at v3.3-rc7 86 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/if.h> 29#include <linux/if_ether.h> 30#include <linux/if_packet.h> 31#include <linux/if_link.h> 32 33#ifdef __KERNEL__ 34#include <linux/pm_qos.h> 35#include <linux/timer.h> 36#include <linux/delay.h> 37#include <linux/atomic.h> 38#include <asm/cache.h> 39#include <asm/byteorder.h> 40 41#include <linux/device.h> 42#include <linux/percpu.h> 43#include <linux/rculist.h> 44#include <linux/dmaengine.h> 45#include <linux/workqueue.h> 46#include <linux/dynamic_queue_limits.h> 47 48#include <linux/ethtool.h> 49#include <net/net_namespace.h> 50#include <net/dsa.h> 51#ifdef CONFIG_DCB 52#include <net/dcbnl.h> 53#endif 54#include <net/netprio_cgroup.h> 55 56#include <linux/netdev_features.h> 57 58struct netpoll_info; 59struct phy_device; 60/* 802.11 specific */ 61struct wireless_dev; 62 /* source back-compat hooks */ 63#define SET_ETHTOOL_OPS(netdev,ops) \ 64 ( (netdev)->ethtool_ops = (ops) ) 65 66/* hardware address assignment types */ 67#define NET_ADDR_PERM 0 /* address is permanent (default) */ 68#define NET_ADDR_RANDOM 1 /* address is generated randomly */ 69#define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 70 71/* Backlog congestion levels */ 72#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73#define NET_RX_DROP 1 /* packet dropped */ 74 75/* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously, in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), all 89 * others are propagated to higher layers. 90 */ 91 92/* qdisc ->enqueue() return codes. */ 93#define NET_XMIT_SUCCESS 0x00 94#define NET_XMIT_DROP 0x01 /* skb dropped */ 95#define NET_XMIT_CN 0x02 /* congestion notification */ 96#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 97#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 98 99/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 100 * indicates that the device will soon be dropping packets, or already drops 101 * some packets of the same priority; prompting us to send less aggressively. */ 102#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 103#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 104 105/* Driver transmit return codes */ 106#define NETDEV_TX_MASK 0xf0 107 108enum netdev_tx { 109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 110 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 112 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 113}; 114typedef enum netdev_tx netdev_tx_t; 115 116/* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120static inline bool dev_xmit_complete(int rc) 121{ 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132} 133 134#endif 135 136#define MAX_ADDR_LEN 32 /* Largest hardware address length */ 137 138/* Initial net device group. All devices belong to group 0 by default. */ 139#define INIT_NETDEV_GROUP 0 140 141#ifdef __KERNEL__ 142/* 143 * Compute the worst case header length according to the protocols 144 * used. 145 */ 146 147#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 148# if defined(CONFIG_MAC80211_MESH) 149# define LL_MAX_HEADER 128 150# else 151# define LL_MAX_HEADER 96 152# endif 153#elif IS_ENABLED(CONFIG_TR) 154# define LL_MAX_HEADER 48 155#else 156# define LL_MAX_HEADER 32 157#endif 158 159#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 160 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 161#define MAX_HEADER LL_MAX_HEADER 162#else 163#define MAX_HEADER (LL_MAX_HEADER + 48) 164#endif 165 166/* 167 * Old network device statistics. Fields are native words 168 * (unsigned long) so they can be read and written atomically. 169 */ 170 171struct net_device_stats { 172 unsigned long rx_packets; 173 unsigned long tx_packets; 174 unsigned long rx_bytes; 175 unsigned long tx_bytes; 176 unsigned long rx_errors; 177 unsigned long tx_errors; 178 unsigned long rx_dropped; 179 unsigned long tx_dropped; 180 unsigned long multicast; 181 unsigned long collisions; 182 unsigned long rx_length_errors; 183 unsigned long rx_over_errors; 184 unsigned long rx_crc_errors; 185 unsigned long rx_frame_errors; 186 unsigned long rx_fifo_errors; 187 unsigned long rx_missed_errors; 188 unsigned long tx_aborted_errors; 189 unsigned long tx_carrier_errors; 190 unsigned long tx_fifo_errors; 191 unsigned long tx_heartbeat_errors; 192 unsigned long tx_window_errors; 193 unsigned long rx_compressed; 194 unsigned long tx_compressed; 195}; 196 197#endif /* __KERNEL__ */ 198 199 200/* Media selection options. */ 201enum { 202 IF_PORT_UNKNOWN = 0, 203 IF_PORT_10BASE2, 204 IF_PORT_10BASET, 205 IF_PORT_AUI, 206 IF_PORT_100BASET, 207 IF_PORT_100BASETX, 208 IF_PORT_100BASEFX 209}; 210 211#ifdef __KERNEL__ 212 213#include <linux/cache.h> 214#include <linux/skbuff.h> 215 216#ifdef CONFIG_RPS 217#include <linux/jump_label.h> 218extern struct jump_label_key rps_needed; 219#endif 220 221struct neighbour; 222struct neigh_parms; 223struct sk_buff; 224 225struct netdev_hw_addr { 226 struct list_head list; 227 unsigned char addr[MAX_ADDR_LEN]; 228 unsigned char type; 229#define NETDEV_HW_ADDR_T_LAN 1 230#define NETDEV_HW_ADDR_T_SAN 2 231#define NETDEV_HW_ADDR_T_SLAVE 3 232#define NETDEV_HW_ADDR_T_UNICAST 4 233#define NETDEV_HW_ADDR_T_MULTICAST 5 234 bool synced; 235 bool global_use; 236 int refcount; 237 struct rcu_head rcu_head; 238}; 239 240struct netdev_hw_addr_list { 241 struct list_head list; 242 int count; 243}; 244 245#define netdev_hw_addr_list_count(l) ((l)->count) 246#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 247#define netdev_hw_addr_list_for_each(ha, l) \ 248 list_for_each_entry(ha, &(l)->list, list) 249 250#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 251#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 252#define netdev_for_each_uc_addr(ha, dev) \ 253 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 254 255#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 256#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 257#define netdev_for_each_mc_addr(ha, dev) \ 258 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 259 260struct hh_cache { 261 u16 hh_len; 262 u16 __pad; 263 seqlock_t hh_lock; 264 265 /* cached hardware header; allow for machine alignment needs. */ 266#define HH_DATA_MOD 16 267#define HH_DATA_OFF(__len) \ 268 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 269#define HH_DATA_ALIGN(__len) \ 270 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 271 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 272}; 273 274/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 275 * Alternative is: 276 * dev->hard_header_len ? (dev->hard_header_len + 277 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 278 * 279 * We could use other alignment values, but we must maintain the 280 * relationship HH alignment <= LL alignment. 281 */ 282#define LL_RESERVED_SPACE(dev) \ 283 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 284#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 285 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 286 287struct header_ops { 288 int (*create) (struct sk_buff *skb, struct net_device *dev, 289 unsigned short type, const void *daddr, 290 const void *saddr, unsigned len); 291 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 292 int (*rebuild)(struct sk_buff *skb); 293 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 294 void (*cache_update)(struct hh_cache *hh, 295 const struct net_device *dev, 296 const unsigned char *haddr); 297}; 298 299/* These flag bits are private to the generic network queueing 300 * layer, they may not be explicitly referenced by any other 301 * code. 302 */ 303 304enum netdev_state_t { 305 __LINK_STATE_START, 306 __LINK_STATE_PRESENT, 307 __LINK_STATE_NOCARRIER, 308 __LINK_STATE_LINKWATCH_PENDING, 309 __LINK_STATE_DORMANT, 310}; 311 312 313/* 314 * This structure holds at boot time configured netdevice settings. They 315 * are then used in the device probing. 316 */ 317struct netdev_boot_setup { 318 char name[IFNAMSIZ]; 319 struct ifmap map; 320}; 321#define NETDEV_BOOT_SETUP_MAX 8 322 323extern int __init netdev_boot_setup(char *str); 324 325/* 326 * Structure for NAPI scheduling similar to tasklet but with weighting 327 */ 328struct napi_struct { 329 /* The poll_list must only be managed by the entity which 330 * changes the state of the NAPI_STATE_SCHED bit. This means 331 * whoever atomically sets that bit can add this napi_struct 332 * to the per-cpu poll_list, and whoever clears that bit 333 * can remove from the list right before clearing the bit. 334 */ 335 struct list_head poll_list; 336 337 unsigned long state; 338 int weight; 339 int (*poll)(struct napi_struct *, int); 340#ifdef CONFIG_NETPOLL 341 spinlock_t poll_lock; 342 int poll_owner; 343#endif 344 345 unsigned int gro_count; 346 347 struct net_device *dev; 348 struct list_head dev_list; 349 struct sk_buff *gro_list; 350 struct sk_buff *skb; 351}; 352 353enum { 354 NAPI_STATE_SCHED, /* Poll is scheduled */ 355 NAPI_STATE_DISABLE, /* Disable pending */ 356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 357}; 358 359enum gro_result { 360 GRO_MERGED, 361 GRO_MERGED_FREE, 362 GRO_HELD, 363 GRO_NORMAL, 364 GRO_DROP, 365}; 366typedef enum gro_result gro_result_t; 367 368/* 369 * enum rx_handler_result - Possible return values for rx_handlers. 370 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 371 * further. 372 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 373 * case skb->dev was changed by rx_handler. 374 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 375 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 376 * 377 * rx_handlers are functions called from inside __netif_receive_skb(), to do 378 * special processing of the skb, prior to delivery to protocol handlers. 379 * 380 * Currently, a net_device can only have a single rx_handler registered. Trying 381 * to register a second rx_handler will return -EBUSY. 382 * 383 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 384 * To unregister a rx_handler on a net_device, use 385 * netdev_rx_handler_unregister(). 386 * 387 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 388 * do with the skb. 389 * 390 * If the rx_handler consumed to skb in some way, it should return 391 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 392 * the skb to be delivered in some other ways. 393 * 394 * If the rx_handler changed skb->dev, to divert the skb to another 395 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 396 * new device will be called if it exists. 397 * 398 * If the rx_handler consider the skb should be ignored, it should return 399 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 400 * are registred on exact device (ptype->dev == skb->dev). 