at v3.3-rc2 65 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * 61 * USB requests are always queued to a given endpoint, identified by a 62 * descriptor within an active interface in a given USB configuration. 63 */ 64struct usb_host_endpoint { 65 struct usb_endpoint_descriptor desc; 66 struct usb_ss_ep_comp_descriptor ss_ep_comp; 67 struct list_head urb_list; 68 void *hcpriv; 69 struct ep_device *ep_dev; /* For sysfs info */ 70 71 unsigned char *extra; /* Extra descriptors */ 72 int extralen; 73 int enabled; 74}; 75 76/* host-side wrapper for one interface setting's parsed descriptors */ 77struct usb_host_interface { 78 struct usb_interface_descriptor desc; 79 80 /* array of desc.bNumEndpoint endpoints associated with this 81 * interface setting. these will be in no particular order. 82 */ 83 struct usb_host_endpoint *endpoint; 84 85 char *string; /* iInterface string, if present */ 86 unsigned char *extra; /* Extra descriptors */ 87 int extralen; 88}; 89 90enum usb_interface_condition { 91 USB_INTERFACE_UNBOUND = 0, 92 USB_INTERFACE_BINDING, 93 USB_INTERFACE_BOUND, 94 USB_INTERFACE_UNBINDING, 95}; 96 97/** 98 * struct usb_interface - what usb device drivers talk to 99 * @altsetting: array of interface structures, one for each alternate 100 * setting that may be selected. Each one includes a set of 101 * endpoint configurations. They will be in no particular order. 102 * @cur_altsetting: the current altsetting. 103 * @num_altsetting: number of altsettings defined. 104 * @intf_assoc: interface association descriptor 105 * @minor: the minor number assigned to this interface, if this 106 * interface is bound to a driver that uses the USB major number. 107 * If this interface does not use the USB major, this field should 108 * be unused. The driver should set this value in the probe() 109 * function of the driver, after it has been assigned a minor 110 * number from the USB core by calling usb_register_dev(). 111 * @condition: binding state of the interface: not bound, binding 112 * (in probe()), bound to a driver, or unbinding (in disconnect()) 113 * @sysfs_files_created: sysfs attributes exist 114 * @ep_devs_created: endpoint child pseudo-devices exist 115 * @unregistering: flag set when the interface is being unregistered 116 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 117 * capability during autosuspend. 118 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 119 * has been deferred. 120 * @needs_binding: flag set when the driver should be re-probed or unbound 121 * following a reset or suspend operation it doesn't support. 122 * @dev: driver model's view of this device 123 * @usb_dev: if an interface is bound to the USB major, this will point 124 * to the sysfs representation for that device. 125 * @pm_usage_cnt: PM usage counter for this interface 126 * @reset_ws: Used for scheduling resets from atomic context. 127 * @reset_running: set to 1 if the interface is currently running a 128 * queued reset so that usb_cancel_queued_reset() doesn't try to 129 * remove from the workqueue when running inside the worker 130 * thread. See __usb_queue_reset_device(). 131 * @resetting_device: USB core reset the device, so use alt setting 0 as 132 * current; needs bandwidth alloc after reset. 133 * 134 * USB device drivers attach to interfaces on a physical device. Each 135 * interface encapsulates a single high level function, such as feeding 136 * an audio stream to a speaker or reporting a change in a volume control. 137 * Many USB devices only have one interface. The protocol used to talk to 138 * an interface's endpoints can be defined in a usb "class" specification, 139 * or by a product's vendor. The (default) control endpoint is part of 140 * every interface, but is never listed among the interface's descriptors. 141 * 142 * The driver that is bound to the interface can use standard driver model 143 * calls such as dev_get_drvdata() on the dev member of this structure. 144 * 145 * Each interface may have alternate settings. The initial configuration 146 * of a device sets altsetting 0, but the device driver can change 147 * that setting using usb_set_interface(). Alternate settings are often 148 * used to control the use of periodic endpoints, such as by having 149 * different endpoints use different amounts of reserved USB bandwidth. 150 * All standards-conformant USB devices that use isochronous endpoints 151 * will use them in non-default settings. 152 * 153 * The USB specification says that alternate setting numbers must run from 154 * 0 to one less than the total number of alternate settings. But some 155 * devices manage to mess this up, and the structures aren't necessarily 156 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 157 * look up an alternate setting in the altsetting array based on its number. 158 */ 159struct usb_interface { 160 /* array of alternate settings for this interface, 161 * stored in no particular order */ 162 struct usb_host_interface *altsetting; 163 164 struct usb_host_interface *cur_altsetting; /* the currently 165 * active alternate setting */ 166 unsigned num_altsetting; /* number of alternate settings */ 167 168 /* If there is an interface association descriptor then it will list 169 * the associated interfaces */ 170 struct usb_interface_assoc_descriptor *intf_assoc; 171 172 int minor; /* minor number this interface is 173 * bound to */ 174 enum usb_interface_condition condition; /* state of binding */ 175 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 176 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 177 unsigned unregistering:1; /* unregistration is in progress */ 178 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 179 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 180 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 181 unsigned reset_running:1; 182 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 183 184 struct device dev; /* interface specific device info */ 185 struct device *usb_dev; 186 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 187 struct work_struct reset_ws; /* for resets in atomic context */ 188}; 189#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 190 191static inline void *usb_get_intfdata(struct usb_interface *intf) 192{ 193 return dev_get_drvdata(&intf->dev); 194} 195 196static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 197{ 198 dev_set_drvdata(&intf->dev, data); 199} 200 201struct usb_interface *usb_get_intf(struct usb_interface *intf); 202void usb_put_intf(struct usb_interface *intf); 203 204/* this maximum is arbitrary */ 205#define USB_MAXINTERFACES 32 206#define USB_MAXIADS (USB_MAXINTERFACES/2) 207 208/** 209 * struct usb_interface_cache - long-term representation of a device interface 210 * @num_altsetting: number of altsettings defined. 211 * @ref: reference counter. 212 * @altsetting: variable-length array of interface structures, one for 213 * each alternate setting that may be selected. Each one includes a 214 * set of endpoint configurations. They will be in no particular order. 215 * 216 * These structures persist for the lifetime of a usb_device, unlike 217 * struct usb_interface (which persists only as long as its configuration 218 * is installed). The altsetting arrays can be accessed through these 219 * structures at any time, permitting comparison of configurations and 220 * providing support for the /proc/bus/usb/devices pseudo-file. 221 */ 222struct usb_interface_cache { 223 unsigned num_altsetting; /* number of alternate settings */ 224 struct kref ref; /* reference counter */ 225 226 /* variable-length array of alternate settings for this interface, 227 * stored in no particular order */ 228 struct usb_host_interface altsetting[0]; 229}; 230#define ref_to_usb_interface_cache(r) \ 231 container_of(r, struct usb_interface_cache, ref) 232#define altsetting_to_usb_interface_cache(a) \ 233 container_of(a, struct usb_interface_cache, altsetting[0]) 234 235/** 236 * struct usb_host_config - representation of a device's configuration 237 * @desc: the device's configuration descriptor. 238 * @string: pointer to the cached version of the iConfiguration string, if 239 * present for this configuration. 