Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37};
38
39/*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
57 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
58
59 PERF_COUNT_HW_MAX, /* non-ABI */
60};
61
62/*
63 * Generalized hardware cache events:
64 *
65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66 * { read, write, prefetch } x
67 * { accesses, misses }
68 */
69enum perf_hw_cache_id {
70 PERF_COUNT_HW_CACHE_L1D = 0,
71 PERF_COUNT_HW_CACHE_L1I = 1,
72 PERF_COUNT_HW_CACHE_LL = 2,
73 PERF_COUNT_HW_CACHE_DTLB = 3,
74 PERF_COUNT_HW_CACHE_ITLB = 4,
75 PERF_COUNT_HW_CACHE_BPU = 5,
76 PERF_COUNT_HW_CACHE_NODE = 6,
77
78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
79};
80
81enum perf_hw_cache_op_id {
82 PERF_COUNT_HW_CACHE_OP_READ = 0,
83 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85
86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
87};
88
89enum perf_hw_cache_op_result_id {
90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92
93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
94};
95
96/*
97 * Special "software" events provided by the kernel, even if the hardware
98 * does not support performance events. These events measure various
99 * physical and sw events of the kernel (and allow the profiling of them as
100 * well):
101 */
102enum perf_sw_ids {
103 PERF_COUNT_SW_CPU_CLOCK = 0,
104 PERF_COUNT_SW_TASK_CLOCK = 1,
105 PERF_COUNT_SW_PAGE_FAULTS = 2,
106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
107 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
111 PERF_COUNT_SW_EMULATION_FAULTS = 8,
112
113 PERF_COUNT_SW_MAX, /* non-ABI */
114};
115
116/*
117 * Bits that can be set in attr.sample_type to request information
118 * in the overflow packets.
119 */
120enum perf_event_sample_format {
121 PERF_SAMPLE_IP = 1U << 0,
122 PERF_SAMPLE_TID = 1U << 1,
123 PERF_SAMPLE_TIME = 1U << 2,
124 PERF_SAMPLE_ADDR = 1U << 3,
125 PERF_SAMPLE_READ = 1U << 4,
126 PERF_SAMPLE_CALLCHAIN = 1U << 5,
127 PERF_SAMPLE_ID = 1U << 6,
128 PERF_SAMPLE_CPU = 1U << 7,
129 PERF_SAMPLE_PERIOD = 1U << 8,
130 PERF_SAMPLE_STREAM_ID = 1U << 9,
131 PERF_SAMPLE_RAW = 1U << 10,
132
133 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
134};
135
136/*
137 * The format of the data returned by read() on a perf event fd,
138 * as specified by attr.read_format:
139 *
140 * struct read_format {
141 * { u64 value;
142 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
143 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
144 * { u64 id; } && PERF_FORMAT_ID
145 * } && !PERF_FORMAT_GROUP
146 *
147 * { u64 nr;
148 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
149 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
150 * { u64 value;
151 * { u64 id; } && PERF_FORMAT_ID
152 * } cntr[nr];
153 * } && PERF_FORMAT_GROUP
154 * };
155 */
156enum perf_event_read_format {
157 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
158 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
159 PERF_FORMAT_ID = 1U << 2,
160 PERF_FORMAT_GROUP = 1U << 3,
161
162 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
163};
164
165#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
166
167/*
168 * Hardware event_id to monitor via a performance monitoring event:
169 */
170struct perf_event_attr {
171
172 /*
173 * Major type: hardware/software/tracepoint/etc.
174 */
175 __u32 type;
176
177 /*
178 * Size of the attr structure, for fwd/bwd compat.
179 */
180 __u32 size;
181
182 /*
183 * Type specific configuration information.
