at v3.3-rc4 3600 lines 108 kB view raw
1/* 2 * linux/fs/ext3/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000 23 */ 24 25#include <linux/fs.h> 26#include <linux/time.h> 27#include <linux/ext3_jbd.h> 28#include <linux/jbd.h> 29#include <linux/highuid.h> 30#include <linux/pagemap.h> 31#include <linux/quotaops.h> 32#include <linux/string.h> 33#include <linux/buffer_head.h> 34#include <linux/writeback.h> 35#include <linux/mpage.h> 36#include <linux/uio.h> 37#include <linux/bio.h> 38#include <linux/fiemap.h> 39#include <linux/namei.h> 40#include <trace/events/ext3.h> 41#include "xattr.h" 42#include "acl.h" 43 44static int ext3_writepage_trans_blocks(struct inode *inode); 45static int ext3_block_truncate_page(struct inode *inode, loff_t from); 46 47/* 48 * Test whether an inode is a fast symlink. 49 */ 50static int ext3_inode_is_fast_symlink(struct inode *inode) 51{ 52 int ea_blocks = EXT3_I(inode)->i_file_acl ? 53 (inode->i_sb->s_blocksize >> 9) : 0; 54 55 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 56} 57 58/* 59 * The ext3 forget function must perform a revoke if we are freeing data 60 * which has been journaled. Metadata (eg. indirect blocks) must be 61 * revoked in all cases. 62 * 63 * "bh" may be NULL: a metadata block may have been freed from memory 64 * but there may still be a record of it in the journal, and that record 65 * still needs to be revoked. 66 */ 67int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode, 68 struct buffer_head *bh, ext3_fsblk_t blocknr) 69{ 70 int err; 71 72 might_sleep(); 73 74 trace_ext3_forget(inode, is_metadata, blocknr); 75 BUFFER_TRACE(bh, "enter"); 76 77 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 78 "data mode %lx\n", 79 bh, is_metadata, inode->i_mode, 80 test_opt(inode->i_sb, DATA_FLAGS)); 81 82 /* Never use the revoke function if we are doing full data 83 * journaling: there is no need to, and a V1 superblock won't 84 * support it. Otherwise, only skip the revoke on un-journaled 85 * data blocks. */ 86 87 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA || 88 (!is_metadata && !ext3_should_journal_data(inode))) { 89 if (bh) { 90 BUFFER_TRACE(bh, "call journal_forget"); 91 return ext3_journal_forget(handle, bh); 92 } 93 return 0; 94 } 95 96 /* 97 * data!=journal && (is_metadata || should_journal_data(inode)) 98 */ 99 BUFFER_TRACE(bh, "call ext3_journal_revoke"); 100 err = ext3_journal_revoke(handle, blocknr, bh); 101 if (err) 102 ext3_abort(inode->i_sb, __func__, 103 "error %d when attempting revoke", err); 104 BUFFER_TRACE(bh, "exit"); 105 return err; 106} 107 108/* 109 * Work out how many blocks we need to proceed with the next chunk of a 110 * truncate transaction. 111 */ 112static unsigned long blocks_for_truncate(struct inode *inode) 113{ 114 unsigned long needed; 115 116 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 117 118 /* Give ourselves just enough room to cope with inodes in which 119 * i_blocks is corrupt: we've seen disk corruptions in the past 120 * which resulted in random data in an inode which looked enough 121 * like a regular file for ext3 to try to delete it. Things 122 * will go a bit crazy if that happens, but at least we should 123 * try not to panic the whole kernel. */ 124 if (needed < 2) 125 needed = 2; 126 127 /* But we need to bound the transaction so we don't overflow the 128 * journal. */ 129 if (needed > EXT3_MAX_TRANS_DATA) 130 needed = EXT3_MAX_TRANS_DATA; 131 132 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 133} 134 135/* 136 * Truncate transactions can be complex and absolutely huge. So we need to 137 * be able to restart the transaction at a conventient checkpoint to make 138 * sure we don't overflow the journal. 139 * 140 * start_transaction gets us a new handle for a truncate transaction, 141 * and extend_transaction tries to extend the existing one a bit. If 142 * extend fails, we need to propagate the failure up and restart the 143 * transaction in the top-level truncate loop. --sct 144 */ 145static handle_t *start_transaction(struct inode *inode) 146{ 147 handle_t *result; 148 149 result = ext3_journal_start(inode, blocks_for_truncate(inode)); 150 if (!IS_ERR(result)) 151 return result; 152 153 ext3_std_error(inode->i_sb, PTR_ERR(result)); 154 return result; 155} 156 157/* 158 * Try to extend this transaction for the purposes of truncation. 159 * 160 * Returns 0 if we managed to create more room. If we can't create more 161 * room, and the transaction must be restarted we return 1. 162 */ 163static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 164{ 165 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS) 166 return 0; 167 if (!ext3_journal_extend(handle, blocks_for_truncate(inode))) 168 return 0; 169 return 1; 170} 171 172/* 173 * Restart the transaction associated with *handle. This does a commit, 174 * so before we call here everything must be consistently dirtied against 175 * this transaction. 176 */ 177static int truncate_restart_transaction(handle_t *handle, struct inode *inode) 178{ 179 int ret; 180 181 jbd_debug(2, "restarting handle %p\n", handle); 182 /* 183 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle 184 * At this moment, get_block can be called only for blocks inside 185 * i_size since page cache has been already dropped and writes are 186 * blocked by i_mutex. So we can safely drop the truncate_mutex. 187 */ 188 mutex_unlock(&EXT3_I(inode)->truncate_mutex); 189 ret = ext3_journal_restart(handle, blocks_for_truncate(inode)); 190 mutex_lock(&EXT3_I(inode)->truncate_mutex); 191 return ret; 192} 193 194/* 195 * Called at inode eviction from icache 196 */ 197void ext3_evict_inode (struct inode *inode) 198{ 199 struct ext3_inode_info *ei = EXT3_I(inode); 200 struct ext3_block_alloc_info *rsv; 201 handle_t *handle; 202 int want_delete = 0; 203 204 trace_ext3_evict_inode(inode); 205 if (!inode->i_nlink && !is_bad_inode(inode)) { 206 dquot_initialize(inode); 207 want_delete = 1; 208 } 209 210 /* 211 * When journalling data dirty buffers are tracked only in the journal. 212 * So although mm thinks everything is clean and ready for reaping the 213 * inode might still have some pages to write in the running 214 * transaction or waiting to be checkpointed. Thus calling 215 * journal_invalidatepage() (via truncate_inode_pages()) to discard 216 * these buffers can cause data loss. Also even if we did not discard 217 * these buffers, we would have no way to find them after the inode 218 * is reaped and thus user could see stale data if he tries to read 219 * them before the transaction is checkpointed. So be careful and 220 * force everything to disk here... We use ei->i_datasync_tid to 221 * store the newest transaction containing inode's data. 222 * 223 * Note that directories do not have this problem because they don't 224 * use page cache. 225 * 226 * The s_journal check handles the case when ext3_get_journal() fails 227 * and puts the journal inode. 228 */ 229 if (inode->i_nlink && ext3_should_journal_data(inode) && 230 EXT3_SB(inode->i_sb)->s_journal && 231 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 232 tid_t commit_tid = atomic_read(&ei->i_datasync_tid); 233 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal; 234 235 log_start_commit(journal, commit_tid); 236 log_wait_commit(journal, commit_tid); 237 filemap_write_and_wait(&inode->i_data); 238 } 239 truncate_inode_pages(&inode->i_data, 0); 240 241 ext3_discard_reservation(inode); 242 rsv = ei->i_block_alloc_info; 243 ei->i_block_alloc_info = NULL; 244 if (unlikely(rsv)) 245 kfree(rsv); 246 247 if (!want_delete) 248 goto no_delete; 249 250 handle = start_transaction(inode); 251 if (IS_ERR(handle)) { 252 /* 253 * If we're going to skip the normal cleanup, we still need to 254 * make sure that the in-core orphan linked list is properly 255 * cleaned up. 256 */ 257 ext3_orphan_del(NULL, inode); 258 goto no_delete; 259 } 260 261 if (IS_SYNC(inode)) 262 handle->h_sync = 1; 263 inode->i_size = 0; 264 if (inode->i_blocks) 265 ext3_truncate(inode); 266 /* 267 * Kill off the orphan record created when the inode lost the last 268 * link. Note that ext3_orphan_del() has to be able to cope with the 269 * deletion of a non-existent orphan - ext3_truncate() could 270 * have removed the record. 271 */ 272 ext3_orphan_del(handle, inode); 273 ei->i_dtime = get_seconds(); 274 275 /* 276 * One subtle ordering requirement: if anything has gone wrong 277 * (transaction abort, IO errors, whatever), then we can still 278 * do these next steps (the fs will already have been marked as 279 * having errors), but we can't free the inode if the mark_dirty 280 * fails. 281 */ 282 if (ext3_mark_inode_dirty(handle, inode)) { 283 /* If that failed, just dquot_drop() and be done with that */ 284 dquot_drop(inode); 285 end_writeback(inode); 286 } else { 287 ext3_xattr_delete_inode(handle, inode); 288 dquot_free_inode(inode); 289 dquot_drop(inode); 290 end_writeback(inode); 291 ext3_free_inode(handle, inode); 292 } 293 ext3_journal_stop(handle); 294 return; 295no_delete: 296 end_writeback(inode); 297 dquot_drop(inode); 298} 299 300typedef struct { 301 __le32 *p; 302 __le32 key; 303 struct buffer_head *bh; 304} Indirect; 305 306static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 307{ 308 p->key = *(p->p = v); 309 p->bh = bh; 310} 311 312static int verify_chain(Indirect *from, Indirect *to) 313{ 314 while (from <= to && from->key == *from->p) 315 from++; 316 return (from > to); 317} 318 319/** 320 * ext3_block_to_path - parse the block number into array of offsets 321 * @inode: inode in question (we are only interested in its superblock) 322 * @i_block: block number to be parsed 323 * @offsets: array to store the offsets in 324 * @boundary: set this non-zero if the referred-to block is likely to be 325 * followed (on disk) by an indirect block. 326 * 327 * To store the locations of file's data ext3 uses a data structure common 328 * for UNIX filesystems - tree of pointers anchored in the inode, with 329 * data blocks at leaves and indirect blocks in intermediate nodes. 330 * This function translates the block number into path in that tree - 331 * return value is the path length and @offsets[n] is the offset of 332 * pointer to (n+1)th node in the nth one. If @block is out of range 333 * (negative or too large) warning is printed and zero returned. 334 * 335 * Note: function doesn't find node addresses, so no IO is needed. All 336 * we need to know is the capacity of indirect blocks (taken from the 337 * inode->i_sb). 338 */ 339 340/* 341 * Portability note: the last comparison (check that we fit into triple 342 * indirect block) is spelled differently, because otherwise on an 343 * architecture with 32-bit longs and 8Kb pages we might get into trouble 344 * if our filesystem had 8Kb blocks. We might use long long, but that would 345 * kill us on x86. Oh, well, at least the sign propagation does not matter - 346 * i_block would have to be negative in the very beginning, so we would not 347 * get there at all. 348 */ 349 350static int ext3_block_to_path(struct inode *inode, 351 long i_block, int offsets[4], int *boundary) 352{ 353 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb); 354 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb); 355 const long direct_blocks = EXT3_NDIR_BLOCKS, 356 indirect_blocks = ptrs, 357 double_blocks = (1 << (ptrs_bits * 2)); 358 int n = 0; 359 int final = 0; 360 361 if (i_block < 0) { 362 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0"); 363 } else if (i_block < direct_blocks) { 364 offsets[n++] = i_block; 365 final = direct_blocks; 366 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 367 offsets[n++] = EXT3_IND_BLOCK; 368 offsets[n++] = i_block; 369 final = ptrs; 370 } else if ((i_block -= indirect_blocks) < double_blocks) { 371 offsets[n++] = EXT3_DIND_BLOCK; 372 offsets[n++] = i_block >> ptrs_bits; 373 offsets[n++] = i_block & (ptrs - 1); 374 final = ptrs; 375 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 376 offsets[n++] = EXT3_TIND_BLOCK; 377 offsets[n++] = i_block >> (ptrs_bits * 2); 378 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 379 offsets[n++] = i_block & (ptrs - 1); 380 final = ptrs; 381 } else { 382 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big"); 383 } 384 if (boundary) 385 *boundary = final - 1 - (i_block & (ptrs - 1)); 386 return n; 387} 388 389/** 390 * ext3_get_branch - read the chain of indirect blocks leading to data 391 * @inode: inode in question 392 * @depth: depth of the chain (1 - direct pointer, etc.) 393 * @offsets: offsets of pointers in inode/indirect blocks 394 * @chain: place to store the result 395 * @err: here we store the error value 396 * 397 * Function fills the array of triples <key, p, bh> and returns %NULL 398 * if everything went OK or the pointer to the last filled triple 399 * (incomplete one) otherwise. Upon the return chain[i].key contains 400 * the number of (i+1)-th block in the chain (as it is stored in memory, 401 * i.e. little-endian 32-bit), chain[i].p contains the address of that 402 * number (it points into struct inode for i==0 and into the bh->b_data 403 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 404 * block for i>0 and NULL for i==0. In other words, it holds the block 405 * numbers of the chain, addresses they were taken from (and where we can 406 * verify that chain did not change) and buffer_heads hosting these 407 * numbers. 408 * 409 * Function stops when it stumbles upon zero pointer (absent block) 410 * (pointer to last triple returned, *@err == 0) 411 * or when it gets an IO error reading an indirect block 412 * (ditto, *@err == -EIO) 413 * or when it notices that chain had been changed while it was reading 414 * (ditto, *@err == -EAGAIN) 415 * or when it reads all @depth-1 indirect blocks successfully and finds 416 * the whole chain, all way to the data (returns %NULL, *err == 0). 417 */ 418static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets, 419 Indirect chain[4], int *err) 420{ 421 struct super_block *sb = inode->i_sb; 422 Indirect *p = chain; 423 struct buffer_head *bh; 424 425 *err = 0; 426 /* i_data is not going away, no lock needed */ 427 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets); 428 if (!p->key) 429 goto no_block; 430 while (--depth) { 431 bh = sb_bread(sb, le32_to_cpu(p->key)); 432 if (!bh) 433 goto failure; 434 /* Reader: pointers */ 435 if (!verify_chain(chain, p)) 436 goto changed; 437 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 438 /* Reader: end */ 439 if (!p->key) 440 goto no_block; 441 } 442 return NULL; 443 444changed: 445 brelse(bh); 446 *err = -EAGAIN; 447 goto no_block; 448failure: 449 *err = -EIO; 450no_block: 451 return p; 452} 453 454/** 455 * ext3_find_near - find a place for allocation with sufficient locality 456 * @inode: owner 457 * @ind: descriptor of indirect block. 