at v3.3-rc2 1210 lines 32 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 57 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 58 59 PERF_COUNT_HW_MAX, /* non-ABI */ 60}; 61 62/* 63 * Generalized hardware cache events: 64 * 65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 66 * { read, write, prefetch } x 67 * { accesses, misses } 68 */ 69enum perf_hw_cache_id { 70 PERF_COUNT_HW_CACHE_L1D = 0, 71 PERF_COUNT_HW_CACHE_L1I = 1, 72 PERF_COUNT_HW_CACHE_LL = 2, 73 PERF_COUNT_HW_CACHE_DTLB = 3, 74 PERF_COUNT_HW_CACHE_ITLB = 4, 75 PERF_COUNT_HW_CACHE_BPU = 5, 76 PERF_COUNT_HW_CACHE_NODE = 6, 77 78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 79}; 80 81enum perf_hw_cache_op_id { 82 PERF_COUNT_HW_CACHE_OP_READ = 0, 83 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 85 86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 87}; 88 89enum perf_hw_cache_op_result_id { 90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 92 93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 94}; 95 96/* 97 * Special "software" events provided by the kernel, even if the hardware 98 * does not support performance events. These events measure various 99 * physical and sw events of the kernel (and allow the profiling of them as 100 * well): 101 */ 102enum perf_sw_ids { 103 PERF_COUNT_SW_CPU_CLOCK = 0, 104 PERF_COUNT_SW_TASK_CLOCK = 1, 105 PERF_COUNT_SW_PAGE_FAULTS = 2, 106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 107 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 111 PERF_COUNT_SW_EMULATION_FAULTS = 8, 112 113 PERF_COUNT_SW_MAX, /* non-ABI */ 114}; 115 116/* 117 * Bits that can be set in attr.sample_type to request information 118 * in the overflow packets. 119 */ 120enum perf_event_sample_format { 121 PERF_SAMPLE_IP = 1U << 0, 122 PERF_SAMPLE_TID = 1U << 1, 123 PERF_SAMPLE_TIME = 1U << 2, 124 PERF_SAMPLE_ADDR = 1U << 3, 125 PERF_SAMPLE_READ = 1U << 4, 126 PERF_SAMPLE_CALLCHAIN = 1U << 5, 127 PERF_SAMPLE_ID = 1U << 6, 128 PERF_SAMPLE_CPU = 1U << 7, 129 PERF_SAMPLE_PERIOD = 1U << 8, 130 PERF_SAMPLE_STREAM_ID = 1U << 9, 131 PERF_SAMPLE_RAW = 1U << 10, 132 133 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 134}; 135 136/* 137 * The format of the data returned by read() on a perf event fd, 138 * as specified by attr.read_format: 139 * 140 * struct read_format { 141 * { u64 value; 142 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 143 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 144 * { u64 id; } && PERF_FORMAT_ID 145 * } && !PERF_FORMAT_GROUP 146 * 147 * { u64 nr; 148 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 149 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 150 * { u64 value; 151 * { u64 id; } && PERF_FORMAT_ID 152 * } cntr[nr]; 153 * } && PERF_FORMAT_GROUP 154 * }; 155 */ 156enum perf_event_read_format { 157 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 158 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 159 PERF_FORMAT_ID = 1U << 2, 160 PERF_FORMAT_GROUP = 1U << 3, 161 162 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 163}; 164 165#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 166 167/* 168 * Hardware event_id to monitor via a performance monitoring event: 169 */ 170struct perf_event_attr { 171 172 /* 173 * Major type: hardware/software/tracepoint/etc. 174 */ 175 __u32 type; 176 177 /* 178 * Size of the attr structure, for fwd/bwd compat. 179 */ 180 __u32 size; 181 182 /* 183 * Type specific configuration information. 184 */ 185 __u64 config; 186 187 union { 188 __u64 sample_period; 189 __u64 sample_freq; 190 }; 191 192 __u64 sample_type; 193 __u64 read_format; 194 195 __u64 disabled : 1, /* off by default */ 196 inherit : 1, /* children inherit it */ 197 pinned : 1, /* must always be on PMU */ 198 exclusive : 1, /* only group on PMU */ 199 exclude_user : 1, /* don't count user */ 200 exclude_kernel : 1, /* ditto kernel */ 201 exclude_hv : 1, /* ditto hypervisor */ 202 exclude_idle : 1, /* don't count when idle */ 203 mmap : 1, /* include mmap data */ 204 comm : 1, /* include comm data */ 205 freq : 1, /* use freq, not period */ 206 inherit_stat : 1, /* per