184 */
185 __u64 config;
186
187 union {
188 __u64 sample_period;
189 __u64 sample_freq;
190 };
191
192 __u64 sample_type;
193 __u64 read_format;
194
195 __u64 disabled : 1, /* off by default */
196 inherit : 1, /* children inherit it */
197 pinned : 1, /* must always be on PMU */
198 exclusive : 1, /* only group on PMU */
199 exclude_user : 1, /* don't count user */
200 exclude_kernel : 1, /* ditto kernel */
201 exclude_hv : 1, /* ditto hypervisor */
202 exclude_idle : 1, /* don't count when idle */
203 mmap : 1, /* include mmap data */
204 comm : 1, /* include comm data */
205 freq : 1, /* use freq, not period */
206 inherit_stat : 1, /* per task counts */
207 enable_on_exec : 1, /* next exec enables */
208 task : 1, /* trace fork/exit */
209 watermark : 1, /* wakeup_watermark */
210 /*
211 * precise_ip:
212 *
213 * 0 - SAMPLE_IP can have arbitrary skid
214 * 1 - SAMPLE_IP must have constant skid
215 * 2 - SAMPLE_IP requested to have 0 skid
216 * 3 - SAMPLE_IP must have 0 skid
217 *
218 * See also PERF_RECORD_MISC_EXACT_IP
219 */
220 precise_ip : 2, /* skid constraint */
221 mmap_data : 1, /* non-exec mmap data */
222 sample_id_all : 1, /* sample_type all events */
223
224 exclude_host : 1, /* don't count in host */
225 exclude_guest : 1, /* don't count in guest */
226
227 __reserved_1 : 43;
228
229 union {
230 __u32 wakeup_events; /* wakeup every n events */
231 __u32 wakeup_watermark; /* bytes before wakeup */
232 };
233
234 __u32 bp_type;
235 union {
236 __u64 bp_addr;
237 __u64 config1; /* extension of config */
238 };
239 union {
240 __u64 bp_len;
241 __u64 config2; /* extension of config1 */
242 };
243};
244
245/*
246 * Ioctls that can be done on a perf event fd:
247 */
248#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
249#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
250#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
251#define PERF_EVENT_IOC_RESET _IO ('$', 3)
252#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
253#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
254#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
255
256enum perf_event_ioc_flags {
257 PERF_IOC_FLAG_GROUP = 1U << 0,
258};
259
260/*
261 * Structure of the page that can be mapped via mmap
262 */
263struct perf_event_mmap_page {
264 __u32 version; /* version number of this structure */
265 __u32 compat_version; /* lowest version this is compat with */
266
267 /*
268 * Bits needed to read the hw events in user-space.
269 *
270 * u32 seq;
271 * s64 count;
272 *
273 * do {
274 * seq = pc->lock;
275 *
276 * barrier()
277 * if (pc->index) {
278 * count = pmc_read(pc->index - 1);
279 * count += pc->offset;
280 * } else
281 * goto regular_read;
282 *
283 * barrier();
284 * } while (pc->lock != seq);
285 *
286 * NOTE: for obvious reason this only works on self-monitoring
287 * processes.
288 */
289 __u32 lock; /* seqlock for synchronization */
290 __u32 index; /* hardware event identifier */
291 __s64 offset; /* add to hardware event value */
292 __u64 time_enabled; /* time event active */
293 __u64 time_running; /* time event on cpu */
294
295 /*
296 * Hole for extension of the self monitor capabilities
297 */
298
299 __u64 __reserved[123]; /* align to 1k */
300
301 /*
302 * Control data for the mmap() data buffer.
303 *
304 * User-space reading the @data_head value should issue an rmb(), on
305 * SMP capable platforms, after reading this value -- see
306 * perf_event_wakeup().
307 *
308 * When the mapping is PROT_WRITE the @data_tail value should be
309 * written by userspace to reflect the last read data. In this case
310 * the kernel will not over-write unread data.
311 */
312 __u64 data_head; /* head in the data section */
313 __u64 data_tail; /* user-space written tail */
314};
315
316#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
317#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
318#define PERF_RECORD_MISC_KERNEL (1 << 0)
319#define PERF_RECORD_MISC_USER (2 << 0)
320#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
321#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
322#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
323
324/*
325 * Indicates that the content of PERF_SAMPLE_IP points to
326 * the actual instruction that triggered the event. See also
327 * perf_event_attr::precise_ip.
328 */
329#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
330/*
331 * Reserve the last bit to indicate some extended misc field
332 */
333#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
334
335struct perf_event_header {
336 __u32 type;
337 __u16 misc;
338 __u16 size;
339};
340
341enum perf_event_type {
342
343 /*
344 * If perf_event_attr.sample_id_all is set then all event types will
345 * have the sample_type selected fields related to where/when
346 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
347 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
348 * the perf_event_header and the fields already present for the existing
349 * fields, i.e. at the end of the payload. That way a newer perf.data
350 * file will be supported by older perf tools, with these new optional
351 * fields being ignored.