458 * 459 * This function returns the preferred place for block allocation. 460 * It is used when heuristic for sequential allocation fails. 461 * Rules are: 462 * + if there is a block to the left of our position - allocate near it. 463 * + if pointer will live in indirect block - allocate near that block. 464 * + if pointer will live in inode - allocate in the same 465 * cylinder group. 466 * 467 * In the latter case we colour the starting block by the callers PID to 468 * prevent it from clashing with concurrent allocations for a different inode 469 * in the same block group. The PID is used here so that functionally related 470 * files will be close-by on-disk. 471 * 472 * Caller must make sure that @ind is valid and will stay that way. 473 */ 474static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind) 475{ 476 struct ext3_inode_info *ei = EXT3_I(inode); 477 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 478 __le32 *p; 479 ext3_fsblk_t bg_start; 480 ext3_grpblk_t colour; 481 482 /* Try to find previous block */ 483 for (p = ind->p - 1; p >= start; p--) { 484 if (*p) 485 return le32_to_cpu(*p); 486 } 487 488 /* No such thing, so let's try location of indirect block */ 489 if (ind->bh) 490 return ind->bh->b_blocknr; 491 492 /* 493 * It is going to be referred to from the inode itself? OK, just put it 494 * into the same cylinder group then. 495 */ 496 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group); 497 colour = (current->pid % 16) * 498 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16); 499 return bg_start + colour; 500} 501 502/** 503 * ext3_find_goal - find a preferred place for allocation. 504 * @inode: owner 505 * @block: block we want 506 * @partial: pointer to the last triple within a chain 507 * 508 * Normally this function find the preferred place for block allocation, 509 * returns it. 510 */ 511 512static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block, 513 Indirect *partial) 514{ 515 struct ext3_block_alloc_info *block_i; 516 517 block_i = EXT3_I(inode)->i_block_alloc_info; 518 519 /* 520 * try the heuristic for sequential allocation, 521 * failing that at least try to get decent locality. 522 */ 523 if (block_i && (block == block_i->last_alloc_logical_block + 1) 524 && (block_i->last_alloc_physical_block != 0)) { 525 return block_i->last_alloc_physical_block + 1; 526 } 527 528 return ext3_find_near(inode, partial); 529} 530 531/** 532 * ext3_blks_to_allocate - Look up the block map and count the number 533 * of direct blocks need to be allocated for the given branch. 534 * 535 * @branch: chain of indirect blocks 536 * @k: number of blocks need for indirect blocks 537 * @blks: number of data blocks to be mapped. 538 * @blocks_to_boundary: the offset in the indirect block 539 * 540 * return the total number of blocks to be allocate, including the 541 * direct and indirect blocks. 542 */ 543static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 544 int blocks_to_boundary) 545{ 546 unsigned long count = 0; 547 548 /* 549 * Simple case, [t,d]Indirect block(s) has not allocated yet 550 * then it's clear blocks on that path have not allocated 551 */ 552 if (k > 0) { 553 /* right now we don't handle cross boundary allocation */ 554 if (blks < blocks_to_boundary + 1) 555 count += blks; 556 else 557 count += blocks_to_boundary + 1; 558 return count; 559 } 560 561 count++; 562 while (count < blks && count <= blocks_to_boundary && 563 le32_to_cpu(*(branch[0].p + count)) == 0) { 564 count++; 565 } 566 return count; 567} 568 569/** 570 * ext3_alloc_blocks - multiple allocate blocks needed for a branch 571 * @handle: handle for this transaction 572 * @inode: owner 573 * @goal: preferred place for allocation 574 * @indirect_blks: the number of blocks need to allocate for indirect 575 * blocks 576 * @blks: number of blocks need to allocated for direct blocks 577 * @new_blocks: on return it will store the new block numbers for 578 * the indirect blocks(if needed) and the first direct block, 579 * @err: here we store the error value 580 * 581 * return the number of direct blocks allocated 582 */ 583static int ext3_alloc_blocks(handle_t *handle, struct inode *inode, 584 ext3_fsblk_t goal, int indirect_blks, int blks, 585 ext3_fsblk_t new_blocks[4], int *err) 586{ 587 int target, i; 588 unsigned long count = 0; 589 int index = 0; 590 ext3_fsblk_t current_block = 0; 591 int ret = 0; 592 593 /* 594 * Here we try to allocate the requested multiple blocks at once, 595 * on a best-effort basis. 596 * To build a branch, we should allocate blocks for 597 * the indirect blocks(if not allocated yet), and at least 598 * the first direct block of this branch. That's the 599 * minimum number of blocks need to allocate(required) 600 */ 601 target = blks + indirect_blks; 602 603 while (1) { 604 count = target; 605 /* allocating blocks for indirect blocks and direct blocks */ 606 current_block = ext3_new_blocks(handle,inode,goal,&count,err); 607 if (*err) 608 goto failed_out; 609 610 target -= count; 611 /* allocate blocks for indirect blocks */ 612 while (index < indirect_blks && count) { 613 new_blocks[index++] = current_block++; 614 count--; 615 } 616 617 if (count > 0) 618 break; 619 } 620 621 /* save the new block number for the first direct block */ 622 new_blocks[index] = current_block; 623 624 /* total number of blocks allocated for direct blocks */ 625 ret = count; 626 *err = 0; 627 return ret; 628failed_out: 629 for (i = 0; i <index; i++) 630 ext3_free_blocks(handle, inode, new_blocks[i], 1); 631 return ret; 632} 633 634/** 635 * ext3_alloc_branch - allocate and set up a chain of blocks. 636 * @handle: handle for this transaction 637 * @inode: owner 638 * @indirect_blks: number of allocated indirect blocks 639 * @blks: number of allocated direct blocks 640 * @goal: preferred place for allocation 641 * @offsets: offsets (in the blocks) to store the pointers to next. 642 * @branch: place to store the chain in. 643 * 644 * This function allocates blocks, zeroes out all but the last one, 645 * links them into chain and (if we are synchronous) writes them to disk. 646 * In other words, it prepares a branch that can be spliced onto the 647 * inode. It stores the information about that chain in the branch[], in 648 * the same format as ext3_get_branch() would do. We are calling it after 649 * we had read the existing part of chain and partial points to the last 650 * triple of that (one with zero ->key). Upon the exit we have the same 651 * picture as after the successful ext3_get_block(), except that in one 652 * place chain is disconnected - *branch->p is still zero (we did not 653 * set the last link), but branch->key contains the number that should 654 * be placed into *branch->p to fill that gap. 655 * 656 * If allocation fails we free all blocks we've allocated (and forget 657 * their buffer_heads) and return the error value the from failed 658 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain 659 * as described above and return 0. 660 */ 661static int ext3_alloc_branch(handle_t *handle, struct inode *inode, 662 int indirect_blks, int *blks, ext3_fsblk_t goal, 663 int *offsets, Indirect *branch) 664{ 665 int blocksize = inode->i_sb->s_blocksize; 666 int i, n = 0; 667 int err = 0; 668 struct buffer_head *bh; 669 int num; 670 ext3_fsblk_t new_blocks[4]; 671 ext3_fsblk_t current_block; 672 673 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks, 674 *blks, new_blocks, &err); 675 if (err) 676 return err; 677 678 branch[0].key = cpu_to_le32(new_blocks[0]); 679 /* 680 * metadata blocks and data blocks are allocated. 681 */ 682 for (n = 1; n <= indirect_blks; n++) { 683 /* 684 * Get buffer_head for parent block, zero it out 685 * and set the pointer to new one, then send 686 * parent to disk. 687 */ 688 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 689 branch[n].bh = bh; 690 lock_buffer(bh); 691 BUFFER_TRACE(bh, "call get_create_access"); 692 err = ext3_journal_get_create_access(handle, bh); 693 if (err) { 694 unlock_buffer(bh); 695 brelse(bh); 696 goto failed; 697 } 698 699 memset(bh->b_data, 0, blocksize); 700 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 701 branch[n].key = cpu_to_le32(new_blocks[n]); 702 *branch[n].p = branch[n].key; 703 if ( n == indirect_blks) { 704 current_block = new_blocks[n]; 705 /* 706 * End of chain, update the last new metablock of 707 * the chain to point to the new allocated 708 * data blocks numbers 709 */ 710 for (i=1; i < num; i++) 711 *(branch[n].p + i) = cpu_to_le32(++current_block); 712 } 713 BUFFER_TRACE(bh, "marking uptodate"); 714 set_buffer_uptodate(bh); 715 unlock_buffer(bh); 716 717 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 718 err = ext3_journal_dirty_metadata(handle, bh); 719 if (err) 720 goto failed; 721 } 722 *blks = num; 723 return err; 724failed: 725 /* Allocation failed, free what we already allocated */ 726 for (i = 1; i <= n ; i++) { 727 BUFFER_TRACE(branch[i].bh, "call journal_forget"); 728 ext3_journal_forget(handle, branch[i].bh); 729 } 730 for (i = 0; i <indirect_blks; i++) 731 ext3_free_blocks(handle, inode, new_blocks[i], 1); 732 733 ext3_free_blocks(handle, inode, new_blocks[i], num); 734 735 return err; 736} 737 738/** 739 * ext3_splice_branch - splice the allocated branch onto inode. 740 * @handle: handle for this transaction 741 * @inode: owner 742 * @block: (logical) number of block we are adding 743 * @where: location of missing link 744 * @num: number of indirect blocks we are adding 745 * @blks: number of direct blocks we are adding 746 * 747 * This function fills the missing link and does all housekeeping needed in 748 * inode (->i_blocks, etc.). In case of success we end up with the full 749 * chain to new block and return 0. 750 */ 751static int ext3_splice_branch(handle_t *handle, struct inode *inode, 752 long block, Indirect *where, int num, int blks) 753{ 754 int i; 755 int err = 0; 756 struct ext3_block_alloc_info *block_i; 757 ext3_fsblk_t current_block; 758 struct ext3_inode_info *ei = EXT3_I(inode); 759 760 block_i = ei->i_block_alloc_info; 761 /* 762 * If we're splicing into a [td]indirect block (as opposed to the 763 * inode) then we need to get write access to the [td]indirect block 764 * before the splice. 765 */ 766 if (where->bh) { 767 BUFFER_TRACE(where->bh, "get_write_access"); 768 err = ext3_journal_get_write_access(handle, where->bh); 769 if (err) 770 goto err_out; 771 } 772 /* That's it */ 773 774 *where->p = where->key; 775 776 /* 777 * Update the host buffer_head or inode to point to more just allocated 778 * direct blocks blocks 779 */ 780 if (num == 0 && blks > 1) { 781 current_block = le32_to_cpu(where->key) + 1; 782 for (i = 1; i < blks; i++) 783 *(where->p + i ) = cpu_to_le32(current_block++); 784 } 785 786 /* 787 * update the most recently allocated logical & physical block 788 * in i_block_alloc_info, to assist find the proper goal block for next 789 * allocation 790 */ 791 if (block_i) { 792 block_i->last_alloc_logical_block = block + blks - 1; 793 block_i->last_alloc_physical_block = 794 le32_to_cpu(where[num].key) + blks - 1; 795 } 796 797 /* We are done with atomic stuff, now do the rest of housekeeping */ 798 799 inode->i_ctime = CURRENT_TIME_SEC; 800 ext3_mark_inode_dirty(handle, inode); 801 /* ext3_mark_inode_dirty already updated i_sync_tid */ 802 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 803 804 /* had we spliced it onto indirect block? */ 805 if (where->bh) { 806 /* 807 * If we spliced it onto an indirect block, we haven't 808 * altered the inode. Note however that if it is being spliced 809 * onto an indirect block at the very end of the file (the 810 * file is growing) then we *will* alter the inode to reflect 811 * the new i_size. But that is not done here - it is done in 812 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode. 813 */ 814 jbd_debug(5, "splicing indirect only\n"); 815 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata"); 816 err = ext3_journal_dirty_metadata(handle, where->bh); 817 if (err) 818 goto err_out; 819 } else { 820 /* 821 * OK, we spliced it into the inode itself on a direct block. 822 * Inode was dirtied above. 823 */ 824 jbd_debug(5, "splicing direct\n"); 825 } 826 return err; 827 828err_out: 829 for (i = 1; i <= num; i++) { 830 BUFFER_TRACE(where[i].bh, "call journal_forget"); 831 ext3_journal_forget(handle, where[i].bh); 832 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1); 833 } 834 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks); 835 836 return err; 837} 838 839/* 840 * Allocation strategy is simple: if we have to allocate something, we will 841 * have to go the whole way to leaf. So let's do it before attaching anything 842 * to tree, set linkage between the newborn blocks, write them if sync is 843 * required, recheck the path, free and repeat if check fails, otherwise 844 * set the last missing link (that will protect us from any truncate-generated 845 * removals - all blocks on the path are immune now) and possibly force the 846 * write on the parent block. 847 * That has a nice additional property: no special recovery from the failed 848 * allocations is needed - we simply release blocks and do not touch anything 849 * reachable from inode. 850 * 851 * `handle' can be NULL if create == 0. 852 * 853 * The BKL may not be held on entry here. Be sure to take it early. 854 * return > 0, # of blocks mapped or allocated. 855 * return = 0, if plain lookup failed. 856 * return < 0, error case. 857 */ 858int ext3_get_blocks_handle(handle_t *handle, struct inode *inode, 859 sector_t iblock, unsigned long maxblocks, 860 struct buffer_head *bh_result, 861 int create) 862{ 863 int err = -EIO; 864 int offsets[4]; 865 Indirect chain[4]; 866 Indirect *partial; 867 ext3_fsblk_t goal; 868 int indirect_blks; 869 int blocks_to_boundary = 0; 870 int depth; 871 struct ext3_inode_info *ei = EXT3_I(inode); 872 int count = 0; 873 ext3_fsblk_t first_block = 0; 874 875 876 trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create); 877 J_ASSERT(handle != NULL || create == 0); 878 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary); 879 880 if (depth == 0) 881 goto out; 882 883 partial = ext3_get_branch(inode, depth, offsets, chain, &err); 884 885 /* Simplest case - block found, no allocation needed */ 886 if (!partial) { 887 first_block = le32_to_cpu(chain[depth - 1].key); 888 clear_buffer_new(bh_result); 889 count++; 890 /*map more blocks*/ 891 while (count < maxblocks && count <= blocks_to_boundary) { 892 ext3_fsblk_t blk; 893 894 if (!verify_chain(chain, chain + depth - 1)) { 895 /* 896 * Indirect block might be removed by 897 * truncate while we were reading it. 898 * Handling of that case: forget what we've 899 * got now. Flag the err as EAGAIN, so it 900 * will reread. 