task counts */ 207 enable_on_exec : 1, /* next exec enables */ 208 task : 1, /* trace fork/exit */ 209 watermark : 1, /* wakeup_watermark */ 210 /* 211 * precise_ip: 212 * 213 * 0 - SAMPLE_IP can have arbitrary skid 214 * 1 - SAMPLE_IP must have constant skid 215 * 2 - SAMPLE_IP requested to have 0 skid 216 * 3 - SAMPLE_IP must have 0 skid 217 * 218 * See also PERF_RECORD_MISC_EXACT_IP 219 */ 220 precise_ip : 2, /* skid constraint */ 221 mmap_data : 1, /* non-exec mmap data */ 222 sample_id_all : 1, /* sample_type all events */ 223 224 exclude_host : 1, /* don't count in host */ 225 exclude_guest : 1, /* don't count in guest */ 226 227 __reserved_1 : 43; 228 229 union { 230 __u32 wakeup_events; /* wakeup every n events */ 231 __u32 wakeup_watermark; /* bytes before wakeup */ 232 }; 233 234 __u32 bp_type; 235 union { 236 __u64 bp_addr; 237 __u64 config1; /* extension of config */ 238 }; 239 union { 240 __u64 bp_len; 241 __u64 config2; /* extension of config1 */ 242 }; 243}; 244 245/* 246 * Ioctls that can be done on a perf event fd: 247 */ 248#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 249#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 250#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 251#define PERF_EVENT_IOC_RESET _IO ('$', 3) 252#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 253#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 254#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 255 256enum perf_event_ioc_flags { 257 PERF_IOC_FLAG_GROUP = 1U << 0, 258}; 259 260/* 261 * Structure of the page that can be mapped via mmap 262 */ 263struct perf_event_mmap_page { 264 __u32 version; /* version number of this structure */ 265 __u32 compat_version; /* lowest version this is compat with */ 266 267 /* 268 * Bits needed to read the hw events in user-space. 269 * 270 * u32 seq; 271 * s64 count; 272 * 273 * do { 274 * seq = pc->lock; 275 * 276 * barrier() 277 * if (pc->index) { 278 * count = pmc_read(pc->index - 1); 279 * count += pc->offset; 280 * } else 281 * goto regular_read; 282 * 283 * barrier(); 284 * } while (pc->lock != seq); 285 * 286 * NOTE: for obvious reason this only works on self-monitoring 287 * processes. 288 */ 289 __u32 lock; /* seqlock for synchronization */ 290 __u32 index; /* hardware event identifier */ 291 __s64 offset; /* add to hardware event value */ 292 __u64 time_enabled; /* time event active */ 293 __u64 time_running; /* time event on cpu */ 294 295 /* 296 * Hole for extension of the self monitor capabilities 297 */ 298 299 __u64 __reserved[123]; /* align to 1k */ 300 301 /* 302 * Control data for the mmap() data buffer. 303 * 304 * User-space reading the @data_head value should issue an rmb(), on 305 * SMP capable platforms, after reading this value -- see 306 * perf_event_wakeup(). 307 * 308 * When the mapping is PROT_WRITE the @data_tail value should be 309 * written by userspace to reflect the last read data. In this case 310 * the kernel will not over-write unread data. 311 */ 312 __u64 data_head; /* head in the data section */ 313 __u64 data_tail; /* user-space written tail */ 314}; 315 316#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 317#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 318#define PERF_RECORD_MISC_KERNEL (1 << 0) 319#define PERF_RECORD_MISC_USER (2 << 0) 320#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 321#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 322#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 323 324/* 325 * Indicates that the content of PERF_SAMPLE_IP points to 326 * the actual instruction that triggered the event. See also 327 * perf_event_attr::precise_ip. 328 */ 329#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 330/* 331 * Reserve the last bit to indicate some extended misc field 332 */ 333#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 334 335struct perf_event_header { 336 __u32 type; 337 __u16 misc; 338 __u16 size; 339}; 340 341enum perf_event_type { 342 343 /* 344 * If perf_event_attr.sample_id_all is set then all event types will 345 * have the sample_type selected fields related to where/when 346 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) 347 * described in PERF_RECORD_SAMPLE below, it will be stashed just after 348 * the perf_event_header and the fields already present for the existing 349 * fields, i.e. at the end of the payload. That way a newer perf.data 350 * file will be supported by older perf tools, with these new optional 351 * fields being ignored. 