240 * @intf_assoc: list of any interface association descriptors in this config 241 * @interface: array of pointers to usb_interface structures, one for each 242 * interface in the configuration. The number of interfaces is stored 243 * in desc.bNumInterfaces. These pointers are valid only while the 244 * the configuration is active. 245 * @intf_cache: array of pointers to usb_interface_cache structures, one 246 * for each interface in the configuration. These structures exist 247 * for the entire life of the device. 248 * @extra: pointer to buffer containing all extra descriptors associated 249 * with this configuration (those preceding the first interface 250 * descriptor). 251 * @extralen: length of the extra descriptors buffer. 252 * 253 * USB devices may have multiple configurations, but only one can be active 254 * at any time. Each encapsulates a different operational environment; 255 * for example, a dual-speed device would have separate configurations for 256 * full-speed and high-speed operation. The number of configurations 257 * available is stored in the device descriptor as bNumConfigurations. 258 * 259 * A configuration can contain multiple interfaces. Each corresponds to 260 * a different function of the USB device, and all are available whenever 261 * the configuration is active. The USB standard says that interfaces 262 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 263 * of devices get this wrong. In addition, the interface array is not 264 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 265 * look up an interface entry based on its number. 266 * 267 * Device drivers should not attempt to activate configurations. The choice 268 * of which configuration to install is a policy decision based on such 269 * considerations as available power, functionality provided, and the user's 270 * desires (expressed through userspace tools). However, drivers can call 271 * usb_reset_configuration() to reinitialize the current configuration and 272 * all its interfaces. 273 */ 274struct usb_host_config { 275 struct usb_config_descriptor desc; 276 277 char *string; /* iConfiguration string, if present */ 278 279 /* List of any Interface Association Descriptors in this 280 * configuration. */ 281 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 282 283 /* the interfaces associated with this configuration, 284 * stored in no particular order */ 285 struct usb_interface *interface[USB_MAXINTERFACES]; 286 287 /* Interface information available even when this is not the 288 * active configuration */ 289 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 290 291 unsigned char *extra; /* Extra descriptors */ 292 int extralen; 293}; 294 295/* USB2.0 and USB3.0 device BOS descriptor set */ 296struct usb_host_bos { 297 struct usb_bos_descriptor *desc; 298 299 /* wireless cap descriptor is handled by wusb */ 300 struct usb_ext_cap_descriptor *ext_cap; 301 struct usb_ss_cap_descriptor *ss_cap; 302 struct usb_ss_container_id_descriptor *ss_id; 303}; 304 305int __usb_get_extra_descriptor(char *buffer, unsigned size, 306 unsigned char type, void **ptr); 307#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 308 __usb_get_extra_descriptor((ifpoint)->extra, \ 309 (ifpoint)->extralen, \ 310 type, (void **)ptr) 311 312/* ----------------------------------------------------------------------- */ 313 314/* USB device number allocation bitmap */ 315struct usb_devmap { 316 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 317}; 318 319/* 320 * Allocated per bus (tree of devices) we have: 321 */ 322struct usb_bus { 323 struct device *controller; /* host/master side hardware */ 324 int busnum; /* Bus number (in order of reg) */ 325 const char *bus_name; /* stable id (PCI slot_name etc) */ 326 u8 uses_dma; /* Does the host controller use DMA? */ 327 u8 uses_pio_for_control; /* 328 * Does the host controller use PIO 329 * for control transfers? 330 */ 331 u8 otg_port; /* 0, or number of OTG/HNP port */ 332 unsigned is_b_host:1; /* true during some HNP roleswitches */ 333 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 334 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 335 336 int devnum_next; /* Next open device number in 337 * round-robin allocation */ 338 339 struct usb_devmap devmap; /* device address allocation map */ 340 struct usb_device *root_hub; /* Root hub */ 341 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 342 struct list_head bus_list; /* list of busses */ 343 344 int bandwidth_allocated; /* on this bus: how much of the time 345 * reserved for periodic (intr/iso) 346 * requests is used, on average? 347 * Units: microseconds/frame. 348 * Limits: Full/low speed reserve 90%, 349 * while high speed reserves 80%. 350 */ 351 int bandwidth_int_reqs; /* number of Interrupt requests */ 352 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 353 354#ifdef CONFIG_USB_DEVICEFS 355 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 356#endif 357 358#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 359 struct mon_bus *mon_bus; /* non-null when associated */ 360 int monitored; /* non-zero when monitored */ 361#endif 362}; 363 364/* ----------------------------------------------------------------------- */ 365 366/* This is arbitrary. 367 * From USB 2.0 spec Table 11-13, offset 7, a hub can 368 * have up to 255 ports. The most yet reported is 10. 369 * 370 * Current Wireless USB host hardware (Intel i1480 for example) allows 371 * up to 22 devices to connect. Upcoming hardware might raise that 372 * limit. Because the arrays need to add a bit for hub status data, we 373 * do 31, so plus one evens out to four bytes. 374 */ 375#define USB_MAXCHILDREN (31) 376 377struct usb_tt; 378 379/** 380 * struct usb_device - kernel's representation of a USB device 381 * @devnum: device number; address on a USB bus 382 * @devpath: device ID string for use in messages (e.g., /port/...) 383 * @route: tree topology hex string for use with xHCI 384 * @state: device state: configured, not attached, etc. 385 * @speed: device speed: high/full/low (or error) 386 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 387 * @ttport: device port on that tt hub 388 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 389 * @parent: our hub, unless we're the root 390 * @bus: bus we're part of 391 * @ep0: endpoint 0 data (default control pipe) 392 * @dev: generic device interface 393 * @descriptor: USB device descriptor 394 * @bos: USB device BOS descriptor set 395 * @config: all of the device's configs 396 * @actconfig: the active configuration 397 * @ep_in: array of IN endpoints 398 * @ep_out: array of OUT endpoints 399 * @rawdescriptors: raw descriptors for each config 400 * @bus_mA: Current available from the bus 401 * @portnum: parent port number (origin 1) 402 * @level: number of USB hub ancestors 403 * @can_submit: URBs may be submitted 404 * @persist_enabled: USB_PERSIST enabled for this device 405 * @have_langid: whether string_langid is valid 406 * @authorized: policy has said we can use it; 407 * (user space) policy determines if we authorize this device to be 408 * used or not. By default, wired USB devices are authorized. 409 * WUSB devices are not, until we authorize them from user space. 410 * FIXME -- complete doc 411 * @authenticated: Crypto authentication passed 412 * @wusb: device is Wireless USB 413 * @lpm_capable: device supports LPM 414 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 415 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled 416 * @string_langid: language ID for strings 417 * @product: iProduct string, if present (static) 418 * @manufacturer: iManufacturer string, if present (static) 419 * @serial: iSerialNumber string, if present (static) 420 * @filelist: usbfs files that are open to this device 421 * @usb_classdev: USB class device that was created for usbfs device 422 * access from userspace 423 * @usbfs_dentry: usbfs dentry entry for the device 424 * @maxchild: number of ports if hub 425 * @children: child devices - USB devices that are attached to this hub 426 * @quirks: quirks of the whole device 427 * @urbnum: number of URBs submitted for the whole device 428 * @active_duration: total time device is not suspended 429 * @connect_time: time device was first connected 430 * @do_remote_wakeup: remote wakeup should be enabled 431 * @reset_resume: needs reset instead of resume 432 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 433 * specific data for the device. 