at v3.3-rc1 27 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/smp.h> 6#include <linux/cpumask.h> 7#include <linux/pfn.h> 8#include <linux/init.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33/* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37#define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40} while (0) 41 42#define get_cpu_ptr(var) ({ \ 43 preempt_disable(); \ 44 this_cpu_ptr(var); }) 45 46#define put_cpu_ptr(var) do { \ 47 (void)(var); \ 48 preempt_enable(); \ 49} while (0) 50 51/* minimum unit size, also is the maximum supported allocation size */ 52#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) 53 54/* 55 * Percpu allocator can serve percpu allocations before slab is 56 * initialized which allows slab to depend on the percpu allocator. 57 * The following two parameters decide how much resource to 58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 59 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 60 */ 61#define PERCPU_DYNAMIC_EARLY_SLOTS 128 62#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 63 64/* 65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 66 * back on the first chunk for dynamic percpu allocation if arch is 67 * manually allocating and mapping it for faster access (as a part of 68 * large page mapping for example). 69 * 70 * The following values give between one and two pages of free space 71 * after typical minimal boot (2-way SMP, single disk and NIC) with 72 * both defconfig and a distro config on x86_64 and 32. More 73 * intelligent way to determine this would be nice. 74 */ 75#if BITS_PER_LONG > 32 76#define PERCPU_DYNAMIC_RESERVE (20 << 10) 77#else 78#define PERCPU_DYNAMIC_RESERVE (12 << 10) 79#endif 80 81extern void *pcpu_base_addr; 82extern const unsigned long *pcpu_unit_offsets; 83 84struct pcpu_group_info { 85 int nr_units; /* aligned # of units */ 86 unsigned long base_offset; /* base address offset */ 87 unsigned int *cpu_map; /* unit->cpu map, empty 88 * entries contain NR_CPUS */ 89}; 90 91struct pcpu_alloc_info { 92 size_t static_size; 93 size_t reserved_size; 94 size_t dyn_size; 95 size_t unit_size; 96 size_t atom_size; 97 size_t alloc_size; 98 size_t __ai_size; /* internal, don't use */ 99 int nr_groups; /* 0 if grouping unnecessary */ 100 struct pcpu_group_info groups[]; 101}; 102 103enum pcpu_fc { 104 PCPU_FC_AUTO, 105 PCPU_FC_EMBED, 106 PCPU_FC_PAGE, 107 108 PCPU_FC_NR, 109}; 110extern const char *pcpu_fc_names[PCPU_FC_NR]; 111 112extern enum pcpu_fc pcpu_chosen_fc; 113 114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 115 size_t align); 116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 119 120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 121 int nr_units); 122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 123 124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 125 void *base_addr); 126 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 129 size_t atom_size, 130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 131 pcpu_fc_alloc_fn_t alloc_fn, 132 pcpu_fc_free_fn_t free_fn); 133#endif 134 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 136extern int __init pcpu_page_first_chunk(size_t reserved_size, 137 pcpu_fc_alloc_fn_t alloc_fn, 138 pcpu_fc_free_fn_t free_fn, 139 pcpu_fc_populate_pte_fn_t populate_pte_fn); 140#endif 141 142/* 143 * Use this to get to a cpu's version of the per-cpu object 144 * dynamically allocated. Non-atomic access to the current CPU's 145 * version should probably be combined with get_cpu()/put_cpu(). 146 */ 147#ifdef CONFIG_SMP 148#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 149#else 150#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 151#endif 152 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 154extern bool is_kernel_percpu_address(unsigned long addr); 155 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 157extern void __init setup_per_cpu_areas(void); 158#endif 159extern void __init percpu_init_late(void); 160 161extern void __percpu *__alloc_percpu(size_t size, size_t align); 162extern void free_percpu(void __percpu *__pdata); 163extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 164 165#define alloc_percpu(type) \ 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 167 168/* 169 * Optional methods for optimized non-lvalue per-cpu variable access. 170 * 171 * @var can be a percpu variable or a field of it and its size should 172 * equal char, int or long. percpu_read() evaluates to a lvalue and 173 * all others to void. 174 * 175 * These operations are guaranteed to be atomic. 176 * The generic versions disable interrupts. Archs are 177 * encouraged to implement single-instruction alternatives which don't 178 * require protection. 