401 * 402 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 403 * delivered, it should return RX_HANDLER_PASS. 404 * 405 * A device without a registered rx_handler will behave as if rx_handler 406 * returned RX_HANDLER_PASS. 407 */ 408 409enum rx_handler_result { 410 RX_HANDLER_CONSUMED, 411 RX_HANDLER_ANOTHER, 412 RX_HANDLER_EXACT, 413 RX_HANDLER_PASS, 414}; 415typedef enum rx_handler_result rx_handler_result_t; 416typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 417 418extern void __napi_schedule(struct napi_struct *n); 419 420static inline int napi_disable_pending(struct napi_struct *n) 421{ 422 return test_bit(NAPI_STATE_DISABLE, &n->state); 423} 424 425/** 426 * napi_schedule_prep - check if napi can be scheduled 427 * @n: napi context 428 * 429 * Test if NAPI routine is already running, and if not mark 430 * it as running. This is used as a condition variable 431 * insure only one NAPI poll instance runs. We also make 432 * sure there is no pending NAPI disable. 433 */ 434static inline int napi_schedule_prep(struct napi_struct *n) 435{ 436 return !napi_disable_pending(n) && 437 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 438} 439 440/** 441 * napi_schedule - schedule NAPI poll 442 * @n: napi context 443 * 444 * Schedule NAPI poll routine to be called if it is not already 445 * running. 446 */ 447static inline void napi_schedule(struct napi_struct *n) 448{ 449 if (napi_schedule_prep(n)) 450 __napi_schedule(n); 451} 452 453/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 454static inline int napi_reschedule(struct napi_struct *napi) 455{ 456 if (napi_schedule_prep(napi)) { 457 __napi_schedule(napi); 458 return 1; 459 } 460 return 0; 461} 462 463/** 464 * napi_complete - NAPI processing complete 465 * @n: napi context 466 * 467 * Mark NAPI processing as complete. 468 */ 469extern void __napi_complete(struct napi_struct *n); 470extern void napi_complete(struct napi_struct *n); 471 472/** 473 * napi_disable - prevent NAPI from scheduling 474 * @n: napi context 475 * 476 * Stop NAPI from being scheduled on this context. 477 * Waits till any outstanding processing completes. 478 */ 479static inline void napi_disable(struct napi_struct *n) 480{ 481 set_bit(NAPI_STATE_DISABLE, &n->state); 482 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 483 msleep(1); 484 clear_bit(NAPI_STATE_DISABLE, &n->state); 485} 486 487/** 488 * napi_enable - enable NAPI scheduling 489 * @n: napi context 490 * 491 * Resume NAPI from being scheduled on this context. 492 * Must be paired with napi_disable. 493 */ 494static inline void napi_enable(struct napi_struct *n) 495{ 496 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 497 smp_mb__before_clear_bit(); 498 clear_bit(NAPI_STATE_SCHED, &n->state); 499} 500 501#ifdef CONFIG_SMP 502/** 503 * napi_synchronize - wait until NAPI is not running 504 * @n: napi context 505 * 506 * Wait until NAPI is done being scheduled on this context. 507 * Waits till any outstanding processing completes but 508 * does not disable future activations. 509 */ 510static inline void napi_synchronize(const struct napi_struct *n) 511{ 512 while (test_bit(NAPI_STATE_SCHED, &n->state)) 513 msleep(1); 514} 515#else 516# define napi_synchronize(n) barrier() 517#endif 518 519enum netdev_queue_state_t { 520 __QUEUE_STATE_DRV_XOFF, 521 __QUEUE_STATE_STACK_XOFF, 522 __QUEUE_STATE_FROZEN, 523#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 524 (1 << __QUEUE_STATE_STACK_XOFF)) 525#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 526 (1 << __QUEUE_STATE_FROZEN)) 527}; 528/* 529 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 530 * netif_tx_* functions below are used to manipulate this flag. The 531 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 532 * queue independently. The netif_xmit_*stopped functions below are called 533 * to check if the queue has been stopped by the driver or stack (either 534 * of the XOFF bits are set in the state). Drivers should not need to call 535 * netif_xmit*stopped functions, they should only be using netif_tx_*. 536 */ 537 538struct netdev_queue { 539/* 540 * read mostly part 541 */ 542 struct net_device *dev; 543 struct Qdisc *qdisc; 544 struct Qdisc *qdisc_sleeping; 545#ifdef CONFIG_SYSFS 546 struct kobject kobj; 547#endif 548#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 549 int numa_node; 550#endif 551/* 552 * write mostly part 553 */ 554 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 555 int xmit_lock_owner; 556 /* 557 * please use this field instead of dev->trans_start 558 */ 559 unsigned long trans_start; 560 561 /* 562 * Number of TX timeouts for this queue 563 * (/sys/class/net/DEV/Q/trans_timeout) 564 */ 565 unsigned long trans_timeout; 566 567 unsigned long state; 568 569#ifdef CONFIG_BQL 570 struct dql dql; 571#endif 572} ____cacheline_aligned_in_smp; 573 574static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 575{ 576#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 577 return q->numa_node; 578#else 579 return NUMA_NO_NODE; 580#endif 581} 582 583static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 584{ 585#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 586 q->numa_node = node; 587#endif 588} 589 590#ifdef CONFIG_RPS 591/* 592 * This structure holds an RPS map which can be of variable length. The 593 * map is an array of CPUs. 594 */ 595struct rps_map { 596 unsigned int len; 597 struct rcu_head rcu; 598 u16 cpus[0]; 599}; 600#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 601 602/* 603 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 604 * tail pointer for that CPU's input queue at the time of last enqueue, and 605 * a hardware filter index. 606 */ 607struct rps_dev_flow { 608 u16 cpu; 609 u16 filter; 610 unsigned int last_qtail; 611}; 612#define RPS_NO_FILTER 0xffff 613 614/* 615 * The rps_dev_flow_table structure contains a table of flow mappings. 616 */ 617struct rps_dev_flow_table { 618 unsigned int mask; 619 struct rcu_head rcu; 620 struct work_struct free_work; 621 struct rps_dev_flow flows[0]; 622}; 623#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 624 ((_num) * sizeof(struct rps_dev_flow))) 625 626/* 627 * The rps_sock_flow_table contains mappings of flows to the last CPU 628 * on which they were processed by the application (set in recvmsg). 629 */ 630struct rps_sock_flow_table { 631 unsigned int mask; 632 u16 ents[0]; 633}; 634#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 635 ((_num) * sizeof(u16))) 636 637#define RPS_NO_CPU 0xffff 638 639static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 640 u32 hash) 641{ 642 if (table && hash) { 643 unsigned int cpu, index = hash & table->mask; 644 645 /* We only give a hint, preemption can change cpu under us */ 646 cpu = raw_smp_processor_id(); 647 648 if (table->ents[index] != cpu) 649 table->ents[index] = cpu; 650 } 651} 652 653static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 654 u32 hash) 655{ 656 if (table && hash) 657 table->ents[hash & table->mask] = RPS_NO_CPU; 658} 659 660extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 661 662#ifdef CONFIG_RFS_ACCEL 663extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 664 u32 flow_id, u16 filter_id); 665#endif 666 667/* This structure contains an instance of an RX queue. */ 668struct netdev_rx_queue { 669 struct rps_map __rcu *rps_map; 670 struct rps_dev_flow_table __rcu *rps_flow_table; 671 struct kobject kobj; 672 struct net_device *dev; 673} ____cacheline_aligned_in_smp; 674#endif /* CONFIG_RPS */ 675 676#ifdef CONFIG_XPS 677/* 678 * This structure holds an XPS map which can be of variable length. The 679 * map is an array of queues. 680 */ 681struct xps_map { 682 unsigned int len; 683 unsigned int alloc_len; 684 struct rcu_head rcu; 685 u16 queues[0]; 686}; 687#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 688#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 689 / sizeof(u16)) 690 691/* 692 * This structure holds all XPS maps for device. Maps are indexed by CPU. 693 */ 694struct xps_dev_maps { 695 struct rcu_head rcu; 696 struct xps_map __rcu *cpu_map[0]; 697}; 698#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 699 (nr_cpu_ids * sizeof(struct xps_map *))) 700#endif /* CONFIG_XPS */ 701 702#define TC_MAX_QUEUE 16 703#define TC_BITMASK 15 704/* HW offloaded queuing disciplines txq count and offset maps */ 705struct netdev_tc_txq { 706 u16 count; 707 u16 offset; 708}; 709 710#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 711/* 712 * This structure is to hold information about the device 713 * configured to run FCoE protocol stack. 714 */ 715struct netdev_fcoe_hbainfo { 716 char manufacturer[64]; 717 char serial_number[64]; 718 char hardware_version[64]; 719 char driver_version[64]; 720 char optionrom_version[64]; 721 char firmware_version[64]; 722 char model[256]; 723 char model_description[256]; 724}; 725#endif 726 727/* 728 * This structure defines the management hooks for network devices. 729 * The following hooks can be defined; unless noted otherwise, they are 730 * optional and can be filled with a null pointer. 731 * 732 * int (*ndo_init)(struct net_device *dev); 733 * This function is called once when network device is registered. 734 * The network device can use this to any late stage initializaton 735 * or semantic validattion. It can fail with an error code which will 736 * be propogated back to register_netdev 737 * 738 * void (*ndo_uninit)(struct net_device *dev); 739 * This function is called when device is unregistered or when registration 740 * fails. It is not called if init fails. 741 * 742 * int (*ndo_open)(struct net_device *dev); 743 * This function is called when network device transistions to the up 744 * state. 745 * 746 * int (*ndo_stop)(struct net_device *dev); 747 * This function is called when network device transistions to the down 748 * state. 749 * 750 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 751 * struct net_device *dev); 752 * Called when a packet needs to be transmitted. 753 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 754 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 755 * Required can not be NULL. 756 * 757 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 758 * Called to decide which queue to when device supports multiple 759 * transmit queues. 760 * 761 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 762 * This function is called to allow device receiver to make 763 * changes to configuration when multicast or promiscious is enabled. 764 * 765 * void (*ndo_set_rx_mode)(struct net_device *dev); 766 * This function is called device changes address list filtering. 767 * If driver handles unicast address filtering, it should set 768 * IFF_UNICAST_FLT to its priv_flags. 769 * 770 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 771 * This function is called when the Media Access Control address 772 * needs to be changed. If this interface is not defined, the 773 * mac address can not be changed. 774 * 775 * int (*ndo_validate_addr)(struct net_device *dev); 776 * Test if Media Access Control address is valid for the device. 777 * 778 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 779 * Called when a user request an ioctl which can't be handled by 780 * the generic interface code. If not defined ioctl's return 781 * not supported error code. 782 * 783 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 784 * Used to set network devices bus interface parameters. This interface 785 * is retained for legacy reason, new devices should use the bus 786 * interface (PCI) for low level management. 