352 * 353 * The MMAP events record the PROT_EXEC mappings so that we can 354 * correlate userspace IPs to code. They have the following structure: 355 * 356 * struct { 357 * struct perf_event_header header; 358 * 359 * u32 pid, tid; 360 * u64 addr; 361 * u64 len; 362 * u64 pgoff; 363 * char filename[]; 364 * }; 365 */ 366 PERF_RECORD_MMAP = 1, 367 368 /* 369 * struct { 370 * struct perf_event_header header; 371 * u64 id; 372 * u64 lost; 373 * }; 374 */ 375 PERF_RECORD_LOST = 2, 376 377 /* 378 * struct { 379 * struct perf_event_header header; 380 * 381 * u32 pid, tid; 382 * char comm[]; 383 * }; 384 */ 385 PERF_RECORD_COMM = 3, 386 387 /* 388 * struct { 389 * struct perf_event_header header; 390 * u32 pid, ppid; 391 * u32 tid, ptid; 392 * u64 time; 393 * }; 394 */ 395 PERF_RECORD_EXIT = 4, 396 397 /* 398 * struct { 399 * struct perf_event_header header; 400 * u64 time; 401 * u64 id; 402 * u64 stream_id; 403 * }; 404 */ 405 PERF_RECORD_THROTTLE = 5, 406 PERF_RECORD_UNTHROTTLE = 6, 407 408 /* 409 * struct { 410 * struct perf_event_header header; 411 * u32 pid, ppid; 412 * u32 tid, ptid; 413 * u64 time; 414 * }; 415 */ 416 PERF_RECORD_FORK = 7, 417 418 /* 419 * struct { 420 * struct perf_event_header header; 421 * u32 pid, tid; 422 * 423 * struct read_format values; 424 * }; 425 */ 426 PERF_RECORD_READ = 8, 427 428 /* 429 * struct { 430 * struct perf_event_header header; 431 * 432 * { u64 ip; } && PERF_SAMPLE_IP 433 * { u32 pid, tid; } && PERF_SAMPLE_TID 434 * { u64 time; } && PERF_SAMPLE_TIME 435 * { u64 addr; } && PERF_SAMPLE_ADDR 436 * { u64 id; } && PERF_SAMPLE_ID 437 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 438 * { u32 cpu, res; } && PERF_SAMPLE_CPU 439 * { u64 period; } && PERF_SAMPLE_PERIOD 440 * 441 * { struct read_format values; } && PERF_SAMPLE_READ 442 * 443 * { u64 nr, 444 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 445 * 446 * # 447 * # The RAW record below is opaque data wrt the ABI 448 * # 449 * # That is, the ABI doesn't make any promises wrt to 450 * # the stability of its content, it may vary depending 451 * # on event, hardware, kernel version and phase of 452 * # the moon. 453 * # 454 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 455 * # 456 * 457 * { u32 size; 458 * char data[size];}&& PERF_SAMPLE_RAW 459 * }; 460 */ 461 PERF_RECORD_SAMPLE = 9, 462 463 PERF_RECORD_MAX, /* non-ABI */ 464}; 465 466enum perf_callchain_context { 467 PERF_CONTEXT_HV = (__u64)-32, 468 PERF_CONTEXT_KERNEL = (__u64)-128, 469 PERF_CONTEXT_USER = (__u64)-512, 470 471 PERF_CONTEXT_GUEST = (__u64)-2048, 472 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 473 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 474 475 PERF_CONTEXT_MAX = (__u64)-4095, 476}; 477 478#define PERF_FLAG_FD_NO_GROUP (1U << 0) 479#define PERF_FLAG_FD_OUTPUT (1U << 1) 480#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */ 481 482#ifdef __KERNEL__ 483/* 484 * Kernel-internal data types and definitions: 485 */ 486 487#ifdef CONFIG_PERF_EVENTS 488# include <linux/cgroup.h> 489# include <asm/perf_event.h> 490# include <asm/local64.h> 491#endif 492 493struct perf_guest_info_callbacks { 494 int (*is_in_guest)(void); 495 int (*is_user_mode)(void); 496 unsigned long (*get_guest_ip)(void); 497}; 498 499#ifdef CONFIG_HAVE_HW_BREAKPOINT 500#include <asm/hw_breakpoint.h> 501#endif 502 503#include <linux/list.h> 504#include <linux/mutex.h> 505#include <linux/rculist.h> 506#include <linux/rcupdate.h> 507#include <linux/spinlock.h> 508#include <linux/hrtimer.h> 509#include <linux/fs.h> 510#include <linux/pid_namespace.h> 511#include <linux/workqueue.h> 512#include <linux/ftrace.h> 513#include <linux/cpu.h> 514#include <linux/irq_work.h> 515#include <linux/jump_label.h> 516#include <linux/atomic.h> 517#include <asm/local.h> 518 519#define PERF_MAX_STACK_DEPTH 255 520 521struct perf_callchain_entry { 522 __u64 nr; 523 __u64 ip[PERF_MAX_STACK_DEPTH]; 524}; 525 526struct perf_raw_record { 527 u32 size; 528 void *data; 529}; 530 531struct perf_branch_entry { 532 __u64 from; 533 __u64 to; 534 __u64 flags; 535}; 536 537struct perf_branch_stack { 538 __u64 nr; 539 struct perf_branch_entry entries[0]; 540}; 541 542struct task_struct; 543 544/* 545 * extra PMU register associated with an event 546 */ 547struct hw_perf_event_extra { 548 u64 config; /* register value */ 549 unsigned int reg; /* register address or index */ 550 int alloc; /* extra register already allocated */ 551 int idx; /* index in shared_regs->regs[] */ 552}; 553 554/** 555 * struct hw_perf_event - performance event hardware details: 556 */ 557struct hw_perf_event { 558#ifdef CONFIG_PERF_EVENTS 559 union { 560 struct { /* hardware */ 561 u64 config; 562 u64 last_tag; 563 unsigned long config_base; 564 unsigned long event_base; 565 int idx; 566 int last_cpu; 567 struct hw_perf_event_extra extra_reg; 568 }; 569 struct { /* software */ 570 struct hrtimer hrtimer; 571 }; 572#ifdef CONFIG_HAVE_HW_BREAKPOINT 573 struct { /* breakpoint */ 574 struct arch_hw_breakpoint info; 575 struct list_head bp_list; 576 /* 577 * Crufty hack to avoid the chicken and egg 578 * problem hw_breakpoint has with context 579 * creation and event initalization. 580 */ 581 struct task_struct *bp_target; 582 }; 583#endif 584 }; 585 int state; 586 local64_t prev_count; 587 u64 sample_period; 588 u64 last_period; 589 local64_t period_left; 590 u64 interrupts; 591 592 u64 freq_time_stamp; 593 u64 freq_count_stamp; 594#endif 595}; 596 597/* 598 * hw_perf_event::state flags 599 */ 600#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 601#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 602#define PERF_HES_ARCH 0x04 603 604struct perf_event; 605 606/* 607 * Common implementation detail of pmu::{start,commit,cancel}_txn 608 */ 609#define PERF_EVENT_TXN 0x1 610 611/** 612 * struct pmu - generic performance monitoring unit 613 */ 614struct pmu { 615 struct list_head entry; 616 617 struct device *dev; 618 char *name; 619 int type; 620 621 int * __percpu pmu_disable_count; 622 struct perf_cpu_context * __percpu pmu_cpu_context; 623 int task_ctx_nr; 624 625 /* 626 * Fully disable/enable this PMU, can be used to protect from the PMI 627 * as well as for lazy/batch writing of the MSRs. 628 */ 629 void (*pmu_enable) (struct pmu *pmu); /* optional */ 630 void (*pmu_disable) (struct pmu *pmu); /* optional */ 631 632 /* 633 * Try and initialize the event for this PMU. 634 * Should return -ENOENT when the @event doesn't match this PMU. 635 */ 636 int (*event_init) (struct perf_event *event); 637 638#define PERF_EF_START 0x01 /* start the counter when adding */ 639#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 640#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 641 642 /* 643 * Adds/Removes a counter to/from the PMU, can be done inside 644 * a transaction, see the ->*_txn() methods. 645 */ 646 int (*add) (struct perf_event *event, int flags); 647 void (*del) (struct perf_event *event, int flags); 648 649 /* 650 * Starts/Stops a counter present on the PMU. The PMI handler 651 * should stop the counter when perf_event_overflow() returns 652 * !0. ->start() will be used to continue. 653 */ 654 void (*start) (struct perf_event *event, int flags); 655 void (*stop) (struct perf_event *event, int flags); 656 657 /* 658 * Updates the counter value of the event. 659 */ 660 void (*read) (struct perf_event *event); 661 662 /* 663 * Group events scheduling is treated as a transaction, add 664 * group events as a whole and perform one schedulability test. 665 * If the test fails, roll back the whole group 666 * 667 * Start the transaction, after this ->add() doesn't need to 668 * do schedulability tests. 669 */ 670 void (*start_txn) (struct pmu *pmu); /* optional */ 671 /* 672 * If ->start_txn() disabled the ->add() schedulability test 673 * then ->commit_txn() is required to perform one. On success 674 * the transaction is closed. On error the transaction is kept 675 * open until ->cancel_txn() is called. 