434 * @slot_id: Slot ID assigned by xHCI 435 * 436 * Notes: 437 * Usbcore drivers should not set usbdev->state directly. Instead use 438 * usb_set_device_state(). 439 */ 440struct usb_device { 441 int devnum; 442 char devpath[16]; 443 u32 route; 444 enum usb_device_state state; 445 enum usb_device_speed speed; 446 447 struct usb_tt *tt; 448 int ttport; 449 450 unsigned int toggle[2]; 451 452 struct usb_device *parent; 453 struct usb_bus *bus; 454 struct usb_host_endpoint ep0; 455 456 struct device dev; 457 458 struct usb_device_descriptor descriptor; 459 struct usb_host_bos *bos; 460 struct usb_host_config *config; 461 462 struct usb_host_config *actconfig; 463 struct usb_host_endpoint *ep_in[16]; 464 struct usb_host_endpoint *ep_out[16]; 465 466 char **rawdescriptors; 467 468 unsigned short bus_mA; 469 u8 portnum; 470 u8 level; 471 472 unsigned can_submit:1; 473 unsigned persist_enabled:1; 474 unsigned have_langid:1; 475 unsigned authorized:1; 476 unsigned authenticated:1; 477 unsigned wusb:1; 478 unsigned lpm_capable:1; 479 unsigned usb2_hw_lpm_capable:1; 480 unsigned usb2_hw_lpm_enabled:1; 481 int string_langid; 482 483 /* static strings from the device */ 484 char *product; 485 char *manufacturer; 486 char *serial; 487 488 struct list_head filelist; 489#ifdef CONFIG_USB_DEVICE_CLASS 490 struct device *usb_classdev; 491#endif 492#ifdef CONFIG_USB_DEVICEFS 493 struct dentry *usbfs_dentry; 494#endif 495 496 int maxchild; 497 struct usb_device *children[USB_MAXCHILDREN]; 498 499 u32 quirks; 500 atomic_t urbnum; 501 502 unsigned long active_duration; 503 504#ifdef CONFIG_PM 505 unsigned long connect_time; 506 507 unsigned do_remote_wakeup:1; 508 unsigned reset_resume:1; 509#endif 510 struct wusb_dev *wusb_dev; 511 int slot_id; 512}; 513#define to_usb_device(d) container_of(d, struct usb_device, dev) 514 515static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 516{ 517 return to_usb_device(intf->dev.parent); 518} 519 520extern struct usb_device *usb_get_dev(struct usb_device *dev); 521extern void usb_put_dev(struct usb_device *dev); 522 523/* USB device locking */ 524#define usb_lock_device(udev) device_lock(&(udev)->dev) 525#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 526#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 527extern int usb_lock_device_for_reset(struct usb_device *udev, 528 const struct usb_interface *iface); 529 530/* USB port reset for device reinitialization */ 531extern int usb_reset_device(struct usb_device *dev); 532extern void usb_queue_reset_device(struct usb_interface *dev); 533 534 535/* USB autosuspend and autoresume */ 536#ifdef CONFIG_USB_SUSPEND 537extern void usb_enable_autosuspend(struct usb_device *udev); 538extern void usb_disable_autosuspend(struct usb_device *udev); 539 540extern int usb_autopm_get_interface(struct usb_interface *intf); 541extern void usb_autopm_put_interface(struct usb_interface *intf); 542extern int usb_autopm_get_interface_async(struct usb_interface *intf); 543extern void usb_autopm_put_interface_async(struct usb_interface *intf); 544extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 545extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 546 547static inline void usb_mark_last_busy(struct usb_device *udev) 548{ 549 pm_runtime_mark_last_busy(&udev->dev); 550} 551 552#else 553 554static inline int usb_enable_autosuspend(struct usb_device *udev) 555{ return 0; } 556static inline int usb_disable_autosuspend(struct usb_device *udev) 557{ return 0; } 558 559static inline int usb_autopm_get_interface(struct usb_interface *intf) 560{ return 0; } 561static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 562{ return 0; } 563 564static inline void usb_autopm_put_interface(struct usb_interface *intf) 565{ } 566static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 567{ } 568static inline void usb_autopm_get_interface_no_resume( 569 struct usb_interface *intf) 570{ } 571static inline void usb_autopm_put_interface_no_suspend( 572 struct usb_interface *intf) 573{ } 574static inline void usb_mark_last_busy(struct usb_device *udev) 575{ } 576#endif 577 578/*-------------------------------------------------------------------------*/ 579 580/* for drivers using iso endpoints */ 581extern int usb_get_current_frame_number(struct usb_device *usb_dev); 582 583/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 584extern int usb_alloc_streams(struct usb_interface *interface, 585 struct usb_host_endpoint **eps, unsigned int num_eps, 586 unsigned int num_streams, gfp_t mem_flags); 587 588/* Reverts a group of bulk endpoints back to not using stream IDs. */ 589extern void usb_free_streams(struct usb_interface *interface, 590 struct usb_host_endpoint **eps, unsigned int num_eps, 591 gfp_t mem_flags); 592 593/* used these for multi-interface device registration */ 594extern int usb_driver_claim_interface(struct usb_driver *driver, 595 struct usb_interface *iface, void *priv); 596 597/** 598 * usb_interface_claimed - returns true iff an interface is claimed 599 * @iface: the interface being checked 600 * 601 * Returns true (nonzero) iff the interface is claimed, else false (zero). 602 * Callers must own the driver model's usb bus readlock. So driver 603 * probe() entries don't need extra locking, but other call contexts 604 * may need to explicitly claim that lock. 605 * 606 */ 607static inline int usb_interface_claimed(struct usb_interface *iface) 608{ 609 return (iface->dev.driver != NULL); 610} 611 612extern void usb_driver_release_interface(struct usb_driver *driver, 613 struct usb_interface *iface); 614const struct usb_device_id *usb_match_id(struct usb_interface *interface, 615 const struct usb_device_id *id); 616extern int usb_match_one_id(struct usb_interface *interface, 617 const struct usb_device_id *id); 618 619extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 620 int minor); 621extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 622 unsigned ifnum); 623extern struct usb_host_interface *usb_altnum_to_altsetting( 624 const struct usb_interface *intf, unsigned int altnum); 625extern struct usb_host_interface *usb_find_alt_setting( 626 struct usb_host_config *config, 627 unsigned int iface_num, 628 unsigned int alt_num); 629 630 631/** 632 * usb_make_path - returns stable device path in the usb tree 633 * @dev: the device whose path is being constructed 634 * @buf: where to put the string 635 * @size: how big is "buf"? 636 * 637 * Returns length of the string (> 0) or negative if size was too small. 638 * 639 * This identifier is intended to be "stable", reflecting physical paths in 640 * hardware such as physical bus addresses for host controllers or ports on 641 * USB hubs. That makes it stay the same until systems are physically 642 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 643 * controllers. Adding and removing devices, including virtual root hubs 644 * in host controller driver modules, does not change these path identifiers; 645 * neither does rebooting or re-enumerating. These are more useful identifiers 646 * than changeable ("unstable") ones like bus numbers or device addresses. 647 * 648 * With a partial exception for devices connected to USB 2.0 root hubs, these 649 * identifiers are also predictable. So long as the device tree isn't changed, 650 * plugging any USB device into a given hub port always gives it the same path. 651 * Because of the use of "companion" controllers, devices connected to ports on 652 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 653 * high speed, and a different one if they are full or low speed. 