787 * 788 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 789 * Called when a user wants to change the Maximum Transfer Unit 790 * of a device. If not defined, any request to change MTU will 791 * will return an error. 792 * 793 * void (*ndo_tx_timeout)(struct net_device *dev); 794 * Callback uses when the transmitter has not made any progress 795 * for dev->watchdog ticks. 796 * 797 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 798 * struct rtnl_link_stats64 *storage); 799 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 800 * Called when a user wants to get the network device usage 801 * statistics. Drivers must do one of the following: 802 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 803 * rtnl_link_stats64 structure passed by the caller. 804 * 2. Define @ndo_get_stats to update a net_device_stats structure 805 * (which should normally be dev->stats) and return a pointer to 806 * it. The structure may be changed asynchronously only if each 807 * field is written atomically. 808 * 3. Update dev->stats asynchronously and atomically, and define 809 * neither operation. 810 * 811 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 812 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 813 * this function is called when a VLAN id is registered. 814 * 815 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 816 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 817 * this function is called when a VLAN id is unregistered. 818 * 819 * void (*ndo_poll_controller)(struct net_device *dev); 820 * 821 * SR-IOV management functions. 822 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 823 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 824 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 825 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 826 * int (*ndo_get_vf_config)(struct net_device *dev, 827 * int vf, struct ifla_vf_info *ivf); 828 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 829 * struct nlattr *port[]); 830 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 831 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 832 * Called to setup 'tc' number of traffic classes in the net device. This 833 * is always called from the stack with the rtnl lock held and netif tx 834 * queues stopped. This allows the netdevice to perform queue management 835 * safely. 836 * 837 * Fiber Channel over Ethernet (FCoE) offload functions. 838 * int (*ndo_fcoe_enable)(struct net_device *dev); 839 * Called when the FCoE protocol stack wants to start using LLD for FCoE 840 * so the underlying device can perform whatever needed configuration or 841 * initialization to support acceleration of FCoE traffic. 842 * 843 * int (*ndo_fcoe_disable)(struct net_device *dev); 844 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 845 * so the underlying device can perform whatever needed clean-ups to 846 * stop supporting acceleration of FCoE traffic. 847 * 848 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 849 * struct scatterlist *sgl, unsigned int sgc); 850 * Called when the FCoE Initiator wants to initialize an I/O that 851 * is a possible candidate for Direct Data Placement (DDP). The LLD can 852 * perform necessary setup and returns 1 to indicate the device is set up 853 * successfully to perform DDP on this I/O, otherwise this returns 0. 854 * 855 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 856 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 857 * indicated by the FC exchange id 'xid', so the underlying device can 858 * clean up and reuse resources for later DDP requests. 859 * 860 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 861 * struct scatterlist *sgl, unsigned int sgc); 862 * Called when the FCoE Target wants to initialize an I/O that 863 * is a possible candidate for Direct Data Placement (DDP). The LLD can 864 * perform necessary setup and returns 1 to indicate the device is set up 865 * successfully to perform DDP on this I/O, otherwise this returns 0. 866 * 867 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 868 * struct netdev_fcoe_hbainfo *hbainfo); 869 * Called when the FCoE Protocol stack wants information on the underlying 870 * device. This information is utilized by the FCoE protocol stack to 871 * register attributes with Fiber Channel management service as per the 872 * FC-GS Fabric Device Management Information(FDMI) specification. 873 * 874 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 875 * Called when the underlying device wants to override default World Wide 876 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 877 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 878 * protocol stack to use. 879 * 880 * RFS acceleration. 881 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 882 * u16 rxq_index, u32 flow_id); 883 * Set hardware filter for RFS. rxq_index is the target queue index; 884 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 885 * Return the filter ID on success, or a negative error code. 886 * 887 * Slave management functions (for bridge, bonding, etc). User should 888 * call netdev_set_master() to set dev->master properly. 889 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 890 * Called to make another netdev an underling. 891 * 892 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 893 * Called to release previously enslaved netdev. 894 * 895 * Feature/offload setting functions. 896 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 897 * netdev_features_t features); 898 * Adjusts the requested feature flags according to device-specific 899 * constraints, and returns the resulting flags. Must not modify 900 * the device state. 901 * 902 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 903 * Called to update device configuration to new features. Passed 904 * feature set might be less than what was returned by ndo_fix_features()). 905 * Must return >0 or -errno if it changed dev->features itself. 906 * 907 */ 908struct net_device_ops { 909 int (*ndo_init)(struct net_device *dev); 910 void (*ndo_uninit)(struct net_device *dev); 911 int (*ndo_open)(struct net_device *dev); 912 int (*ndo_stop)(struct net_device *dev); 913 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 914 struct net_device *dev); 915 u16 (*ndo_select_queue)(struct net_device *dev, 916 struct sk_buff *skb); 917 void (*ndo_change_rx_flags)(struct net_device *dev, 918 int flags); 919 void (*ndo_set_rx_mode)(struct net_device *dev); 920 int (*ndo_set_mac_address)(struct net_device *dev, 921 void *addr); 922 int (*ndo_validate_addr)(struct net_device *dev); 923 int (*ndo_do_ioctl)(struct net_device *dev, 924 struct ifreq *ifr, int cmd); 925 int (*ndo_set_config)(struct net_device *dev, 926 struct ifmap *map); 927 int (*ndo_change_mtu)(struct net_device *dev, 928 int new_mtu); 929 int (*ndo_neigh_setup)(struct net_device *dev, 930 struct neigh_parms *); 931 void (*ndo_tx_timeout) (struct net_device *dev); 932 933 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 934 struct rtnl_link_stats64 *storage); 935 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 936 937 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 938 unsigned short vid); 939 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 940 unsigned short vid); 941#ifdef CONFIG_NET_POLL_CONTROLLER 942 void (*ndo_poll_controller)(struct net_device *dev); 943 int (*ndo_netpoll_setup)(struct net_device *dev, 944 struct netpoll_info *info); 945 void (*ndo_netpoll_cleanup)(struct net_device *dev); 946#endif 947 int (*ndo_set_vf_mac)(struct net_device *dev, 948 int queue, u8 *mac); 949 int (*ndo_set_vf_vlan)(struct net_device *dev, 950 int queue, u16 vlan, u8 qos); 951 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 952 int vf, int rate); 953 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 954 int vf, bool setting); 955 int (*ndo_get_vf_config)(struct net_device *dev, 956 int vf, 957 struct ifla_vf_info *ivf); 958 int (*ndo_set_vf_port)(struct net_device *dev, 959 int vf, 960 struct nlattr *port[]); 961 int (*ndo_get_vf_port)(struct net_device *dev, 962 int vf, struct sk_buff *skb); 963 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 964#if IS_ENABLED(CONFIG_FCOE) 965 int (*ndo_fcoe_enable)(struct net_device *dev); 966 int (*ndo_fcoe_disable)(struct net_device *dev); 967 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 968 u16 xid, 969 struct scatterlist *sgl, 970 unsigned int sgc); 971 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 972 u16 xid); 973 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 974 u16 xid, 975 struct scatterlist *sgl, 976 unsigned int sgc); 977 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 978 struct netdev_fcoe_hbainfo *hbainfo); 979#endif 980 981#if IS_ENABLED(CONFIG_LIBFCOE) 982#define NETDEV_FCOE_WWNN 0 983#define NETDEV_FCOE_WWPN 1 984 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 985 u64 *wwn, int type); 986#endif 987 988#ifdef CONFIG_RFS_ACCEL 989 int (*ndo_rx_flow_steer)(struct net_device *dev, 990 const struct sk_buff *skb, 991 u16 rxq_index, 992 u32 flow_id); 993#endif 994 int (*ndo_add_slave)(struct net_device *dev, 995 struct net_device *slave_dev); 996 int (*ndo_del_slave)(struct net_device *dev, 997 struct net_device *slave_dev); 998 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 999 netdev_features_t features); 1000 int (*ndo_set_features)(struct net_device *dev, 1001 netdev_features_t features); 1002 int (*ndo_neigh_construct)(struct neighbour *n); 1003 void (*ndo_neigh_destroy)(struct neighbour *n); 1004}; 1005 1006/* 1007 * The DEVICE structure. 1008 * Actually, this whole structure is a big mistake. It mixes I/O 1009 * data with strictly "high-level" data, and it has to know about 1010 * almost every data structure used in the INET module. 1011 * 1012 * FIXME: cleanup struct net_device such that network protocol info 1013 * moves out. 1014 */ 1015 1016struct net_device { 1017 1018 /* 1019 * This is the first field of the "visible" part of this structure 1020 * (i.e. as seen by users in the "Space.c" file). It is the name 1021 * of the interface. 1022 */ 1023 char name[IFNAMSIZ]; 1024 1025 struct pm_qos_request pm_qos_req; 1026 1027 /* device name hash chain */ 1028 struct hlist_node name_hlist; 1029 /* snmp alias */ 1030 char *ifalias; 1031 1032 /* 1033 * I/O specific fields 1034 * FIXME: Merge these and struct ifmap into one 1035 */ 1036 unsigned long mem_end; /* shared mem end */ 1037 unsigned long mem_start; /* shared mem start */ 1038 unsigned long base_addr; /* device I/O address */ 1039 unsigned int irq; /* device IRQ number */ 1040 1041 /* 1042 * Some hardware also needs these fields, but they are not 1043 * part of the usual set specified in Space.c. 1044 */ 1045 1046 unsigned long state; 1047 1048 struct list_head dev_list; 1049 struct list_head napi_list; 1050 struct list_head unreg_list; 1051 1052 /* currently active device features */ 1053 netdev_features_t features; 1054 /* user-changeable features */ 1055 netdev_features_t hw_features; 1056 /* user-requested features */ 1057 netdev_features_t wanted_features; 1058 /* mask of features inheritable by VLAN devices */ 1059 netdev_features_t vlan_features; 1060 1061 /* Interface index. Unique device identifier */ 1062 int ifindex; 1063 int iflink; 1064 1065 struct net_device_stats stats; 1066 atomic_long_t rx_dropped; /* dropped packets by core network 1067 * Do not use this in drivers. 