676 */ 677 int (*commit_txn) (struct pmu *pmu); /* optional */ 678 /* 679 * Will cancel the transaction, assumes ->del() is called 680 * for each successful ->add() during the transaction. 681 */ 682 void (*cancel_txn) (struct pmu *pmu); /* optional */ 683}; 684 685/** 686 * enum perf_event_active_state - the states of a event 687 */ 688enum perf_event_active_state { 689 PERF_EVENT_STATE_ERROR = -2, 690 PERF_EVENT_STATE_OFF = -1, 691 PERF_EVENT_STATE_INACTIVE = 0, 692 PERF_EVENT_STATE_ACTIVE = 1, 693}; 694 695struct file; 696struct perf_sample_data; 697 698typedef void (*perf_overflow_handler_t)(struct perf_event *, 699 struct perf_sample_data *, 700 struct pt_regs *regs); 701 702enum perf_group_flag { 703 PERF_GROUP_SOFTWARE = 0x1, 704}; 705 706#define SWEVENT_HLIST_BITS 8 707#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 708 709struct swevent_hlist { 710 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 711 struct rcu_head rcu_head; 712}; 713 714#define PERF_ATTACH_CONTEXT 0x01 715#define PERF_ATTACH_GROUP 0x02 716#define PERF_ATTACH_TASK 0x04 717 718#ifdef CONFIG_CGROUP_PERF 719/* 720 * perf_cgroup_info keeps track of time_enabled for a cgroup. 721 * This is a per-cpu dynamically allocated data structure. 722 */ 723struct perf_cgroup_info { 724 u64 time; 725 u64 timestamp; 726}; 727 728struct perf_cgroup { 729 struct cgroup_subsys_state css; 730 struct perf_cgroup_info *info; /* timing info, one per cpu */ 731}; 732#endif 733 734struct ring_buffer; 735 736/** 737 * struct perf_event - performance event kernel representation: 738 */ 739struct perf_event { 740#ifdef CONFIG_PERF_EVENTS 741 struct list_head group_entry; 742 struct list_head event_entry; 743 struct list_head sibling_list; 744 struct hlist_node hlist_entry; 745 int nr_siblings; 746 int group_flags; 747 struct perf_event *group_leader; 748 struct pmu *pmu; 749 750 enum perf_event_active_state state; 751 unsigned int attach_state; 752 local64_t count; 753 atomic64_t child_count; 754 755 /* 756 * These are the total time in nanoseconds that the event 757 * has been enabled (i.e. eligible to run, and the task has 758 * been scheduled in, if this is a per-task event) 759 * and running (scheduled onto the CPU), respectively. 760 * 761 * They are computed from tstamp_enabled, tstamp_running and 762 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 763 */ 764 u64 total_time_enabled; 765 u64 total_time_running; 766 767 /* 768 * These are timestamps used for computing total_time_enabled 769 * and total_time_running when the event is in INACTIVE or 770 * ACTIVE state, measured in nanoseconds from an arbitrary point 771 * in time. 772 * tstamp_enabled: the notional time when the event was enabled 773 * tstamp_running: the notional time when the event was scheduled on 774 * tstamp_stopped: in INACTIVE state, the notional time when the 775 * event was scheduled off. 776 */ 777 u64 tstamp_enabled; 778 u64 tstamp_running; 779 u64 tstamp_stopped; 780 781 /* 782 * timestamp shadows the actual context timing but it can 783 * be safely used in NMI interrupt context. It reflects the 784 * context time as it was when the event was last scheduled in. 785 * 786 * ctx_time already accounts for ctx->timestamp. Therefore to 787 * compute ctx_time for a sample, simply add perf_clock(). 788 */ 789 u64 shadow_ctx_time; 790 791 struct perf_event_attr attr; 792 u16 header_size; 793 u16 id_header_size; 794 u16 read_size; 795 struct hw_perf_event hw; 796 797 struct perf_event_context *ctx; 798 struct file *filp; 799 800 /* 801 * These accumulate total time (in nanoseconds) that children 802 * events have been enabled and running, respectively. 