901 */ 902 err = -EAGAIN; 903 count = 0; 904 break; 905 } 906 blk = le32_to_cpu(*(chain[depth-1].p + count)); 907 908 if (blk == first_block + count) 909 count++; 910 else 911 break; 912 } 913 if (err != -EAGAIN) 914 goto got_it; 915 } 916 917 /* Next simple case - plain lookup or failed read of indirect block */ 918 if (!create || err == -EIO) 919 goto cleanup; 920 921 /* 922 * Block out ext3_truncate while we alter the tree 923 */ 924 mutex_lock(&ei->truncate_mutex); 925 926 /* 927 * If the indirect block is missing while we are reading 928 * the chain(ext3_get_branch() returns -EAGAIN err), or 929 * if the chain has been changed after we grab the semaphore, 930 * (either because another process truncated this branch, or 931 * another get_block allocated this branch) re-grab the chain to see if 932 * the request block has been allocated or not. 933 * 934 * Since we already block the truncate/other get_block 935 * at this point, we will have the current copy of the chain when we 936 * splice the branch into the tree. 937 */ 938 if (err == -EAGAIN || !verify_chain(chain, partial)) { 939 while (partial > chain) { 940 brelse(partial->bh); 941 partial--; 942 } 943 partial = ext3_get_branch(inode, depth, offsets, chain, &err); 944 if (!partial) { 945 count++; 946 mutex_unlock(&ei->truncate_mutex); 947 if (err) 948 goto cleanup; 949 clear_buffer_new(bh_result); 950 goto got_it; 951 } 952 } 953 954 /* 955 * Okay, we need to do block allocation. Lazily initialize the block 956 * allocation info here if necessary 957 */ 958 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 959 ext3_init_block_alloc_info(inode); 960 961 goal = ext3_find_goal(inode, iblock, partial); 962 963 /* the number of blocks need to allocate for [d,t]indirect blocks */ 964 indirect_blks = (chain + depth) - partial - 1; 965 966 /* 967 * Next look up the indirect map to count the totoal number of 968 * direct blocks to allocate for this branch. 969 */ 970 count = ext3_blks_to_allocate(partial, indirect_blks, 971 maxblocks, blocks_to_boundary); 972 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal, 973 offsets + (partial - chain), partial); 974 975 /* 976 * The ext3_splice_branch call will free and forget any buffers 977 * on the new chain if there is a failure, but that risks using 978 * up transaction credits, especially for bitmaps where the 979 * credits cannot be returned. Can we handle this somehow? We 980 * may need to return -EAGAIN upwards in the worst case. --sct 981 */ 982 if (!err) 983 err = ext3_splice_branch(handle, inode, iblock, 984 partial, indirect_blks, count); 985 mutex_unlock(&ei->truncate_mutex); 986 if (err) 987 goto cleanup; 988 989 set_buffer_new(bh_result); 990got_it: 991 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 992 if (count > blocks_to_boundary) 993 set_buffer_boundary(bh_result); 994 err = count; 995 /* Clean up and exit */ 996 partial = chain + depth - 1; /* the whole chain */ 997cleanup: 998 while (partial > chain) { 999 BUFFER_TRACE(partial->bh, "call brelse"); 1000 brelse(partial->bh); 1001 partial--; 1002 } 1003 BUFFER_TRACE(bh_result, "returned"); 1004out: 1005 trace_ext3_get_blocks_exit(inode, iblock, 1006 depth ? le32_to_cpu(chain[depth-1].key) : 0, 1007 count, err); 1008 return err; 1009} 1010 1011/* Maximum number of blocks we map for direct IO at once. */ 1012#define DIO_MAX_BLOCKS 4096 1013/* 1014 * Number of credits we need for writing DIO_MAX_BLOCKS: 1015 * We need sb + group descriptor + bitmap + inode -> 4 1016 * For B blocks with A block pointers per block we need: 1017 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect). 1018 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25. 1019 */ 1020#define DIO_CREDITS 25 1021 1022static int ext3_get_block(struct inode *inode, sector_t iblock, 1023 struct buffer_head *bh_result, int create) 1024{ 1025 handle_t *handle = ext3_journal_current_handle(); 1026 int ret = 0, started = 0; 1027 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1028 1029 if (create && !handle) { /* Direct IO write... */ 1030 if (max_blocks > DIO_MAX_BLOCKS) 1031 max_blocks = DIO_MAX_BLOCKS; 1032 handle = ext3_journal_start(inode, DIO_CREDITS + 1033 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb)); 1034 if (IS_ERR(handle)) { 1035 ret = PTR_ERR(handle); 1036 goto out; 1037 } 1038 started = 1; 1039 } 1040 1041 ret = ext3_get_blocks_handle(handle, inode, iblock, 1042 max_blocks, bh_result, create); 1043 if (ret > 0) { 1044 bh_result->b_size = (ret << inode->i_blkbits); 1045 ret = 0; 1046 } 1047 if (started) 1048 ext3_journal_stop(handle); 1049out: 1050 return ret; 1051} 1052 1053int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1054 u64 start, u64 len) 1055{ 1056 return generic_block_fiemap(inode, fieinfo, start, len, 1057 ext3_get_block); 1058} 1059 1060/* 1061 * `handle' can be NULL if create is zero 1062 */ 1063struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode, 1064 long block, int create, int *errp) 1065{ 1066 struct buffer_head dummy; 1067 int fatal = 0, err; 1068 1069 J_ASSERT(handle != NULL || create == 0); 1070 1071 dummy.b_state = 0; 1072 dummy.b_blocknr = -1000; 1073 buffer_trace_init(&dummy.b_history); 1074 err = ext3_get_blocks_handle(handle, inode, block, 1, 1075 &dummy, create); 1076 /* 1077 * ext3_get_blocks_handle() returns number of blocks 1078 * mapped. 0 in case of a HOLE. 1079 */ 1080 if (err > 0) { 1081 if (err > 1) 1082 WARN_ON(1); 1083 err = 0; 1084 } 1085 *errp = err; 1086 if (!err && buffer_mapped(&dummy)) { 1087 struct buffer_head *bh; 1088 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1089 if (!bh) { 1090 *errp = -EIO; 1091 goto err; 1092 } 1093 if (buffer_new(&dummy)) { 1094 J_ASSERT(create != 0); 1095 J_ASSERT(handle != NULL); 1096 1097 /* 1098 * Now that we do not always journal data, we should 1099 * keep in mind whether this should always journal the 1100 * new buffer as metadata. For now, regular file 1101 * writes use ext3_get_block instead, so it's not a 1102 * problem. 1103 */ 1104 lock_buffer(bh); 1105 BUFFER_TRACE(bh, "call get_create_access"); 1106 fatal = ext3_journal_get_create_access(handle, bh); 1107 if (!fatal && !buffer_uptodate(bh)) { 1108 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1109 set_buffer_uptodate(bh); 1110 } 1111 unlock_buffer(bh); 1112 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 1113 err = ext3_journal_dirty_metadata(handle, bh); 1114 if (!fatal) 1115 fatal = err; 1116 } else { 1117 BUFFER_TRACE(bh, "not a new buffer"); 1118 } 1119 if (fatal) { 1120 *errp = fatal; 1121 brelse(bh); 1122 bh = NULL; 1123 } 1124 return bh; 1125 } 1126err: 1127 return NULL; 1128} 1129 1130struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode, 1131 int block, int create, int *err) 1132{ 1133 struct buffer_head * bh; 1134 1135 bh = ext3_getblk(handle, inode, block, create, err); 1136 if (!bh) 1137 return bh; 1138 if (bh_uptodate_or_lock(bh)) 1139 return bh; 1140 get_bh(bh); 1141 bh->b_end_io = end_buffer_read_sync; 1142 submit_bh(READ | REQ_META | REQ_PRIO, bh); 1143 wait_on_buffer(bh); 1144 if (buffer_uptodate(bh)) 1145 return bh; 1146 put_bh(bh); 1147 *err = -EIO; 1148 return NULL; 1149} 1150 1151static int walk_page_buffers( handle_t *handle, 1152 struct buffer_head *head, 1153 unsigned from, 1154 unsigned to, 1155 int *partial, 1156 int (*fn)( handle_t *handle, 1157 struct buffer_head *bh)) 1158{ 1159 struct buffer_head *bh; 1160 unsigned block_start, block_end; 1161 unsigned blocksize = head->b_size; 1162 int err, ret = 0; 1163 struct buffer_head *next; 1164 1165 for ( bh = head, block_start = 0; 1166 ret == 0 && (bh != head || !block_start); 1167 block_start = block_end, bh = next) 1168 { 1169 next = bh->b_this_page; 1170 block_end = block_start + blocksize; 1171 if (block_end <= from || block_start >= to) { 1172 if (partial && !buffer_uptodate(bh)) 1173 *partial = 1; 1174 continue; 1175 } 1176 err = (*fn)(handle, bh); 1177 if (!ret) 1178 ret = err; 1179 } 1180 return ret; 1181} 1182 1183/* 1184 * To preserve ordering, it is essential that the hole instantiation and 1185 * the data write be encapsulated in a single transaction. We cannot 1186 * close off a transaction and start a new one between the ext3_get_block() 1187 * and the commit_write(). So doing the journal_start at the start of 1188 * prepare_write() is the right place. 1189 * 1190 * Also, this function can nest inside ext3_writepage() -> 1191 * block_write_full_page(). In that case, we *know* that ext3_writepage() 1192 * has generated enough buffer credits to do the whole page. So we won't 1193 * block on the journal in that case, which is good, because the caller may 1194 * be PF_MEMALLOC. 1195 * 1196 * By accident, ext3 can be reentered when a transaction is open via 1197 * quota file writes. If we were to commit the transaction while thus 1198 * reentered, there can be a deadlock - we would be holding a quota 1199 * lock, and the commit would never complete if another thread had a 1200 * transaction open and was blocking on the quota lock - a ranking 1201 * violation. 1202 * 1203 * So what we do is to rely on the fact that journal_stop/journal_start 1204 * will _not_ run commit under these circumstances because handle->h_ref 1205 * is elevated. We'll still have enough credits for the tiny quotafile 1206 * write. 1207 */ 1208static int do_journal_get_write_access(handle_t *handle, 1209 struct buffer_head *bh) 1210{ 1211 int dirty = buffer_dirty(bh); 1212 int ret; 1213 1214 if (!buffer_mapped(bh) || buffer_freed(bh)) 1215 return 0; 1216 /* 1217 * __block_prepare_write() could have dirtied some buffers. Clean 1218 * the dirty bit as jbd2_journal_get_write_access() could complain 1219 * otherwise about fs integrity issues. Setting of the dirty bit 1220 * by __block_prepare_write() isn't a real problem here as we clear 1221 * the bit before releasing a page lock and thus writeback cannot 1222 * ever write the buffer. 1223 */ 1224 if (dirty) 1225 clear_buffer_dirty(bh); 1226 ret = ext3_journal_get_write_access(handle, bh); 1227 if (!ret && dirty) 1228 ret = ext3_journal_dirty_metadata(handle, bh); 1229 return ret; 1230} 1231 1232/* 1233 * Truncate blocks that were not used by write. We have to truncate the 1234 * pagecache as well so that corresponding buffers get properly unmapped. 1235 */ 1236static void ext3_truncate_failed_write(struct inode *inode) 1237{ 1238 truncate_inode_pages(inode->i_mapping, inode->i_size); 1239 ext3_truncate(inode); 1240} 1241 1242/* 1243 * Truncate blocks that were not used by direct IO write. We have to zero out 1244 * the last file block as well because direct IO might have written to it. 1245 */ 1246static void ext3_truncate_failed_direct_write(struct inode *inode) 1247{ 1248 ext3_block_truncate_page(inode, inode->i_size); 1249 ext3_truncate(inode); 1250} 1251 1252static int ext3_write_begin(struct file *file, struct address_space *mapping, 1253 loff_t pos, unsigned len, unsigned flags, 1254 struct page **pagep, void **fsdata) 1255{ 1256 struct inode *inode = mapping->host; 1257 int ret; 1258 handle_t *handle; 1259 int retries = 0; 1260 struct page *page; 1261 pgoff_t index; 1262 unsigned from, to; 1263 /* Reserve one block more for addition to orphan list in case 1264 * we allocate blocks but write fails for some reason */ 1265 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1; 1266 1267 trace_ext3_write_begin(inode, pos, len, flags); 1268 1269 index = pos >> PAGE_CACHE_SHIFT; 1270 from = pos & (PAGE_CACHE_SIZE - 1); 1271 to = from + len; 1272 1273retry: 1274 page = grab_cache_page_write_begin(mapping, index, flags); 1275 if (!page) 1276 return -ENOMEM; 1277 *pagep = page; 1278 1279 handle = ext3_journal_start(inode, needed_blocks); 1280 if (IS_ERR(handle)) { 1281 unlock_page(page); 1282 page_cache_release(page); 1283 ret = PTR_ERR(handle); 1284 goto out; 1285 } 1286 ret = __block_write_begin(page, pos, len, ext3_get_block); 1287 if (ret) 1288 goto write_begin_failed; 1289 1290 if (ext3_should_journal_data(inode)) { 1291 ret = walk_page_buffers(handle, page_buffers(page), 1292 from, to, NULL, do_journal_get_write_access); 1293 } 1294write_begin_failed: 1295 if (ret) { 1296 /* 1297 * block_write_begin may have instantiated a few blocks 1298 * outside i_size. Trim these off again. Don't need 1299 * i_size_read because we hold i_mutex. 1300 * 1301 * Add inode to orphan list in case we crash before truncate 1302 * finishes. Do this only if ext3_can_truncate() agrees so 1303 * that orphan processing code is happy. 1304 */ 1305 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1306 ext3_orphan_add(handle, inode); 1307 ext3_journal_stop(handle); 1308 unlock_page(page); 1309 page_cache_release(page); 1310 if (pos + len > inode->i_size) 1311 ext3_truncate_failed_write(inode); 1312 } 1313 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) 1314 goto retry; 1315out: 1316 return ret; 1317} 1318 1319 1320int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 1321{ 1322 int err = journal_dirty_data(handle, bh); 1323 if (err) 1324 ext3_journal_abort_handle(__func__, __func__, 1325 bh, handle, err); 1326 return err; 1327} 1328 1329/* For ordered writepage and write_end functions */ 1330static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) 1331{ 1332 /* 1333 * Write could have mapped the buffer but it didn't copy the data in 1334 * yet. So avoid filing such buffer into a transaction. 1335 */ 1336 if (buffer_mapped(bh) && buffer_uptodate(bh)) 1337 return ext3_journal_dirty_data(handle, bh); 1338 return 0; 1339} 1340 1341/* For write_end() in data=journal mode */ 1342static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1343{ 1344 if (!buffer_mapped(bh) || buffer_freed(bh)) 1345 return 0; 1346 set_buffer_uptodate(bh); 1347 return ext3_journal_dirty_metadata(handle, bh); 1348} 1349 1350/* 1351 * This is nasty and subtle: ext3_write_begin() could have allocated blocks 1352 * for the whole page but later we failed to copy the data in. Update inode 1353 * size according to what we managed to copy. The rest is going to be 1354 * truncated in write_end function. 1355 */ 1356static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied) 1357{ 1358 /* What matters to us is i_disksize. We don't write i_size anywhere */ 1359 if (pos + copied > inode->i_size) 1360 i_size_write(inode, pos + copied); 1361 if (pos + copied > EXT3_I(inode)->i_disksize) { 1362 EXT3_I(inode)->i_disksize = pos + copied; 1363 mark_inode_dirty(inode); 1364 } 1365} 1366 1367/* 1368 * We need to pick up the new inode size which generic_commit_write gave us 1369 * `file' can be NULL - eg, when called from page_symlink(). 