1068 */ 1069 1070#ifdef CONFIG_WIRELESS_EXT 1071 /* List of functions to handle Wireless Extensions (instead of ioctl). 1072 * See <net/iw_handler.h> for details. Jean II */ 1073 const struct iw_handler_def * wireless_handlers; 1074 /* Instance data managed by the core of Wireless Extensions. */ 1075 struct iw_public_data * wireless_data; 1076#endif 1077 /* Management operations */ 1078 const struct net_device_ops *netdev_ops; 1079 const struct ethtool_ops *ethtool_ops; 1080 1081 /* Hardware header description */ 1082 const struct header_ops *header_ops; 1083 1084 unsigned int flags; /* interface flags (a la BSD) */ 1085 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ 1086 unsigned short gflags; 1087 unsigned short padded; /* How much padding added by alloc_netdev() */ 1088 1089 unsigned char operstate; /* RFC2863 operstate */ 1090 unsigned char link_mode; /* mapping policy to operstate */ 1091 1092 unsigned char if_port; /* Selectable AUI, TP,..*/ 1093 unsigned char dma; /* DMA channel */ 1094 1095 unsigned int mtu; /* interface MTU value */ 1096 unsigned short type; /* interface hardware type */ 1097 unsigned short hard_header_len; /* hardware hdr length */ 1098 1099 /* extra head- and tailroom the hardware may need, but not in all cases 1100 * can this be guaranteed, especially tailroom. Some cases also use 1101 * LL_MAX_HEADER instead to allocate the skb. 1102 */ 1103 unsigned short needed_headroom; 1104 unsigned short needed_tailroom; 1105 1106 /* Interface address info. */ 1107 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1108 unsigned char addr_assign_type; /* hw address assignment type */ 1109 unsigned char addr_len; /* hardware address length */ 1110 unsigned char neigh_priv_len; 1111 unsigned short dev_id; /* for shared network cards */ 1112 1113 spinlock_t addr_list_lock; 1114 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1115 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1116 bool uc_promisc; 1117 unsigned int promiscuity; 1118 unsigned int allmulti; 1119 1120 1121 /* Protocol specific pointers */ 1122 1123#if IS_ENABLED(CONFIG_VLAN_8021Q) 1124 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1125#endif 1126#if IS_ENABLED(CONFIG_NET_DSA) 1127 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1128#endif 1129 void *atalk_ptr; /* AppleTalk link */ 1130 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1131 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1132 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1133 void *ec_ptr; /* Econet specific data */ 1134 void *ax25_ptr; /* AX.25 specific data */ 1135 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1136 assign before registering */ 1137 1138/* 1139 * Cache lines mostly used on receive path (including eth_type_trans()) 1140 */ 1141 unsigned long last_rx; /* Time of last Rx 1142 * This should not be set in 1143 * drivers, unless really needed, 1144 * because network stack (bonding) 1145 * use it if/when necessary, to 1146 * avoid dirtying this cache line. 1147 */ 1148 1149 struct net_device *master; /* Pointer to master device of a group, 1150 * which this device is member of. 1151 */ 1152 1153 /* Interface address info used in eth_type_trans() */ 1154 unsigned char *dev_addr; /* hw address, (before bcast 1155 because most packets are 1156 unicast) */ 1157 1158 struct netdev_hw_addr_list dev_addrs; /* list of device 1159 hw addresses */ 1160 1161 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1162 1163#ifdef CONFIG_SYSFS 1164 struct kset *queues_kset; 1165#endif 1166 1167#ifdef CONFIG_RPS 1168 struct netdev_rx_queue *_rx; 1169 1170 /* Number of RX queues allocated at register_netdev() time */ 1171 unsigned int num_rx_queues; 1172 1173 /* Number of RX queues currently active in device */ 1174 unsigned int real_num_rx_queues; 1175 1176#ifdef CONFIG_RFS_ACCEL 1177 /* CPU reverse-mapping for RX completion interrupts, indexed 1178 * by RX queue number. Assigned by driver. This must only be 1179 * set if the ndo_rx_flow_steer operation is defined. */ 1180 struct cpu_rmap *rx_cpu_rmap; 1181#endif 1182#endif 1183 1184 rx_handler_func_t __rcu *rx_handler; 1185 void __rcu *rx_handler_data; 1186 1187 struct netdev_queue __rcu *ingress_queue; 1188 1189/* 1190 * Cache lines mostly used on transmit path 1191 */ 1192 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1193 1194 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1195 unsigned int num_tx_queues; 1196 1197 /* Number of TX queues currently active in device */ 1198 unsigned int real_num_tx_queues; 1199 1200 /* root qdisc from userspace point of view */ 1201 struct Qdisc *qdisc; 1202 1203 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1204 spinlock_t tx_global_lock; 1205 1206#ifdef CONFIG_XPS 1207 struct xps_dev_maps __rcu *xps_maps; 1208#endif 1209 1210 /* These may be needed for future network-power-down code. */ 1211 1212 /* 1213 * trans_start here is expensive for high speed devices on SMP, 1214 * please use netdev_queue->trans_start instead. 1215 */ 1216 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1217 1218 int watchdog_timeo; /* used by dev_watchdog() */ 1219 struct timer_list watchdog_timer; 1220 1221 /* Number of references to this device */ 1222 int __percpu *pcpu_refcnt; 1223 1224 /* delayed register/unregister */ 1225 struct list_head todo_list; 1226 /* device index hash chain */ 1227 struct hlist_node index_hlist; 1228 1229 struct list_head link_watch_list; 1230 1231 /* register/unregister state machine */ 1232 enum { NETREG_UNINITIALIZED=0, 1233 NETREG_REGISTERED, /* completed register_netdevice */ 1234 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1235 NETREG_UNREGISTERED, /* completed unregister todo */ 1236 NETREG_RELEASED, /* called free_netdev */ 1237 NETREG_DUMMY, /* dummy device for NAPI poll */ 1238 } reg_state:8; 1239 1240 bool dismantle; /* device is going do be freed */ 1241 1242 enum { 1243 RTNL_LINK_INITIALIZED, 1244 RTNL_LINK_INITIALIZING, 1245 } rtnl_link_state:16; 1246 1247 /* Called from unregister, can be used to call free_netdev */ 1248 void (*destructor)(struct net_device *dev); 1249 1250#ifdef CONFIG_NETPOLL 1251 struct netpoll_info *npinfo; 1252#endif 1253 1254#ifdef CONFIG_NET_NS 1255 /* Network namespace this network device is inside */ 1256 struct net *nd_net; 1257#endif 1258 1259 /* mid-layer private */ 1260 union { 1261 void *ml_priv; 1262 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1263 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1264 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1265 }; 1266 /* GARP */ 1267 struct garp_port __rcu *garp_port; 1268 1269 /* class/net/name entry */ 1270 struct device dev; 1271 /* space for optional device, statistics, and wireless sysfs groups */ 1272 const struct attribute_group *sysfs_groups[4]; 1273 1274 /* rtnetlink link ops */ 1275 const struct rtnl_link_ops *rtnl_link_ops; 1276 1277 /* for setting kernel sock attribute on TCP connection setup */ 1278#define GSO_MAX_SIZE 65536 1279 unsigned int gso_max_size; 1280 1281#ifdef CONFIG_DCB 1282 /* Data Center Bridging netlink ops */ 1283 const struct dcbnl_rtnl_ops *dcbnl_ops; 1284#endif 1285 u8 num_tc; 1286 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1287 u8 prio_tc_map[TC_BITMASK + 1]; 1288 1289#if IS_ENABLED(CONFIG_FCOE) 1290 /* max exchange id for FCoE LRO by ddp */ 1291 unsigned int fcoe_ddp_xid; 1292#endif 1293#if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1294 struct netprio_map __rcu *priomap; 1295#endif 1296 /* phy device may attach itself for hardware timestamping */ 1297 struct phy_device *phydev; 1298 1299 /* group the device belongs to */ 1300 int group; 1301}; 1302#define to_net_dev(d) container_of(d, struct net_device, dev) 1303 1304#define NETDEV_ALIGN 32 1305 1306static inline 1307int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1308{ 1309 return dev->prio_tc_map[prio & TC_BITMASK]; 1310} 1311 1312static inline 1313int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1314{ 1315 if (tc >= dev->num_tc) 1316 return -EINVAL; 1317 1318 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1319 return 0; 1320} 1321 1322static inline 1323void netdev_reset_tc(struct net_device *dev) 1324{ 1325 dev->num_tc = 0; 1326 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1327 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1328} 1329 1330static inline 1331int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1332{ 1333 if (tc >= dev->num_tc) 1334 return -EINVAL; 1335 1336 dev->tc_to_txq[tc].count = count; 1337 dev->tc_to_txq[tc].offset = offset; 1338 return 0; 1339} 1340 1341static inline 1342int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1343{ 1344 if (num_tc > TC_MAX_QUEUE) 1345 return -EINVAL; 1346 1347 dev->num_tc = num_tc; 1348 return 0; 1349} 1350 1351static inline 1352int netdev_get_num_tc(struct net_device *dev) 1353{ 1354 return dev->num_tc; 1355} 1356 1357static inline 1358struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1359 unsigned int index) 1360{ 1361 return &dev->_tx[index]; 1362} 1363 1364static inline void netdev_for_each_tx_queue(struct net_device *dev, 1365 void (*f)(struct net_device *, 1366 struct netdev_queue *, 1367 void *), 1368 void *arg) 1369{ 1370 unsigned int i; 1371 1372 for (i = 0; i < dev->num_tx_queues; i++) 1373 f(dev, &dev->_tx[i], arg); 1374} 1375 1376/* 1377 * Net namespace inlines 1378 */ 1379static inline 1380struct net *dev_net(const struct net_device *dev) 1381{ 1382 return read_pnet(&dev->nd_net); 1383} 1384 1385static inline 1386void dev_net_set(struct net_device *dev, struct net *net) 1387{ 1388#ifdef CONFIG_NET_NS 1389 release_net(dev->nd_net); 1390 dev->nd_net = hold_net(net); 1391#endif 1392} 1393 1394static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1395{ 1396#ifdef CONFIG_NET_DSA_TAG_DSA 1397 if (dev->dsa_ptr != NULL) 1398 return dsa_uses_dsa_tags(dev->dsa_ptr); 1399#endif 1400 1401 return 0; 1402} 1403 1404#ifndef CONFIG_NET_NS 1405static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1406{ 1407 skb->dev = dev; 1408} 1409#else /* CONFIG_NET_NS */ 1410void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1411#endif 1412 1413static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1414{ 1415#ifdef CONFIG_NET_DSA_TAG_TRAILER 1416 if (dev->dsa_ptr != NULL) 1417 return dsa_uses_trailer_tags(dev->dsa_ptr); 1418#endif 1419 1420 return 0; 1421} 1422 1423/** 1424 * netdev_priv - access network device private data 1425 * @dev: network device 1426 * 1427 * Get network device private data 1428 */ 1429static inline void *netdev_priv(const struct net_device *dev) 1430{ 1431 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1432} 1433 1434/* Set the sysfs physical device reference for the network logical device 1435 * if set prior to registration will cause a symlink during initialization. 