654 */ 655static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 656{ 657 int actual; 658 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 659 dev->devpath); 660 return (actual >= (int)size) ? -1 : actual; 661} 662 663/*-------------------------------------------------------------------------*/ 664 665#define USB_DEVICE_ID_MATCH_DEVICE \ 666 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 667#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 668 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 669#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 670 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 671#define USB_DEVICE_ID_MATCH_DEV_INFO \ 672 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 673 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 674 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 675#define USB_DEVICE_ID_MATCH_INT_INFO \ 676 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 677 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 678 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 679 680/** 681 * USB_DEVICE - macro used to describe a specific usb device 682 * @vend: the 16 bit USB Vendor ID 683 * @prod: the 16 bit USB Product ID 684 * 685 * This macro is used to create a struct usb_device_id that matches a 686 * specific device. 687 */ 688#define USB_DEVICE(vend, prod) \ 689 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 690 .idVendor = (vend), \ 691 .idProduct = (prod) 692/** 693 * USB_DEVICE_VER - describe a specific usb device with a version range 694 * @vend: the 16 bit USB Vendor ID 695 * @prod: the 16 bit USB Product ID 696 * @lo: the bcdDevice_lo value 697 * @hi: the bcdDevice_hi value 698 * 699 * This macro is used to create a struct usb_device_id that matches a 700 * specific device, with a version range. 701 */ 702#define USB_DEVICE_VER(vend, prod, lo, hi) \ 703 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 704 .idVendor = (vend), \ 705 .idProduct = (prod), \ 706 .bcdDevice_lo = (lo), \ 707 .bcdDevice_hi = (hi) 708 709/** 710 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 711 * @vend: the 16 bit USB Vendor ID 712 * @prod: the 16 bit USB Product ID 713 * @pr: bInterfaceProtocol value 714 * 715 * This macro is used to create a struct usb_device_id that matches a 716 * specific interface protocol of devices. 717 */ 718#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 719 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 720 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 721 .idVendor = (vend), \ 722 .idProduct = (prod), \ 723 .bInterfaceProtocol = (pr) 724 725/** 726 * USB_DEVICE_INFO - macro used to describe a class of usb devices 727 * @cl: bDeviceClass value 728 * @sc: bDeviceSubClass value 729 * @pr: bDeviceProtocol value 730 * 731 * This macro is used to create a struct usb_device_id that matches a 732 * specific class of devices. 733 */ 734#define USB_DEVICE_INFO(cl, sc, pr) \ 735 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 736 .bDeviceClass = (cl), \ 737 .bDeviceSubClass = (sc), \ 738 .bDeviceProtocol = (pr) 739 740/** 741 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 742 * @cl: bInterfaceClass value 743 * @sc: bInterfaceSubClass value 744 * @pr: bInterfaceProtocol value 745 * 746 * This macro is used to create a struct usb_device_id that matches a 747 * specific class of interfaces. 748 */ 749#define USB_INTERFACE_INFO(cl, sc, pr) \ 750 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 751 .bInterfaceClass = (cl), \ 752 .bInterfaceSubClass = (sc), \ 753 .bInterfaceProtocol = (pr) 754 755/** 756 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 757 * @vend: the 16 bit USB Vendor ID 758 * @prod: the 16 bit USB Product ID 759 * @cl: bInterfaceClass value 760 * @sc: bInterfaceSubClass value 761 * @pr: bInterfaceProtocol value 762 * 763 * This macro is used to create a struct usb_device_id that matches a 764 * specific device with a specific class of interfaces. 765 * 766 * This is especially useful when explicitly matching devices that have 767 * vendor specific bDeviceClass values, but standards-compliant interfaces. 768 */ 769#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 770 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 771 | USB_DEVICE_ID_MATCH_DEVICE, \ 772 .idVendor = (vend), \ 773 .idProduct = (prod), \ 774 .bInterfaceClass = (cl), \ 775 .bInterfaceSubClass = (sc), \ 776 .bInterfaceProtocol = (pr) 777 778/* ----------------------------------------------------------------------- */ 779 780/* Stuff for dynamic usb ids */ 781struct usb_dynids { 782 spinlock_t lock; 783 struct list_head list; 784}; 785 786struct usb_dynid { 787 struct list_head node; 788 struct usb_device_id id; 789}; 790 791extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 792 struct device_driver *driver, 793 const char *buf, size_t count); 794 795/** 796 * struct usbdrv_wrap - wrapper for driver-model structure 797 * @driver: The driver-model core driver structure. 798 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 799 */ 800struct usbdrv_wrap { 801 struct device_driver driver; 802 int for_devices; 803}; 804 805/** 806 * struct usb_driver - identifies USB interface driver to usbcore 807 * @name: The driver name should be unique among USB drivers, 808 * and should normally be the same as the module name. 809 * @probe: Called to see if the driver is willing to manage a particular 810 * interface on a device. If it is, probe returns zero and uses 811 * usb_set_intfdata() to associate driver-specific data with the 812 * interface. It may also use usb_set_interface() to specify the 813 * appropriate altsetting. If unwilling to manage the interface, 814 * return -ENODEV, if genuine IO errors occurred, an appropriate 815 * negative errno value. 816 * @disconnect: Called when the interface is no longer accessible, usually 817 * because its device has been (or is being) disconnected or the 818 * driver module is being unloaded. 819 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 820 * the "usbfs" filesystem. This lets devices provide ways to 821 * expose information to user space regardless of where they 822 * do (or don't) show up otherwise in the filesystem. 823 * @suspend: Called when the device is going to be suspended by the system. 824 * @resume: Called when the device is being resumed by the system. 825 * @reset_resume: Called when the suspended device has been reset instead 826 * of being resumed. 827 * @pre_reset: Called by usb_reset_device() when the device is about to be 828 * reset. This routine must not return until the driver has no active 829 * URBs for the device, and no more URBs may be submitted until the 830 * post_reset method is called. 831 * @post_reset: Called by usb_reset_device() after the device 832 * has been reset 833 * @id_table: USB drivers use ID table to support hotplugging. 834 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 835 * or your driver's probe function will never get called. 836 * @dynids: used internally to hold the list of dynamically added device 837 * ids for this driver. 838 * @drvwrap: Driver-model core structure wrapper. 839 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 840 * added to this driver by preventing the sysfs file from being created. 841 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 842 * for interfaces bound to this driver. 843 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 844 * endpoints before calling the driver's disconnect method. 845 * 846 * USB interface drivers must provide a name, probe() and disconnect() 847 * methods, and an id_table. Other driver fields are optional. 848 * 849 * The id_table is used in hotplugging. It holds a set of descriptors, 850 * and specialized data may be associated with each entry. That table 851 * is used by both user and kernel mode hotplugging support. 852 * 853 * The probe() and disconnect() methods are called in a context where 854 * they can sleep, but they should avoid abusing the privilege. Most 855 * work to connect to a device should be done when the device is opened, 856 * and undone at the last close. The disconnect code needs to address 857 * concurrency issues with respect to open() and close() methods, as 858 * well as forcing all pending I/O requests to complete (by unlinking 859 * them as necessary, and blocking until the unlinks complete). 