at v3.3-rc1 32 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef DMAENGINE_H 22#define DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/scatterlist.h> 27#include <linux/bitmap.h> 28#include <asm/page.h> 29 30/** 31 * typedef dma_cookie_t - an opaque DMA cookie 32 * 33 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 34 */ 35typedef s32 dma_cookie_t; 36#define DMA_MIN_COOKIE 1 37#define DMA_MAX_COOKIE INT_MAX 38 39#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 40 41/** 42 * enum dma_status - DMA transaction status 43 * @DMA_SUCCESS: transaction completed successfully 44 * @DMA_IN_PROGRESS: transaction not yet processed 45 * @DMA_PAUSED: transaction is paused 46 * @DMA_ERROR: transaction failed 47 */ 48enum dma_status { 49 DMA_SUCCESS, 50 DMA_IN_PROGRESS, 51 DMA_PAUSED, 52 DMA_ERROR, 53}; 54 55/** 56 * enum dma_transaction_type - DMA transaction types/indexes 57 * 58 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 59 * automatically set as dma devices are registered. 60 */ 61enum dma_transaction_type { 62 DMA_MEMCPY, 63 DMA_XOR, 64 DMA_PQ, 65 DMA_XOR_VAL, 66 DMA_PQ_VAL, 67 DMA_MEMSET, 68 DMA_INTERRUPT, 69 DMA_SG, 70 DMA_PRIVATE, 71 DMA_ASYNC_TX, 72 DMA_SLAVE, 73 DMA_CYCLIC, 74 DMA_INTERLEAVE, 75/* last transaction type for creation of the capabilities mask */ 76 DMA_TX_TYPE_END, 77}; 78 79/** 80 * enum dma_transfer_direction - dma transfer mode and direction indicator 81 * @DMA_MEM_TO_MEM: Async/Memcpy mode 82 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 83 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 84 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 85 */ 86enum dma_transfer_direction { 87 DMA_MEM_TO_MEM, 88 DMA_MEM_TO_DEV, 89 DMA_DEV_TO_MEM, 90 DMA_DEV_TO_DEV, 91 DMA_TRANS_NONE, 92}; 93 94/** 95 * Interleaved Transfer Request 96 * ---------------------------- 97 * A chunk is collection of contiguous bytes to be transfered. 98 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 99 * ICGs may or maynot change between chunks. 100 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 101 * that when repeated an integral number of times, specifies the transfer. 102 * A transfer template is specification of a Frame, the number of times 103 * it is to be repeated and other per-transfer attributes. 104 * 105 * Practically, a client driver would have ready a template for each 106 * type of transfer it is going to need during its lifetime and 107 * set only 'src_start' and 'dst_start' before submitting the requests. 108 * 109 * 110 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 111 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 112 * 113 * == Chunk size 114 * ... ICG 115 */ 116 117/** 118 * struct data_chunk - Element of scatter-gather list that makes a frame. 119 * @size: Number of bytes to read from source. 120 * size_dst := fn(op, size_src), so doesn't mean much for destination. 121 * @icg: Number of bytes to jump after last src/dst address of this 122 * chunk and before first src/dst address for next chunk. 123 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 124 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 125 */ 126struct data_chunk { 127 size_t size; 128 size_t icg; 129}; 130 131/** 132 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 133 * and attributes. 134 * @src_start: Bus address of source for the first chunk. 135 * @dst_start: Bus address of destination for the first chunk. 136 * @dir: Specifies the type of Source and Destination. 137 * @src_inc: If the source address increments after reading from it. 138 * @dst_inc: If the destination address increments after writing to it. 139 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 140 * Otherwise, source is read contiguously (icg ignored). 141 * Ignored if src_inc is false. 142 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 143 * Otherwise, destination is filled contiguously (icg ignored). 144 * Ignored if dst_inc is false. 145 * @numf: Number of frames in this template. 146 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 147 * @sgl: Array of {chunk,icg} pairs that make up a frame. 148 */ 149struct dma_interleaved_template { 150 dma_addr_t src_start; 151 dma_addr_t dst_start; 152 enum dma_transfer_direction dir; 153 bool src_inc; 154 bool dst_inc; 155 bool src_sgl; 156 bool dst_sgl; 157 size_t numf; 158 size_t frame_size; 159 struct data_chunk sgl[0]; 160}; 161 162/** 163 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 164 * control completion, and communicate status. 