1436 */ 1437#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1438 1439/* Set the sysfs device type for the network logical device to allow 1440 * fin grained indentification of different network device types. For 1441 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1442 */ 1443#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1444 1445/** 1446 * netif_napi_add - initialize a napi context 1447 * @dev: network device 1448 * @napi: napi context 1449 * @poll: polling function 1450 * @weight: default weight 1451 * 1452 * netif_napi_add() must be used to initialize a napi context prior to calling 1453 * *any* of the other napi related functions. 1454 */ 1455void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1456 int (*poll)(struct napi_struct *, int), int weight); 1457 1458/** 1459 * netif_napi_del - remove a napi context 1460 * @napi: napi context 1461 * 1462 * netif_napi_del() removes a napi context from the network device napi list 1463 */ 1464void netif_napi_del(struct napi_struct *napi); 1465 1466struct napi_gro_cb { 1467 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1468 void *frag0; 1469 1470 /* Length of frag0. */ 1471 unsigned int frag0_len; 1472 1473 /* This indicates where we are processing relative to skb->data. */ 1474 int data_offset; 1475 1476 /* This is non-zero if the packet may be of the same flow. */ 1477 int same_flow; 1478 1479 /* This is non-zero if the packet cannot be merged with the new skb. */ 1480 int flush; 1481 1482 /* Number of segments aggregated. */ 1483 int count; 1484 1485 /* Free the skb? */ 1486 int free; 1487}; 1488 1489#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1490 1491struct packet_type { 1492 __be16 type; /* This is really htons(ether_type). */ 1493 struct net_device *dev; /* NULL is wildcarded here */ 1494 int (*func) (struct sk_buff *, 1495 struct net_device *, 1496 struct packet_type *, 1497 struct net_device *); 1498 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1499 netdev_features_t features); 1500 int (*gso_send_check)(struct sk_buff *skb); 1501 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1502 struct sk_buff *skb); 1503 int (*gro_complete)(struct sk_buff *skb); 1504 void *af_packet_priv; 1505 struct list_head list; 1506}; 1507 1508#include <linux/notifier.h> 1509 1510/* netdevice notifier chain. Please remember to update the rtnetlink 1511 * notification exclusion list in rtnetlink_event() when adding new 1512 * types. 1513 */ 1514#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1515#define NETDEV_DOWN 0x0002 1516#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1517 detected a hardware crash and restarted 1518 - we can use this eg to kick tcp sessions 1519 once done */ 1520#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1521#define NETDEV_REGISTER 0x0005 1522#define NETDEV_UNREGISTER 0x0006 1523#define NETDEV_CHANGEMTU 0x0007 1524#define NETDEV_CHANGEADDR 0x0008 1525#define NETDEV_GOING_DOWN 0x0009 1526#define NETDEV_CHANGENAME 0x000A 1527#define NETDEV_FEAT_CHANGE 0x000B 1528#define NETDEV_BONDING_FAILOVER 0x000C 1529#define NETDEV_PRE_UP 0x000D 1530#define NETDEV_PRE_TYPE_CHANGE 0x000E 1531#define NETDEV_POST_TYPE_CHANGE 0x000F 1532#define NETDEV_POST_INIT 0x0010 1533#define NETDEV_UNREGISTER_BATCH 0x0011 1534#define NETDEV_RELEASE 0x0012 1535#define NETDEV_NOTIFY_PEERS 0x0013 1536#define NETDEV_JOIN 0x0014 1537 1538extern int register_netdevice_notifier(struct notifier_block *nb); 1539extern int unregister_netdevice_notifier(struct notifier_block *nb); 1540extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1541 1542 1543extern rwlock_t dev_base_lock; /* Device list lock */ 1544 1545 1546#define for_each_netdev(net, d) \ 1547 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1548#define for_each_netdev_reverse(net, d) \ 1549 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1550#define for_each_netdev_rcu(net, d) \ 1551 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1552#define for_each_netdev_safe(net, d, n) \ 1553 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1554#define for_each_netdev_continue(net, d) \ 1555 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1556#define for_each_netdev_continue_rcu(net, d) \ 1557 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1558#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1559 1560static inline struct net_device *next_net_device(struct net_device *dev) 1561{ 1562 struct list_head *lh; 1563 struct net *net; 1564 1565 net = dev_net(dev); 1566 lh = dev->dev_list.next; 1567 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1568} 1569 1570static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1571{ 1572 struct list_head *lh; 1573 struct net *net; 1574 1575 net = dev_net(dev); 1576 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1577 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1578} 1579 1580static inline struct net_device *first_net_device(struct net *net) 1581{ 1582 return list_empty(&net->dev_base_head) ? NULL : 1583 net_device_entry(net->dev_base_head.next); 1584} 1585 1586static inline struct net_device *first_net_device_rcu(struct net *net) 1587{ 1588 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1589 1590 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1591} 1592 1593extern int netdev_boot_setup_check(struct net_device *dev); 1594extern unsigned long netdev_boot_base(const char *prefix, int unit); 1595extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1596 const char *hwaddr); 1597extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1598extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1599extern void dev_add_pack(struct packet_type *pt); 1600extern void dev_remove_pack(struct packet_type *pt); 1601extern void __dev_remove_pack(struct packet_type *pt); 1602 1603extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1604 unsigned short mask); 1605extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1606extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1607extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1608extern int dev_alloc_name(struct net_device *dev, const char *name); 1609extern int dev_open(struct net_device *dev); 1610extern int dev_close(struct net_device *dev); 1611extern void dev_disable_lro(struct net_device *dev); 1612extern int dev_queue_xmit(struct sk_buff *skb); 1613extern int register_netdevice(struct net_device *dev); 1614extern void unregister_netdevice_queue(struct net_device *dev, 1615 struct list_head *head); 1616extern void unregister_netdevice_many(struct list_head *head); 1617static inline void unregister_netdevice(struct net_device *dev) 1618{ 1619 unregister_netdevice_queue(dev, NULL); 1620} 1621 1622extern int netdev_refcnt_read(const struct net_device *dev); 1623extern void free_netdev(struct net_device *dev); 1624extern void synchronize_net(void); 1625extern int init_dummy_netdev(struct net_device *dev); 1626extern void netdev_resync_ops(struct net_device *dev); 1627 1628extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1629extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1630extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1631extern int dev_restart(struct net_device *dev); 1632#ifdef CONFIG_NETPOLL_TRAP 1633extern int netpoll_trap(void); 1634#endif 1635extern int skb_gro_receive(struct sk_buff **head, 1636 struct sk_buff *skb); 1637extern void skb_gro_reset_offset(struct sk_buff *skb); 1638 1639static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1640{ 1641 return NAPI_GRO_CB(skb)->data_offset; 1642} 1643 1644static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1645{ 1646 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1647} 1648 1649static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1650{ 1651 NAPI_GRO_CB(skb)->data_offset += len; 1652} 1653 1654static inline void *skb_gro_header_fast(struct sk_buff *skb, 1655 unsigned int offset) 1656{ 1657 return NAPI_GRO_CB(skb)->frag0 + offset; 1658} 1659 1660static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1661{ 1662 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1663} 1664 1665static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1666 unsigned int offset) 1667{ 1668 if (!pskb_may_pull(skb, hlen)) 1669 return NULL; 1670 1671 NAPI_GRO_CB(skb)->frag0 = NULL; 1672 NAPI_GRO_CB(skb)->frag0_len = 0; 1673 return skb->data + offset; 1674} 1675 1676static inline void *skb_gro_mac_header(struct sk_buff *skb) 1677{ 1678 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1679} 1680 1681static inline void *skb_gro_network_header(struct sk_buff *skb) 1682{ 1683 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1684 skb_network_offset(skb); 1685} 1686 1687static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1688 unsigned short type, 1689 const void *daddr, const void *saddr, 1690 unsigned len) 1691{ 1692 if (!dev->header_ops || !dev->header_ops->create) 1693 return 0; 1694 1695 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1696} 1697 1698static inline int dev_parse_header(const struct sk_buff *skb, 1699 unsigned char *haddr) 1700{ 1701 const struct net_device *dev = skb->dev; 1702 1703 if (!dev->header_ops || !dev->header_ops->parse) 1704 return 0; 1705 return dev->header_ops->parse(skb, haddr); 1706} 1707 1708typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1709extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1710static inline int unregister_gifconf(unsigned int family) 1711{ 1712 return register_gifconf(family, NULL); 1713} 1714 1715/* 1716 * Incoming packets are placed on per-cpu queues 1717 */ 1718struct softnet_data { 1719 struct Qdisc *output_queue; 1720 struct Qdisc **output_queue_tailp; 1721 struct list_head poll_list; 1722 struct sk_buff *completion_queue; 1723 struct sk_buff_head process_queue; 1724 1725 /* stats */ 1726 unsigned int processed; 1727 unsigned int time_squeeze; 1728 unsigned int cpu_collision; 1729 unsigned int received_rps; 1730 1731#ifdef CONFIG_RPS 1732 struct softnet_data *rps_ipi_list; 1733 1734 /* Elements below can be accessed between CPUs for RPS */ 1735 struct call_single_data csd ____cacheline_aligned_in_smp; 1736 struct softnet_data *rps_ipi_next; 1737 unsigned int cpu; 1738 unsigned int input_queue_head; 1739 unsigned int input_queue_tail; 1740#endif 1741 unsigned dropped; 1742 struct sk_buff_head input_pkt_queue; 1743 struct napi_struct backlog; 1744}; 1745 1746static inline void input_queue_head_incr(struct softnet_data *sd) 1747{ 1748#ifdef CONFIG_RPS 1749 sd->input_queue_head++; 1750#endif 1751} 1752 1753static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1754 unsigned int *qtail) 1755{ 1756#ifdef CONFIG_RPS 1757 *qtail = ++sd->input_queue_tail; 1758#endif 1759} 1760 1761DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1762 1763extern void __netif_schedule(struct Qdisc *q); 1764 1765static inline void netif_schedule_queue(struct netdev_queue *txq) 1766{ 1767 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1768 __netif_schedule(txq->qdisc); 1769} 1770 1771static inline void netif_tx_schedule_all(struct net_device *dev) 1772{ 1773 unsigned int i; 1774 1775 for (i = 0; i < dev->num_tx_queues; i++) 1776 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1777} 1778 1779static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1780{ 1781 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1782} 1783 1784/** 1785 * netif_start_queue - allow transmit 1786 * @dev: network device 1787 * 1788 * Allow upper layers to call the device hard_start_xmit routine. 