352 *
353 * The MMAP events record the PROT_EXEC mappings so that we can
354 * correlate userspace IPs to code. They have the following structure:
355 *
356 * struct {
357 * struct perf_event_header header;
358 *
359 * u32 pid, tid;
360 * u64 addr;
361 * u64 len;
362 * u64 pgoff;
363 * char filename[];
364 * };
365 */
366 PERF_RECORD_MMAP = 1,
367
368 /*
369 * struct {
370 * struct perf_event_header header;
371 * u64 id;
372 * u64 lost;
373 * };
374 */
375 PERF_RECORD_LOST = 2,
376
377 /*
378 * struct {
379 * struct perf_event_header header;
380 *
381 * u32 pid, tid;
382 * char comm[];
383 * };
384 */
385 PERF_RECORD_COMM = 3,
386
387 /*
388 * struct {
389 * struct perf_event_header header;
390 * u32 pid, ppid;
391 * u32 tid, ptid;
392 * u64 time;
393 * };
394 */
395 PERF_RECORD_EXIT = 4,
396
397 /*
398 * struct {
399 * struct perf_event_header header;
400 * u64 time;
401 * u64 id;
402 * u64 stream_id;
403 * };
404 */
405 PERF_RECORD_THROTTLE = 5,
406 PERF_RECORD_UNTHROTTLE = 6,
407
408 /*
409 * struct {
410 * struct perf_event_header header;
411 * u32 pid, ppid;
412 * u32 tid, ptid;
413 * u64 time;
414 * };
415 */
416 PERF_RECORD_FORK = 7,
417
418 /*
419 * struct {
420 * struct perf_event_header header;
421 * u32 pid, tid;
422 *
423 * struct read_format values;
424 * };
425 */
426 PERF_RECORD_READ = 8,
427
428 /*
429 * struct {
430 * struct perf_event_header header;
431 *
432 * { u64 ip; } && PERF_SAMPLE_IP
433 * { u32 pid, tid; } && PERF_SAMPLE_TID
434 * { u64 time; } && PERF_SAMPLE_TIME
435 * { u64 addr; } && PERF_SAMPLE_ADDR
436 * { u64 id; } && PERF_SAMPLE_ID
437 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
438 * { u32 cpu, res; } && PERF_SAMPLE_CPU
439 * { u64 period; } && PERF_SAMPLE_PERIOD
440 *
441 * { struct read_format values; } && PERF_SAMPLE_READ
442 *
443 * { u64 nr,
444 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
445 *
446 * #
447 * # The RAW record below is opaque data wrt the ABI
448 * #
449 * # That is, the ABI doesn't make any promises wrt to
450 * # the stability of its content, it may vary depending
451 * # on event, hardware, kernel version and phase of
452 * # the moon.
453 * #
454 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
455 * #
456 *
457 * { u32 size;
458 * char data[size];}&& PERF_SAMPLE_RAW
459 * };
460 */
461 PERF_RECORD_SAMPLE = 9,
462
463 PERF_RECORD_MAX, /* non-ABI */
464};
465
466enum perf_callchain_context {
467 PERF_CONTEXT_HV = (__u64)-32,
468 PERF_CONTEXT_KERNEL = (__u64)-128,
469 PERF_CONTEXT_USER = (__u64)-512,
470
471 PERF_CONTEXT_GUEST = (__u64)-2048,
472 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
473 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
474
475 PERF_CONTEXT_MAX = (__u64)-4095,
476};
477
478#define PERF_FLAG_FD_NO_GROUP (1U << 0)
479#define PERF_FLAG_FD_OUTPUT (1U << 1)
480#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
481
482#ifdef __KERNEL__
483/*
484 * Kernel-internal data types and definitions:
485 */
486
487#ifdef CONFIG_PERF_EVENTS
488# include <linux/cgroup.h>
489# include <asm/perf_event.h>
490# include <asm/local64.h>
491#endif
492
493struct perf_guest_info_callbacks {
494 int (*is_in_guest)(void);
495 int (*is_user_mode)(void);
496 unsigned long (*get_guest_ip)(void);
497};
498
499#ifdef CONFIG_HAVE_HW_BREAKPOINT
500#include <asm/hw_breakpoint.h>
501#endif
502
503#include <linux/list.h>
504#include <linux/mutex.h>
505#include <linux/rculist.h>
506#include <linux/rcupdate.h>
507#include <linux/spinlock.h>
508#include <linux/hrtimer.h>
509#include <linux/fs.h>
510#include <linux/pid_namespace.h>
511#include <linux/workqueue.h>
512#include <linux/ftrace.h>
513#include <linux/cpu.h>
514#include <linux/irq_work.h>
515#include <linux/jump_label.h>
516#include <linux/atomic.h>