165 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 166 * this transaction 167 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 168 * acknowledges receipt, i.e. has has a chance to establish any dependency 169 * chains 170 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 171 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 172 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 173 * (if not set, do the source dma-unmapping as page) 174 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 175 * (if not set, do the destination dma-unmapping as page) 176 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 177 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 178 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 179 * sources that were the result of a previous operation, in the case of a PQ 180 * operation it continues the calculation with new sources 181 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 182 * on the result of this operation 183 */ 184enum dma_ctrl_flags { 185 DMA_PREP_INTERRUPT = (1 << 0), 186 DMA_CTRL_ACK = (1 << 1), 187 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 188 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 189 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 190 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 191 DMA_PREP_PQ_DISABLE_P = (1 << 6), 192 DMA_PREP_PQ_DISABLE_Q = (1 << 7), 193 DMA_PREP_CONTINUE = (1 << 8), 194 DMA_PREP_FENCE = (1 << 9), 195}; 196 197/** 198 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 199 * on a running channel. 200 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 201 * @DMA_PAUSE: pause ongoing transfers 202 * @DMA_RESUME: resume paused transfer 203 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 204 * that need to runtime reconfigure the slave channels (as opposed to passing 205 * configuration data in statically from the platform). An additional 206 * argument of struct dma_slave_config must be passed in with this 207 * command. 208 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller 209 * into external start mode. 210 */ 211enum dma_ctrl_cmd { 212 DMA_TERMINATE_ALL, 213 DMA_PAUSE, 214 DMA_RESUME, 215 DMA_SLAVE_CONFIG, 216 FSLDMA_EXTERNAL_START, 217}; 218 219/** 220 * enum sum_check_bits - bit position of pq_check_flags 221 */ 222enum sum_check_bits { 223 SUM_CHECK_P = 0, 224 SUM_CHECK_Q = 1, 225}; 226 227/** 228 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 229 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 230 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 231 */ 232enum sum_check_flags { 233 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 234 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 235}; 236 237 238/** 239 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 240 * See linux/cpumask.h 241 */ 242typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 243 244/** 245 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 246 * @memcpy_count: transaction counter 247 * @bytes_transferred: byte counter 248 */ 249 250struct dma_chan_percpu { 251 /* stats */ 252 unsigned long memcpy_count; 253 unsigned long bytes_transferred; 254}; 255 256/** 257 * struct dma_chan - devices supply DMA channels, clients use them 258 * @device: ptr to the dma device who supplies this channel, always !%NULL 259 * @cookie: last cookie value returned to client 260 * @chan_id: channel ID for sysfs 261 * @dev: class device for sysfs 262 * @device_node: used to add this to the device chan list 263 * @local: per-cpu pointer to a struct dma_chan_percpu 264 * @client-count: how many clients are using this channel 265 * @table_count: number of appearances in the mem-to-mem allocation table 266 * @private: private data for certain client-channel associations 267 */ 268struct dma_chan { 269 struct dma_device *device; 270 dma_cookie_t cookie; 271 272 /* sysfs */ 273 int chan_id; 274 struct dma_chan_dev *dev; 275 276 struct list_head device_node; 277 struct dma_chan_percpu __percpu *local; 278 int client_count; 279 int table_count; 280 void *private; 281}; 282 283/** 284 * struct dma_chan_dev - relate sysfs device node to backing channel device 285 * @chan - driver channel device 286 * @device - sysfs device 287 * @dev_id - parent dma_device dev_id 288 * @idr_ref - reference count to gate release of dma_device dev_id 289 */ 290struct dma_chan_dev { 291 struct dma_chan *chan; 292 struct device device; 293 int dev_id; 294 atomic_t *idr_ref; 295}; 296 297/** 298 * enum dma_slave_buswidth - defines bus with of the DMA slave 299 * device, source or target buses 300 */ 301enum dma_slave_buswidth { 302 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 303 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 304 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 305 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 306 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 307}; 308 309/** 310 * struct dma_slave_config - dma slave channel runtime config 311 * @direction: whether the data shall go in or out on this slave 312 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are 313 * legal values, DMA_BIDIRECTIONAL is not acceptable since we 314 * need to differentiate source and target addresses. 