1789 */ 1790static inline void netif_start_queue(struct net_device *dev) 1791{ 1792 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1793} 1794 1795static inline void netif_tx_start_all_queues(struct net_device *dev) 1796{ 1797 unsigned int i; 1798 1799 for (i = 0; i < dev->num_tx_queues; i++) { 1800 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1801 netif_tx_start_queue(txq); 1802 } 1803} 1804 1805static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1806{ 1807#ifdef CONFIG_NETPOLL_TRAP 1808 if (netpoll_trap()) { 1809 netif_tx_start_queue(dev_queue); 1810 return; 1811 } 1812#endif 1813 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1814 __netif_schedule(dev_queue->qdisc); 1815} 1816 1817/** 1818 * netif_wake_queue - restart transmit 1819 * @dev: network device 1820 * 1821 * Allow upper layers to call the device hard_start_xmit routine. 1822 * Used for flow control when transmit resources are available. 1823 */ 1824static inline void netif_wake_queue(struct net_device *dev) 1825{ 1826 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1827} 1828 1829static inline void netif_tx_wake_all_queues(struct net_device *dev) 1830{ 1831 unsigned int i; 1832 1833 for (i = 0; i < dev->num_tx_queues; i++) { 1834 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1835 netif_tx_wake_queue(txq); 1836 } 1837} 1838 1839static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1840{ 1841 if (WARN_ON(!dev_queue)) { 1842 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1843 return; 1844 } 1845 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1846} 1847 1848/** 1849 * netif_stop_queue - stop transmitted packets 1850 * @dev: network device 1851 * 1852 * Stop upper layers calling the device hard_start_xmit routine. 1853 * Used for flow control when transmit resources are unavailable. 1854 */ 1855static inline void netif_stop_queue(struct net_device *dev) 1856{ 1857 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1858} 1859 1860static inline void netif_tx_stop_all_queues(struct net_device *dev) 1861{ 1862 unsigned int i; 1863 1864 for (i = 0; i < dev->num_tx_queues; i++) { 1865 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1866 netif_tx_stop_queue(txq); 1867 } 1868} 1869 1870static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1871{ 1872 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1873} 1874 1875/** 1876 * netif_queue_stopped - test if transmit queue is flowblocked 1877 * @dev: network device 1878 * 1879 * Test if transmit queue on device is currently unable to send. 1880 */ 1881static inline int netif_queue_stopped(const struct net_device *dev) 1882{ 1883 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1884} 1885 1886static inline int netif_xmit_stopped(const struct netdev_queue *dev_queue) 1887{ 1888 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1889} 1890 1891static inline int netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1892{ 1893 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1894} 1895 1896static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1897 unsigned int bytes) 1898{ 1899#ifdef CONFIG_BQL 1900 dql_queued(&dev_queue->dql, bytes); 1901 if (unlikely(dql_avail(&dev_queue->dql) < 0)) { 1902 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1903 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1904 clear_bit(__QUEUE_STATE_STACK_XOFF, 1905 &dev_queue->state); 1906 } 1907#endif 1908} 1909 1910static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1911{ 1912 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1913} 1914 1915static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1916 unsigned pkts, unsigned bytes) 1917{ 1918#ifdef CONFIG_BQL 1919 if (likely(bytes)) { 1920 dql_completed(&dev_queue->dql, bytes); 1921 if (unlikely(test_bit(__QUEUE_STATE_STACK_XOFF, 1922 &dev_queue->state) && 1923 dql_avail(&dev_queue->dql) >= 0)) { 1924 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, 1925 &dev_queue->state)) 1926 netif_schedule_queue(dev_queue); 1927 } 1928 } 1929#endif 1930} 1931 1932static inline void netdev_completed_queue(struct net_device *dev, 1933 unsigned pkts, unsigned bytes) 1934{ 1935 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 1936} 1937 1938static inline void netdev_tx_reset_queue(struct netdev_queue *q) 1939{ 1940#ifdef CONFIG_BQL 1941 dql_reset(&q->dql); 1942#endif 1943} 1944 1945static inline void netdev_reset_queue(struct net_device *dev_queue) 1946{ 1947 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 1948} 1949 1950/** 1951 * netif_running - test if up 1952 * @dev: network device 1953 * 1954 * Test if the device has been brought up. 1955 */ 1956static inline int netif_running(const struct net_device *dev) 1957{ 1958 return test_bit(__LINK_STATE_START, &dev->state); 1959} 1960 1961/* 1962 * Routines to manage the subqueues on a device. We only need start 1963 * stop, and a check if it's stopped. All other device management is 1964 * done at the overall netdevice level. 1965 * Also test the device if we're multiqueue. 1966 */ 1967 1968/** 1969 * netif_start_subqueue - allow sending packets on subqueue 1970 * @dev: network device 1971 * @queue_index: sub queue index 1972 * 1973 * Start individual transmit queue of a device with multiple transmit queues. 1974 */ 1975static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1976{ 1977 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1978 1979 netif_tx_start_queue(txq); 1980} 1981 1982/** 1983 * netif_stop_subqueue - stop sending packets on subqueue 1984 * @dev: network device 1985 * @queue_index: sub queue index 1986 * 1987 * Stop individual transmit queue of a device with multiple transmit queues. 1988 */ 1989static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1990{ 1991 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1992#ifdef CONFIG_NETPOLL_TRAP 1993 if (netpoll_trap()) 1994 return; 1995#endif 1996 netif_tx_stop_queue(txq); 1997} 1998 1999/** 2000 * netif_subqueue_stopped - test status of subqueue 2001 * @dev: network device 2002 * @queue_index: sub queue index 2003 * 2004 * Check individual transmit queue of a device with multiple transmit queues. 2005 */ 2006static inline int __netif_subqueue_stopped(const struct net_device *dev, 2007 u16 queue_index) 2008{ 2009 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2010 2011 return netif_tx_queue_stopped(txq); 2012} 2013 2014static inline int netif_subqueue_stopped(const struct net_device *dev, 2015 struct sk_buff *skb) 2016{ 2017 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2018} 2019 2020/** 2021 * netif_wake_subqueue - allow sending packets on subqueue 2022 * @dev: network device 2023 * @queue_index: sub queue index 2024 * 2025 * Resume individual transmit queue of a device with multiple transmit queues. 2026 */ 2027static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2028{ 2029 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2030#ifdef CONFIG_NETPOLL_TRAP 2031 if (netpoll_trap()) 2032 return; 2033#endif 2034 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2035 __netif_schedule(txq->qdisc); 2036} 2037 2038/* 2039 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2040 * as a distribution range limit for the returned value. 2041 */ 2042static inline u16 skb_tx_hash(const struct net_device *dev, 2043 const struct sk_buff *skb) 2044{ 2045 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2046} 2047 2048/** 2049 * netif_is_multiqueue - test if device has multiple transmit queues 2050 * @dev: network device 2051 * 2052 * Check if device has multiple transmit queues 2053 */ 2054static inline int netif_is_multiqueue(const struct net_device *dev) 2055{ 2056 return dev->num_tx_queues > 1; 2057} 2058 2059extern int netif_set_real_num_tx_queues(struct net_device *dev, 2060 unsigned int txq); 2061 2062#ifdef CONFIG_RPS 2063extern int netif_set_real_num_rx_queues(struct net_device *dev, 2064 unsigned int rxq); 2065#else 2066static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2067 unsigned int rxq) 2068{ 2069 return 0; 2070} 2071#endif 2072 2073static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2074 const struct net_device *from_dev) 2075{ 2076 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 2077#ifdef CONFIG_RPS 2078 return netif_set_real_num_rx_queues(to_dev, 2079 from_dev->real_num_rx_queues); 2080#else 2081 return 0; 2082#endif 2083} 2084 2085/* Use this variant when it is known for sure that it 2086 * is executing from hardware interrupt context or with hardware interrupts 2087 * disabled. 2088 */ 2089extern void dev_kfree_skb_irq(struct sk_buff *skb); 2090 2091/* Use this variant in places where it could be invoked 2092 * from either hardware interrupt or other context, with hardware interrupts 2093 * either disabled or enabled. 2094 */ 2095extern void dev_kfree_skb_any(struct sk_buff *skb); 2096 2097extern int netif_rx(struct sk_buff *skb); 2098extern int netif_rx_ni(struct sk_buff *skb); 2099extern int netif_receive_skb(struct sk_buff *skb); 2100extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2101 struct sk_buff *skb); 2102extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2103extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2104 struct sk_buff *skb); 2105extern void napi_gro_flush(struct napi_struct *napi); 2106extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2107extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2108 struct sk_buff *skb, 2109 gro_result_t ret); 2110extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 2111extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2112 2113static inline void napi_free_frags(struct napi_struct *napi) 2114{ 2115 kfree_skb(napi->skb); 2116 napi->skb = NULL; 2117} 2118 2119extern int netdev_rx_handler_register(struct net_device *dev, 2120 rx_handler_func_t *rx_handler, 2121 void *rx_handler_data); 2122extern void netdev_rx_handler_unregister(struct net_device *dev); 2123 2124extern int dev_valid_name(const char *name); 2125extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2126extern int dev_ethtool(struct net *net, struct ifreq *); 2127extern unsigned dev_get_flags(const struct net_device *); 2128extern int __dev_change_flags(struct net_device *, unsigned int flags); 2129extern int dev_change_flags(struct net_device *, unsigned); 2130extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2131extern int dev_change_name(struct net_device *, const char *); 2132extern int dev_set_alias(struct net_device *, const char *, size_t); 2133extern int dev_change_net_namespace(struct net_device *, 2134 struct net *, const char *); 2135extern int dev_set_mtu(struct net_device *, int); 2136extern void dev_set_group(struct net_device *, int); 2137extern int dev_set_mac_address(struct net_device *, 2138 struct sockaddr *); 2139extern int dev_hard_start_xmit(struct sk_buff *skb, 2140 struct net_device *dev, 2141 struct netdev_queue *txq); 2142extern int dev_forward_skb(struct net_device *dev, 2143 struct sk_buff *skb); 2144 2145extern int netdev_budget; 2146 2147/* Called by rtnetlink.c:rtnl_unlock() */ 2148extern void netdev_run_todo(void); 2149 2150/** 2151 * dev_put - release reference to device 2152 * @dev: network device 2153 * 2154 * Release reference to device to allow it to be freed. 