179 */ 180#ifndef percpu_read 181# define percpu_read(var) \ 182 ({ \ 183 typeof(var) *pr_ptr__ = &(var); \ 184 typeof(var) pr_ret__; \ 185 pr_ret__ = get_cpu_var(*pr_ptr__); \ 186 put_cpu_var(*pr_ptr__); \ 187 pr_ret__; \ 188 }) 189#endif 190 191#define __percpu_generic_to_op(var, val, op) \ 192do { \ 193 typeof(var) *pgto_ptr__ = &(var); \ 194 get_cpu_var(*pgto_ptr__) op val; \ 195 put_cpu_var(*pgto_ptr__); \ 196} while (0) 197 198#ifndef percpu_write 199# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 200#endif 201 202#ifndef percpu_add 203# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 204#endif 205 206#ifndef percpu_sub 207# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 208#endif 209 210#ifndef percpu_and 211# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 212#endif 213 214#ifndef percpu_or 215# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 216#endif 217 218#ifndef percpu_xor 219# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 220#endif 221 222/* 223 * Branching function to split up a function into a set of functions that 224 * are called for different scalar sizes of the objects handled. 225 */ 226 227extern void __bad_size_call_parameter(void); 228 229#define __pcpu_size_call_return(stem, variable) \ 230({ typeof(variable) pscr_ret__; \ 231 __verify_pcpu_ptr(&(variable)); \ 232 switch(sizeof(variable)) { \ 233 case 1: pscr_ret__ = stem##1(variable);break; \ 234 case 2: pscr_ret__ = stem##2(variable);break; \ 235 case 4: pscr_ret__ = stem##4(variable);break; \ 236 case 8: pscr_ret__ = stem##8(variable);break; \ 237 default: \ 238 __bad_size_call_parameter();break; \ 239 } \ 240 pscr_ret__; \ 241}) 242 243#define __pcpu_size_call_return2(stem, variable, ...) \ 244({ \ 245 typeof(variable) pscr2_ret__; \ 246 __verify_pcpu_ptr(&(variable)); \ 247 switch(sizeof(variable)) { \ 248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 252 default: \ 253 __bad_size_call_parameter(); break; \ 254 } \ 255 pscr2_ret__; \ 256}) 257 258/* 259 * Special handling for cmpxchg_double. cmpxchg_double is passed two 260 * percpu variables. The first has to be aligned to a double word 261 * boundary and the second has to follow directly thereafter. 262 * We enforce this on all architectures even if they don't support 263 * a double cmpxchg instruction, since it's a cheap requirement, and it 264 * avoids breaking the requirement for architectures with the instruction. 265 */ 266#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ 267({ \ 268 bool pdcrb_ret__; \ 269 __verify_pcpu_ptr(&pcp1); \ 270 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ 271 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \ 272 VM_BUG_ON((unsigned long)(&pcp2) != \ 273 (unsigned long)(&pcp1) + sizeof(pcp1)); \ 274 switch(sizeof(pcp1)) { \ 275 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ 276 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ 277 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ 278 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ 279 default: \ 280 __bad_size_call_parameter(); break; \ 281 } \ 282 pdcrb_ret__; \ 283}) 284 285#define __pcpu_size_call(stem, variable, ...) \ 286do { \ 287 __verify_pcpu_ptr(&(variable)); \ 288 switch(sizeof(variable)) { \ 289 case 1: stem##1(variable, __VA_ARGS__);break; \ 290 case 2: stem##2(variable, __VA_ARGS__);break; \ 291 case 4: stem##4(variable, __VA_ARGS__);break; \ 292 case 8: stem##8(variable, __VA_ARGS__);break; \ 293 default: \ 294 __bad_size_call_parameter();break; \ 295 } \ 296} while (0) 297 298/* 299 * Optimized manipulation for memory allocated through the per cpu 300 * allocator or for addresses of per cpu variables. 301 * 302 * These operation guarantee exclusivity of access for other operations 303 * on the *same* processor. The assumption is that per cpu data is only 304 * accessed by a single processor instance (the current one). 305 * 306 * The first group is used for accesses that must be done in a 307 * preemption safe way since we know that the context is not preempt 308 * safe. Interrupts may occur. If the interrupt modifies the variable 309 * too then RMW actions will not be reliable. 310 * 311 * The arch code can provide optimized functions in two ways: 312 * 313 * 1. Override the function completely. F.e. define this_cpu_add(). 314 * The arch must then ensure that the various scalar format passed 315 * are handled correctly. 316 * 317 * 2. Provide functions for certain scalar sizes. F.e. provide 318 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 319 * sized RMW actions. If arch code does not provide operations for 320 * a scalar size then the fallback in the generic code will be 321 * used. 322 */ 323 324#define _this_cpu_generic_read(pcp) \ 325({ typeof(pcp) ret__; \ 326 preempt_disable(); \ 327 ret__ = *this_cpu_ptr(&(pcp)); \ 328 preempt_enable(); \ 329 ret__; \ 330}) 331 332#ifndef this_cpu_read 333# ifndef this_cpu_read_1 334# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 335# endif 336# ifndef this_cpu_read_2 337# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 338# endif 339# ifndef this_cpu_read_4 340# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 341# endif 342# ifndef this_cpu_read_8 343# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 344# endif 345# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 346#endif 347 348#define _this_cpu_generic_to_op(pcp, val, op) \ 349do { \ 350 unsigned long flags; \ 351 local_irq_save(flags); \ 352 *__this_cpu_ptr(&(pcp)) op val; \ 353 local_irq_restore(flags); \ 354} while (0) 355 356#ifndef this_cpu_write 357# ifndef this_cpu_write_1 358# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 359# endif 360# ifndef this_cpu_write_2 361# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 362# endif 363# ifndef this_cpu_write_4 364# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 365# endif 366# ifndef this_cpu_write_8 367# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 368# endif 369# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 370#endif 371 372#ifndef this_cpu_add 373# ifndef this_cpu_add_1 374# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 375# endif 376# ifndef this_cpu_add_2 377# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 378# endif 379# ifndef this_cpu_add_4 380# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 381# endif 382# ifndef this_cpu_add_8 383# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 384# endif 385# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 386#endif 387 388#ifndef this_cpu_sub 389# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 390#endif 391 392#ifndef this_cpu_inc 393# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 394#endif 395 396#ifndef this_cpu_dec 397# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 398#endif 399 400#ifndef this_cpu_and 401# ifndef this_cpu_and_1 402# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 403# endif 404# ifndef this_cpu_and_2 405# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 406# endif 407# ifndef this_cpu_and_4 408# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 409# endif 410# ifndef this_cpu_and_8 411# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 412# endif 413# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 414#endif 415 416#ifndef this_cpu_or 417# ifndef this_cpu_or_1 418# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 419# endif 420# ifndef this_cpu_or_2 421# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 422# endif 423# ifndef this_cpu_or_4 424# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 425# endif 426# ifndef this_cpu_or_8 427# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 428# endif 429# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 430#endif 431 432#ifndef this_cpu_xor 433# ifndef this_cpu_xor_1 434# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 435# endif 436# ifndef this_cpu_xor_2 437# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 438# endif 439# ifndef this_cpu_xor_4 440# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 441# endif 442# ifndef this_cpu_xor_8 443# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 444# endif 445# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 446#endif 447 448#define _this_cpu_generic_add_return(pcp, val) \ 449({ \ 450 typeof(pcp) ret__; \ 451 unsigned long flags; \ 452 local_irq_save(flags); \ 453 __this_cpu_add(pcp, val); \ 454 ret__ = __this_cpu_read(pcp); \ 455 local_irq_restore(flags); \ 456 ret__; \ 457}) 458 459#ifndef this_cpu_add_return 460# ifndef this_cpu_add_return_1 461# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val) 462# endif 463# ifndef this_cpu_add_return_2 464# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val) 465# endif 466# ifndef this_cpu_add_return_4 467# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val) 468# endif 469# ifndef this_cpu_add_return_8 470# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val) 471# endif 472# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 473#endif 474 475#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val)) 476#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 477#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 478 479#define _this_cpu_generic_xchg(pcp, nval) \ 480({ typeof(pcp) ret__; \ 481 unsigned long flags; \ 482 local_irq_save(flags); \ 483 ret__ = __this_cpu_read(pcp); \ 484 __this_cpu_write(pcp, nval); \ 485 local_irq_restore(flags); \ 486 ret__; \ 487}) 488 489#ifndef this_cpu_xchg 490# ifndef this_cpu_xchg_1 491# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 492# endif 493# ifndef this_cpu_xchg_2 494# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 495# endif 496# ifndef this_cpu_xchg_4 497# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 498# endif 499# ifndef this_cpu_xchg_8 500# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 501# endif 502# define this_cpu_xchg(pcp, nval) \ 503 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) 504#endif 505 506#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \ 507({ \ 508 typeof(pcp) ret__; \ 509 unsigned long flags; \ 510 local_irq_save(flags); \ 511 ret__ = __this_cpu_read(pcp); \ 