315 * @src_addr: this is the physical address where DMA slave data 316 * should be read (RX), if the source is memory this argument is 317 * ignored. 318 * @dst_addr: this is the physical address where DMA slave data 319 * should be written (TX), if the source is memory this argument 320 * is ignored. 321 * @src_addr_width: this is the width in bytes of the source (RX) 322 * register where DMA data shall be read. If the source 323 * is memory this may be ignored depending on architecture. 324 * Legal values: 1, 2, 4, 8. 325 * @dst_addr_width: same as src_addr_width but for destination 326 * target (TX) mutatis mutandis. 327 * @src_maxburst: the maximum number of words (note: words, as in 328 * units of the src_addr_width member, not bytes) that can be sent 329 * in one burst to the device. Typically something like half the 330 * FIFO depth on I/O peripherals so you don't overflow it. This 331 * may or may not be applicable on memory sources. 332 * @dst_maxburst: same as src_maxburst but for destination target 333 * mutatis mutandis. 334 * 335 * This struct is passed in as configuration data to a DMA engine 336 * in order to set up a certain channel for DMA transport at runtime. 337 * The DMA device/engine has to provide support for an additional 338 * command in the channel config interface, DMA_SLAVE_CONFIG 339 * and this struct will then be passed in as an argument to the 340 * DMA engine device_control() function. 341 * 342 * The rationale for adding configuration information to this struct 343 * is as follows: if it is likely that most DMA slave controllers in 344 * the world will support the configuration option, then make it 345 * generic. If not: if it is fixed so that it be sent in static from 346 * the platform data, then prefer to do that. Else, if it is neither 347 * fixed at runtime, nor generic enough (such as bus mastership on 348 * some CPU family and whatnot) then create a custom slave config 349 * struct and pass that, then make this config a member of that 350 * struct, if applicable. 351 */ 352struct dma_slave_config { 353 enum dma_transfer_direction direction; 354 dma_addr_t src_addr; 355 dma_addr_t dst_addr; 356 enum dma_slave_buswidth src_addr_width; 357 enum dma_slave_buswidth dst_addr_width; 358 u32 src_maxburst; 359 u32 dst_maxburst; 360}; 361 362static inline const char *dma_chan_name(struct dma_chan *chan) 363{ 364 return dev_name(&chan->dev->device); 365} 366 367void dma_chan_cleanup(struct kref *kref); 368 369/** 370 * typedef dma_filter_fn - callback filter for dma_request_channel 371 * @chan: channel to be reviewed 372 * @filter_param: opaque parameter passed through dma_request_channel 373 * 374 * When this optional parameter is specified in a call to dma_request_channel a 375 * suitable channel is passed to this routine for further dispositioning before 376 * being returned. Where 'suitable' indicates a non-busy channel that 377 * satisfies the given capability mask. It returns 'true' to indicate that the 378 * channel is suitable. 379 */ 380typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 381 382typedef void (*dma_async_tx_callback)(void *dma_async_param); 383/** 384 * struct dma_async_tx_descriptor - async transaction descriptor 385 * ---dma generic offload fields--- 386 * @cookie: tracking cookie for this transaction, set to -EBUSY if 387 * this tx is sitting on a dependency list 388 * @flags: flags to augment operation preparation, control completion, and 389 * communicate status 390 * @phys: physical address of the descriptor 391 * @chan: target channel for this operation 392 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 393 * @callback: routine to call after this operation is complete 394 * @callback_param: general parameter to pass to the callback routine 395 * ---async_tx api specific fields--- 396 * @next: at completion submit this descriptor 397 * @parent: pointer to the next level up in the dependency chain 398 * @lock: protect the parent and next pointers 399 */ 400struct dma_async_tx_descriptor { 401 dma_cookie_t cookie; 402 