803 */ 804 atomic64_t child_total_time_enabled; 805 atomic64_t child_total_time_running; 806 807 /* 808 * Protect attach/detach and child_list: 809 */ 810 struct mutex child_mutex; 811 struct list_head child_list; 812 struct perf_event *parent; 813 814 int oncpu; 815 int cpu; 816 817 struct list_head owner_entry; 818 struct task_struct *owner; 819 820 /* mmap bits */ 821 struct mutex mmap_mutex; 822 atomic_t mmap_count; 823 int mmap_locked; 824 struct user_struct *mmap_user; 825 struct ring_buffer *rb; 826 struct list_head rb_entry; 827 828 /* poll related */ 829 wait_queue_head_t waitq; 830 struct fasync_struct *fasync; 831 832 /* delayed work for NMIs and such */ 833 int pending_wakeup; 834 int pending_kill; 835 int pending_disable; 836 struct irq_work pending; 837 838 atomic_t event_limit; 839 840 void (*destroy)(struct perf_event *); 841 struct rcu_head rcu_head; 842 843 struct pid_namespace *ns; 844 u64 id; 845 846 perf_overflow_handler_t overflow_handler; 847 void *overflow_handler_context; 848 849#ifdef CONFIG_EVENT_TRACING 850 struct ftrace_event_call *tp_event; 851 struct event_filter *filter; 852#endif 853 854#ifdef CONFIG_CGROUP_PERF 855 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 856 int cgrp_defer_enabled; 857#endif 858 859#endif /* CONFIG_PERF_EVENTS */ 860}; 861 862enum perf_event_context_type { 863 task_context, 864 cpu_context, 865}; 866 867/** 868 * struct perf_event_context - event context structure 869 * 870 * Used as a container for task events and CPU events as well: 871 */ 872struct perf_event_context { 873 struct pmu *pmu; 874 enum perf_event_context_type type; 875 /* 876 * Protect the states of the events in the list, 877 * nr_active, and the list: 878 */ 879 raw_spinlock_t lock; 880 /* 881 * Protect the list of events. Locking either mutex or lock 882 * is sufficient to ensure the list doesn't change; to change 883 * the list you need to lock both the mutex and the spinlock. 884 */ 885 struct mutex mutex; 886 887 struct list_head pinned_groups; 888 struct list_head flexible_groups; 889 struct list_head event_list; 890 int nr_events; 891 int nr_active; 892 int is_active; 893 int nr_stat; 894 int nr_freq; 895 int rotate_disable; 896 atomic_t refcount; 897 struct task_struct *task; 898 899 /* 900 * Context clock, runs when context enabled. 901 */ 902 u64 time; 903 u64 timestamp; 904 905 /* 906 * These fields let us detect when two contexts have both 907 * been cloned (inherited) from a common ancestor. 908 */ 909 struct perf_event_context *parent_ctx; 910 u64 parent_gen; 911 u64 generation; 912 int pin_count; 913 int nr_cgroups; /* cgroup events present */ 914 struct rcu_head rcu_head; 915}; 916 917/* 918 * Number of contexts where an event can trigger: 919 * task, softirq, hardirq, nmi. 920 */ 921#define PERF_NR_CONTEXTS 4 922 923/** 924 * struct perf_event_cpu_context - per cpu event context structure 925 */ 926struct perf_cpu_context { 927 struct perf_event_context ctx; 928 struct perf_event_context *task_ctx; 929 int active_oncpu; 930 int exclusive; 931 struct list_head rotation_list; 932 int jiffies_interval; 933 struct pmu *active_pmu; 934 struct perf_cgroup *cgrp; 935}; 936 937struct perf_output_handle { 938 struct perf_event *event; 939 struct ring_buffer *rb; 940 unsigned long wakeup; 941 unsigned long size; 942 void *addr; 943 int page; 944}; 945 946#ifdef CONFIG_PERF_EVENTS 947 948extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 949extern void perf_pmu_unregister(struct pmu *pmu); 950 951extern int perf_num_counters(void); 952extern const char *perf_pmu_name(void); 953extern void __perf_event_task_sched_in(struct task_struct *prev, 954 struct task_struct *task); 955extern void __perf_event_task_sched_out(struct task_struct *prev, 956 struct task_struct *next); 957extern int perf_event_init_task(struct task_struct *child); 958extern void perf_event_exit_task(struct task_struct *child); 959extern void perf_event_free_task(struct task_struct *task); 960extern void perf_event_delayed_put(struct task_struct *task); 961extern void perf_event_print_debug(void); 962extern void perf_pmu_disable(struct pmu *pmu); 963extern void perf_pmu_enable(struct pmu *pmu); 964extern int perf_event_task_disable(void); 965extern int perf_event_task_enable(void); 966extern int perf_event_refresh(struct perf_event *event, int refresh); 967extern void perf_event_update_userpage(struct perf_event *event); 968extern int perf_event_release_kernel(struct perf_event *event); 