517#include <asm/local.h>
518
519#define PERF_MAX_STACK_DEPTH 255
520
521struct perf_callchain_entry {
522 __u64 nr;
523 __u64 ip[PERF_MAX_STACK_DEPTH];
524};
525
526struct perf_raw_record {
527 u32 size;
528 void *data;
529};
530
531struct perf_branch_entry {
532 __u64 from;
533 __u64 to;
534 __u64 flags;
535};
536
537struct perf_branch_stack {
538 __u64 nr;
539 struct perf_branch_entry entries[0];
540};
541
542struct task_struct;
543
544/*
545 * extra PMU register associated with an event
546 */
547struct hw_perf_event_extra {
548 u64 config; /* register value */
549 unsigned int reg; /* register address or index */
550 int alloc; /* extra register already allocated */
551 int idx; /* index in shared_regs->regs[] */
552};
553
554/**
555 * struct hw_perf_event - performance event hardware details:
556 */
557struct hw_perf_event {
558#ifdef CONFIG_PERF_EVENTS
559 union {
560 struct { /* hardware */
561 u64 config;
562 u64 last_tag;
563 unsigned long config_base;
564 unsigned long event_base;
565 int idx;
566 int last_cpu;
567 struct hw_perf_event_extra extra_reg;
568 };
569 struct { /* software */
570 struct hrtimer hrtimer;
571 };
572#ifdef CONFIG_HAVE_HW_BREAKPOINT
573 struct { /* breakpoint */
574 struct arch_hw_breakpoint info;
575 struct list_head bp_list;
576 /*
577 * Crufty hack to avoid the chicken and egg
578 * problem hw_breakpoint has with context
579 * creation and event initalization.
580 */
581 struct task_struct *bp_target;
582 };
583#endif
584 };
585 int state;
586 local64_t prev_count;
587 u64 sample_period;
588 u64 last_period;
589 local64_t period_left;
590 u64 interrupts;
591
592 u64 freq_time_stamp;
593 u64 freq_count_stamp;
594#endif
595};
596
597/*
598 * hw_perf_event::state flags
599 */
600#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
601#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
602#define PERF_HES_ARCH 0x04
603
604struct perf_event;
605
606/*
607 * Common implementation detail of pmu::{start,commit,cancel}_txn
608 */
609#define PERF_EVENT_TXN 0x1
610
611/**
612 * struct pmu - generic performance monitoring unit
613 */
614struct pmu {
615 struct list_head entry;
616
617 struct device *dev;
618 char *name;
619 int type;
620
621 int * __percpu pmu_disable_count;
622 struct perf_cpu_context * __percpu pmu_cpu_context;
623 int task_ctx_nr;
624
625 /*
626 * Fully disable/enable this PMU, can be used to protect from the PMI
627 * as well as for lazy/batch writing of the MSRs.
628 */
629 void (*pmu_enable) (struct pmu *pmu); /* optional */
630 void (*pmu_disable) (struct pmu *pmu); /* optional */
631
632 /*
633 * Try and initialize the event for this PMU.
634 * Should return -ENOENT when the @event doesn't match this PMU.
635 */
636 int (*event_init) (struct perf_event *event);
637
638#define PERF_EF_START 0x01 /* start the counter when adding */
639#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
640#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
641
642 /*
643 * Adds/Removes a counter to/from the PMU, can be done inside
644 * a transaction, see the ->*_txn() methods.
645 */
646 int (*add) (struct perf_event *event, int flags);
647 void (*del) (struct perf_event *event, int flags);
648
649 /*
650 * Starts/Stops a counter present on the PMU. The PMI handler
651 * should stop the counter when perf_event_overflow() returns
652 * !0. ->start() will be used to continue.
653 */
654 void (*start) (struct perf_event *event, int flags);
655 void (*stop) (struct perf_event *event, int flags);
656
657 /*
658 * Updates the counter value of the event.
659 */
660 void (*read) (struct perf_event *event);
661
662 /*
663 * Group events scheduling is treated as a transaction, add
664 * group events as a whole and perform one schedulability test.
