on demand */ 295}; 296 297#define INIT_THREAD { \ 298 .flags = 0, \ 299 .on_ustack = 0, \ 300 .ksp = 0, \ 301 .map_base = DEFAULT_MAP_BASE, \ 302 .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \ 303 .task_size = DEFAULT_TASK_SIZE, \ 304 .last_fph_cpu = -1, \ 305 INIT_THREAD_PM \ 306 .dbr = {0, }, \ 307 .ibr = {0, }, \ 308 .fph = {{{{0}}}, } \ 309} 310 311#define start_thread(regs,new_ip,new_sp) do { \ 312 regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \ 313 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \ 314 regs->cr_iip = new_ip; \ 315 regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \ 316 regs->ar_rnat = 0; \ 317 regs->ar_bspstore = current->thread.rbs_bot; \ 318 regs->ar_fpsr = FPSR_DEFAULT; \ 319 regs->loadrs = 0; \ 320 regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \ 321 regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \ 322 if (unlikely(!get_dumpable(current->mm))) { \ 323 /* \ 324 * Zap scratch regs to avoid leaking bits between processes with different \ 325 * uid/privileges. \ 326 */ \ 327 regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \ 328 regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \ 329 } \ 330} while (0) 331 332/* Forward declarations, a strange C thing... */ 333struct mm_struct; 334struct task_struct; 335 336/* 337 * Free all resources held by a thread. This is called after the 338 * parent of DEAD_TASK has collected the exit status of the task via 339 * wait(). 340 */ 341#define release_thread(dead_task) 342 343/* Prepare to copy thread state - unlazy all lazy status */ 344#define prepare_to_copy(tsk) do { } while (0) 345 346/* 347 * This is the mechanism for creating a new kernel thread. 348 * 349 * NOTE 1: Only a kernel-only process (ie the swapper or direct 350 * descendants who haven't done an "execve()") should use this: it 351 * will work within a system call from a "real" process, but the 352 * process memory space will not be free'd until both the parent and 353 * the child have exited. 354 * 355 * NOTE 2: This MUST NOT be an inlined function. Otherwise, we get 356 * into trouble in init/main.c when the child thread returns to 357 * do_basic_setup() and the timing is such that free_initmem() has 358 * been called already. 359 */ 360extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags); 361 362/* Get wait channel for task P. */ 363extern unsigned long get_wchan (struct task_struct *p); 364 365/* Return instruction pointer of blocked task TSK. */ 366#define KSTK_EIP(tsk) \ 367 ({ \ 368 struct pt_regs *_regs = task_pt_regs(tsk); \ 369 _regs->cr_iip + ia64_psr(_regs)->ri; \ 370 }) 371 372/* Return stack pointer of blocked task TSK. */ 373#define KSTK_ESP(tsk) ((tsk)->thread.ksp) 374 375extern void ia64_getreg_unknown_kr (void); 376extern void ia64_setreg_unknown_kr (void); 377 378#define ia64_get_kr(regnum) \ 379({ \ 380 unsigned long r = 0; \ 381 \ 382 switch (regnum) { \ 383 case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \ 384 case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \ 385 case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \ 386 case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \ 387 case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \ 388 case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \ 389 case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \ 390 case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \ 391 default: ia64_getreg_unknown_kr(); break; \ 392 } \ 393 r; \ 394}) 395 396#define ia64_set_kr(regnum, r) \ 397({ \ 398 switch (regnum) { \ 399 case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \ 400 case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \ 401 case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \ 402 case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \ 403 case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \ 404 case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \ 405 case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \ 406 case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \ 407 default: ia64_setreg_unknown_kr(); break; \ 408 } \ 409}) 410 411/* 412 * The following three macros can't be inline functions because we don't have struct 413 * task_struct at this point. 