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 403 dma_addr_t phys; 404 struct dma_chan *chan; 405 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 406 dma_async_tx_callback callback; 407 void *callback_param; 408#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 409 struct dma_async_tx_descriptor *next; 410 struct dma_async_tx_descriptor *parent; 411 spinlock_t lock; 412#endif 413}; 414 415#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 416static inline void txd_lock(struct dma_async_tx_descriptor *txd) 417{ 418} 419static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 420{ 421} 422static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 423{ 424 BUG(); 425} 426static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 427{ 428} 429static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 430{ 431} 432static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 433{ 434 return NULL; 435} 436static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 437{ 438 return NULL; 439} 440 441#else 442static inline void txd_lock(struct dma_async_tx_descriptor *txd) 443{ 444 spin_lock_bh(&txd->lock); 445} 446static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 447{ 448 spin_unlock_bh(&txd->lock); 449} 450static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 451{ 452 txd->next = next; 453 next->parent = txd; 454} 455static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 456{ 457 txd->parent = NULL; 458} 459static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 460{ 461 txd->next = NULL; 462} 463static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 464{ 465 return txd->parent; 466} 467static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 468{ 469 return txd->next; 470} 471#endif 472 473/** 474 * struct dma_tx_state - filled in to report the status of 475 * a transfer. 476 * @last: last completed DMA cookie 477 * @used: last issued DMA cookie (i.e. the one in progress) 478 * @residue: the remaining number of bytes left to transmit 479 * on the selected transfer for states DMA_IN_PROGRESS and 480 * DMA_PAUSED if this is implemented in the driver, else 0 481 */ 482struct dma_tx_state { 483 dma_cookie_t last; 484 dma_cookie_t used; 485 u32 residue; 486}; 487 488/** 489 * struct dma_device - info on the entity supplying DMA services 490 * @chancnt: how many DMA channels are supported 491 * @privatecnt: how many DMA channels are requested by dma_request_channel 492 * @channels: the list of struct dma_chan 493 * @global_node: list_head for global dma_device_list 494 * @cap_mask: one or more dma_capability flags 495 * @max_xor: maximum number of xor sources, 0 if no capability 496 * @max_pq: maximum number of PQ sources and PQ-continue capability 497 * @copy_align: alignment shift for memcpy operations 498 * @xor_align: alignment shift for xor operations 499 * @pq_align: alignment shift for pq operations 500 * @fill_align: alignment shift for memset operations 501 * @dev_id: unique device ID 502 * @dev: struct device reference for dma mapping api 503 * @device_alloc_chan_resources: allocate resources and return the 504 * number of allocated descriptors 505 * @device_free_chan_resources: release DMA channel's resources 506 * @device_prep_dma_memcpy: prepares a memcpy operation 507 * @device_prep_dma_xor: prepares a xor operation 508 * @device_prep_dma_xor_val: prepares a xor validation operation 509 * @device_prep_dma_pq: prepares a pq operation 510 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 511 * @device_prep_dma_memset: prepares a memset operation 512 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 513 * @device_prep_slave_sg: prepares a slave dma operation 514 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 515 * The function takes a buffer of size buf_len. The callback function will 516 * be called after period_len bytes have been transferred. 517 * @device_prep_interleaved_dma: Transfer expression in a generic way. 518 * @device_control: manipulate all pending operations on a channel, returns 519 * zero or error code 520 * @device_tx_status: poll for transaction completion, the optional 521 * txstate parameter can be supplied with a pointer to get a 522 * struct with auxiliary transfer status information, otherwise the call 523 * will just return a simple status code 524 * @device_issue_pending: push pending transactions to hardware 525 */ 526struct dma_device { 527 528 unsigned int chancnt; 529 unsigned int privatecnt; 530 struct list_head channels; 531 struct list_head global_node; 532 dma_cap_mask_t cap_mask; 533 unsigned short max_xor; 534 unsigned short max_pq; 535 u8 