665 * If the test fails, roll back the whole group
666 *
667 * Start the transaction, after this ->add() doesn't need to
668 * do schedulability tests.
669 */
670 void (*start_txn) (struct pmu *pmu); /* optional */
671 /*
672 * If ->start_txn() disabled the ->add() schedulability test
673 * then ->commit_txn() is required to perform one. On success
674 * the transaction is closed. On error the transaction is kept
675 * open until ->cancel_txn() is called.
676 */
677 int (*commit_txn) (struct pmu *pmu); /* optional */
678 /*
679 * Will cancel the transaction, assumes ->del() is called
680 * for each successful ->add() during the transaction.
681 */
682 void (*cancel_txn) (struct pmu *pmu); /* optional */
683};
684
685/**
686 * enum perf_event_active_state - the states of a event
687 */
688enum perf_event_active_state {
689 PERF_EVENT_STATE_ERROR = -2,
690 PERF_EVENT_STATE_OFF = -1,
691 PERF_EVENT_STATE_INACTIVE = 0,
692 PERF_EVENT_STATE_ACTIVE = 1,
693};
694
695struct file;
696struct perf_sample_data;
697
698typedef void (*perf_overflow_handler_t)(struct perf_event *,
699 struct perf_sample_data *,
700 struct pt_regs *regs);
701
702enum perf_group_flag {
703 PERF_GROUP_SOFTWARE = 0x1,
704};
705
706#define SWEVENT_HLIST_BITS 8
707#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
708
709struct swevent_hlist {
710 struct hlist_head heads[SWEVENT_HLIST_SIZE];
711 struct rcu_head rcu_head;
712};
713
714#define PERF_ATTACH_CONTEXT 0x01
715#define PERF_ATTACH_GROUP 0x02
716#define PERF_ATTACH_TASK 0x04
717
718#ifdef CONFIG_CGROUP_PERF
719/*
720 * perf_cgroup_info keeps track of time_enabled for a cgroup.
721 * This is a per-cpu dynamically allocated data structure.
722 */
723struct perf_cgroup_info {
724 u64 time;
725 u64 timestamp;
726};
727
728struct perf_cgroup {
729 struct cgroup_subsys_state css;
730 struct perf_cgroup_info *info; /* timing info, one per cpu */
731};
732#endif
733
734struct ring_buffer;
735
736/**
737 * struct perf_event - performance event kernel representation:
738 */
739struct perf_event {
740#ifdef CONFIG_PERF_EVENTS
741 struct list_head group_entry;
742 struct list_head event_entry;
743 struct list_head sibling_list;
744 struct hlist_node hlist_entry;
745 int nr_siblings;
746 int group_flags;
747 struct perf_event *group_leader;
748 struct pmu *pmu;
749
750 enum perf_event_active_state state;
751 unsigned int attach_state;
752 local64_t count;
753 atomic64_t child_count;
754
755 /*
756 * These are the total time in nanoseconds that the event
757 * has been enabled (i.e. eligible to run, and the task has
758 * been scheduled in, if this is a per-task event)
759 * and running (scheduled onto the CPU), respectively.
760 *
761 * They are computed from tstamp_enabled, tstamp_running and
762 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
763 */
764 u64 total_time_enabled;
765 u64 total_time_running;
766
767 /*
768 * These are timestamps used for computing total_time_enabled
769 * and total_time_running when the event is in INACTIVE or
770 * ACTIVE state, measured in nanoseconds from an arbitrary point
771 * in time.
772 * tstamp_enabled: the notional time when the event was enabled
773 * tstamp_running: the notional time when the event was scheduled on
774 * tstamp_stopped: in INACTIVE state, the notional time when the
775 * event was scheduled off.
776 */
777 u64 tstamp_enabled;
778 u64 tstamp_running;
779 u64 tstamp_stopped;
780
781 /*
782 * timestamp shadows the actual context timing but it can
783 * be safely used in NMI interrupt context. It reflects the
784 * context time as it was when the event was last scheduled in.
785 *
786 * ctx_time already accounts for ctx->timestamp. Therefore to
787 * compute ctx_time for a sample, simply add perf_clock().
788 */
789 u64 shadow_ctx_time;
790
791 struct perf_event_attr attr;
792 u16 header_size;
793 u16 id_header_size;
794 u16 read_size;
795 struct hw_perf_event hw;
796
797 struct perf_event_context *ctx;
798 struct file *filp;
799
800 /*
801 * These accumulate total time (in nanoseconds) that children
802 * events have been enabled and running, respectively.