1370 * 1371 * ext3 never places buffers on inode->i_mapping->private_list. metadata 1372 * buffers are managed internally. 1373 */ 1374static int ext3_ordered_write_end(struct file *file, 1375 struct address_space *mapping, 1376 loff_t pos, unsigned len, unsigned copied, 1377 struct page *page, void *fsdata) 1378{ 1379 handle_t *handle = ext3_journal_current_handle(); 1380 struct inode *inode = file->f_mapping->host; 1381 unsigned from, to; 1382 int ret = 0, ret2; 1383 1384 trace_ext3_ordered_write_end(inode, pos, len, copied); 1385 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1386 1387 from = pos & (PAGE_CACHE_SIZE - 1); 1388 to = from + copied; 1389 ret = walk_page_buffers(handle, page_buffers(page), 1390 from, to, NULL, journal_dirty_data_fn); 1391 1392 if (ret == 0) 1393 update_file_sizes(inode, pos, copied); 1394 /* 1395 * There may be allocated blocks outside of i_size because 1396 * we failed to copy some data. Prepare for truncate. 1397 */ 1398 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1399 ext3_orphan_add(handle, inode); 1400 ret2 = ext3_journal_stop(handle); 1401 if (!ret) 1402 ret = ret2; 1403 unlock_page(page); 1404 page_cache_release(page); 1405 1406 if (pos + len > inode->i_size) 1407 ext3_truncate_failed_write(inode); 1408 return ret ? ret : copied; 1409} 1410 1411static int ext3_writeback_write_end(struct file *file, 1412 struct address_space *mapping, 1413 loff_t pos, unsigned len, unsigned copied, 1414 struct page *page, void *fsdata) 1415{ 1416 handle_t *handle = ext3_journal_current_handle(); 1417 struct inode *inode = file->f_mapping->host; 1418 int ret; 1419 1420 trace_ext3_writeback_write_end(inode, pos, len, copied); 1421 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1422 update_file_sizes(inode, pos, copied); 1423 /* 1424 * There may be allocated blocks outside of i_size because 1425 * we failed to copy some data. Prepare for truncate. 1426 */ 1427 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1428 ext3_orphan_add(handle, inode); 1429 ret = ext3_journal_stop(handle); 1430 unlock_page(page); 1431 page_cache_release(page); 1432 1433 if (pos + len > inode->i_size) 1434 ext3_truncate_failed_write(inode); 1435 return ret ? ret : copied; 1436} 1437 1438static int ext3_journalled_write_end(struct file *file, 1439 struct address_space *mapping, 1440 loff_t pos, unsigned len, unsigned copied, 1441 struct page *page, void *fsdata) 1442{ 1443 handle_t *handle = ext3_journal_current_handle(); 1444 struct inode *inode = mapping->host; 1445 struct ext3_inode_info *ei = EXT3_I(inode); 1446 int ret = 0, ret2; 1447 int partial = 0; 1448 unsigned from, to; 1449 1450 trace_ext3_journalled_write_end(inode, pos, len, copied); 1451 from = pos & (PAGE_CACHE_SIZE - 1); 1452 to = from + len; 1453 1454 if (copied < len) { 1455 if (!PageUptodate(page)) 1456 copied = 0; 1457 page_zero_new_buffers(page, from + copied, to); 1458 to = from + copied; 1459 } 1460 1461 ret = walk_page_buffers(handle, page_buffers(page), from, 1462 to, &partial, write_end_fn); 1463 if (!partial) 1464 SetPageUptodate(page); 1465 1466 if (pos + copied > inode->i_size) 1467 i_size_write(inode, pos + copied); 1468 /* 1469 * There may be allocated blocks outside of i_size because 1470 * we failed to copy some data. Prepare for truncate. 1471 */ 1472 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1473 ext3_orphan_add(handle, inode); 1474 ext3_set_inode_state(inode, EXT3_STATE_JDATA); 1475 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 1476 if (inode->i_size > ei->i_disksize) { 1477 ei->i_disksize = inode->i_size; 1478 ret2 = ext3_mark_inode_dirty(handle, inode); 1479 if (!ret) 1480 ret = ret2; 1481 } 1482 1483 ret2 = ext3_journal_stop(handle); 1484 if (!ret) 1485 ret = ret2; 1486 unlock_page(page); 1487 page_cache_release(page); 1488 1489 if (pos + len > inode->i_size) 1490 ext3_truncate_failed_write(inode); 1491 return ret ? ret : copied; 1492} 1493 1494/* 1495 * bmap() is special. It gets used by applications such as lilo and by 1496 * the swapper to find the on-disk block of a specific piece of data. 1497 * 1498 * Naturally, this is dangerous if the block concerned is still in the 1499 * journal. If somebody makes a swapfile on an ext3 data-journaling 1500 * filesystem and enables swap, then they may get a nasty shock when the 1501 * data getting swapped to that swapfile suddenly gets overwritten by 1502 * the original zero's written out previously to the journal and 1503 * awaiting writeback in the kernel's buffer cache. 1504 * 1505 * So, if we see any bmap calls here on a modified, data-journaled file, 1506 * take extra steps to flush any blocks which might be in the cache. 1507 */ 1508static sector_t ext3_bmap(struct address_space *mapping, sector_t block) 1509{ 1510 struct inode *inode = mapping->host; 1511 journal_t *journal; 1512 int err; 1513 1514 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) { 1515 /* 1516 * This is a REALLY heavyweight approach, but the use of 1517 * bmap on dirty files is expected to be extremely rare: 1518 * only if we run lilo or swapon on a freshly made file 1519 * do we expect this to happen. 1520 * 1521 * (bmap requires CAP_SYS_RAWIO so this does not 1522 * represent an unprivileged user DOS attack --- we'd be 1523 * in trouble if mortal users could trigger this path at 1524 * will.) 1525 * 1526 * NB. EXT3_STATE_JDATA is not set on files other than 1527 * regular files. If somebody wants to bmap a directory 1528 * or symlink and gets confused because the buffer 1529 * hasn't yet been flushed to disk, they deserve 1530 * everything they get. 1531 */ 1532 1533 ext3_clear_inode_state(inode, EXT3_STATE_JDATA); 1534 journal = EXT3_JOURNAL(inode); 1535 journal_lock_updates(journal); 1536 err = journal_flush(journal); 1537 journal_unlock_updates(journal); 1538 1539 if (err) 1540 return 0; 1541 } 1542 1543 return generic_block_bmap(mapping,block,ext3_get_block); 1544} 1545 1546static int bget_one(handle_t *handle, struct buffer_head *bh) 1547{ 1548 get_bh(bh); 1549 return 0; 1550} 1551 1552static int bput_one(handle_t *handle, struct buffer_head *bh) 1553{ 1554 put_bh(bh); 1555 return 0; 1556} 1557 1558static int buffer_unmapped(handle_t *handle, struct buffer_head *bh) 1559{ 1560 return !buffer_mapped(bh); 1561} 1562 1563/* 1564 * Note that we always start a transaction even if we're not journalling 1565 * data. This is to preserve ordering: any hole instantiation within 1566 * __block_write_full_page -> ext3_get_block() should be journalled 1567 * along with the data so we don't crash and then get metadata which 1568 * refers to old data. 1569 * 1570 * In all journalling modes block_write_full_page() will start the I/O. 1571 * 1572 * Problem: 1573 * 1574 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1575 * ext3_writepage() 1576 * 1577 * Similar for: 1578 * 1579 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ... 1580 * 1581 * Same applies to ext3_get_block(). We will deadlock on various things like 1582 * lock_journal and i_truncate_mutex. 1583 * 1584 * Setting PF_MEMALLOC here doesn't work - too many internal memory 1585 * allocations fail. 1586 * 1587 * 16May01: If we're reentered then journal_current_handle() will be 1588 * non-zero. We simply *return*. 1589 * 1590 * 1 July 2001: @@@ FIXME: 1591 * In journalled data mode, a data buffer may be metadata against the 1592 * current transaction. But the same file is part of a shared mapping 1593 * and someone does a writepage() on it. 1594 * 1595 * We will move the buffer onto the async_data list, but *after* it has 1596 * been dirtied. So there's a small window where we have dirty data on 1597 * BJ_Metadata. 1598 * 1599 * Note that this only applies to the last partial page in the file. The 1600 * bit which block_write_full_page() uses prepare/commit for. (That's 1601 * broken code anyway: it's wrong for msync()). 1602 * 1603 * It's a rare case: affects the final partial page, for journalled data 1604 * where the file is subject to bith write() and writepage() in the same 1605 * transction. To fix it we'll need a custom block_write_full_page(). 1606 * We'll probably need that anyway for journalling writepage() output. 1607 * 1608 * We don't honour synchronous mounts for writepage(). That would be 1609 * disastrous. Any write() or metadata operation will sync the fs for 1610 * us. 1611 * 1612 * AKPM2: if all the page's buffers are mapped to disk and !data=journal, 1613 * we don't need to open a transaction here. 1614 */ 1615static int ext3_ordered_writepage(struct page *page, 1616 struct writeback_control *wbc) 1617{ 1618 struct inode *inode = page->mapping->host; 1619 struct buffer_head *page_bufs; 1620 handle_t *handle = NULL; 1621 int ret = 0; 1622 int err; 1623 1624 J_ASSERT(PageLocked(page)); 1625 /* 1626 * We don't want to warn for emergency remount. The condition is 1627 * ordered to avoid dereferencing inode->i_sb in non-error case to 1628 * avoid slow-downs. 1629 */ 1630 WARN_ON_ONCE(IS_RDONLY(inode) && 1631 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1632 1633 /* 1634 * We give up here if we're reentered, because it might be for a 1635 * different filesystem. 1636 */ 1637 if (ext3_journal_current_handle()) 1638 goto out_fail; 1639 1640 trace_ext3_ordered_writepage(page); 1641 if (!page_has_buffers(page)) { 1642 create_empty_buffers(page, inode->i_sb->s_blocksize, 1643 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1644 page_bufs = page_buffers(page); 1645 } else { 1646 page_bufs = page_buffers(page); 1647 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE, 1648 NULL, buffer_unmapped)) { 1649 /* Provide NULL get_block() to catch bugs if buffers 1650 * weren't really mapped */ 1651 return block_write_full_page(page, NULL, wbc); 1652 } 1653 } 1654 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1655 1656 if (IS_ERR(handle)) { 1657 ret = PTR_ERR(handle); 1658 goto out_fail; 1659 } 1660 1661 walk_page_buffers(handle, page_bufs, 0, 1662 PAGE_CACHE_SIZE, NULL, bget_one); 1663 1664 ret = block_write_full_page(page, ext3_get_block, wbc); 1665 1666 /* 1667 * The page can become unlocked at any point now, and 1668 * truncate can then come in and change things. So we 1669 * can't touch *page from now on. But *page_bufs is 1670 * safe due to elevated refcount. 1671 */ 1672 1673 /* 1674 * And attach them to the current transaction. But only if 1675 * block_write_full_page() succeeded. Otherwise they are unmapped, 1676 * and generally junk. 1677 */ 1678 if (ret == 0) { 1679 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, 1680 NULL, journal_dirty_data_fn); 1681 if (!ret) 1682 ret = err; 1683 } 1684 walk_page_buffers(handle, page_bufs, 0, 1685 PAGE_CACHE_SIZE, NULL, bput_one); 1686 err = ext3_journal_stop(handle); 1687 if (!ret) 1688 ret = err; 1689 return ret; 1690 1691out_fail: 1692 redirty_page_for_writepage(wbc, page); 1693 unlock_page(page); 1694 return ret; 1695} 1696 1697static int ext3_writeback_writepage(struct page *page, 1698 struct writeback_control *wbc) 1699{ 1700 struct inode *inode = page->mapping->host; 1701 handle_t *handle = NULL; 1702 int ret = 0; 1703 int err; 1704 1705 J_ASSERT(PageLocked(page)); 1706 /* 1707 * We don't want to warn for emergency remount. The condition is 1708 * ordered to avoid dereferencing inode->i_sb in non-error case to 1709 * avoid slow-downs. 1710 */ 1711 WARN_ON_ONCE(IS_RDONLY(inode) && 1712 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1713 1714 if (ext3_journal_current_handle()) 1715 goto out_fail; 1716 1717 trace_ext3_writeback_writepage(page); 1718 if (page_has_buffers(page)) { 1719 if (!walk_page_buffers(NULL, page_buffers(page), 0, 1720 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) { 1721 /* Provide NULL get_block() to catch bugs if buffers 1722 * weren't really mapped */ 1723 return block_write_full_page(page, NULL, wbc); 1724 } 1725 } 1726 1727 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1728 if (IS_ERR(handle)) { 1729 ret = PTR_ERR(handle); 1730 goto out_fail; 1731 } 1732 1733 ret = block_write_full_page(page, ext3_get_block, wbc); 1734 1735 err = ext3_journal_stop(handle); 1736 if (!ret) 1737 ret = err; 1738 return ret; 1739 1740out_fail: 1741 redirty_page_for_writepage(wbc, page); 1742 unlock_page(page); 1743 return ret; 1744} 1745 1746static int ext3_journalled_writepage(struct page *page, 1747 struct writeback_control *wbc) 1748{ 1749 struct inode *inode = page->mapping->host; 1750 handle_t *handle = NULL; 1751 int ret = 0; 1752 int err; 1753 1754 J_ASSERT(PageLocked(page)); 1755 /* 1756 * We don't want to warn for emergency remount. The condition is 1757 * ordered to avoid dereferencing inode->i_sb in non-error case to 1758 * avoid slow-downs. 1759 */ 1760 WARN_ON_ONCE(IS_RDONLY(inode) && 1761 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1762 1763 if (ext3_journal_current_handle()) 1764 goto no_write; 1765 1766 trace_ext3_journalled_writepage(page); 1767 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1768 if (IS_ERR(handle)) { 1769 ret = PTR_ERR(handle); 1770 goto no_write; 1771 } 1772 1773 if (!page_has_buffers(page) || PageChecked(page)) { 1774 /* 1775 * It's mmapped pagecache. Add buffers and journal it. There 1776 * doesn't seem much point in redirtying the page here. 1777 */ 1778 ClearPageChecked(page); 1779 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE, 1780 ext3_get_block); 1781 if (ret != 0) { 1782 ext3_journal_stop(handle); 1783 goto out_unlock; 1784 } 1785 ret = walk_page_buffers(handle, page_buffers(page), 0, 1786 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 1787 1788 err = walk_page_buffers(handle, page_buffers(page), 0, 1789 PAGE_CACHE_SIZE, NULL, write_end_fn); 1790 if (ret == 0) 1791 ret = err; 1792 ext3_set_inode_state(inode, EXT3_STATE_JDATA); 1793 atomic_set(&EXT3_I(inode)->i_datasync_tid, 1794 handle->h_transaction->t_tid); 1795 unlock_page(page); 1796 } else { 1797 /* 1798 * It may be a page full of checkpoint-mode buffers. We don't 1799 * really know unless we go poke around in the buffer_heads. 1800 * But block_write_full_page will do the right thing. 