2155 */ 2156static inline void dev_put(struct net_device *dev) 2157{ 2158 this_cpu_dec(*dev->pcpu_refcnt); 2159} 2160 2161/** 2162 * dev_hold - get reference to device 2163 * @dev: network device 2164 * 2165 * Hold reference to device to keep it from being freed. 2166 */ 2167static inline void dev_hold(struct net_device *dev) 2168{ 2169 this_cpu_inc(*dev->pcpu_refcnt); 2170} 2171 2172/* Carrier loss detection, dial on demand. The functions netif_carrier_on 2173 * and _off may be called from IRQ context, but it is caller 2174 * who is responsible for serialization of these calls. 2175 * 2176 * The name carrier is inappropriate, these functions should really be 2177 * called netif_lowerlayer_*() because they represent the state of any 2178 * kind of lower layer not just hardware media. 2179 */ 2180 2181extern void linkwatch_fire_event(struct net_device *dev); 2182extern void linkwatch_forget_dev(struct net_device *dev); 2183 2184/** 2185 * netif_carrier_ok - test if carrier present 2186 * @dev: network device 2187 * 2188 * Check if carrier is present on device 2189 */ 2190static inline int netif_carrier_ok(const struct net_device *dev) 2191{ 2192 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2193} 2194 2195extern unsigned long dev_trans_start(struct net_device *dev); 2196 2197extern void __netdev_watchdog_up(struct net_device *dev); 2198 2199extern void netif_carrier_on(struct net_device *dev); 2200 2201extern void netif_carrier_off(struct net_device *dev); 2202 2203extern void netif_notify_peers(struct net_device *dev); 2204 2205/** 2206 * netif_dormant_on - mark device as dormant. 2207 * @dev: network device 2208 * 2209 * Mark device as dormant (as per RFC2863). 2210 * 2211 * The dormant state indicates that the relevant interface is not 2212 * actually in a condition to pass packets (i.e., it is not 'up') but is 2213 * in a "pending" state, waiting for some external event. For "on- 2214 * demand" interfaces, this new state identifies the situation where the 2215 * interface is waiting for events to place it in the up state. 2216 * 2217 */ 2218static inline void netif_dormant_on(struct net_device *dev) 2219{ 2220 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2221 linkwatch_fire_event(dev); 2222} 2223 2224/** 2225 * netif_dormant_off - set device as not dormant. 2226 * @dev: network device 2227 * 2228 * Device is not in dormant state. 2229 */ 2230static inline void netif_dormant_off(struct net_device *dev) 2231{ 2232 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2233 linkwatch_fire_event(dev); 2234} 2235 2236/** 2237 * netif_dormant - test if carrier present 2238 * @dev: network device 2239 * 2240 * Check if carrier is present on device 2241 */ 2242static inline int netif_dormant(const struct net_device *dev) 2243{ 2244 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2245} 2246 2247 2248/** 2249 * netif_oper_up - test if device is operational 2250 * @dev: network device 2251 * 2252 * Check if carrier is operational 2253 */ 2254static inline int netif_oper_up(const struct net_device *dev) 2255{ 2256 return (dev->operstate == IF_OPER_UP || 2257 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2258} 2259 2260/** 2261 * netif_device_present - is device available or removed 2262 * @dev: network device 2263 * 2264 * Check if device has not been removed from system. 2265 */ 2266static inline int netif_device_present(struct net_device *dev) 2267{ 2268 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2269} 2270 2271extern void netif_device_detach(struct net_device *dev); 2272 2273extern void netif_device_attach(struct net_device *dev); 2274 2275/* 2276 * Network interface message level settings 2277 */ 2278 2279enum { 2280 NETIF_MSG_DRV = 0x0001, 2281 NETIF_MSG_PROBE = 0x0002, 2282 NETIF_MSG_LINK = 0x0004, 2283 NETIF_MSG_TIMER = 0x0008, 2284 NETIF_MSG_IFDOWN = 0x0010, 2285 NETIF_MSG_IFUP = 0x0020, 2286 NETIF_MSG_RX_ERR = 0x0040, 2287 NETIF_MSG_TX_ERR = 0x0080, 2288 NETIF_MSG_TX_QUEUED = 0x0100, 2289 NETIF_MSG_INTR = 0x0200, 2290 NETIF_MSG_TX_DONE = 0x0400, 2291 NETIF_MSG_RX_STATUS = 0x0800, 2292 NETIF_MSG_PKTDATA = 0x1000, 2293 NETIF_MSG_HW = 0x2000, 2294 NETIF_MSG_WOL = 0x4000, 2295}; 2296 2297#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2298#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2299#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2300#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2301#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2302#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2303#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2304#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2305#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2306#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2307#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2308#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2309#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2310#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2311#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2312 2313static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2314{ 2315 /* use default */ 2316 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2317 return default_msg_enable_bits; 2318 if (debug_value == 0) /* no output */ 2319 return 0; 2320 /* set low N bits */ 2321 return (1 << debug_value) - 1; 2322} 2323 2324static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2325{ 2326 spin_lock(&txq->_xmit_lock); 2327 txq->xmit_lock_owner = cpu; 2328} 2329 2330static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2331{ 2332 spin_lock_bh(&txq->_xmit_lock); 2333 txq->xmit_lock_owner = smp_processor_id(); 2334} 2335 2336static inline int __netif_tx_trylock(struct netdev_queue *txq) 2337{ 2338 int ok = spin_trylock(&txq->_xmit_lock); 2339 if (likely(ok)) 2340 txq->xmit_lock_owner = smp_processor_id(); 2341 return ok; 2342} 2343 2344static inline void __netif_tx_unlock(struct netdev_queue *txq) 2345{ 2346 txq->xmit_lock_owner = -1; 2347 spin_unlock(&txq->_xmit_lock); 2348} 2349 2350static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2351{ 2352 txq->xmit_lock_owner = -1; 2353 spin_unlock_bh(&txq->_xmit_lock); 2354} 2355 2356static inline void txq_trans_update(struct netdev_queue *txq) 2357{ 2358 if (txq->xmit_lock_owner != -1) 2359 txq->trans_start = jiffies; 2360} 2361 2362/** 2363 * netif_tx_lock - grab network device transmit lock 2364 * @dev: network device 2365 * 2366 * Get network device transmit lock 2367 */ 2368static inline void netif_tx_lock(struct net_device *dev) 2369{ 2370 unsigned int i; 2371 int cpu; 2372 2373 spin_lock(&dev->tx_global_lock); 2374 cpu = smp_processor_id(); 2375 for (i = 0; i < dev->num_tx_queues; i++) { 2376 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2377 2378 /* We are the only thread of execution doing a 2379 * freeze, but we have to grab the _xmit_lock in 2380 * order to synchronize with threads which are in 2381 * the ->hard_start_xmit() handler and already 2382 * checked the frozen bit. 2383 */ 2384 __netif_tx_lock(txq, cpu); 2385 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2386 __netif_tx_unlock(txq); 2387 } 2388} 2389 2390static inline void netif_tx_lock_bh(struct net_device *dev) 2391{ 2392 local_bh_disable(); 2393 netif_tx_lock(dev); 2394} 2395 2396static inline void netif_tx_unlock(struct net_device *dev) 2397{ 2398 unsigned int i; 2399 2400 for (i = 0; i < dev->num_tx_queues; i++) { 2401 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2402 2403 /* No need to grab the _xmit_lock here. If the 2404 * queue is not stopped for another reason, we 2405 * force a schedule. 2406 */ 2407 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2408 netif_schedule_queue(txq); 2409 } 2410 spin_unlock(&dev->tx_global_lock); 2411} 2412 2413static inline void netif_tx_unlock_bh(struct net_device *dev) 2414{ 2415 netif_tx_unlock(dev); 2416 local_bh_enable(); 2417} 2418 2419#define HARD_TX_LOCK(dev, txq, cpu) { \ 2420 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2421 __netif_tx_lock(txq, cpu); \ 2422 } \ 2423} 2424 2425#define HARD_TX_UNLOCK(dev, txq) { \ 2426 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2427 __netif_tx_unlock(txq); \ 2428 } \ 2429} 2430 2431static inline void netif_tx_disable(struct net_device *dev) 2432{ 2433 unsigned int i; 2434 int cpu; 2435 2436 local_bh_disable(); 2437 cpu = smp_processor_id(); 2438 for (i = 0; i < dev->num_tx_queues; i++) { 2439 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2440 2441 __netif_tx_lock(txq, cpu); 2442 netif_tx_stop_queue(txq); 2443 __netif_tx_unlock(txq); 2444 } 2445 local_bh_enable(); 2446} 2447 2448static inline void netif_addr_lock(struct net_device *dev) 2449{ 2450 spin_lock(&dev->addr_list_lock); 2451} 2452 2453static inline void netif_addr_lock_nested(struct net_device *dev) 2454{ 2455 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2456} 2457 2458static inline void netif_addr_lock_bh(struct net_device *dev) 2459{ 2460 spin_lock_bh(&dev->addr_list_lock); 2461} 2462 2463static inline void netif_addr_unlock(struct net_device *dev) 2464{ 2465 spin_unlock(&dev->addr_list_lock); 2466} 2467 2468static inline void netif_addr_unlock_bh(struct net_device *dev) 2469{ 2470 spin_unlock_bh(&dev->addr_list_lock); 2471} 2472 2473/* 2474 * dev_addrs walker. Should be used only for read access. Call with 2475 * rcu_read_lock held. 2476 */ 2477#define for_each_dev_addr(dev, ha) \ 2478 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2479 2480/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2481 2482extern void ether_setup(struct net_device *dev); 2483 2484/* Support for loadable net-drivers */ 2485extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2486 void (*setup)(struct net_device *), 2487 unsigned int txqs, unsigned int rxqs); 2488#define alloc_netdev(sizeof_priv, name, setup) \ 2489 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2490 2491#define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2492 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2493 