803 */
804 atomic64_t child_total_time_enabled;
805 atomic64_t child_total_time_running;
806
807 /*
808 * Protect attach/detach and child_list:
809 */
810 struct mutex child_mutex;
811 struct list_head child_list;
812 struct perf_event *parent;
813
814 int oncpu;
815 int cpu;
816
817 struct list_head owner_entry;
818 struct task_struct *owner;
819
820 /* mmap bits */
821 struct mutex mmap_mutex;
822 atomic_t mmap_count;
823 int mmap_locked;
824 struct user_struct *mmap_user;
825 struct ring_buffer *rb;
826 struct list_head rb_entry;
827
828 /* poll related */
829 wait_queue_head_t waitq;
830 struct fasync_struct *fasync;
831
832 /* delayed work for NMIs and such */
833 int pending_wakeup;
834 int pending_kill;
835 int pending_disable;
836 struct irq_work pending;
837
838 atomic_t event_limit;
839
840 void (*destroy)(struct perf_event *);
841 struct rcu_head rcu_head;
842
843 struct pid_namespace *ns;
844 u64 id;
845
846 perf_overflow_handler_t overflow_handler;
847 void *overflow_handler_context;
848
849#ifdef CONFIG_EVENT_TRACING
850 struct ftrace_event_call *tp_event;
851 struct event_filter *filter;
852#endif
853
854#ifdef CONFIG_CGROUP_PERF
855 struct perf_cgroup *cgrp; /* cgroup event is attach to */
856 int cgrp_defer_enabled;
857#endif
858
859#endif /* CONFIG_PERF_EVENTS */
860};
861
862enum perf_event_context_type {
863 task_context,
864 cpu_context,
865};
866
867/**
868 * struct perf_event_context - event context structure
869 *
870 * Used as a container for task events and CPU events as well:
871 */
872struct perf_event_context {
873 struct pmu *pmu;
874 enum perf_event_context_type type;
875 /*
876 * Protect the states of the events in the list,
877 * nr_active, and the list:
878 */
879 raw_spinlock_t lock;
880 /*
881 * Protect the list of events. Locking either mutex or lock
882 * is sufficient to ensure the list doesn't change; to change
883 * the list you need to lock both the mutex and the spinlock.
884 */
885 struct mutex mutex;
886
887 struct list_head pinned_groups;
888 struct list_head flexible_groups;
889 struct list_head event_list;
890 int nr_events;
891 int nr_active;
892 int is_active;
893 int nr_stat;
894 int nr_freq;
895 int rotate_disable;
896 atomic_t refcount;
897 struct task_struct *task;
898
899 /*
900 * Context clock, runs when context enabled.
901 */
902 u64 time;
903 u64 timestamp;
904
905 /*
906 * These fields let us detect when two contexts have both
907 * been cloned (inherited) from a common ancestor.
908 */
909 struct perf_event_context *parent_ctx;
910 u64 parent_gen;
911 u64 generation;
912 int pin_count;
913 int nr_cgroups; /* cgroup events present */
914 struct rcu_head rcu_head;
915};
916
917/*
918 * Number of contexts where an event can trigger:
919 * task, softirq, hardirq, nmi.