860 */ 861struct usb_driver { 862 const char *name; 863 864 int (*probe) (struct usb_interface *intf, 865 const struct usb_device_id *id); 866 867 void (*disconnect) (struct usb_interface *intf); 868 869 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 870 void *buf); 871 872 int (*suspend) (struct usb_interface *intf, pm_message_t message); 873 int (*resume) (struct usb_interface *intf); 874 int (*reset_resume)(struct usb_interface *intf); 875 876 int (*pre_reset)(struct usb_interface *intf); 877 int (*post_reset)(struct usb_interface *intf); 878 879 const struct usb_device_id *id_table; 880 881 struct usb_dynids dynids; 882 struct usbdrv_wrap drvwrap; 883 unsigned int no_dynamic_id:1; 884 unsigned int supports_autosuspend:1; 885 unsigned int soft_unbind:1; 886}; 887#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 888 889/** 890 * struct usb_device_driver - identifies USB device driver to usbcore 891 * @name: The driver name should be unique among USB drivers, 892 * and should normally be the same as the module name. 893 * @probe: Called to see if the driver is willing to manage a particular 894 * device. If it is, probe returns zero and uses dev_set_drvdata() 895 * to associate driver-specific data with the device. If unwilling 896 * to manage the device, return a negative errno value. 897 * @disconnect: Called when the device is no longer accessible, usually 898 * because it has been (or is being) disconnected or the driver's 899 * module is being unloaded. 900 * @suspend: Called when the device is going to be suspended by the system. 901 * @resume: Called when the device is being resumed by the system. 902 * @drvwrap: Driver-model core structure wrapper. 903 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 904 * for devices bound to this driver. 905 * 906 * USB drivers must provide all the fields listed above except drvwrap. 907 */ 908struct usb_device_driver { 909 const char *name; 910 911 int (*probe) (struct usb_device *udev); 912 void (*disconnect) (struct usb_device *udev); 913 914 int (*suspend) (struct usb_device *udev, pm_message_t message); 915 int (*resume) (struct usb_device *udev, pm_message_t message); 916 struct usbdrv_wrap drvwrap; 917 unsigned int supports_autosuspend:1; 918}; 919#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 920 drvwrap.driver) 921 922extern struct bus_type usb_bus_type; 923 924/** 925 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 926 * @name: the usb class device name for this driver. Will show up in sysfs. 927 * @devnode: Callback to provide a naming hint for a possible 928 * device node to create. 929 * @fops: pointer to the struct file_operations of this driver. 930 * @minor_base: the start of the minor range for this driver. 931 * 932 * This structure is used for the usb_register_dev() and 933 * usb_unregister_dev() functions, to consolidate a number of the 934 * parameters used for them. 935 */ 936struct usb_class_driver { 937 char *name; 938 char *(*devnode)(struct device *dev, umode_t *mode); 939 const struct file_operations *fops; 940 int minor_base; 941}; 942 943/* 944 * use these in module_init()/module_exit() 945 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 946 */ 947extern int usb_register_driver(struct usb_driver *, struct module *, 948 const char *); 949 950/* use a define to avoid include chaining to get THIS_MODULE & friends */ 951#define usb_register(driver) \ 952 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 953 954extern void usb_deregister(struct usb_driver *); 955 956/** 957 * module_usb_driver() - Helper macro for registering a USB driver 958 * @__usb_driver: usb_driver struct 959 * 960 * Helper macro for USB drivers which do not do anything special in module 961 * init/exit. This eliminates a lot of boilerplate. Each module may only 962 * use this macro once, and calling it replaces module_init() and module_exit() 963 */ 964#define module_usb_driver(__usb_driver) \ 965 module_driver(__usb_driver, usb_register, \ 966 usb_deregister) 967 968extern int usb_register_device_driver(struct usb_device_driver *, 969 struct module *); 970extern void usb_deregister_device_driver(struct usb_device_driver *); 971 972extern int usb_register_dev(struct usb_interface *intf, 973 struct usb_class_driver *class_driver); 974extern void usb_deregister_dev(struct usb_interface *intf, 975 struct usb_class_driver *class_driver); 976 977extern int usb_disabled(void); 978 979/* ----------------------------------------------------------------------- */ 980 981/* 982 * URB support, for asynchronous request completions 983 */ 984 985/* 986 * urb->transfer_flags: 987 * 988 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 989 */ 990#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 991#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 992 * ignored */ 993#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 994#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 995#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 996#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 997 * needed */ 998#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 999 1000/* The following flags are used internally by usbcore and HCDs */ 1001#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1002#define URB_DIR_OUT 0 1003#define URB_DIR_MASK URB_DIR_IN 1004 1005#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1006#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1007#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1008#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1009#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1010#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1011#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1012#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1013 1014struct usb_iso_packet_descriptor { 1015 unsigned int offset; 1016 unsigned int length; /* expected length */ 1017 unsigned int actual_length; 1018 int status; 1019}; 1020 1021struct urb; 1022 1023struct usb_anchor { 1024 struct list_head urb_list; 1025 wait_queue_head_t wait; 1026 spinlock_t lock; 1027 unsigned int poisoned:1; 1028}; 1029 1030static inline void init_usb_anchor(struct usb_anchor *anchor) 1031{ 1032 INIT_LIST_HEAD(&anchor->urb_list); 1033 init_waitqueue_head(&anchor->wait); 1034 spin_lock_init(&anchor->lock); 1035} 1036 1037typedef void (*usb_complete_t)(struct urb *); 1038 1039/** 1040 * struct urb - USB Request Block 1041 * @urb_list: For use by current owner of the URB. 1042 * @anchor_list: membership in the list of an anchor 1043 * @anchor: to anchor URBs to a common mooring 1044 * @ep: Points to the endpoint's data structure. Will eventually 1045 * replace @pipe. 1046 * @pipe: Holds endpoint number, direction, type, and more. 1047 * Create these values with the eight macros available; 1048 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1049 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1050 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1051 * numbers range from zero to fifteen. Note that "in" endpoint two 1052 * is a different endpoint (and pipe) from "out" endpoint two. 1053 * The current configuration controls the existence, type, and 1054 * maximum packet size of any given endpoint. 1055 * @stream_id: the endpoint's stream ID for bulk streams 1056 * @dev: Identifies the USB device to perform the request. 1057 * @status: This is read in non-iso completion functions to get the 1058 * status of the particular request. ISO requests only use it 1059 * to tell whether the URB was unlinked; detailed status for 1060 * each frame is in the fields of the iso_frame-desc. 1061 * @transfer_flags: A variety of flags may be used to affect how URB 1062 * submission, unlinking, or operation are handled. Different 1063 * kinds of URB can use different flags. 1064 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1065 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1066 * (however, do not leave garbage in transfer_buffer even then). 1067 * This buffer must be suitable for DMA; allocate it with 1068 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1069 * of this buffer will be modified. This buffer is used for the data 1070 * stage of control transfers. 