copy_align; 536 u8 xor_align; 537 u8 pq_align; 538 u8 fill_align; 539 #define DMA_HAS_PQ_CONTINUE (1 << 15) 540 541 int dev_id; 542 struct device *dev; 543 544 int (*device_alloc_chan_resources)(struct dma_chan *chan); 545 void (*device_free_chan_resources)(struct dma_chan *chan); 546 547 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 548 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 549 size_t len, unsigned long flags); 550 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 551 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 552 unsigned int src_cnt, size_t len, unsigned long flags); 553 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 554 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 555 size_t len, enum sum_check_flags *result, unsigned long flags); 556 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 557 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 558 unsigned int src_cnt, const unsigned char *scf, 559 size_t len, unsigned long flags); 560 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 561 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 562 unsigned int src_cnt, const unsigned char *scf, size_t len, 563 enum sum_check_flags *pqres, unsigned long flags); 564 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 565 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 566 unsigned long flags); 567 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 568 struct dma_chan *chan, unsigned long flags); 569 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 570 struct dma_chan *chan, 571 struct scatterlist *dst_sg, unsigned int dst_nents, 572 struct scatterlist *src_sg, unsigned int src_nents, 573 unsigned long flags); 574 575 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 576 struct dma_chan *chan, struct scatterlist *sgl, 577 unsigned int sg_len, enum dma_transfer_direction direction, 578 unsigned long flags); 579 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 580 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 581 size_t period_len, enum dma_transfer_direction direction); 582 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 583 struct dma_chan *chan, struct dma_interleaved_template *xt, 584 unsigned long flags); 585 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 586 unsigned long arg); 587 588 enum dma_status (*device_tx_status)(struct dma_chan *chan, 589 dma_cookie_t cookie, 590 struct dma_tx_state *txstate); 591 void (*device_issue_pending)(struct dma_chan *chan); 592}; 593 594static inline int dmaengine_device_control(struct dma_chan *chan, 595 enum dma_ctrl_cmd cmd, 596 unsigned long arg) 597{ 598 return chan->device->device_control(chan, cmd, arg); 599} 600 601static inline int dmaengine_slave_config(struct dma_chan *chan, 602 struct dma_slave_config *config) 603{ 604 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 605 (unsigned long)config); 606} 607 608static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 609 struct dma_chan *chan, void *buf, size_t len, 610 enum dma_transfer_direction dir, unsigned long flags) 611{ 612 struct scatterlist sg; 613 sg_init_one(&sg, buf, len); 614 615 return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags); 616} 617 618static inline int dmaengine_terminate_all(struct dma_chan *chan) 619{ 620 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 621} 622 623static inline int dmaengine_pause(struct dma_chan *chan) 624{ 625 return dmaengine_device_control(chan, DMA_PAUSE, 0); 626} 627 628static inline int dmaengine_resume(struct dma_chan *chan) 629{ 630 return dmaengine_device_control(chan, DMA_RESUME, 0); 631} 632 633static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 634{ 635 return desc->tx_submit(desc); 636} 637 638static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 639{ 640 size_t mask; 641 642 if (!align) 643 return true; 644 mask = (1 << align) - 1; 645 if (mask & (off1 | off2 | len)) 646 return false; 647 return true; 648} 649 650static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 651 size_t off2, size_t len) 652{ 653 return dmaengine_check_align(dev->copy_align, off1, off2, len); 654} 655 656static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 657 size_t off2, size_t len) 658{ 659 return dmaengine_check_align(dev->xor_align, off1, off2, len); 660} 661 662static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 663 size_t off2, size_t len) 664{ 665 return dmaengine_check_align(dev->pq_align, off1, off2, len); 666} 667 668static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 669 size_t off2, size_t len) 670{ 671 return