920 */
921#define PERF_NR_CONTEXTS 4
922
923/**
924 * struct perf_event_cpu_context - per cpu event context structure
925 */
926struct perf_cpu_context {
927 struct perf_event_context ctx;
928 struct perf_event_context *task_ctx;
929 int active_oncpu;
930 int exclusive;
931 struct list_head rotation_list;
932 int jiffies_interval;
933 struct pmu *active_pmu;
934 struct perf_cgroup *cgrp;
935};
936
937struct perf_output_handle {
938 struct perf_event *event;
939 struct ring_buffer *rb;
940 unsigned long wakeup;
941 unsigned long size;
942 void *addr;
943 int page;
944};
945
946#ifdef CONFIG_PERF_EVENTS
947
948extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
949extern void perf_pmu_unregister(struct pmu *pmu);
950
951extern int perf_num_counters(void);
952extern const char *perf_pmu_name(void);
953extern void __perf_event_task_sched_in(struct task_struct *prev,
954 struct task_struct *task);
955extern void __perf_event_task_sched_out(struct task_struct *prev,
956 struct task_struct *next);
957extern int perf_event_init_task(struct task_struct *child);
958extern void perf_event_exit_task(struct task_struct *child);
959extern void perf_event_free_task(struct task_struct *task);
960extern void perf_event_delayed_put(struct task_struct *task);
961extern void perf_event_print_debug(void);
962extern void perf_pmu_disable(struct pmu *pmu);
963extern void perf_pmu_enable(struct pmu *pmu);
964extern int perf_event_task_disable(void);
965extern int perf_event_task_enable(void);
966extern int perf_event_refresh(struct perf_event *event, int refresh);
967extern void perf_event_update_userpage(struct perf_event *event);
968extern int perf_event_release_kernel(struct perf_event *event);
969extern struct perf_event *
970perf_event_create_kernel_counter(struct perf_event_attr *attr,
971 int cpu,
972 struct task_struct *task,
973 perf_overflow_handler_t callback,
974 void *context);
975extern u64 perf_event_read_value(struct perf_event *event,
976 u64 *enabled, u64 *running);
977
978struct perf_sample_data {
979 u64 type;
980
981 u64 ip;
982 struct {
983 u32 pid;
984 u32 tid;
985 } tid_entry;
986 u64 time;
987 u64 addr;
988 u64 id;
989 u64 stream_id;
990 struct {
991 u32 cpu;
992 u32 reserved;
993 } cpu_entry;
994 u64 period;
995 struct perf_callchain_entry *callchain;
996 struct perf_raw_record *raw;
997};
998
999static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
1000{
1001 data->addr = addr;
1002 data->raw = NULL;
1003}
1004
1005extern void perf_output_sample(struct perf_output_handle *handle,
1006 struct perf_event_header *header,
1007 struct perf_sample_data *data,
1008 struct perf_event *event);
1009extern void perf_prepare_sample(struct perf_event_header *header,
1010 struct perf_sample_data *data,
1011 struct perf_event *event,
1012 struct pt_regs *regs);
1013
1014extern int perf_event_overflow(struct perf_event *event,
1015 struct perf_sample_data *data,
1016 struct pt_regs *regs);
1017
1018static inline bool is_sampling_event(struct perf_event *event)
1019{
1020 return event->attr.sample_period != 0;
1021}
1022
1023/*
1024 * Return 1 for a software event, 0 for a hardware event
1025 */
1026static inline int is_software_event(struct perf_event *event)
1027{
1028 return event->pmu->task_ctx_nr == perf_sw_context;
1029}
1030
1031extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1032
1033extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1034
1035#ifndef perf_arch_fetch_caller_regs
1036static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1037#endif
1038
1039/*
1040 * Take a snapshot of the regs. Skip ip and frame pointer to
1041 * the nth caller. We only need a few of the regs:
1042 * - ip for PERF_SAMPLE_IP
1043 * - cs for user_mode() tests
1044 * - bp for callchains
1045 * - eflags, for future purposes, just in case
1046 */
1047static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1048{
1049 memset(regs, 0, sizeof(*regs));
1050
1051 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1052}
1053
1054static __always_inline void
1055perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1056{
1057 struct pt_regs hot_regs;
1058
1059 if (static_branch(&perf_swevent_enabled[event_id])) {
1060 if (!regs) {
1061 perf_fetch_caller_regs(&hot_regs);
1062 regs = &hot_regs;
1063 }
1064 __perf_sw_event(event_id, nr, regs, addr);
1065 }
1066}
1067
1068extern struct jump_label_key_deferred perf_sched_events;
1069
1070static inline void perf_event_task_sched_in(struct task_struct *prev,
1071 struct task_struct *task)
1072{
1073 if (static_branch(&perf_sched_events.key))
1074 __perf_event_task_sched_in(prev, task);
1075}
1076
1077static inline void perf_event_task_sched_out(struct task_struct *prev,
1078 struct task_struct *next)
1079{
1080 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1081
1082 if (static_branch(&perf_sched_events.key))
1083 __perf_event_task_sched_out(prev, next);
1084}
1085
1086extern void perf_event_mmap(struct vm_area_struct *vma);