1801 */ 1802 ret = block_write_full_page(page, ext3_get_block, wbc); 1803 } 1804 err = ext3_journal_stop(handle); 1805 if (!ret) 1806 ret = err; 1807out: 1808 return ret; 1809 1810no_write: 1811 redirty_page_for_writepage(wbc, page); 1812out_unlock: 1813 unlock_page(page); 1814 goto out; 1815} 1816 1817static int ext3_readpage(struct file *file, struct page *page) 1818{ 1819 trace_ext3_readpage(page); 1820 return mpage_readpage(page, ext3_get_block); 1821} 1822 1823static int 1824ext3_readpages(struct file *file, struct address_space *mapping, 1825 struct list_head *pages, unsigned nr_pages) 1826{ 1827 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block); 1828} 1829 1830static void ext3_invalidatepage(struct page *page, unsigned long offset) 1831{ 1832 journal_t *journal = EXT3_JOURNAL(page->mapping->host); 1833 1834 trace_ext3_invalidatepage(page, offset); 1835 1836 /* 1837 * If it's a full truncate we just forget about the pending dirtying 1838 */ 1839 if (offset == 0) 1840 ClearPageChecked(page); 1841 1842 journal_invalidatepage(journal, page, offset); 1843} 1844 1845static int ext3_releasepage(struct page *page, gfp_t wait) 1846{ 1847 journal_t *journal = EXT3_JOURNAL(page->mapping->host); 1848 1849 trace_ext3_releasepage(page); 1850 WARN_ON(PageChecked(page)); 1851 if (!page_has_buffers(page)) 1852 return 0; 1853 return journal_try_to_free_buffers(journal, page, wait); 1854} 1855 1856/* 1857 * If the O_DIRECT write will extend the file then add this inode to the 1858 * orphan list. So recovery will truncate it back to the original size 1859 * if the machine crashes during the write. 1860 * 1861 * If the O_DIRECT write is intantiating holes inside i_size and the machine 1862 * crashes then stale disk data _may_ be exposed inside the file. But current 1863 * VFS code falls back into buffered path in that case so we are safe. 1864 */ 1865static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb, 1866 const struct iovec *iov, loff_t offset, 1867 unsigned long nr_segs) 1868{ 1869 struct file *file = iocb->ki_filp; 1870 struct inode *inode = file->f_mapping->host; 1871 struct ext3_inode_info *ei = EXT3_I(inode); 1872 handle_t *handle; 1873 ssize_t ret; 1874 int orphan = 0; 1875 size_t count = iov_length(iov, nr_segs); 1876 int retries = 0; 1877 1878 trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 1879 1880 if (rw == WRITE) { 1881 loff_t final_size = offset + count; 1882 1883 if (final_size > inode->i_size) { 1884 /* Credits for sb + inode write */ 1885 handle = ext3_journal_start(inode, 2); 1886 if (IS_ERR(handle)) { 1887 ret = PTR_ERR(handle); 1888 goto out; 1889 } 1890 ret = ext3_orphan_add(handle, inode); 1891 if (ret) { 1892 ext3_journal_stop(handle); 1893 goto out; 1894 } 1895 orphan = 1; 1896 ei->i_disksize = inode->i_size; 1897 ext3_journal_stop(handle); 1898 } 1899 } 1900 1901retry: 1902 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, 1903 ext3_get_block); 1904 /* 1905 * In case of error extending write may have instantiated a few 1906 * blocks outside i_size. Trim these off again. 1907 */ 1908 if (unlikely((rw & WRITE) && ret < 0)) { 1909 loff_t isize = i_size_read(inode); 1910 loff_t end = offset + iov_length(iov, nr_segs); 1911 1912 if (end > isize) 1913 ext3_truncate_failed_direct_write(inode); 1914 } 1915 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) 1916 goto retry; 1917 1918 if (orphan) { 1919 int err; 1920 1921 /* Credits for sb + inode write */ 1922 handle = ext3_journal_start(inode, 2); 1923 if (IS_ERR(handle)) { 1924 /* This is really bad luck. We've written the data 1925 * but cannot extend i_size. Truncate allocated blocks 1926 * and pretend the write failed... */ 1927 ext3_truncate_failed_direct_write(inode); 1928 ret = PTR_ERR(handle); 1929 goto out; 1930 } 1931 if (inode->i_nlink) 1932 ext3_orphan_del(handle, inode); 1933 if (ret > 0) { 1934 loff_t end = offset + ret; 1935 if (end > inode->i_size) { 1936 ei->i_disksize = end; 1937 i_size_write(inode, end); 1938 /* 1939 * We're going to return a positive `ret' 1940 * here due to non-zero-length I/O, so there's 1941 * no way of reporting error returns from 1942 * ext3_mark_inode_dirty() to userspace. So 1943 * ignore it. 1944 */ 1945 ext3_mark_inode_dirty(handle, inode); 1946 } 1947 } 1948 err = ext3_journal_stop(handle); 1949 if (ret == 0) 1950 ret = err; 1951 } 1952out: 1953 trace_ext3_direct_IO_exit(inode, offset, 1954 iov_length(iov, nr_segs), rw, ret); 1955 return ret; 1956} 1957 1958/* 1959 * Pages can be marked dirty completely asynchronously from ext3's journalling 1960 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 1961 * much here because ->set_page_dirty is called under VFS locks. The page is 1962 * not necessarily locked. 1963 * 1964 * We cannot just dirty the page and leave attached buffers clean, because the 1965 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 1966 * or jbddirty because all the journalling code will explode. 1967 * 1968 * So what we do is to mark the page "pending dirty" and next time writepage 1969 * is called, propagate that into the buffers appropriately. 1970 */ 1971static int ext3_journalled_set_page_dirty(struct page *page) 1972{ 1973 SetPageChecked(page); 1974 return __set_page_dirty_nobuffers(page); 1975} 1976 1977static const struct address_space_operations ext3_ordered_aops = { 1978 .readpage = ext3_readpage, 1979 .readpages = ext3_readpages, 1980 .writepage = ext3_ordered_writepage, 1981 .write_begin = ext3_write_begin, 1982 .write_end = ext3_ordered_write_end, 1983 .bmap = ext3_bmap, 1984 .invalidatepage = ext3_invalidatepage, 1985 .releasepage = ext3_releasepage, 1986 .direct_IO = ext3_direct_IO, 1987 .migratepage = buffer_migrate_page, 1988 .is_partially_uptodate = block_is_partially_uptodate, 1989 .error_remove_page = generic_error_remove_page, 1990}; 1991 1992static const struct address_space_operations ext3_writeback_aops = { 1993 .readpage = ext3_readpage, 1994 .readpages = ext3_readpages, 1995 .writepage = ext3_writeback_writepage, 1996 .write_begin = ext3_write_begin, 1997 .write_end = ext3_writeback_write_end, 1998 .bmap = ext3_bmap, 1999 .invalidatepage = ext3_invalidatepage, 2000 .releasepage = ext3_releasepage, 2001 .direct_IO = ext3_direct_IO, 2002 .migratepage = buffer_migrate_page, 2003 .is_partially_uptodate = block_is_partially_uptodate, 2004 .error_remove_page = generic_error_remove_page, 2005}; 2006 2007static const struct address_space_operations ext3_journalled_aops = { 2008 .readpage = ext3_readpage, 2009 .readpages = ext3_readpages, 2010 .writepage = ext3_journalled_writepage, 2011 .write_begin = ext3_write_begin, 2012 .write_end = ext3_journalled_write_end, 2013 .set_page_dirty = ext3_journalled_set_page_dirty, 2014 .bmap = ext3_bmap, 2015 .invalidatepage = ext3_invalidatepage, 2016 .releasepage = ext3_releasepage, 2017 .is_partially_uptodate = block_is_partially_uptodate, 2018 .error_remove_page = generic_error_remove_page, 2019}; 2020 2021void ext3_set_aops(struct inode *inode) 2022{ 2023 if (ext3_should_order_data(inode)) 2024 inode->i_mapping->a_ops = &ext3_ordered_aops; 2025 else if (ext3_should_writeback_data(inode)) 2026 inode->i_mapping->a_ops = &ext3_writeback_aops; 2027 else 2028 inode->i_mapping->a_ops = &ext3_journalled_aops; 2029} 2030 2031/* 2032 * ext3_block_truncate_page() zeroes out a mapping from file offset `from' 2033 * up to the end of the block which corresponds to `from'. 2034 * This required during truncate. We need to physically zero the tail end 2035 * of that block so it doesn't yield old data if the file is later grown. 2036 */ 2037static int ext3_block_truncate_page(struct inode *inode, loff_t from) 2038{ 2039 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT; 2040 unsigned offset = from & (PAGE_CACHE_SIZE - 1); 2041 unsigned blocksize, iblock, length, pos; 2042 struct page *page; 2043 handle_t *handle = NULL; 2044 struct buffer_head *bh; 2045 int err = 0; 2046 2047 /* Truncated on block boundary - nothing to do */ 2048 blocksize = inode->i_sb->s_blocksize; 2049 if ((from & (blocksize - 1)) == 0) 2050 return 0; 2051 2052 page = grab_cache_page(inode->i_mapping, index); 2053 if (!page) 2054 return -ENOMEM; 2055 length = blocksize - (offset & (blocksize - 1)); 2056 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2057 2058 if (!page_has_buffers(page)) 2059 create_empty_buffers(page, blocksize, 0); 2060 2061 /* Find the buffer that contains "offset" */ 2062 bh = page_buffers(page); 2063 pos = blocksize; 2064 while (offset >= pos) { 2065 bh = bh->b_this_page; 2066 iblock++; 2067 pos += blocksize; 2068 } 2069 2070 err = 0; 2071 if (buffer_freed(bh)) { 2072 BUFFER_TRACE(bh, "freed: skip"); 2073 goto unlock; 2074 } 2075 2076 if (!buffer_mapped(bh)) { 2077 BUFFER_TRACE(bh, "unmapped"); 2078 ext3_get_block(inode, iblock, bh, 0); 2079 /* unmapped? It's a hole - nothing to do */ 2080 if (!buffer_mapped(bh)) { 2081 BUFFER_TRACE(bh, "still unmapped"); 2082 goto unlock; 2083 } 2084 } 2085 2086 /* Ok, it's mapped. Make sure it's up-to-date */ 2087 if (PageUptodate(page)) 2088 set_buffer_uptodate(bh); 2089 2090 if (!bh_uptodate_or_lock(bh)) { 2091 err = bh_submit_read(bh); 2092 /* Uhhuh. Read error. Complain and punt. */ 2093 if (err) 2094 goto unlock; 2095 } 2096 2097 /* data=writeback mode doesn't need transaction to zero-out data */ 2098 if (!ext3_should_writeback_data(inode)) { 2099 /* We journal at most one block */ 2100 handle = ext3_journal_start(inode, 1); 2101 if (IS_ERR(handle)) { 2102 clear_highpage(page); 2103 flush_dcache_page(page); 2104 err = PTR_ERR(handle); 2105 goto unlock; 2106 } 2107 } 2108 2109 if (ext3_should_journal_data(inode)) { 2110 BUFFER_TRACE(bh, "get write access"); 2111 err = ext3_journal_get_write_access(handle, bh); 2112 if (err) 2113 goto stop; 2114 } 2115 2116 zero_user(page, offset, length); 2117 BUFFER_TRACE(bh, "zeroed end of block"); 2118 2119 err = 0; 2120 if (ext3_should_journal_data(inode)) { 2121 err = ext3_journal_dirty_metadata(handle, bh); 2122 } else { 2123 if (ext3_should_order_data(inode)) 2124 err = ext3_journal_dirty_data(handle, bh); 2125 mark_buffer_dirty(bh); 2126 } 2127stop: 2128 if (handle) 2129 ext3_journal_stop(handle); 2130 2131unlock: 2132 unlock_page(page); 2133 page_cache_release(page); 2134 return err; 2135} 2136 2137/* 2138 * Probably it should be a library function... search for first non-zero word 2139 * or memcmp with zero_page, whatever is better for particular architecture. 2140 * Linus? 2141 */ 2142static inline int all_zeroes(__le32 *p, __le32 *q) 2143{ 2144 while (p < q) 2145 if (*p++) 2146 return 0; 2147 return 1; 2148} 2149 2150/** 2151 * ext3_find_shared - find the indirect blocks for partial truncation. 2152 * @inode: inode in question 2153 * @depth: depth of the affected branch 2154 * @offsets: offsets of pointers in that branch (see ext3_block_to_path) 2155 * @chain: place to store the pointers to partial indirect blocks 2156 * @top: place to the (detached) top of branch 2157 * 2158 * This is a helper function used by ext3_truncate(). 2159 * 2160 * When we do truncate() we may have to clean the ends of several 2161 * indirect blocks but leave the blocks themselves alive. Block is 2162 * partially truncated if some data below the new i_size is referred 2163 * from it (and it is on the path to the first completely truncated 2164 * data block, indeed). We have to free the top of that path along 2165 * with everything to the right of the path. Since no allocation 2166 * past the truncation point is possible until ext3_truncate() 2167 * finishes, we may safely do the latter, but top of branch may 2168 * require special attention - pageout below the truncation point 2169 * might try to populate it. 2170 * 2171 * We atomically detach the top of branch from the tree, store the 2172 * block number of its root in *@top, pointers to buffer_heads of 2173 * partially truncated blocks - in @chain[].bh and pointers to 2174 * their last elements that should not be removed - in 2175 * @chain[].p. Return value is the pointer to last filled element 2176 * of @chain. 2177 * 2178 * The work left to caller to do the actual freeing of subtrees: 2179 * a) free the subtree starting from *@top 2180 * b) free the subtrees whose roots are stored in 2181 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 2182 * c) free the subtrees growing from the inode past the @chain[0]. 2183 * (no partially truncated stuff there). */ 2184 2185static Indirect *ext3_find_shared(struct inode *inode, int depth, 2186 int offsets[4], Indirect chain[4], __le32 *top) 2187{ 2188 Indirect *partial, *p; 2189 int k, err; 2190 2191 *top = 0; 2192 /* Make k index the deepest non-null offset + 1 */ 2193 for (k = depth; k > 1 && !offsets[k-1]; k--) 2194 ; 2195 partial = ext3_get_branch(inode, k, offsets, chain, &err); 2196 /* Writer: pointers */ 2197 if (!partial) 2198 partial = chain + k-1; 2199 /* 2200 * If the branch acquired continuation since we've looked at it - 2201 * fine, it should all survive and (new) top doesn't belong to us. 2202 */ 2203 if (!partial->key && *partial->p) 2204 /* Writer: end */ 2205 goto no_top; 2206 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 2207 ; 2208 /* 2209 * OK, we've found the last block that must survive. The rest of our 2210 * branch should be detached before unlocking. However, if that rest 2211 * of branch is all ours and does not grow immediately from the inode 2212 * it's easier to cheat and just decrement partial->p. 2213 */ 2214 if (p == chain + k - 1 && p > chain) { 2215 p->p--; 2216 } else { 2217 *top = *p->p; 2218 /* Nope, don't do this in ext3. Must leave the tree intact */ 2219#if 0 2220 *p->p = 0; 2221#endif 2222 } 2223 /* Writer: end */ 2224 2225 while(partial > p) { 2226 brelse(partial->bh); 2227 partial--; 2228 } 2229no_top: 2230 return partial; 2231} 2232 2233/* 2234 * Zero a number of block pointers in either an inode or an indirect block. 2235 * If we restart the transaction we must again get write access to the 2236 * indirect block for further modification. 2237 * 2238 * We release `count' blocks on disk, but (last - first) may be greater 2239 * than `count' because there can be holes in there. 2240 */ 2241static void ext3_clear_blocks(handle_t *handle, struct inode *inode, 2242 struct buffer_head *bh, ext3_fsblk_t block_to_free, 2243 unsigned long count, __le32 *first, __le32 *last) 2244{ 2245 __le32 *p; 2246 if (try_to_extend_transaction(handle, inode)) { 2247 if (bh) { 2248 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 2249 if (ext3_journal_dirty_metadata(handle, bh)) 2250 return; 2251 } 2252 ext3_mark_inode_dirty(handle, inode); 2253 truncate_restart_transaction(handle, inode); 2254 if (bh) { 2255 BUFFER_TRACE(bh, "retaking write access"); 2256 if (ext3_journal_get_write_access(handle, bh)) 2257 return; 2258 } 2259 } 2260 2261 /* 2262 * Any buffers which are on the journal will be in memory. We find 2263 * them on the hash table so journal_revoke() will run journal_forget() 2264 * on them. We've already detached each block from the file, so 2265 * bforget() in journal_forget() should be safe. 2266 * 2267 * AKPM: turn on bforget in journal_forget()!!! 