414 */ 415 416/* 417 * Return TRUE if task T owns the fph partition of the CPU we're running on. 418 * Must be called from code that has preemption disabled. 419 */ 420#define ia64_is_local_fpu_owner(t) \ 421({ \ 422 struct task_struct *__ia64_islfo_task = (t); \ 423 (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \ 424 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \ 425}) 426 427/* 428 * Mark task T as owning the fph partition of the CPU we're running on. 429 * Must be called from code that has preemption disabled. 430 */ 431#define ia64_set_local_fpu_owner(t) do { \ 432 struct task_struct *__ia64_slfo_task = (t); \ 433 __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \ 434 ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \ 435} while (0) 436 437/* Mark the fph partition of task T as being invalid on all CPUs. */ 438#define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1) 439 440extern void __ia64_init_fpu (void); 441extern void __ia64_save_fpu (struct ia64_fpreg *fph); 442extern void __ia64_load_fpu (struct ia64_fpreg *fph); 443extern void ia64_save_debug_regs (unsigned long *save_area); 444extern void ia64_load_debug_regs (unsigned long *save_area); 445 446#define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) 447#define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) 448 449/* load fp 0.0 into fph */ 450static inline void 451ia64_init_fpu (void) { 452 ia64_fph_enable(); 453 __ia64_init_fpu(); 454 ia64_fph_disable(); 455} 456 457/* save f32-f127 at FPH */ 458static inline void 459ia64_save_fpu (struct ia64_fpreg *fph) { 460 ia64_fph_enable(); 461 __ia64_save_fpu(fph); 462 ia64_fph_disable(); 463} 464 465/* load f32-f127 from FPH */ 466static inline void 467ia64_load_fpu (struct ia64_fpreg *fph) { 468 ia64_fph_enable(); 469 __ia64_load_fpu(fph); 470 ia64_fph_disable(); 471} 472 473static inline __u64 474ia64_clear_ic (void) 475{ 476 __u64 psr; 477 psr = ia64_getreg(_IA64_REG_PSR); 478 ia64_stop(); 479 ia64_rsm(IA64_PSR_I | IA64_PSR_IC); 480 ia64_srlz_i(); 481 return psr; 482} 483 484/* 485 * Restore the psr. 486 */ 487static inline void 488ia64_set_psr (__u64 psr) 489{ 490 ia64_stop(); 491 ia64_setreg(_IA64_REG_PSR_L, psr); 492 ia64_srlz_i(); 493} 494 495/* 496 * Insert a translation into an instruction and/or data translation 497 * register. 498 */ 499static inline void 500ia64_itr (__u64 target_mask, __u64 tr_num, 501 __u64 vmaddr, __u64 pte, 502 __u64 log_page_size) 503{ 504 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); 505 ia64_setreg(_IA64_REG_CR_IFA, vmaddr); 506 ia64_stop(); 507 if (target_mask & 0x1) 508 ia64_itri(tr_num, pte); 509 if (target_mask & 0x2) 510 ia64_itrd(tr_num, pte); 511} 512 513/* 514 * Insert a translation into the instruction and/or data translation 515 * cache. 516 */ 517static inline void 518ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte, 519 __u64 log_page_size) 520{ 521 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); 522 ia64_setreg(_IA64_REG_CR_IFA, vmaddr); 523 ia64_stop(); 524 /* as per EAS2.6, itc must be the last instruction in an instruction group */ 525 if (target_mask & 0x1) 526 ia64_itci(pte); 527 if (target_mask & 0x2) 528 ia64_itcd(pte); 529} 530 531/* 532 * Purge a range of addresses from instruction and/or data translation 533 * register(s). 