2494extern int register_netdev(struct net_device *dev); 2495extern void unregister_netdev(struct net_device *dev); 2496 2497/* General hardware address lists handling functions */ 2498extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2499 struct netdev_hw_addr_list *from_list, 2500 int addr_len, unsigned char addr_type); 2501extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2502 struct netdev_hw_addr_list *from_list, 2503 int addr_len, unsigned char addr_type); 2504extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2505 struct netdev_hw_addr_list *from_list, 2506 int addr_len); 2507extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2508 struct netdev_hw_addr_list *from_list, 2509 int addr_len); 2510extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2511extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2512 2513/* Functions used for device addresses handling */ 2514extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2515 unsigned char addr_type); 2516extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2517 unsigned char addr_type); 2518extern int dev_addr_add_multiple(struct net_device *to_dev, 2519 struct net_device *from_dev, 2520 unsigned char addr_type); 2521extern int dev_addr_del_multiple(struct net_device *to_dev, 2522 struct net_device *from_dev, 2523 unsigned char addr_type); 2524extern void dev_addr_flush(struct net_device *dev); 2525extern int dev_addr_init(struct net_device *dev); 2526 2527/* Functions used for unicast addresses handling */ 2528extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2529extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2530extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2531extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2532extern void dev_uc_flush(struct net_device *dev); 2533extern void dev_uc_init(struct net_device *dev); 2534 2535/* Functions used for multicast addresses handling */ 2536extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2537extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2538extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2539extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2540extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2541extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2542extern void dev_mc_flush(struct net_device *dev); 2543extern void dev_mc_init(struct net_device *dev); 2544 2545/* Functions used for secondary unicast and multicast support */ 2546extern void dev_set_rx_mode(struct net_device *dev); 2547extern void __dev_set_rx_mode(struct net_device *dev); 2548extern int dev_set_promiscuity(struct net_device *dev, int inc); 2549extern int dev_set_allmulti(struct net_device *dev, int inc); 2550extern void netdev_state_change(struct net_device *dev); 2551extern int netdev_bonding_change(struct net_device *dev, 2552 unsigned long event); 2553extern void netdev_features_change(struct net_device *dev); 2554/* Load a device via the kmod */ 2555extern void dev_load(struct net *net, const char *name); 2556extern void dev_mcast_init(void); 2557extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2558 struct rtnl_link_stats64 *storage); 2559 2560extern int netdev_max_backlog; 2561extern int netdev_tstamp_prequeue; 2562extern int weight_p; 2563extern int bpf_jit_enable; 2564extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2565extern int netdev_set_bond_master(struct net_device *dev, 2566 struct net_device *master); 2567extern int skb_checksum_help(struct sk_buff *skb); 2568extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2569 netdev_features_t features); 2570#ifdef CONFIG_BUG 2571extern void netdev_rx_csum_fault(struct net_device *dev); 2572#else 2573static inline void netdev_rx_csum_fault(struct net_device *dev) 2574{ 2575} 2576#endif 2577/* rx skb timestamps */ 2578extern void net_enable_timestamp(void); 2579extern void net_disable_timestamp(void); 2580 2581#ifdef CONFIG_PROC_FS 2582extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2583extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2584extern void dev_seq_stop(struct seq_file *seq, void *v); 2585extern int dev_seq_open_ops(struct inode *inode, struct file *file, 2586 const struct seq_operations *ops); 2587#endif 2588 2589extern int netdev_class_create_file(struct class_attribute *class_attr); 2590extern void netdev_class_remove_file(struct class_attribute *class_attr); 2591 2592extern struct kobj_ns_type_operations net_ns_type_operations; 2593 2594extern const char *netdev_drivername(const struct net_device *dev); 2595 2596extern void linkwatch_run_queue(void); 2597 2598static inline netdev_features_t netdev_get_wanted_features( 2599 struct net_device *dev) 2600{ 2601 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2602} 2603netdev_features_t netdev_increment_features(netdev_features_t all, 2604 netdev_features_t one, netdev_features_t mask); 2605int __netdev_update_features(struct net_device *dev); 2606void netdev_update_features(struct net_device *dev); 2607void netdev_change_features(struct net_device *dev); 2608 2609void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2610 struct net_device *dev); 2611 2612netdev_features_t netif_skb_features(struct sk_buff *skb); 2613 2614static inline int net_gso_ok(netdev_features_t features, int gso_type) 2615{ 2616 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2617 2618 /* check flags correspondence */ 2619 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2620 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2621 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2622 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2623 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2624 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2625 2626 return (features & feature) == feature; 2627} 2628 2629static inline int skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2630{ 2631 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2632 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2633} 2634 2635static inline int netif_needs_gso(struct sk_buff *skb, 2636 netdev_features_t features) 2637{ 2638 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2639 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2640} 2641 2642static inline void netif_set_gso_max_size(struct net_device *dev, 2643 unsigned int size) 2644{ 2645 dev->gso_max_size = size; 2646} 2647 2648static inline int netif_is_bond_slave(struct net_device *dev) 2649{ 2650 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2651} 2652 2653extern struct pernet_operations __net_initdata loopback_net_ops; 2654 2655/* Logging, debugging and troubleshooting/diagnostic helpers. */ 2656 2657/* netdev_printk helpers, similar to dev_printk */ 2658 2659static inline const char *netdev_name(const struct net_device *dev) 2660{ 2661 if (dev->reg_state != NETREG_REGISTERED) 2662 return "(unregistered net_device)"; 2663 return dev->name; 2664} 2665 2666extern int __netdev_printk(const char *level, const struct net_device *dev, 2667 struct va_format *vaf); 2668 2669extern __printf(3, 4) 2670int netdev_printk(const char *level, const struct net_device *dev, 2671 const char *format, ...); 2672extern __printf(2, 3) 2673int netdev_emerg(const struct net_device *dev, const char *format, ...); 2674extern __printf(2, 3) 2675int netdev_alert(const struct net_device *dev, const char *format, ...); 2676extern __printf(2, 3) 2677int netdev_crit(const struct net_device *dev, const char *format, ...); 2678extern __printf(2, 3) 2679int netdev_err(const struct net_device *dev, const char *format, ...); 2680extern __printf(2, 3) 2681int netdev_warn(const struct net_device *dev, const char *format, ...); 2682extern __printf(2, 3) 2683int netdev_notice(const struct net_device *dev, const char *format, ...); 2684extern __printf(2, 3) 2685int netdev_info(const struct net_device *dev, const char *format, ...); 2686 2687#define MODULE_ALIAS_NETDEV(device) \ 2688 MODULE_ALIAS("netdev-" device) 2689 2690#if defined(DEBUG) 2691#define netdev_dbg(__dev, format, args...) \ 2692 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2693#elif defined(CONFIG_DYNAMIC_DEBUG) 2694#define netdev_dbg(__dev, format, args...) \ 2695do { \ 2696 dynamic_netdev_dbg(__dev, format, ##args); \ 2697} while (0) 2698#else 2699#define netdev_dbg(__dev, format, args...) \ 2700({ \ 2701 if (0) \ 2702 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2703 0; \ 2704}) 2705#endif 2706 2707#if defined(VERBOSE_DEBUG) 2708#define netdev_vdbg netdev_dbg 2709#else 2710 2711#define netdev_vdbg(dev, format, args...) \ 2712({ \ 2713 if (0) \ 2714 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2715 0; \ 2716}) 2717#endif 2718 2719/* 2720 * netdev_WARN() acts like dev_printk(), but with the key difference 2721 * of using a WARN/WARN_ON to get the message out, including the 2722 * file/line information and a backtrace. 2723 */ 2724#define netdev_WARN(dev, format, args...) \ 2725 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2726 2727/* netif printk helpers, similar to netdev_printk */ 2728 2729#define netif_printk(priv, type, level, dev, fmt, args...) \ 2730do { \ 2731 if (netif_msg_##type(priv)) \ 2732 netdev_printk(level, (dev), fmt, ##args); \ 2733} while (0) 2734 2735#define netif_level(level, priv, type, dev, fmt, args...) \ 2736do { \ 2737 if (netif_msg_##type(priv)) \ 2738 netdev_##level(dev, fmt, ##args); \ 2739} while (0) 2740 2741#define netif_emerg(priv, type, dev, fmt, args...) \ 2742 netif_level(emerg, priv, type, dev, fmt, ##args) 2743#define netif_alert(priv, type, dev, fmt, args...) \ 2744 netif_level(alert, priv, type, dev, fmt, ##args) 2745#define netif_crit(priv, type, dev, fmt, args...) \ 2746 netif_level(crit, priv, type, dev, fmt, ##args) 2747#define netif_err(priv, type, dev, fmt, args...) \ 2748 netif_level(err, priv, type, dev, fmt, ##args) 2749#define netif_warn(priv, type, dev, fmt, args...) \ 2750 netif_level(warn, priv, type, dev, fmt, ##args) 2751#define netif_notice(priv, type, dev, fmt, args...) \ 2752 netif_level(notice, priv, type, dev, fmt, ##args) 2753#define netif_info(priv, type, dev, fmt, args...) \ 2754 netif_level(info, priv, type, dev, fmt, ##args) 2755 2756#if defined(DEBUG) 2757#define netif_dbg(priv, type, dev, format, args...) \ 2758 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2759#elif defined(CONFIG_DYNAMIC_DEBUG) 2760#define netif_dbg(priv, type, netdev, format, args...) \ 2761do { \ 2762 if (netif_msg_##type(priv)) \ 2763 dynamic_netdev_dbg(netdev, format, ##args); \ 2764} while (0) 2765#else 2766#define netif_dbg(priv, type, dev, format, args...) \ 2767({ \ 2768 if (0) \ 2769 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2770 0; \ 2771}) 2772#endif 2773 2774#if defined(VERBOSE_DEBUG) 2775#define netif_vdbg netif_dbg 2776#else 2777#define netif_vdbg(priv, type, dev, format, args...) \ 2778({ \ 2779 if (0) \ 2780 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2781 0; \ 2782}) 2783#endif 2784 2785#endif /* __KERNEL__ */ 2786 2787#endif /* _LINUX_NETDEVICE_H */