1071 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1072 * the device driver is saying that it provided this DMA address, 1073 * which the host controller driver should use in preference to the 1074 * transfer_buffer. 1075 * @sg: scatter gather buffer list 1076 * @num_mapped_sgs: (internal) number of mapped sg entries 1077 * @num_sgs: number of entries in the sg list 1078 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1079 * be broken up into chunks according to the current maximum packet 1080 * size for the endpoint, which is a function of the configuration 1081 * and is encoded in the pipe. When the length is zero, neither 1082 * transfer_buffer nor transfer_dma is used. 1083 * @actual_length: This is read in non-iso completion functions, and 1084 * it tells how many bytes (out of transfer_buffer_length) were 1085 * transferred. It will normally be the same as requested, unless 1086 * either an error was reported or a short read was performed. 1087 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1088 * short reads be reported as errors. 1089 * @setup_packet: Only used for control transfers, this points to eight bytes 1090 * of setup data. Control transfers always start by sending this data 1091 * to the device. Then transfer_buffer is read or written, if needed. 1092 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1093 * this field; setup_packet must point to a valid buffer. 1094 * @start_frame: Returns the initial frame for isochronous transfers. 1095 * @number_of_packets: Lists the number of ISO transfer buffers. 1096 * @interval: Specifies the polling interval for interrupt or isochronous 1097 * transfers. The units are frames (milliseconds) for full and low 1098 * speed devices, and microframes (1/8 millisecond) for highspeed 1099 * and SuperSpeed devices. 1100 * @error_count: Returns the number of ISO transfers that reported errors. 1101 * @context: For use in completion functions. This normally points to 1102 * request-specific driver context. 1103 * @complete: Completion handler. This URB is passed as the parameter to the 1104 * completion function. The completion function may then do what 1105 * it likes with the URB, including resubmitting or freeing it. 1106 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1107 * collect the transfer status for each buffer. 1108 * 1109 * This structure identifies USB transfer requests. URBs must be allocated by 1110 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1111 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1112 * are submitted using usb_submit_urb(), and pending requests may be canceled 1113 * using usb_unlink_urb() or usb_kill_urb(). 1114 * 1115 * Data Transfer Buffers: 1116 * 1117 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1118 * taken from the general page pool. That is provided by transfer_buffer 1119 * (control requests also use setup_packet), and host controller drivers 1120 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1121 * mapping operations can be expensive on some platforms (perhaps using a dma 1122 * bounce buffer or talking to an IOMMU), 1123 * although they're cheap on commodity x86 and ppc hardware. 1124 * 1125 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1126 * which tells the host controller driver that no such mapping is needed for 1127 * the transfer_buffer since 1128 * the device driver is DMA-aware. For example, a device driver might 1129 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1130 * When this transfer flag is provided, host controller drivers will 1131 * attempt to use the dma address found in the transfer_dma 1132 * field rather than determining a dma address themselves. 1133 * 1134 * Note that transfer_buffer must still be set if the controller 1135 * does not support DMA (as indicated by bus.uses_dma) and when talking 1136 * to root hub. If you have to trasfer between highmem zone and the device 1137 * on such controller, create a bounce buffer or bail out with an error. 1138 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1139 * capable, assign NULL to it, so that usbmon knows not to use the value. 1140 * The setup_packet must always be set, so it cannot be located in highmem. 1141 * 1142 * Initialization: 1143 * 1144 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1145 * zero), and complete fields. All URBs must also initialize 1146 * transfer_buffer and transfer_buffer_length. They may provide the 1147 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1148 * to be treated as errors; that flag is invalid for write requests. 1149 * 1150 * Bulk URBs may 1151 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1152 * should always terminate with a short packet, even if it means adding an 1153 * extra zero length packet. 1154 * 1155 * Control URBs must provide a valid pointer in the setup_packet field. 1156 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1157 * beforehand. 1158 * 1159 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1160 * or, for highspeed devices, 125 microsecond units) 1161 * to poll for transfers. After the URB has been submitted, the interval 1162 * field reflects how the transfer was actually scheduled. 1163 * The polling interval may be more frequent than requested. 1164 * For example, some controllers have a maximum interval of 32 milliseconds, 1165 * while others support intervals of up to 1024 milliseconds. 1166 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1167 * endpoints, as well as high speed interrupt endpoints, the encoding of 1168 * the transfer interval in the endpoint descriptor is logarithmic. 1169 * Device drivers must convert that value to linear units themselves.) 1170 * 1171 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1172 * the host controller to schedule the transfer as soon as bandwidth 1173 * utilization allows, and then set start_frame to reflect the actual frame 1174 * selected during submission. Otherwise drivers must specify the start_frame 1175 * and handle the case where the transfer can't begin then. However, drivers 1176 * won't know how bandwidth is currently allocated, and while they can 1177 * find the current frame using usb_get_current_frame_number () they can't 1178 * know the range for that frame number. (Ranges for frame counter values 1179 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1180 * 1181 * Isochronous URBs have a different data transfer model, in part because 1182 * the quality of service is only "best effort". Callers provide specially 1183 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1184 * at the end. Each such packet is an individual ISO transfer. Isochronous 1185 * URBs are normally queued, submitted by drivers to arrange that 1186 * transfers are at least double buffered, and then explicitly resubmitted 1187 * in completion handlers, so 1188 * that data (such as audio or video) streams at as constant a rate as the 1189 * host controller scheduler can support. 1190 * 1191 * Completion Callbacks: 1192 * 1193 * The completion callback is made in_interrupt(), and one of the first 1194 * things that a completion handler should do is check the status field. 1195 * The status field is provided for all URBs. It is used to report 1196 * unlinked URBs, and status for all non-ISO transfers. It should not 1197 * be examined before the URB is returned to the completion handler. 1198 * 1199 * The context field is normally used to link URBs back to the relevant 1200 * driver or request state. 1201 * 1202 * When the completion callback is invoked for non-isochronous URBs, the 1203 * actual_length field tells how many bytes were transferred. This field 1204 * is updated even when the URB terminated with an error or was unlinked. 1205 * 1206 * ISO transfer status is reported in the status and actual_length fields 1207 * of the iso_frame_desc array, and the number of errors is reported in 1208 * error_count. Completion callbacks for ISO transfers will normally 1209 * (re)submit URBs to ensure a constant transfer rate. 1210 * 1211 * Note that even fields marked "public" should not be touched by the driver 1212 * when the urb is owned by the hcd, that is, since the call to 1213 * usb_submit_urb() till the entry into the completion routine. 