2268 */ 2269 for (p = first; p < last; p++) { 2270 u32 nr = le32_to_cpu(*p); 2271 if (nr) { 2272 struct buffer_head *bh; 2273 2274 *p = 0; 2275 bh = sb_find_get_block(inode->i_sb, nr); 2276 ext3_forget(handle, 0, inode, bh, nr); 2277 } 2278 } 2279 2280 ext3_free_blocks(handle, inode, block_to_free, count); 2281} 2282 2283/** 2284 * ext3_free_data - free a list of data blocks 2285 * @handle: handle for this transaction 2286 * @inode: inode we are dealing with 2287 * @this_bh: indirect buffer_head which contains *@first and *@last 2288 * @first: array of block numbers 2289 * @last: points immediately past the end of array 2290 * 2291 * We are freeing all blocks referred from that array (numbers are stored as 2292 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 2293 * 2294 * We accumulate contiguous runs of blocks to free. Conveniently, if these 2295 * blocks are contiguous then releasing them at one time will only affect one 2296 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 2297 * actually use a lot of journal space. 2298 * 2299 * @this_bh will be %NULL if @first and @last point into the inode's direct 2300 * block pointers. 2301 */ 2302static void ext3_free_data(handle_t *handle, struct inode *inode, 2303 struct buffer_head *this_bh, 2304 __le32 *first, __le32 *last) 2305{ 2306 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */ 2307 unsigned long count = 0; /* Number of blocks in the run */ 2308 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 2309 corresponding to 2310 block_to_free */ 2311 ext3_fsblk_t nr; /* Current block # */ 2312 __le32 *p; /* Pointer into inode/ind 2313 for current block */ 2314 int err; 2315 2316 if (this_bh) { /* For indirect block */ 2317 BUFFER_TRACE(this_bh, "get_write_access"); 2318 err = ext3_journal_get_write_access(handle, this_bh); 2319 /* Important: if we can't update the indirect pointers 2320 * to the blocks, we can't free them. */ 2321 if (err) 2322 return; 2323 } 2324 2325 for (p = first; p < last; p++) { 2326 nr = le32_to_cpu(*p); 2327 if (nr) { 2328 /* accumulate blocks to free if they're contiguous */ 2329 if (count == 0) { 2330 block_to_free = nr; 2331 block_to_free_p = p; 2332 count = 1; 2333 } else if (nr == block_to_free + count) { 2334 count++; 2335 } else { 2336 ext3_clear_blocks(handle, inode, this_bh, 2337 block_to_free, 2338 count, block_to_free_p, p); 2339 block_to_free = nr; 2340 block_to_free_p = p; 2341 count = 1; 2342 } 2343 } 2344 } 2345 2346 if (count > 0) 2347 ext3_clear_blocks(handle, inode, this_bh, block_to_free, 2348 count, block_to_free_p, p); 2349 2350 if (this_bh) { 2351 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata"); 2352 2353 /* 2354 * The buffer head should have an attached journal head at this 2355 * point. However, if the data is corrupted and an indirect 2356 * block pointed to itself, it would have been detached when 2357 * the block was cleared. Check for this instead of OOPSing. 2358 */ 2359 if (bh2jh(this_bh)) 2360 ext3_journal_dirty_metadata(handle, this_bh); 2361 else 2362 ext3_error(inode->i_sb, "ext3_free_data", 2363 "circular indirect block detected, " 2364 "inode=%lu, block=%llu", 2365 inode->i_ino, 2366 (unsigned long long)this_bh->b_blocknr); 2367 } 2368} 2369 2370/** 2371 * ext3_free_branches - free an array of branches 2372 * @handle: JBD handle for this transaction 2373 * @inode: inode we are dealing with 2374 * @parent_bh: the buffer_head which contains *@first and *@last 2375 * @first: array of block numbers 2376 * @last: pointer immediately past the end of array 2377 * @depth: depth of the branches to free 2378 * 2379 * We are freeing all blocks referred from these branches (numbers are 2380 * stored as little-endian 32-bit) and updating @inode->i_blocks 2381 * appropriately. 2382 */ 2383static void ext3_free_branches(handle_t *handle, struct inode *inode, 2384 struct buffer_head *parent_bh, 2385 __le32 *first, __le32 *last, int depth) 2386{ 2387 ext3_fsblk_t nr; 2388 __le32 *p; 2389 2390 if (is_handle_aborted(handle)) 2391 return; 2392 2393 if (depth--) { 2394 struct buffer_head *bh; 2395 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); 2396 p = last; 2397 while (--p >= first) { 2398 nr = le32_to_cpu(*p); 2399 if (!nr) 2400 continue; /* A hole */ 2401 2402 /* Go read the buffer for the next level down */ 2403 bh = sb_bread(inode->i_sb, nr); 2404 2405 /* 2406 * A read failure? Report error and clear slot 2407 * (should be rare). 2408 */ 2409 if (!bh) { 2410 ext3_error(inode->i_sb, "ext3_free_branches", 2411 "Read failure, inode=%lu, block="E3FSBLK, 2412 inode->i_ino, nr); 2413 continue; 2414 } 2415 2416 /* This zaps the entire block. Bottom up. */ 2417 BUFFER_TRACE(bh, "free child branches"); 2418 ext3_free_branches(handle, inode, bh, 2419 (__le32*)bh->b_data, 2420 (__le32*)bh->b_data + addr_per_block, 2421 depth); 2422 2423 /* 2424 * Everything below this this pointer has been 2425 * released. Now let this top-of-subtree go. 2426 * 2427 * We want the freeing of this indirect block to be 2428 * atomic in the journal with the updating of the 2429 * bitmap block which owns it. So make some room in 2430 * the journal. 2431 * 2432 * We zero the parent pointer *after* freeing its 2433 * pointee in the bitmaps, so if extend_transaction() 2434 * for some reason fails to put the bitmap changes and 2435 * the release into the same transaction, recovery 2436 * will merely complain about releasing a free block, 2437 * rather than leaking blocks. 2438 */ 2439 if (is_handle_aborted(handle)) 2440 return; 2441 if (try_to_extend_transaction(handle, inode)) { 2442 ext3_mark_inode_dirty(handle, inode); 2443 truncate_restart_transaction(handle, inode); 2444 } 2445 2446 /* 2447 * We've probably journalled the indirect block several 2448 * times during the truncate. But it's no longer 2449 * needed and we now drop it from the transaction via 2450 * journal_revoke(). 2451 * 2452 * That's easy if it's exclusively part of this 2453 * transaction. But if it's part of the committing 2454 * transaction then journal_forget() will simply 2455 * brelse() it. That means that if the underlying 2456 * block is reallocated in ext3_get_block(), 2457 * unmap_underlying_metadata() will find this block 2458 * and will try to get rid of it. damn, damn. Thus 2459 * we don't allow a block to be reallocated until 2460 * a transaction freeing it has fully committed. 2461 * 2462 * We also have to make sure journal replay after a 2463 * crash does not overwrite non-journaled data blocks 2464 * with old metadata when the block got reallocated for 2465 * data. Thus we have to store a revoke record for a 2466 * block in the same transaction in which we free the 2467 * block. 2468 */ 2469 ext3_forget(handle, 1, inode, bh, bh->b_blocknr); 2470 2471 ext3_free_blocks(handle, inode, nr, 1); 2472 2473 if (parent_bh) { 2474 /* 2475 * The block which we have just freed is 2476 * pointed to by an indirect block: journal it 2477 */ 2478 BUFFER_TRACE(parent_bh, "get_write_access"); 2479 if (!ext3_journal_get_write_access(handle, 2480 parent_bh)){ 2481 *p = 0; 2482 BUFFER_TRACE(parent_bh, 2483 "call ext3_journal_dirty_metadata"); 2484 ext3_journal_dirty_metadata(handle, 2485 parent_bh); 2486 } 2487 } 2488 } 2489 } else { 2490 /* We have reached the bottom of the tree. */ 2491 BUFFER_TRACE(parent_bh, "free data blocks"); 2492 ext3_free_data(handle, inode, parent_bh, first, last); 2493 } 2494} 2495 2496int ext3_can_truncate(struct inode *inode) 2497{ 2498 if (S_ISREG(inode->i_mode)) 2499 return 1; 2500 if (S_ISDIR(inode->i_mode)) 2501 return 1; 2502 if (S_ISLNK(inode->i_mode)) 2503 return !ext3_inode_is_fast_symlink(inode); 2504 return 0; 2505} 2506 2507/* 2508 * ext3_truncate() 2509 * 2510 * We block out ext3_get_block() block instantiations across the entire 2511 * transaction, and VFS/VM ensures that ext3_truncate() cannot run 2512 * simultaneously on behalf of the same inode. 2513 * 2514 * As we work through the truncate and commit bits of it to the journal there 2515 * is one core, guiding principle: the file's tree must always be consistent on 2516 * disk. We must be able to restart the truncate after a crash. 2517 * 2518 * The file's tree may be transiently inconsistent in memory (although it 2519 * probably isn't), but whenever we close off and commit a journal transaction, 2520 * the contents of (the filesystem + the journal) must be consistent and 2521 * restartable. It's pretty simple, really: bottom up, right to left (although 2522 * left-to-right works OK too). 2523 * 2524 * Note that at recovery time, journal replay occurs *before* the restart of 2525 * truncate against the orphan inode list. 2526 * 2527 * The committed inode has the new, desired i_size (which is the same as 2528 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see 2529 * that this inode's truncate did not complete and it will again call 2530 * ext3_truncate() to have another go. So there will be instantiated blocks 2531 * to the right of the truncation point in a crashed ext3 filesystem. But 2532 * that's fine - as long as they are linked from the inode, the post-crash 2533 * ext3_truncate() run will find them and release them. 2534 */ 2535void ext3_truncate(struct inode *inode) 2536{ 2537 handle_t *handle; 2538 struct ext3_inode_info *ei = EXT3_I(inode); 2539 __le32 *i_data = ei->i_data; 2540 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); 2541 int offsets[4]; 2542 Indirect chain[4]; 2543 Indirect *partial; 2544 __le32 nr = 0; 2545 int n; 2546 long last_block; 2547 unsigned blocksize = inode->i_sb->s_blocksize; 2548 2549 trace_ext3_truncate_enter(inode); 2550 2551 if (!ext3_can_truncate(inode)) 2552 goto out_notrans; 2553 2554 if (inode->i_size == 0 && ext3_should_writeback_data(inode)) 2555 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE); 2556 2557 handle = start_transaction(inode); 2558 if (IS_ERR(handle)) 2559 goto out_notrans; 2560 2561 last_block = (inode->i_size + blocksize-1) 2562 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb); 2563 n = ext3_block_to_path(inode, last_block, offsets, NULL); 2564 if (n == 0) 2565 goto out_stop; /* error */ 2566 2567 /* 2568 * OK. This truncate is going to happen. We add the inode to the 2569 * orphan list, so that if this truncate spans multiple transactions, 2570 * and we crash, we will resume the truncate when the filesystem 2571 * recovers. It also marks the inode dirty, to catch the new size. 2572 * 2573 * Implication: the file must always be in a sane, consistent 2574 * truncatable state while each transaction commits. 2575 */ 2576 if (ext3_orphan_add(handle, inode)) 2577 goto out_stop; 2578 2579 /* 2580 * The orphan list entry will now protect us from any crash which 2581 * occurs before the truncate completes, so it is now safe to propagate 2582 * the new, shorter inode size (held for now in i_size) into the 2583 * on-disk inode. We do this via i_disksize, which is the value which 2584 * ext3 *really* writes onto the disk inode. 2585 */ 2586 ei->i_disksize = inode->i_size; 2587 2588 /* 2589 * From here we block out all ext3_get_block() callers who want to 2590 * modify the block allocation tree. 2591 */ 2592 mutex_lock(&ei->truncate_mutex); 2593 2594 if (n == 1) { /* direct blocks */ 2595 ext3_free_data(handle, inode, NULL, i_data+offsets[0], 2596 i_data + EXT3_NDIR_BLOCKS); 2597 goto do_indirects; 2598 } 2599 2600 partial = ext3_find_shared(inode, n, offsets, chain, &nr); 2601 /* Kill the top of shared branch (not detached) */ 2602 if (nr) { 2603 if (partial == chain) { 2604 /* Shared branch grows from the inode */ 2605 ext3_free_branches(handle, inode, NULL, 2606 &nr, &nr+1, (chain+n-1) - partial); 2607 *partial->p = 0; 2608 /* 2609 * We mark the inode dirty prior to restart, 2610 * and prior to stop. No need for it here. 2611 */ 2612 } else { 2613 /* Shared branch grows from an indirect block */ 2614 ext3_free_branches(handle, inode, partial->bh, 2615 partial->p, 2616 partial->p+1, (chain+n-1) - partial); 2617 } 2618 } 2619 /* Clear the ends of indirect blocks on the shared branch */ 2620 while (partial > chain) { 2621 ext3_free_branches(handle, inode, partial->bh, partial->p + 1, 2622 (__le32*)partial->bh->b_data+addr_per_block, 2623 (chain+n-1) - partial); 2624 BUFFER_TRACE(partial->bh, "call brelse"); 2625 brelse (partial->bh); 2626 partial--; 2627 } 2628do_indirects: 2629 /* Kill the remaining (whole) subtrees */ 2630 switch (offsets[0]) { 2631 default: 2632 nr = i_data[EXT3_IND_BLOCK]; 2633 if (nr) { 2634 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 2635 i_data[EXT3_IND_BLOCK] = 0; 2636 } 2637 case EXT3_IND_BLOCK: 2638 nr = i_data[EXT3_DIND_BLOCK]; 2639 if (nr) { 2640 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 2641 i_data[EXT3_DIND_BLOCK] = 0; 2642 } 2643 case EXT3_DIND_BLOCK: 2644 nr = i_data[EXT3_TIND_BLOCK]; 2645 if (nr) { 2646 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 2647 i_data[EXT3_TIND_BLOCK] = 0; 2648 } 2649 case EXT3_TIND_BLOCK: 2650 ; 2651 } 2652 2653 ext3_discard_reservation(inode); 2654 2655 mutex_unlock(&ei->truncate_mutex); 2656 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; 2657 ext3_mark_inode_dirty(handle, inode); 2658 2659 /* 2660 * In a multi-transaction truncate, we only make the final transaction 2661 * synchronous 2662 */ 2663 if (IS_SYNC(inode)) 2664 handle->h_sync = 1; 2665out_stop: 2666 /* 2667 * If this was a simple ftruncate(), and the file will remain alive 2668 * then we need to clear up the orphan record which we created above. 2669 * However, if this was a real unlink then we were called by 2670 * ext3_evict_inode(), and we allow that function to clean up the 2671 * orphan info for us. 2672 */ 2673 if (inode->i_nlink) 2674 ext3_orphan_del(handle, inode); 2675 2676 ext3_journal_stop(handle); 2677 trace_ext3_truncate_exit(inode); 2678 return; 2679out_notrans: 2680 /* 2681 * Delete the inode from orphan list so that it doesn't stay there 2682 * forever and trigger assertion on umount. 