512 if (ret__ == (oval)) \ 513 __this_cpu_write(pcp, nval); \ 514 local_irq_restore(flags); \ 515 ret__; \ 516}) 517 518#ifndef this_cpu_cmpxchg 519# ifndef this_cpu_cmpxchg_1 520# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 521# endif 522# ifndef this_cpu_cmpxchg_2 523# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 524# endif 525# ifndef this_cpu_cmpxchg_4 526# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 527# endif 528# ifndef this_cpu_cmpxchg_8 529# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 530# endif 531# define this_cpu_cmpxchg(pcp, oval, nval) \ 532 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) 533#endif 534 535/* 536 * cmpxchg_double replaces two adjacent scalars at once. The first 537 * two parameters are per cpu variables which have to be of the same 538 * size. A truth value is returned to indicate success or failure 539 * (since a double register result is difficult to handle). There is 540 * very limited hardware support for these operations, so only certain 541 * sizes may work. 542 */ 543#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 544({ \ 545 int ret__; \ 546 unsigned long flags; \ 547 local_irq_save(flags); \ 548 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \ 549 oval1, oval2, nval1, nval2); \ 550 local_irq_restore(flags); \ 551 ret__; \ 552}) 553 554#ifndef this_cpu_cmpxchg_double 555# ifndef this_cpu_cmpxchg_double_1 556# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 557 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 558# endif 559# ifndef this_cpu_cmpxchg_double_2 560# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 561 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 562# endif 563# ifndef this_cpu_cmpxchg_double_4 564# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 565 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 566# endif 567# ifndef this_cpu_cmpxchg_double_8 568# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 569 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 570# endif 571# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 572 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 573#endif 574 575/* 576 * Generic percpu operations for context that are safe from preemption/interrupts. 577 * Either we do not care about races or the caller has the 578 * responsibility of handling preemption/interrupt issues. Arch code can still 579 * override these instructions since the arch per cpu code may be more 580 * efficient and may actually get race freeness for free (that is the 581 * case for x86 for example). 582 * 583 * If there is no other protection through preempt disable and/or 584 * disabling interupts then one of these RMW operations can show unexpected 585 * behavior because the execution thread was rescheduled on another processor 586 * or an interrupt occurred and the same percpu variable was modified from 587 * the interrupt context. 588 */ 589#ifndef __this_cpu_read 590# ifndef __this_cpu_read_1 591# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 592# endif 593# ifndef __this_cpu_read_2 594# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 595# endif 596# ifndef __this_cpu_read_4 597# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 598# endif 599# ifndef __this_cpu_read_8 600# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 601# endif 602# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 603#endif 604 605#define __this_cpu_generic_to_op(pcp, val, op) \ 606do { \ 607 *__this_cpu_ptr(&(pcp)) op val; \ 608} while (0) 609 610#ifndef __this_cpu_write 611# ifndef __this_cpu_write_1 612# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 613# endif 614# ifndef __this_cpu_write_2 615# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 616# endif 617# ifndef __this_cpu_write_4 618# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 619# endif 620# ifndef __this_cpu_write_8 621# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 622# endif 623# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 624#endif 625 626#ifndef __this_cpu_add 627# ifndef __this_cpu_add_1 628# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 629# endif 630# ifndef __this_cpu_add_2 631# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 632# endif 633# ifndef __this_cpu_add_4 634# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 635# endif 636# ifndef __this_cpu_add_8 637# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 638# endif 639# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 640#endif 641 642#ifndef __this_cpu_sub 643# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 644#endif 645 646#ifndef __this_cpu_inc 647# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 648#endif 649 650#ifndef __this_cpu_dec 651# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 652#endif 653 654#ifndef __this_cpu_and 655# ifndef __this_cpu_and_1 656# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 657# endif 658# ifndef __this_cpu_and_2 659# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 660# endif 661# ifndef __this_cpu_and_4 662# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 663# endif 664# ifndef __this_cpu_and_8 665# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 666# endif 667# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 668#endif 669 670#ifndef __this_cpu_or 671# ifndef __this_cpu_or_1 672# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 673# endif 674# ifndef __this_cpu_or_2 675# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 676# endif 677# ifndef __this_cpu_or_4 678# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 679# endif 680# ifndef __this_cpu_or_8 681# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 682# endif 683# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 684#endif 685 686#ifndef __this_cpu_xor 687# ifndef __this_cpu_xor_1 688# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 689# endif 690# ifndef __this_cpu_xor_2 691# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 692# endif 693# ifndef __this_cpu_xor_4 694# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 695# endif 696# ifndef __this_cpu_xor_8 697# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 698# endif 699# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 700#endif 701 702#define __this_cpu_generic_add_return(pcp, val) \ 703({ \ 704 __this_cpu_add(pcp, val); \ 705 __this_cpu_read(pcp); \ 706}) 707 708#ifndef __this_cpu_add_return 709# ifndef __this_cpu_add_return_1 710# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val) 711# endif 712# ifndef __this_cpu_add_return_2 713# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val) 714# endif 715# ifndef __this_cpu_add_return_4 716# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val) 717# endif 718# ifndef __this_cpu_add_return_8 719# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val) 720# endif 721# define __this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 722#endif 723 724#define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val)) 725#define __this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 726#define __this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 727 728#define __this_cpu_generic_xchg(pcp, nval) \ 729({ typeof(pcp) ret__; \ 730 ret__ = __this_cpu_read(pcp); \ 731 __this_cpu_write(pcp, nval); \ 732 ret__; \ 733}) 734 735#ifndef __this_cpu_xchg 736# ifndef __this_cpu_xchg_1 737# define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 738# endif 739# ifndef __this_cpu_xchg_2 740# define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 741# endif 742# ifndef __this_cpu_xchg_4 743# define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 744# endif 745# ifndef __this_cpu_xchg_8 746# define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 747# endif 748# define __this_cpu_xchg(pcp, nval) \ 749 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval) 750#endif 751 752#define __this_cpu_generic_cmpxchg(pcp, oval, nval) \ 753({ \ 754 typeof(pcp) ret__; \ 755 ret__ = __this_cpu_read(pcp); \ 756 if (ret__ == (oval)) \ 757 __this_cpu_write(pcp, nval); \ 758 ret__; \ 759}) 760 761#ifndef __this_cpu_cmpxchg 762# ifndef __this_cpu_cmpxchg_1 763# define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 764# endif 765# ifndef __this_cpu_cmpxchg_2 766# define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 767# endif 768# ifndef __this_cpu_cmpxchg_4 769# define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 770# endif 771# ifndef __this_cpu_cmpxchg_8 772# define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 773# endif 774# define __this_cpu_cmpxchg(pcp, oval, nval) \ 775 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval) 776#endif 777 778#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 779({ \ 780 int __ret = 0; \ 781 if (__this_cpu_read(pcp1) == (oval1) && \ 782 __this_cpu_read(pcp2) == (oval2)) { \ 783 __this_cpu_write(pcp1, (nval1)); \ 784 __this_cpu_write(pcp2, (nval2)); \ 785 __ret = 1; \ 786 } \ 787 (__ret); \ 788}) 789 790#ifndef __this_cpu_cmpxchg_double 791# ifndef __this_cpu_cmpxchg_double_1 792# define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 793 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 794# endif 795# ifndef __this_cpu_cmpxchg_double_2 796# define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 797 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 798# endif 799# ifndef __this_cpu_cmpxchg_double_4 800# define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 801 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 802# endif 803# ifndef __this_cpu_cmpxchg_double_8 804# define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 805 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 806# endif 807# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 808 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 809#endif 810 811#endif /* __LINUX_PERCPU_H */