1214 */ 1215struct urb { 1216 /* private: usb core and host controller only fields in the urb */ 1217 struct kref kref; /* reference count of the URB */ 1218 void *hcpriv; /* private data for host controller */ 1219 atomic_t use_count; /* concurrent submissions counter */ 1220 atomic_t reject; /* submissions will fail */ 1221 int unlinked; /* unlink error code */ 1222 1223 /* public: documented fields in the urb that can be used by drivers */ 1224 struct list_head urb_list; /* list head for use by the urb's 1225 * current owner */ 1226 struct list_head anchor_list; /* the URB may be anchored */ 1227 struct usb_anchor *anchor; 1228 struct usb_device *dev; /* (in) pointer to associated device */ 1229 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1230 unsigned int pipe; /* (in) pipe information */ 1231 unsigned int stream_id; /* (in) stream ID */ 1232 int status; /* (return) non-ISO status */ 1233 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1234 void *transfer_buffer; /* (in) associated data buffer */ 1235 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1236 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1237 int num_mapped_sgs; /* (internal) mapped sg entries */ 1238 int num_sgs; /* (in) number of entries in the sg list */ 1239 u32 transfer_buffer_length; /* (in) data buffer length */ 1240 u32 actual_length; /* (return) actual transfer length */ 1241 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1242 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1243 int start_frame; /* (modify) start frame (ISO) */ 1244 int number_of_packets; /* (in) number of ISO packets */ 1245 int interval; /* (modify) transfer interval 1246 * (INT/ISO) */ 1247 int error_count; /* (return) number of ISO errors */ 1248 void *context; /* (in) context for completion */ 1249 usb_complete_t complete; /* (in) completion routine */ 1250 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1251 /* (in) ISO ONLY */ 1252}; 1253 1254/* ----------------------------------------------------------------------- */ 1255 1256/** 1257 * usb_fill_control_urb - initializes a control urb 1258 * @urb: pointer to the urb to initialize. 1259 * @dev: pointer to the struct usb_device for this urb. 1260 * @pipe: the endpoint pipe 1261 * @setup_packet: pointer to the setup_packet buffer 1262 * @transfer_buffer: pointer to the transfer buffer 1263 * @buffer_length: length of the transfer buffer 1264 * @complete_fn: pointer to the usb_complete_t function 1265 * @context: what to set the urb context to. 1266 * 1267 * Initializes a control urb with the proper information needed to submit 1268 * it to a device. 1269 */ 1270static inline void usb_fill_control_urb(struct urb *urb, 1271 struct usb_device *dev, 1272 unsigned int pipe, 1273 unsigned char *setup_packet, 1274 void *transfer_buffer, 1275 int buffer_length, 1276 usb_complete_t complete_fn, 1277 void *context) 1278{ 1279 urb->dev = dev; 1280 urb->pipe = pipe; 1281 urb->setup_packet = setup_packet; 1282 urb->transfer_buffer = transfer_buffer; 1283 urb->transfer_buffer_length = buffer_length; 1284 urb->complete = complete_fn; 1285 urb->context = context; 1286} 1287 1288/** 1289 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1290 * @urb: pointer to the urb to initialize. 1291 * @dev: pointer to the struct usb_device for this urb. 1292 * @pipe: the endpoint pipe 1293 * @transfer_buffer: pointer to the transfer buffer 1294 * @buffer_length: length of the transfer buffer 1295 * @complete_fn: pointer to the usb_complete_t function 1296 * @context: what to set the urb context to. 1297 * 1298 * Initializes a bulk urb with the proper information needed to submit it 1299 * to a device. 1300 */ 1301static inline void usb_fill_bulk_urb(struct urb *urb, 1302 struct usb_device *dev, 1303 unsigned int pipe, 1304 void *transfer_buffer, 1305 int buffer_length, 1306 usb_complete_t complete_fn, 1307 void *context) 1308{ 1309 urb->dev = dev; 1310 urb->pipe = pipe; 1311 urb->transfer_buffer = transfer_buffer; 1312 urb->transfer_buffer_length = buffer_length; 1313 urb->complete = complete_fn; 1314 urb->context = context; 1315} 1316 1317/** 1318 * usb_fill_int_urb - macro to help initialize a interrupt urb 1319 * @urb: pointer to the urb to initialize. 1320 * @dev: pointer to the struct usb_device for this urb. 1321 * @pipe: the endpoint pipe 1322 * @transfer_buffer: pointer to the transfer buffer 1323 * @buffer_length: length of the transfer buffer 1324 * @complete_fn: pointer to the usb_complete_t function 1325 * @context: what to set the urb context to. 1326 * @interval: what to set the urb interval to, encoded like 1327 * the endpoint descriptor's bInterval value. 1328 * 1329 * Initializes a interrupt urb with the proper information needed to submit 1330 * it to a device. 1331 * 1332 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1333 * encoding of the endpoint interval, and express polling intervals in 1334 * microframes (eight per millisecond) rather than in frames (one per 1335 * millisecond). 1336 * 1337 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1338 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1339 * through to the host controller, rather than being translated into microframe 1340 * units. 1341 */ 1342static inline void usb_fill_int_urb(struct urb *urb, 1343 struct usb_device *dev, 1344 unsigned int pipe, 1345 void *transfer_buffer, 1346 int buffer_length, 1347 usb_complete_t complete_fn, 1348 void *context, 1349 int interval) 1350{ 1351 urb->dev = dev; 1352 urb->pipe = pipe; 1353 urb->transfer_buffer = transfer_buffer; 1354 urb->transfer_buffer_length = buffer_length; 1355 urb->complete = complete_fn; 1356 urb->context = context; 1357 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) 1358 urb->interval = 1 << (interval - 1); 1359 else 1360 urb->interval = interval; 1361 urb->start_frame = -1; 1362} 1363 1364extern void usb_init_urb(struct urb *urb); 1365extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1366extern void usb_free_urb(struct urb *urb); 1367#define usb_put_urb usb_free_urb 1368extern struct urb *usb_get_urb(struct urb *urb); 1369extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1370extern int usb_unlink_urb(struct urb *urb); 1371extern void usb_kill_urb(struct urb *urb); 1372extern void usb_poison_urb(struct urb *urb); 1373extern void usb_unpoison_urb(struct urb *urb); 1374extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1375extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1376extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1377extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1378extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1379extern void usb_unanchor_urb(struct urb *urb); 1380extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1381 unsigned int timeout); 1382extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1383extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1384extern int usb_anchor_empty(struct usb_anchor *anchor); 1385 1386/** 1387 * usb_urb_dir_in - check if an URB describes an IN transfer 1388 * @urb: URB to be checked 1389 * 1390 * Returns 1 if @urb describes an IN transfer (device-to-host), 1391 * otherwise 0. 1392 */ 1393static inline int usb_urb_dir_in(struct urb *urb) 1394{ 1395 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1396} 1397 1398/** 1399 * usb_urb_dir_out - check if an URB describes an OUT transfer 1400 * @urb: URB to be checked 1401 * 1402 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1403 * otherwise 0. 