dmaengine_check_align(dev->fill_align, off1, off2, len); 672} 673 674static inline void 675dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 676{ 677 dma->max_pq = maxpq; 678 if (has_pq_continue) 679 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 680} 681 682static inline bool dmaf_continue(enum dma_ctrl_flags flags) 683{ 684 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 685} 686 687static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 688{ 689 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 690 691 return (flags & mask) == mask; 692} 693 694static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 695{ 696 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 697} 698 699static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 700{ 701 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 702} 703 704/* dma_maxpq - reduce maxpq in the face of continued operations 705 * @dma - dma device with PQ capability 706 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 707 * 708 * When an engine does not support native continuation we need 3 extra 709 * source slots to reuse P and Q with the following coefficients: 710 * 1/ {00} * P : remove P from Q', but use it as a source for P' 711 * 2/ {01} * Q : use Q to continue Q' calculation 712 * 3/ {00} * Q : subtract Q from P' to cancel (2) 713 * 714 * In the case where P is disabled we only need 1 extra source: 715 * 1/ {01} * Q : use Q to continue Q' calculation 716 */ 717static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 718{ 719 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 720 return dma_dev_to_maxpq(dma); 721 else if (dmaf_p_disabled_continue(flags)) 722 return dma_dev_to_maxpq(dma) - 1; 723 else if (dmaf_continue(flags)) 724 return dma_dev_to_maxpq(dma) - 3; 725 BUG(); 726} 727 728/* --- public DMA engine API --- */ 729 730#ifdef CONFIG_DMA_ENGINE 731void dmaengine_get(void); 732void dmaengine_put(void); 733#else 734static inline void dmaengine_get(void) 735{ 736} 737static inline void dmaengine_put(void) 738{ 739} 740#endif 741 742#ifdef CONFIG_NET_DMA 743#define net_dmaengine_get() dmaengine_get() 744#define net_dmaengine_put() dmaengine_put() 745#else 746static inline void net_dmaengine_get(void) 747{ 748} 749static inline void net_dmaengine_put(void) 750{ 751} 752#endif 753 754#ifdef CONFIG_ASYNC_TX_DMA 755#define async_dmaengine_get() dmaengine_get() 756#define async_dmaengine_put() dmaengine_put() 757#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 758#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 759#else 760#define async_dma_find_channel(type) dma_find_channel(type) 761#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 762#else 763static inline void async_dmaengine_get(void) 764{ 765} 766static inline void async_dmaengine_put(void) 767{ 768} 769static inline struct dma_chan * 770async_dma_find_channel(enum dma_transaction_type type) 771{ 772 return NULL; 773} 774#endif /* CONFIG_ASYNC_TX_DMA */ 775 776dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 777 void *dest, void *src, size_t len); 778dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 779 struct page *page, unsigned int offset, void *kdata, size_t len); 780dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 781 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 782 unsigned int src_off, size_t len); 783void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 784 struct dma_chan *chan); 785 786static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 787{ 788 tx->flags |= DMA_CTRL_ACK; 789} 790 791static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 792{ 793 tx->flags &= ~DMA_CTRL_ACK; 794} 795 796static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 797{ 798 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 799} 800 801#define first_dma_cap(mask) __first_dma_cap(&(mask)) 802static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 803{ 804 return min_t(int, DMA_TX_TYPE_END, 805 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 806} 807 808#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 809static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 810{ 811 return min_t(int, DMA_TX_TYPE_END, 812 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 813} 814 815#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 816static inline void 817__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 818{ 819 set_bit(tx_type, dstp->bits); 820} 821 822#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 823static inline void 824__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 825{ 826 clear_bit(tx_type, dstp->bits); 