534 */ 535static inline void 536ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size) 537{ 538 if (target_mask & 0x1) 539 ia64_ptri(vmaddr, (log_size << 2)); 540 if (target_mask & 0x2) 541 ia64_ptrd(vmaddr, (log_size << 2)); 542} 543 544/* Set the interrupt vector address. The address must be suitably aligned (32KB). */ 545static inline void 546ia64_set_iva (void *ivt_addr) 547{ 548 ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr); 549 ia64_srlz_i(); 550} 551 552/* Set the page table address and control bits. */ 553static inline void 554ia64_set_pta (__u64 pta) 555{ 556 /* Note: srlz.i implies srlz.d */ 557 ia64_setreg(_IA64_REG_CR_PTA, pta); 558 ia64_srlz_i(); 559} 560 561static inline void 562ia64_eoi (void) 563{ 564 ia64_setreg(_IA64_REG_CR_EOI, 0); 565 ia64_srlz_d(); 566} 567 568#define cpu_relax() ia64_hint(ia64_hint_pause) 569 570static inline int 571ia64_get_irr(unsigned int vector) 572{ 573 unsigned int reg = vector / 64; 574 unsigned int bit = vector % 64; 575 u64 irr; 576 577 switch (reg) { 578 case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break; 579 case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break; 580 case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break; 581 case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break; 582 } 583 584 return test_bit(bit, &irr); 585} 586 587static inline void 588ia64_set_lrr0 (unsigned long val) 589{ 590 ia64_setreg(_IA64_REG_CR_LRR0, val); 591 ia64_srlz_d(); 592} 593 594static inline void 595ia64_set_lrr1 (unsigned long val) 596{ 597 ia64_setreg(_IA64_REG_CR_LRR1, val); 598 ia64_srlz_d(); 599} 600 601 602/* 603 * Given the address to which a spill occurred, return the unat bit 604 * number that corresponds to this address. 605 */ 606static inline __u64 607ia64_unat_pos (void *spill_addr) 608{ 609 return ((__u64) spill_addr >> 3) & 0x3f; 610} 611 612/* 613 * Set the NaT bit of an integer register which was spilled at address 614 * SPILL_ADDR. UNAT is the mask to be updated. 615 */ 616static inline void 617ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat) 618{ 619 __u64 bit = ia64_unat_pos(spill_addr); 620 __u64 mask = 1UL << bit; 621 622 *unat = (*unat & ~mask) | (nat << bit); 623} 624 625/* 626 * Return saved PC of a blocked thread. 627 * Note that the only way T can block is through a call to schedule() -> switch_to(). 628 */ 629static inline unsigned long 630thread_saved_pc (struct task_struct *t) 631{ 632 struct unw_frame_info info; 633 unsigned long ip; 634 635 unw_init_from_blocked_task(&info, t); 636 if (unw_unwind(&info) < 0) 637 return 0; 638 unw_get_ip(&info, &ip); 639 return ip; 640} 641 642/* 643 * Get the current instruction/program counter value. 644 */ 645#define current_text_addr() \ 646 ({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; }) 647 648static inline __u64 649ia64_get_ivr (void) 650{ 651 __u64 r; 652 ia64_srlz_d(); 653 r = ia64_getreg(_IA64_REG_CR_IVR); 654 ia64_srlz_d(); 655 return r; 656} 657 658static inline void 659ia64_set_dbr (__u64 regnum, __u64 value) 660{ 661 __ia64_set_dbr(regnum, value); 662#ifdef CONFIG_ITANIUM 663 ia64_srlz_d(); 664#endif 665} 666 667static inline __u64 668ia64_get_dbr (__u64 regnum) 669{ 670 __u64 retval; 671 672 retval = __ia64_get_dbr(regnum); 673#ifdef CONFIG_ITANIUM 674 ia64_srlz_d(); 675#endif 676 return retval; 677} 678 679static inline __u64 680ia64_rotr (__u64 w, __u64 n) 681{ 682 return (w >> n) | (w << (64 - n)); 683} 684 685#define ia64_rotl(w,n) ia64_rotr((w), (64) - (n)) 686 687/* 688 * Take a mapped kernel address and return the equivalent address 689 * in the region 7 identity mapped virtual area. 690 */ 691static inline void * 692ia64_imva (void *addr) 693{ 694 void *result; 695 result = (void *) ia64_tpa(addr); 696 return __va(result); 697} 698 699#define ARCH_HAS_PREFETCH 700#define ARCH_HAS_PREFETCHW 701#define ARCH_HAS_SPINLOCK_PREFETCH 702#define PREFETCH_STRIDE L1_CACHE_BYTES 703 704static inline void 705prefetch (const void *x) 706{ 707 ia64_lfetch(ia64_lfhint_none, x); 708} 709 710static inline void 711prefetchw (const void *x) 712{ 713 ia64_lfetch_excl(ia64_lfhint_none, x); 714} 715 716#define spin_lock_prefetch(x) prefetchw(x) 717 718extern unsigned long boot_option_idle_override; 719 720enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT, 721 IDLE_NOMWAIT, IDLE_POLL}; 722 723#endif /* !__ASSEMBLY__ */ 724 725#endif /* _ASM_IA64_PROCESSOR_H */