1404 */ 1405static inline int usb_urb_dir_out(struct urb *urb) 1406{ 1407 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1408} 1409 1410void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1411 gfp_t mem_flags, dma_addr_t *dma); 1412void usb_free_coherent(struct usb_device *dev, size_t size, 1413 void *addr, dma_addr_t dma); 1414 1415#if 0 1416struct urb *usb_buffer_map(struct urb *urb); 1417void usb_buffer_dmasync(struct urb *urb); 1418void usb_buffer_unmap(struct urb *urb); 1419#endif 1420 1421struct scatterlist; 1422int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1423 struct scatterlist *sg, int nents); 1424#if 0 1425void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1426 struct scatterlist *sg, int n_hw_ents); 1427#endif 1428void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1429 struct scatterlist *sg, int n_hw_ents); 1430 1431/*-------------------------------------------------------------------* 1432 * SYNCHRONOUS CALL SUPPORT * 1433 *-------------------------------------------------------------------*/ 1434 1435extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1436 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1437 void *data, __u16 size, int timeout); 1438extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1439 void *data, int len, int *actual_length, int timeout); 1440extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1441 void *data, int len, int *actual_length, 1442 int timeout); 1443 1444/* wrappers around usb_control_msg() for the most common standard requests */ 1445extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1446 unsigned char descindex, void *buf, int size); 1447extern int usb_get_status(struct usb_device *dev, 1448 int type, int target, void *data); 1449extern int usb_string(struct usb_device *dev, int index, 1450 char *buf, size_t size); 1451 1452/* wrappers that also update important state inside usbcore */ 1453extern int usb_clear_halt(struct usb_device *dev, int pipe); 1454extern int usb_reset_configuration(struct usb_device *dev); 1455extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1456extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1457 1458/* this request isn't really synchronous, but it belongs with the others */ 1459extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1460 1461/* 1462 * timeouts, in milliseconds, used for sending/receiving control messages 1463 * they typically complete within a few frames (msec) after they're issued 1464 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1465 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1466 */ 1467#define USB_CTRL_GET_TIMEOUT 5000 1468#define USB_CTRL_SET_TIMEOUT 5000 1469 1470 1471/** 1472 * struct usb_sg_request - support for scatter/gather I/O 1473 * @status: zero indicates success, else negative errno 1474 * @bytes: counts bytes transferred. 1475 * 1476 * These requests are initialized using usb_sg_init(), and then are used 1477 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1478 * members of the request object aren't for driver access. 1479 * 1480 * The status and bytecount values are valid only after usb_sg_wait() 1481 * returns. If the status is zero, then the bytecount matches the total 1482 * from the request. 1483 * 1484 * After an error completion, drivers may need to clear a halt condition 1485 * on the endpoint. 1486 */ 1487struct usb_sg_request { 1488 int status; 1489 size_t bytes; 1490 1491 /* private: 1492 * members below are private to usbcore, 1493 * and are not provided for driver access! 1494 */ 1495 spinlock_t lock; 1496 1497 struct usb_device *dev; 1498 int pipe; 1499 1500 int entries; 1501 struct urb **urbs; 1502 1503 int count; 1504 struct completion complete; 1505}; 1506 1507int usb_sg_init( 1508 struct usb_sg_request *io, 1509 struct usb_device *dev, 1510 unsigned pipe, 1511 unsigned period, 1512 struct scatterlist *sg, 1513 int nents, 1514 size_t length, 1515 gfp_t mem_flags 1516); 1517void usb_sg_cancel(struct usb_sg_request *io); 1518void usb_sg_wait(struct usb_sg_request *io); 1519 1520 1521/* ----------------------------------------------------------------------- */ 1522 1523/* 1524 * For various legacy reasons, Linux has a small cookie that's paired with 1525 * a struct usb_device to identify an endpoint queue. Queue characteristics 1526 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1527 * an unsigned int encoded as: 1528 * 1529 * - direction: bit 7 (0 = Host-to-Device [Out], 1530 * 1 = Device-to-Host [In] ... 1531 * like endpoint bEndpointAddress) 1532 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1533 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1534 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1535 * 10 = control, 11 = bulk) 1536 * 1537 * Given the device address and endpoint descriptor, pipes are redundant. 1538 */ 1539 1540/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1541/* (yet ... they're the values used by usbfs) */ 1542#define PIPE_ISOCHRONOUS 0 1543#define PIPE_INTERRUPT 1 1544#define PIPE_CONTROL 2 1545#define PIPE_BULK 3 1546 1547#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1548#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1549 1550#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1551#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1552 1553#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1554#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1555#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1556#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1557#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1558 1559static inline unsigned int __create_pipe(struct usb_device *dev, 1560 unsigned int endpoint) 1561{ 1562 return (dev->devnum << 8) | (endpoint << 15); 1563} 1564 1565/* Create various pipes... */ 1566#define usb_sndctrlpipe(dev, endpoint) \ 1567 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1568#define usb_rcvctrlpipe(dev, endpoint) \ 1569 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1570#define usb_sndisocpipe(dev, endpoint) \ 1571 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1572#define usb_rcvisocpipe(dev, endpoint) \ 1573 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1574#define usb_sndbulkpipe(dev, endpoint) \ 1575 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1576#define usb_rcvbulkpipe(dev, endpoint) \ 1577 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1578#define usb_sndintpipe(dev, endpoint) \ 1579 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1580#define usb_rcvintpipe(dev, endpoint) \ 1581 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1582 1583static inline struct usb_host_endpoint * 1584usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1585{ 1586 struct usb_host_endpoint **eps; 1587 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1588 return eps[usb_pipeendpoint(pipe)]; 1589} 1590 1591/*-------------------------------------------------------------------------*/ 1592 1593static inline __u16 1594usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1595{ 1596 struct usb_host_endpoint *ep; 1597 unsigned epnum = usb_pipeendpoint(pipe); 1598 1599 if (is_out) { 1600 WARN_ON(usb_pipein(pipe)); 1601 ep = udev->ep_out[epnum]; 1602 } else { 1603 WARN_ON(usb_pipeout(pipe)); 1604 ep = udev->ep_in[epnum]; 1605 } 1606 if (!ep) 1607 return 0; 1608 1609 /* NOTE: only 0x07ff bits are for packet size... */ 1610 return usb_endpoint_maxp(&ep->desc); 1611} 1612 1613/* ----------------------------------------------------------------------- */ 1614 1615/* translate USB error codes to codes user space understands */ 1616static inline int usb_translate_errors(int error_code) 1617{ 1618 switch (error_code) { 1619 case 0: 1620 case -ENOMEM: 1621 case -ENODEV: 1622 return error_code; 1623 default: 1624 return -EIO; 1625 } 1626} 1627 1628/* Events from the usb core */ 1629#define USB_DEVICE_ADD 0x0001 1630#define USB_DEVICE_REMOVE 0x0002 1631#define USB_BUS_ADD 0x0003 1632#define USB_BUS_REMOVE 0x0004 1633extern void usb_register_notify(struct notifier_block *nb); 1634extern void usb_unregister_notify(struct notifier_block *nb); 1635 1636#ifdef DEBUG 1637#define dbg(format, arg...) \ 1638 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg) 1639#else 1640#define dbg(format, arg...) \ 1641do { \ 1642 if (0) \ 1643 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \ 1644} while (0) 1645#endif 1646 1647#define err(format, arg...) \ 1648 printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg) 1649 1650/* debugfs stuff */ 1651extern struct dentry *usb_debug_root; 1652 1653#endif /* __KERNEL__ */ 1654 1655#endif