827} 828 829#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 830static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 831{ 832 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 833} 834 835#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 836static inline int 837__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 838{ 839 return test_bit(tx_type, srcp->bits); 840} 841 842#define for_each_dma_cap_mask(cap, mask) \ 843 for ((cap) = first_dma_cap(mask); \ 844 (cap) < DMA_TX_TYPE_END; \ 845 (cap) = next_dma_cap((cap), (mask))) 846 847/** 848 * dma_async_issue_pending - flush pending transactions to HW 849 * @chan: target DMA channel 850 * 851 * This allows drivers to push copies to HW in batches, 852 * reducing MMIO writes where possible. 853 */ 854static inline void dma_async_issue_pending(struct dma_chan *chan) 855{ 856 chan->device->device_issue_pending(chan); 857} 858 859#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 860 861/** 862 * dma_async_is_tx_complete - poll for transaction completion 863 * @chan: DMA channel 864 * @cookie: transaction identifier to check status of 865 * @last: returns last completed cookie, can be NULL 866 * @used: returns last issued cookie, can be NULL 867 * 868 * If @last and @used are passed in, upon return they reflect the driver 869 * internal state and can be used with dma_async_is_complete() to check 870 * the status of multiple cookies without re-checking hardware state. 871 */ 872static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 873 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 874{ 875 struct dma_tx_state state; 876 enum dma_status status; 877 878 status = chan->device->device_tx_status(chan, cookie, &state); 879 if (last) 880 *last = state.last; 881 if (used) 882 *used = state.used; 883 return status; 884} 885 886#define dma_async_memcpy_complete(chan, cookie, last, used)\ 887 dma_async_is_tx_complete(chan, cookie, last, used) 888 889/** 890 * dma_async_is_complete - test a cookie against chan state 891 * @cookie: transaction identifier to test status of 892 * @last_complete: last know completed transaction 893 * @last_used: last cookie value handed out 894 * 895 * dma_async_is_complete() is used in dma_async_memcpy_complete() 896 * the test logic is separated for lightweight testing of multiple cookies 897 */ 898static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 899 dma_cookie_t last_complete, dma_cookie_t last_used) 900{ 901 if (last_complete <= last_used) { 902 if ((cookie <= last_complete) || (cookie > last_used)) 903 return DMA_SUCCESS; 904 } else { 905 if ((cookie <= last_complete) && (cookie > last_used)) 906 return DMA_SUCCESS; 907 } 908 return DMA_IN_PROGRESS; 909} 910 911static inline void 912dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 913{ 914 if (st) { 915 st->last = last; 916 st->used = used; 917 st->residue = residue; 918 } 919} 920 921enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 922#ifdef CONFIG_DMA_ENGINE 923enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 924void dma_issue_pending_all(void); 925struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 926void dma_release_channel(struct dma_chan *chan); 927#else 928static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 929{ 930 return DMA_SUCCESS; 931} 932static inline void dma_issue_pending_all(void) 933{ 934} 935static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, 936 dma_filter_fn fn, void *fn_param) 937{ 938 return NULL; 939} 940static inline void dma_release_channel(struct dma_chan *chan) 941{ 942} 943#endif 944 945/* --- DMA device --- */ 946 947int dma_async_device_register(struct dma_device *device); 948void dma_async_device_unregister(struct dma_device *device); 949void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 950struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 951#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 952 953/* --- Helper iov-locking functions --- */ 954 955struct dma_page_list { 956 char __user *base_address; 957 int nr_pages; 958 struct page **pages; 959}; 960 961struct dma_pinned_list { 962 int nr_iovecs; 963 struct dma_page_list page_list[0]; 964}; 965 966struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 967void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 968 969dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 970 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 971dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 972 struct dma_pinned_list *pinned_list, struct page *page, 973 unsigned int offset, size_t len); 974 975#endif /* DMAENGINE_H */