969extern struct perf_event * 970perf_event_create_kernel_counter(struct perf_event_attr *attr, 971 int cpu, 972 struct task_struct *task, 973 perf_overflow_handler_t callback, 974 void *context); 975extern u64 perf_event_read_value(struct perf_event *event, 976 u64 *enabled, u64 *running); 977 978struct perf_sample_data { 979 u64 type; 980 981 u64 ip; 982 struct { 983 u32 pid; 984 u32 tid; 985 } tid_entry; 986 u64 time; 987 u64 addr; 988 u64 id; 989 u64 stream_id; 990 struct { 991 u32 cpu; 992 u32 reserved; 993 } cpu_entry; 994 u64 period; 995 struct perf_callchain_entry *callchain; 996 struct perf_raw_record *raw; 997}; 998 999static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr) 1000{ 1001 data->addr = addr; 1002 data->raw = NULL; 1003} 1004 1005extern void perf_output_sample(struct perf_output_handle *handle, 1006 struct perf_event_header *header, 1007 struct perf_sample_data *data, 1008 struct perf_event *event); 1009extern void perf_prepare_sample(struct perf_event_header *header, 1010 struct perf_sample_data *data, 1011 struct perf_event *event, 1012 struct pt_regs *regs); 1013 1014extern int perf_event_overflow(struct perf_event *event, 1015 struct perf_sample_data *data, 1016 struct pt_regs *regs); 1017 1018static inline bool is_sampling_event(struct perf_event *event) 1019{ 1020 return event->attr.sample_period != 0; 1021} 1022 1023/* 1024 * Return 1 for a software event, 0 for a hardware event 1025 */ 1026static inline int is_software_event(struct perf_event *event) 1027{ 1028 return event->pmu->task_ctx_nr == perf_sw_context; 1029} 1030 1031extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1032 1033extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1034 1035#ifndef perf_arch_fetch_caller_regs 1036static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1037#endif 1038 1039/* 1040 * Take a snapshot of the regs. Skip ip and frame pointer to 1041 * the nth caller. We only need a few of the regs: 1042 * - ip for PERF_SAMPLE_IP 1043 * - cs for user_mode() tests 1044 * - bp for callchains 1045 * - eflags, for future purposes, just in case 1046 */ 1047static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1048{ 1049 memset(regs, 0, sizeof(*regs)); 1050 1051 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1052} 1053 1054static __always_inline void 1055perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1056{ 1057 struct pt_regs hot_regs; 1058 1059 if (static_branch(&perf_swevent_enabled[event_id])) { 1060 if (!regs) { 1061 perf_fetch_caller_regs(&hot_regs); 1062 regs = &hot_regs; 1063 } 1064 __perf_sw_event(event_id, nr, regs, addr); 1065 } 1066} 1067 1068extern struct jump_label_key_deferred perf_sched_events; 1069 1070static inline void perf_event_task_sched_in(struct task_struct *prev, 1071 struct task_struct *task) 1072{ 1073 if (static_branch(&perf_sched_events.key)) 1074 __perf_event_task_sched_in(prev, task); 1075} 1076 1077static inline void perf_event_task_sched_out(struct task_struct *prev, 1078 struct task_struct *next) 1079{ 1080 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 1081 1082 if (static_branch(&perf_sched_events.key)) 1083 __perf_event_task_sched_out(prev, next); 1084} 1085 1086extern void perf_event_mmap(struct vm_area_struct *vma); 1087extern struct perf_guest_info_callbacks *perf_guest_cbs; 1088extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1089extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1090 1091extern void perf_event_comm(struct task_struct *tsk); 1092extern void perf_event_fork(struct task_struct *tsk); 1093 1094/* Callchains */ 1095DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1096 1097extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 1098extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 1099 1100static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1101{ 1102 if (entry->nr < PERF_MAX_STACK_DEPTH) 1103 entry->ip[entry->nr++] = ip; 1104} 1105 1106extern int sysctl_perf_event_paranoid; 1107extern int sysctl_perf_event_mlock; 1108extern int sysctl_perf_event_sample_rate; 1109 1110extern int perf_proc_update_handler(struct ctl_table *table, int write, 1111 void __user *buffer, size_t *lenp, 1112 loff_t *ppos); 1113 1114static inline bool perf_paranoid_tracepoint_raw(void) 1115{ 1116 return sysctl_perf_event_paranoid > -1; 1117} 1118 1119static inline bool perf_paranoid_cpu(void) 1120{ 1121 return sysctl_perf_event_paranoid > 0; 1122} 1123 1124static inline bool perf_paranoid_kernel(void) 1125{ 1126 return sysctl_perf_event_paranoid > 1; 1127} 1128 1129extern void perf_event_init(void); 1130extern void perf_tp_event(u64 addr, u64 count, void *record, 1131 int entry_size, struct pt_regs *regs, 1132 struct hlist_head *head, int rctx); 1133extern void perf_bp_event(struct perf_event *event, void *data); 1134 1135#ifndef perf_misc_flags 1136# define perf_misc_flags(regs) \ 1137 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1138# define perf_instruction_pointer(regs) instruction_pointer(regs) 1139#endif 1140 1141extern int perf_output_begin(struct perf_output_handle *handle, 1142 struct perf_event *event, unsigned int size); 1143extern void perf_output_end(struct perf_output_handle *handle); 1144extern void perf_output_copy(struct perf_output_handle *handle, 1145 const void *buf, unsigned int len); 1146extern int perf_swevent_get_recursion_context(void); 1147extern void perf_swevent_put_recursion_context(int rctx); 1148extern void perf_event_enable(struct perf_event *event); 1149extern void perf_event_disable(struct perf_event *event); 1150extern void perf_event_task_tick(void); 1151#else 1152static inline void 1153perf_event_task_sched_in(struct task_struct *prev, 1154 struct task_struct *task) { } 1155static inline void 1156perf_event_task_sched_out(struct task_struct *prev, 1157 struct task_struct *next) { } 1158static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1159static inline void perf_event_exit_task(struct task_struct *child) { } 1160static inline void perf_event_free_task(struct task_struct *task) { } 1161static inline void perf_event_delayed_put(struct task_struct *task) { } 1162static inline void perf_event_print_debug(void) { } 1163static inline int perf_event_task_disable(void) { return -EINVAL; } 1164static inline int perf_event_task_enable(void) { return -EINVAL; } 1165static inline int perf_event_refresh(struct perf_event *event, int refresh) 1166{ 1167 return -EINVAL; 1168} 1169 1170static inline void 1171perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1172static inline void 1173perf_bp_event(struct perf_event *event, void *data) { } 1174 1175static inline int perf_register_guest_info_callbacks 1176(struct perf_guest_info_callbacks *callbacks) { return 0; } 1177static inline int perf_unregister_guest_info_callbacks 1178(struct perf_guest_info_callbacks *callbacks) { return 0; } 1179 1180static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1181static inline void perf_event_comm(struct task_struct *tsk) { } 1182static inline void perf_event_fork(struct task_struct *tsk) { } 1183static inline void perf_event_init(void) { } 1184static inline int perf_swevent_get_recursion_context(void) { return -1; } 1185static inline void perf_swevent_put_recursion_context(int rctx) { } 1186static inline void perf_event_enable(struct perf_event *event) { } 1187static inline void perf_event_disable(struct perf_event *event) { } 1188static inline void perf_event_task_tick(void) { } 1189#endif 1190 1191#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1192 1193/* 1194 * This has to have a higher priority than migration_notifier in sched.c. 1195 */ 1196#define perf_cpu_notifier(fn) \ 1197do { \ 1198 static struct notifier_block fn##_nb __cpuinitdata = \ 1199 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1200 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1201 (void *)(unsigned long)smp_processor_id()); \ 1202 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1203 (void *)(unsigned long)smp_processor_id()); \ 1204 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1205 (void *)(unsigned long)smp_processor_id()); \ 1206 register_cpu_notifier(&fn##_nb); \ 1207} while (0) 1208 1209#endif /* __KERNEL__ */ 1210#endif /* _LINUX_PERF_EVENT_H */