1087extern struct perf_guest_info_callbacks *perf_guest_cbs;
1088extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1089extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1090
1091extern void perf_event_comm(struct task_struct *tsk);
1092extern void perf_event_fork(struct task_struct *tsk);
1093
1094/* Callchains */
1095DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1096
1097extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1098extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1099
1100static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1101{
1102 if (entry->nr < PERF_MAX_STACK_DEPTH)
1103 entry->ip[entry->nr++] = ip;
1104}
1105
1106extern int sysctl_perf_event_paranoid;
1107extern int sysctl_perf_event_mlock;
1108extern int sysctl_perf_event_sample_rate;
1109
1110extern int perf_proc_update_handler(struct ctl_table *table, int write,
1111 void __user *buffer, size_t *lenp,
1112 loff_t *ppos);
1113
1114static inline bool perf_paranoid_tracepoint_raw(void)
1115{
1116 return sysctl_perf_event_paranoid > -1;
1117}
1118
1119static inline bool perf_paranoid_cpu(void)
1120{
1121 return sysctl_perf_event_paranoid > 0;
1122}
1123
1124static inline bool perf_paranoid_kernel(void)
1125{
1126 return sysctl_perf_event_paranoid > 1;
1127}
1128
1129extern void perf_event_init(void);
1130extern void perf_tp_event(u64 addr, u64 count, void *record,
1131 int entry_size, struct pt_regs *regs,
1132 struct hlist_head *head, int rctx);
1133extern void perf_bp_event(struct perf_event *event, void *data);
1134
1135#ifndef perf_misc_flags
1136# define perf_misc_flags(regs) \
1137 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1138# define perf_instruction_pointer(regs) instruction_pointer(regs)
1139#endif
1140
1141extern int perf_output_begin(struct perf_output_handle *handle,
1142 struct perf_event *event, unsigned int size);
1143extern void perf_output_end(struct perf_output_handle *handle);
1144extern void perf_output_copy(struct perf_output_handle *handle,
1145 const void *buf, unsigned int len);
1146extern int perf_swevent_get_recursion_context(void);
1147extern void perf_swevent_put_recursion_context(int rctx);
1148extern void perf_event_enable(struct perf_event *event);
1149extern void perf_event_disable(struct perf_event *event);
1150extern void perf_event_task_tick(void);
1151#else
1152static inline void
1153perf_event_task_sched_in(struct task_struct *prev,
1154 struct task_struct *task) { }
1155static inline void
1156perf_event_task_sched_out(struct task_struct *prev,
1157 struct task_struct *next) { }
1158static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1159static inline void perf_event_exit_task(struct task_struct *child) { }
1160static inline void perf_event_free_task(struct task_struct *task) { }
1161static inline void perf_event_delayed_put(struct task_struct *task) { }
1162static inline void perf_event_print_debug(void) { }
1163static inline int perf_event_task_disable(void) { return -EINVAL; }
1164static inline int perf_event_task_enable(void) { return -EINVAL; }
1165static inline int perf_event_refresh(struct perf_event *event, int refresh)
1166{
1167 return -EINVAL;
1168}
1169
1170static inline void
1171perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1172static inline void
1173perf_bp_event(struct perf_event *event, void *data) { }
1174
1175static inline int perf_register_guest_info_callbacks
1176(struct perf_guest_info_callbacks *callbacks) { return 0; }
1177static inline int perf_unregister_guest_info_callbacks
1178(struct perf_guest_info_callbacks *callbacks) { return 0; }
1179
1180static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1181static inline void perf_event_comm(struct task_struct *tsk) { }
1182static inline void perf_event_fork(struct task_struct *tsk) { }
1183static inline void perf_event_init(void) { }
1184static inline int perf_swevent_get_recursion_context(void) { return -1; }
1185static inline void perf_swevent_put_recursion_context(int rctx) { }
1186static inline void perf_event_enable(struct perf_event *event) { }
1187static inline void perf_event_disable(struct perf_event *event) { }
1188static inline void perf_event_task_tick(void) { }
1189#endif
1190
1191#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1192
1193/*
1194 * This has to have a higher priority than migration_notifier in sched.c.
1195 */
1196#define perf_cpu_notifier(fn) \
1197do { \
1198 static struct notifier_block fn##_nb __cpuinitdata = \
1199 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1200 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1201 (void *)(unsigned long)smp_processor_id()); \
1202 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1203 (void *)(unsigned long)smp_processor_id()); \
1204 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1205 (void *)(unsigned long)smp_processor_id()); \
1206 register_cpu_notifier(&fn##_nb); \
1207} while (0)
1208
1209#endif /* __KERNEL__ */
1210#endif /* _LINUX_PERF_EVENT_H */