2683 */ 2684 if (inode->i_nlink) 2685 ext3_orphan_del(NULL, inode); 2686 trace_ext3_truncate_exit(inode); 2687} 2688 2689static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb, 2690 unsigned long ino, struct ext3_iloc *iloc) 2691{ 2692 unsigned long block_group; 2693 unsigned long offset; 2694 ext3_fsblk_t block; 2695 struct ext3_group_desc *gdp; 2696 2697 if (!ext3_valid_inum(sb, ino)) { 2698 /* 2699 * This error is already checked for in namei.c unless we are 2700 * looking at an NFS filehandle, in which case no error 2701 * report is needed 2702 */ 2703 return 0; 2704 } 2705 2706 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb); 2707 gdp = ext3_get_group_desc(sb, block_group, NULL); 2708 if (!gdp) 2709 return 0; 2710 /* 2711 * Figure out the offset within the block group inode table 2712 */ 2713 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) * 2714 EXT3_INODE_SIZE(sb); 2715 block = le32_to_cpu(gdp->bg_inode_table) + 2716 (offset >> EXT3_BLOCK_SIZE_BITS(sb)); 2717 2718 iloc->block_group = block_group; 2719 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1); 2720 return block; 2721} 2722 2723/* 2724 * ext3_get_inode_loc returns with an extra refcount against the inode's 2725 * underlying buffer_head on success. If 'in_mem' is true, we have all 2726 * data in memory that is needed to recreate the on-disk version of this 2727 * inode. 2728 */ 2729static int __ext3_get_inode_loc(struct inode *inode, 2730 struct ext3_iloc *iloc, int in_mem) 2731{ 2732 ext3_fsblk_t block; 2733 struct buffer_head *bh; 2734 2735 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc); 2736 if (!block) 2737 return -EIO; 2738 2739 bh = sb_getblk(inode->i_sb, block); 2740 if (!bh) { 2741 ext3_error (inode->i_sb, "ext3_get_inode_loc", 2742 "unable to read inode block - " 2743 "inode=%lu, block="E3FSBLK, 2744 inode->i_ino, block); 2745 return -EIO; 2746 } 2747 if (!buffer_uptodate(bh)) { 2748 lock_buffer(bh); 2749 2750 /* 2751 * If the buffer has the write error flag, we have failed 2752 * to write out another inode in the same block. In this 2753 * case, we don't have to read the block because we may 2754 * read the old inode data successfully. 2755 */ 2756 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 2757 set_buffer_uptodate(bh); 2758 2759 if (buffer_uptodate(bh)) { 2760 /* someone brought it uptodate while we waited */ 2761 unlock_buffer(bh); 2762 goto has_buffer; 2763 } 2764 2765 /* 2766 * If we have all information of the inode in memory and this 2767 * is the only valid inode in the block, we need not read the 2768 * block. 2769 */ 2770 if (in_mem) { 2771 struct buffer_head *bitmap_bh; 2772 struct ext3_group_desc *desc; 2773 int inodes_per_buffer; 2774 int inode_offset, i; 2775 int block_group; 2776 int start; 2777 2778 block_group = (inode->i_ino - 1) / 2779 EXT3_INODES_PER_GROUP(inode->i_sb); 2780 inodes_per_buffer = bh->b_size / 2781 EXT3_INODE_SIZE(inode->i_sb); 2782 inode_offset = ((inode->i_ino - 1) % 2783 EXT3_INODES_PER_GROUP(inode->i_sb)); 2784 start = inode_offset & ~(inodes_per_buffer - 1); 2785 2786 /* Is the inode bitmap in cache? */ 2787 desc = ext3_get_group_desc(inode->i_sb, 2788 block_group, NULL); 2789 if (!desc) 2790 goto make_io; 2791 2792 bitmap_bh = sb_getblk(inode->i_sb, 2793 le32_to_cpu(desc->bg_inode_bitmap)); 2794 if (!bitmap_bh) 2795 goto make_io; 2796 2797 /* 2798 * If the inode bitmap isn't in cache then the 2799 * optimisation may end up performing two reads instead 2800 * of one, so skip it. 2801 */ 2802 if (!buffer_uptodate(bitmap_bh)) { 2803 brelse(bitmap_bh); 2804 goto make_io; 2805 } 2806 for (i = start; i < start + inodes_per_buffer; i++) { 2807 if (i == inode_offset) 2808 continue; 2809 if (ext3_test_bit(i, bitmap_bh->b_data)) 2810 break; 2811 } 2812 brelse(bitmap_bh); 2813 if (i == start + inodes_per_buffer) { 2814 /* all other inodes are free, so skip I/O */ 2815 memset(bh->b_data, 0, bh->b_size); 2816 set_buffer_uptodate(bh); 2817 unlock_buffer(bh); 2818 goto has_buffer; 2819 } 2820 } 2821 2822make_io: 2823 /* 2824 * There are other valid inodes in the buffer, this inode 2825 * has in-inode xattrs, or we don't have this inode in memory. 2826 * Read the block from disk. 2827 */ 2828 trace_ext3_load_inode(inode); 2829 get_bh(bh); 2830 bh->b_end_io = end_buffer_read_sync; 2831 submit_bh(READ | REQ_META | REQ_PRIO, bh); 2832 wait_on_buffer(bh); 2833 if (!buffer_uptodate(bh)) { 2834 ext3_error(inode->i_sb, "ext3_get_inode_loc", 2835 "unable to read inode block - " 2836 "inode=%lu, block="E3FSBLK, 2837 inode->i_ino, block); 2838 brelse(bh); 2839 return -EIO; 2840 } 2841 } 2842has_buffer: 2843 iloc->bh = bh; 2844 return 0; 2845} 2846 2847int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc) 2848{ 2849 /* We have all inode data except xattrs in memory here. */ 2850 return __ext3_get_inode_loc(inode, iloc, 2851 !ext3_test_inode_state(inode, EXT3_STATE_XATTR)); 2852} 2853 2854void ext3_set_inode_flags(struct inode *inode) 2855{ 2856 unsigned int flags = EXT3_I(inode)->i_flags; 2857 2858 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 2859 if (flags & EXT3_SYNC_FL) 2860 inode->i_flags |= S_SYNC; 2861 if (flags & EXT3_APPEND_FL) 2862 inode->i_flags |= S_APPEND; 2863 if (flags & EXT3_IMMUTABLE_FL) 2864 inode->i_flags |= S_IMMUTABLE; 2865 if (flags & EXT3_NOATIME_FL) 2866 inode->i_flags |= S_NOATIME; 2867 if (flags & EXT3_DIRSYNC_FL) 2868 inode->i_flags |= S_DIRSYNC; 2869} 2870 2871/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */ 2872void ext3_get_inode_flags(struct ext3_inode_info *ei) 2873{ 2874 unsigned int flags = ei->vfs_inode.i_flags; 2875 2876 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL| 2877 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL); 2878 if (flags & S_SYNC) 2879 ei->i_flags |= EXT3_SYNC_FL; 2880 if (flags & S_APPEND) 2881 ei->i_flags |= EXT3_APPEND_FL; 2882 if (flags & S_IMMUTABLE) 2883 ei->i_flags |= EXT3_IMMUTABLE_FL; 2884 if (flags & S_NOATIME) 2885 ei->i_flags |= EXT3_NOATIME_FL; 2886 if (flags & S_DIRSYNC) 2887 ei->i_flags |= EXT3_DIRSYNC_FL; 2888} 2889 2890struct inode *ext3_iget(struct super_block *sb, unsigned long ino) 2891{ 2892 struct ext3_iloc iloc; 2893 struct ext3_inode *raw_inode; 2894 struct ext3_inode_info *ei; 2895 struct buffer_head *bh; 2896 struct inode *inode; 2897 journal_t *journal = EXT3_SB(sb)->s_journal; 2898 transaction_t *transaction; 2899 long ret; 2900 int block; 2901 2902 inode = iget_locked(sb, ino); 2903 if (!inode) 2904 return ERR_PTR(-ENOMEM); 2905 if (!(inode->i_state & I_NEW)) 2906 return inode; 2907 2908 ei = EXT3_I(inode); 2909 ei->i_block_alloc_info = NULL; 2910 2911 ret = __ext3_get_inode_loc(inode, &iloc, 0); 2912 if (ret < 0) 2913 goto bad_inode; 2914 bh = iloc.bh; 2915 raw_inode = ext3_raw_inode(&iloc); 2916 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 2917 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 2918 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 2919 if(!(test_opt (inode->i_sb, NO_UID32))) { 2920 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 2921 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 2922 } 2923 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 2924 inode->i_size = le32_to_cpu(raw_inode->i_size); 2925 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime); 2926 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime); 2927 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime); 2928 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0; 2929 2930 ei->i_state_flags = 0; 2931 ei->i_dir_start_lookup = 0; 2932 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 2933 /* We now have enough fields to check if the inode was active or not. 2934 * This is needed because nfsd might try to access dead inodes 2935 * the test is that same one that e2fsck uses 2936 * NeilBrown 1999oct15 2937 */ 2938 if (inode->i_nlink == 0) { 2939 if (inode->i_mode == 0 || 2940 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) { 2941 /* this inode is deleted */ 2942 brelse (bh); 2943 ret = -ESTALE; 2944 goto bad_inode; 2945 } 2946 /* The only unlinked inodes we let through here have 2947 * valid i_mode and are being read by the orphan 2948 * recovery code: that's fine, we're about to complete 2949 * the process of deleting those. */ 2950 } 2951 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); 2952 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 2953#ifdef EXT3_FRAGMENTS 2954 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); 2955 ei->i_frag_no = raw_inode->i_frag; 2956 ei->i_frag_size = raw_inode->i_fsize; 2957#endif 2958 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 2959 if (!S_ISREG(inode->i_mode)) { 2960 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); 2961 } else { 2962 inode->i_size |= 2963 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; 2964 } 2965 ei->i_disksize = inode->i_size; 2966 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 2967 ei->i_block_group = iloc.block_group; 2968 /* 2969 * NOTE! The in-memory inode i_data array is in little-endian order 2970 * even on big-endian machines: we do NOT byteswap the block numbers! 2971 */ 2972 for (block = 0; block < EXT3_N_BLOCKS; block++) 2973 ei->i_data[block] = raw_inode->i_block[block]; 2974 INIT_LIST_HEAD(&ei->i_orphan); 2975 2976 /* 2977 * Set transaction id's of transactions that have to be committed 2978 * to finish f[data]sync. We set them to currently running transaction 2979 * as we cannot be sure that the inode or some of its metadata isn't 2980 * part of the transaction - the inode could have been reclaimed and 2981 * now it is reread from disk. 2982 */ 2983 if (journal) { 2984 tid_t tid; 2985 2986 spin_lock(&journal->j_state_lock); 2987 if (journal->j_running_transaction) 2988 transaction = journal->j_running_transaction; 2989 else 2990 transaction = journal->j_committing_transaction; 2991 if (transaction) 2992 tid = transaction->t_tid; 2993 else 2994 tid = journal->j_commit_sequence; 2995 spin_unlock(&journal->j_state_lock); 2996 atomic_set(&ei->i_sync_tid, tid); 2997 atomic_set(&ei->i_datasync_tid, tid); 2998 } 2999 3000 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 && 3001 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) { 3002 /* 3003 * When mke2fs creates big inodes it does not zero out 3004 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE, 3005 * so ignore those first few inodes. 3006 */ 3007 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3008 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3009 EXT3_INODE_SIZE(inode->i_sb)) { 3010 brelse (bh); 3011 ret = -EIO; 3012 goto bad_inode; 3013 } 3014 if (ei->i_extra_isize == 0) { 3015 /* The extra space is currently unused. Use it. */ 3016 ei->i_extra_isize = sizeof(struct ext3_inode) - 3017 EXT3_GOOD_OLD_INODE_SIZE; 3018 } else { 3019 __le32 *magic = (void *)raw_inode + 3020 EXT3_GOOD_OLD_INODE_SIZE + 3021 ei->i_extra_isize; 3022 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC)) 3023 ext3_set_inode_state(inode, EXT3_STATE_XATTR); 3024 } 3025 } else 3026 ei->i_extra_isize = 0; 3027 3028 if (S_ISREG(inode->i_mode)) { 3029 inode->i_op = &ext3_file_inode_operations; 3030 inode->i_fop = &ext3_file_operations; 3031 ext3_set_aops(inode); 3032 } else if (S_ISDIR(inode->i_mode)) { 3033 inode->i_op = &ext3_dir_inode_operations; 3034 inode->i_fop = &ext3_dir_operations; 3035 } else if (S_ISLNK(inode->i_mode)) { 3036 if (ext3_inode_is_fast_symlink(inode)) { 3037 inode->i_op = &ext3_fast_symlink_inode_operations; 3038 nd_terminate_link(ei->i_data, inode->i_size, 3039 sizeof(ei->i_data) - 1); 3040 } else { 3041 inode->i_op = &ext3_symlink_inode_operations; 3042 ext3_set_aops(inode); 3043 } 3044 } else { 3045 inode->i_op = &ext3_special_inode_operations; 3046 if (raw_inode->i_block[0]) 3047 init_special_inode(inode, inode->i_mode, 3048 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3049 else 3050 init_special_inode(inode, inode->i_mode, 3051 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3052 } 3053 brelse (iloc.bh); 3054 ext3_set_inode_flags(inode); 3055 unlock_new_inode(inode); 3056 return inode; 3057 3058bad_inode: 3059 iget_failed(inode); 3060 return ERR_PTR(ret); 3061} 3062 3063/* 3064 * Post the struct inode info into an on-disk inode location in the 3065 * buffer-cache. This gobbles the caller's reference to the 3066 * buffer_head in the inode location struct. 3067 * 3068 * The caller must have write access to iloc->bh. 3069 */ 3070static int ext3_do_update_inode(handle_t *handle, 3071 struct inode *inode, 3072 struct ext3_iloc *iloc) 3073{ 3074 struct ext3_inode *raw_inode = ext3_raw_inode(iloc); 3075 struct ext3_inode_info *ei = EXT3_I(inode); 3076 struct buffer_head *bh = iloc->bh; 3077 int err = 0, rc, block; 3078 3079again: 3080 /* we can't allow multiple procs in here at once, its a bit racey */ 3081 lock_buffer(bh); 3082 3083 /* For fields not not tracking in the in-memory inode, 3084 * initialise them to zero for new inodes. */ 3085 if (ext3_test_inode_state(inode, EXT3_STATE_NEW)) 3086 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size); 3087 3088 ext3_get_inode_flags(ei); 3089 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3090 if(!(test_opt(inode->i_sb, NO_UID32))) { 3091 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 3092 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 3093/* 3094 * Fix up interoperability with old kernels. Otherwise, old inodes get 3095 * re-used with the upper 16 bits of the uid/gid intact 3096 */ 3097 if(!ei->i_dtime) { 3098 raw_inode->i_uid_high = 3099 cpu_to_le16(high_16_bits(inode->i_uid)); 3100 raw_inode->i_gid_high = 3101 cpu_to_le16(high_16_bits(inode->i_gid)); 3102 } else { 3103 raw_inode->i_uid_high = 0; 3104 raw_inode->i_gid_high = 0; 3105 } 3106 } else { 3107 raw_inode->i_uid_low = 3108 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 3109 raw_inode->i_gid_low = 3110 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 3111 raw_inode->i_uid_high = 0; 3112 raw_inode->i_gid_high = 0; 3113 } 3114 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 3115 raw_inode->i_size = cpu_to_le32(ei->i_disksize); 3116 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); 3117 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); 3118 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); 3119 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); 3120 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 3121 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 3122#ifdef EXT3_FRAGMENTS 3123 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); 3124 raw_inode->i_frag = ei->i_frag_no; 3125 raw_inode->i_fsize = ei->i_frag_size; 3126#endif 3127 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); 3128 if (!S_ISREG(inode->i_mode)) { 3129 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); 3130 } else { 3131 raw_inode->i_size_high = 3132 cpu_to_le32(ei->i_disksize >> 32); 3133 if (ei->i_disksize > 0x7fffffffULL) { 3134 struct super_block *sb = inode->i_sb; 3135 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb, 3136 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) || 3137 EXT3_SB(sb)->s_es->s_rev_level == 3138 cpu_to_le32(EXT3_GOOD_OLD_REV)) { 3139 /* If this is the first large file 3140 * created, add a flag to the superblock. 3141 */ 3142 unlock_buffer(bh); 3143 err = ext3_journal_get_write_access(handle, 3144 EXT3_SB(sb)->s_sbh); 3145 if (err) 3146 goto out_brelse; 3147 3148 ext3_update_dynamic_rev(sb); 3149 EXT3_SET_RO_COMPAT_FEATURE(sb, 3150 EXT3_FEATURE_RO_COMPAT_LARGE_FILE); 3151 handle->h_sync = 1; 3152 err = ext3_journal_dirty_metadata(handle, 3153 EXT3_SB(sb)->s_sbh); 3154 /* get our lock and start over */ 3155 goto again; 3156 } 3157 } 3158 } 3159 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3160 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3161 if (old_valid_dev(inode->i_rdev)) { 3162 raw_inode->i_block[0] = 3163 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3164 raw_inode->i_block[1] = 0; 3165 } else { 3166 raw_inode->i_block[0] = 0; 3167 raw_inode->i_block[1] = 3168 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3169 raw_inode->i_block[2] = 0; 3170 } 3171 } else for (block = 0; block < EXT3_N_BLOCKS; block++) 3172 raw_inode->i_block[block] = ei->i_data[block]; 3173 3174 if (ei->i_extra_isize) 3175 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3176 3177 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 3178 unlock_buffer(bh); 3179 rc = ext3_journal_dirty_metadata(handle, bh); 3180 if (!err) 3181 err = rc; 3182 ext3_clear_inode_state(inode, EXT3_STATE_NEW); 3183 3184 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid); 3185out_brelse: 3186 brelse (bh); 3187 ext3_std_error(inode->i_sb, err); 3188 return err; 3189} 3190 3191/* 3192 * ext3_write_inode() 3193 * 3194 * We are called from a few places: 3195 * 3196 * - Within generic_file_write() for O_SYNC files. 3197 * Here, there will be no transaction running. We wait for any running 3198 * trasnaction to commit. 3199 * 3200 * - Within sys_sync(), kupdate and such. 3201 * We wait on commit, if tol to. 3202 * 3203 * - Within prune_icache() (PF_MEMALLOC == true) 3204 * Here we simply return. We can't afford to block kswapd on the 3205 * journal commit. 3206 * 3207 * In all cases it is actually safe for us to return without doing anything, 3208 * because the inode has been copied into a raw inode buffer in 3209 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3210 * knfsd. 3211 * 3212 * Note that we are absolutely dependent upon all inode dirtiers doing the 3213 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3214 * which we are interested. 3215 * 3216 * It would be a bug for them to not do this. The code: 3217 * 3218 * mark_inode_dirty(inode) 3219 * stuff(); 3220 * inode->i_size = expr; 3221 * 3222 * is in error because a kswapd-driven write_inode() could occur while 3223 * `stuff()' is running, and the new i_size will be lost. Plus the inode 3224 * will no longer be on the superblock's dirty inode list. 3225 */ 3226int ext3_write_inode(struct inode *inode, struct writeback_control *wbc) 3227{ 3228 if (current->flags & PF_MEMALLOC) 3229 return 0; 3230 3231 if (ext3_journal_current_handle()) { 3232 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3233 dump_stack(); 3234 return -EIO; 3235 } 3236 3237 if (wbc->sync_mode != WB_SYNC_ALL) 3238 return 0; 3239 3240 return ext3_force_commit(inode->i_sb); 3241} 3242 3243/* 3244 * ext3_setattr() 3245 * 3246 * Called from notify_change. 3247 * 3248 * We want to trap VFS attempts to truncate the file as soon as 3249 * possible. In particular, we want to make sure that when the VFS 3250 * shrinks i_size, we put the inode on the orphan list and modify 3251 * i_disksize immediately, so that during the subsequent flushing of 3252 * dirty pages and freeing of disk blocks, we can guarantee that any 3253 * commit will leave the blocks being flushed in an unused state on 3254 * disk. (On recovery, the inode will get truncated and the blocks will 3255 * be freed, so we have a strong guarantee that no future commit will 3256 * leave these blocks visible to the user.) 3257 * 3258 * Called with inode->sem down. 3259 */ 3260int ext3_setattr(struct dentry *dentry, struct iattr *attr) 3261{ 3262 struct inode *inode = dentry->d_inode; 3263 int error, rc = 0; 3264 const unsigned int ia_valid = attr->ia_valid; 3265 3266 error = inode_change_ok(inode, attr); 3267 if (error) 3268 return error; 3269 3270 if (is_quota_modification(inode, attr)) 3271 dquot_initialize(inode); 3272 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3273 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3274 handle_t *handle; 3275 3276 /* (user+group)*(old+new) structure, inode write (sb, 3277 * inode block, ? - but truncate inode update has it) */ 3278 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 3279 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3); 3280 if (IS_ERR(handle)) { 3281 error = PTR_ERR(handle); 3282 goto err_out; 3283 } 3284 error = dquot_transfer(inode, attr); 3285 if (error) { 3286 ext3_journal_stop(handle); 3287 return error; 3288 } 3289 /* Update corresponding info in inode so that everything is in 3290 * one transaction */ 3291 if (attr->ia_valid & ATTR_UID) 3292 inode->i_uid = attr->ia_uid; 3293 if (attr->ia_valid & ATTR_GID) 3294 inode->i_gid = attr->ia_gid; 3295 error = ext3_mark_inode_dirty(handle, inode); 3296 ext3_journal_stop(handle); 3297 } 3298 3299 if (attr->ia_valid & ATTR_SIZE) 3300 inode_dio_wait(inode); 3301 3302 if (S_ISREG(inode->i_mode) && 3303 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 3304 handle_t *handle; 3305 3306 handle = ext3_journal_start(inode, 3); 3307 if (IS_ERR(handle)) { 3308 error = PTR_ERR(handle); 3309 goto err_out; 3310 } 3311 3312 error = ext3_orphan_add(handle, inode); 3313 if (error) { 3314 ext3_journal_stop(handle); 3315 goto err_out; 3316 } 3317 EXT3_I(inode)->i_disksize = attr->ia_size; 3318 error = ext3_mark_inode_dirty(handle, inode); 3319 ext3_journal_stop(handle); 3320 if (error) { 3321 /* Some hard fs error must have happened. Bail out. */ 3322 ext3_orphan_del(NULL, inode); 3323 goto err_out; 3324 } 3325 rc = ext3_block_truncate_page(inode, attr->ia_size); 3326 if (rc) { 3327 /* Cleanup orphan list and exit */ 3328 handle = ext3_journal_start(inode, 3); 3329 if (IS_ERR(handle)) { 3330 ext3_orphan_del(NULL, inode); 3331 goto err_out; 3332 } 3333 ext3_orphan_del(handle, inode); 3334 ext3_journal_stop(handle); 3335 goto err_out; 3336 } 3337 } 3338 3339 if ((attr->ia_valid & ATTR_SIZE) && 3340 attr->ia_size != i_size_read(inode)) { 3341 truncate_setsize(inode, attr->ia_size); 3342 ext3_truncate(inode); 3343 } 3344 3345 setattr_copy(inode, attr); 3346 mark_inode_dirty(inode); 3347 3348 if (ia_valid & ATTR_MODE) 3349 rc = ext3_acl_chmod(inode); 3350 3351err_out: 3352 ext3_std_error(inode->i_sb, error); 3353 if (!error) 3354 error = rc; 3355 return error; 3356} 3357 3358 3359/* 3360 * How many blocks doth make a writepage()? 3361 * 3362 * With N blocks per page, it may be: 3363 * N data blocks 3364 * 2 indirect block 3365 * 2 dindirect 3366 * 1 tindirect 3367 * N+5 bitmap blocks (from the above) 3368 * N+5 group descriptor summary blocks 3369 * 1 inode block 3370 * 1 superblock. 3371 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files 3372 * 3373 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS 3374 * 3375 * With ordered or writeback data it's the same, less the N data blocks. 3376 * 3377 * If the inode's direct blocks can hold an integral number of pages then a 3378 * page cannot straddle two indirect blocks, and we can only touch one indirect 3379 * and dindirect block, and the "5" above becomes "3". 3380 * 3381 * This still overestimates under most circumstances. If we were to pass the 3382 * start and end offsets in here as well we could do block_to_path() on each 3383 * block and work out the exact number of indirects which are touched. Pah. 3384 */ 3385 3386static int ext3_writepage_trans_blocks(struct inode *inode) 3387{ 3388 int bpp = ext3_journal_blocks_per_page(inode); 3389 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3; 3390 int ret; 3391 3392 if (ext3_should_journal_data(inode)) 3393 ret = 3 * (bpp + indirects) + 2; 3394 else 3395 ret = 2 * (bpp + indirects) + indirects + 2; 3396 3397#ifdef CONFIG_QUOTA 3398 /* We know that structure was already allocated during dquot_initialize so 3399 * we will be updating only the data blocks + inodes */ 3400 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 3401#endif 3402 3403 return ret; 3404} 3405 3406/* 3407 * The caller must have previously called ext3_reserve_inode_write(). 3408 * Give this, we know that the caller already has write access to iloc->bh. 3409 */ 3410int ext3_mark_iloc_dirty(handle_t *handle, 3411 struct inode *inode, struct ext3_iloc *iloc) 3412{ 3413 int err = 0; 3414 3415 /* the do_update_inode consumes one bh->b_count */ 3416 get_bh(iloc->bh); 3417 3418 /* ext3_do_update_inode() does journal_dirty_metadata */ 3419 err = ext3_do_update_inode(handle, inode, iloc); 3420 put_bh(iloc->bh); 3421 return err; 3422} 3423 3424/* 3425 * On success, We end up with an outstanding reference count against 3426 * iloc->bh. This _must_ be cleaned up later. 3427 */ 3428 3429int 3430ext3_reserve_inode_write(handle_t *handle, struct inode *inode, 3431 struct ext3_iloc *iloc) 3432{ 3433 int err = 0; 3434 if (handle) { 3435 err = ext3_get_inode_loc(inode, iloc); 3436 if (!err) { 3437 BUFFER_TRACE(iloc->bh, "get_write_access"); 3438 err = ext3_journal_get_write_access(handle, iloc->bh); 3439 if (err) { 3440 brelse(iloc->bh); 3441 iloc->bh = NULL; 3442 } 3443 } 3444 } 3445 ext3_std_error(inode->i_sb, err); 3446 return err; 3447} 3448 3449/* 3450 * What we do here is to mark the in-core inode as clean with respect to inode 3451 * dirtiness (it may still be data-dirty). 3452 * This means that the in-core inode may be reaped by prune_icache 3453 * without having to perform any I/O. This is a very good thing, 3454 * because *any* task may call prune_icache - even ones which 3455 * have a transaction open against a different journal. 3456 * 3457 * Is this cheating? Not really. Sure, we haven't written the 3458 * inode out, but prune_icache isn't a user-visible syncing function. 3459 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 3460 * we start and wait on commits. 3461 * 3462 * Is this efficient/effective? Well, we're being nice to the system 3463 * by cleaning up our inodes proactively so they can be reaped 3464 * without I/O. But we are potentially leaving up to five seconds' 3465 * worth of inodes floating about which prune_icache wants us to 3466 * write out. One way to fix that would be to get prune_icache() 3467 * to do a write_super() to free up some memory. It has the desired 3468 * effect. 3469 */ 3470int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode) 3471{ 3472 struct ext3_iloc iloc; 3473 int err; 3474 3475 might_sleep(); 3476 trace_ext3_mark_inode_dirty(inode, _RET_IP_); 3477 err = ext3_reserve_inode_write(handle, inode, &iloc); 3478 if (!err) 3479 err = ext3_mark_iloc_dirty(handle, inode, &iloc); 3480 return err; 3481} 3482 3483/* 3484 * ext3_dirty_inode() is called from __mark_inode_dirty() 3485 * 3486 * We're really interested in the case where a file is being extended. 3487 * i_size has been changed by generic_commit_write() and we thus need 3488 * to include the updated inode in the current transaction. 3489 * 3490 * Also, dquot_alloc_space() will always dirty the inode when blocks 3491 * are allocated to the file. 3492 * 3493 * If the inode is marked synchronous, we don't honour that here - doing 3494 * so would cause a commit on atime updates, which we don't bother doing. 3495 * We handle synchronous inodes at the highest possible level. 3496 */ 3497void ext3_dirty_inode(struct inode *inode, int flags) 3498{ 3499 handle_t *current_handle = ext3_journal_current_handle(); 3500 handle_t *handle; 3501 3502 handle = ext3_journal_start(inode, 2); 3503 if (IS_ERR(handle)) 3504 goto out; 3505 if (current_handle && 3506 current_handle->h_transaction != handle->h_transaction) { 3507 /* This task has a transaction open against a different fs */ 3508 printk(KERN_EMERG "%s: transactions do not match!\n", 3509 __func__); 3510 } else { 3511 jbd_debug(5, "marking dirty. outer handle=%p\n", 3512 current_handle); 3513 ext3_mark_inode_dirty(handle, inode); 3514 } 3515 ext3_journal_stop(handle); 3516out: 3517 return; 3518} 3519 3520#if 0 3521/* 3522 * Bind an inode's backing buffer_head into this transaction, to prevent 3523 * it from being flushed to disk early. Unlike 3524 * ext3_reserve_inode_write, this leaves behind no bh reference and 3525 * returns no iloc structure, so the caller needs to repeat the iloc 3526 * lookup to mark the inode dirty later. 3527 */ 3528static int ext3_pin_inode(handle_t *handle, struct inode *inode) 3529{ 3530 struct ext3_iloc iloc; 3531 3532 int err = 0; 3533 if (handle) { 3534 err = ext3_get_inode_loc(inode, &iloc); 3535 if (!err) { 3536 BUFFER_TRACE(iloc.bh, "get_write_access"); 3537 err = journal_get_write_access(handle, iloc.bh); 3538 if (!err) 3539 err = ext3_journal_dirty_metadata(handle, 3540 iloc.bh); 3541 brelse(iloc.bh); 3542 } 3543 } 3544 ext3_std_error(inode->i_sb, err); 3545 return err; 3546} 3547#endif 3548 3549int ext3_change_inode_journal_flag(struct inode *inode, int val) 3550{ 3551 journal_t *journal; 3552 handle_t *handle; 3553 int err; 3554 3555 /* 3556 * We have to be very careful here: changing a data block's 3557 * journaling status dynamically is dangerous. If we write a 3558 * data block to the journal, change the status and then delete 3559 * that block, we risk forgetting to revoke the old log record 3560 * from the journal and so a subsequent replay can corrupt data. 3561 * So, first we make sure that the journal is empty and that 3562 * nobody is changing anything. 3563 */ 3564 3565 journal = EXT3_JOURNAL(inode); 3566 if (is_journal_aborted(journal)) 3567 return -EROFS; 3568 3569 journal_lock_updates(journal); 3570 journal_flush(journal); 3571 3572 /* 3573 * OK, there are no updates running now, and all cached data is 3574 * synced to disk. We are now in a completely consistent state 3575 * which doesn't have anything in the journal, and we know that 3576 * no filesystem updates are running, so it is safe to modify 3577 * the inode's in-core data-journaling state flag now. 3578 */ 3579 3580 if (val) 3581 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL; 3582 else 3583 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL; 3584 ext3_set_aops(inode); 3585 3586 journal_unlock_updates(journal); 3587 3588 /* Finally we can mark the inode as dirty. */ 3589 3590 handle = ext3_journal_start(inode, 1); 3591 if (IS_ERR(handle)) 3592 return PTR_ERR(handle); 3593 3594 err = ext3_mark_inode_dirty(handle, inode); 3595 handle->h_sync = 1; 3596 ext3_journal_stop(handle); 3597 ext3_std_error(inode->i_sb, err); 3598 3599 return err; 3600}