at v3.2 34 kB view raw
1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19#include <linux/integrity.h> 20#include <linux/ima.h> 21#include <linux/evm.h> 22 23#define MAX_LSM_EVM_XATTR 2 24 25/* Boot-time LSM user choice */ 26static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 27 CONFIG_DEFAULT_SECURITY; 28 29static struct security_operations *security_ops; 30static struct security_operations default_security_ops = { 31 .name = "default", 32}; 33 34static inline int __init verify(struct security_operations *ops) 35{ 36 /* verify the security_operations structure exists */ 37 if (!ops) 38 return -EINVAL; 39 security_fixup_ops(ops); 40 return 0; 41} 42 43static void __init do_security_initcalls(void) 44{ 45 initcall_t *call; 46 call = __security_initcall_start; 47 while (call < __security_initcall_end) { 48 (*call) (); 49 call++; 50 } 51} 52 53/** 54 * security_init - initializes the security framework 55 * 56 * This should be called early in the kernel initialization sequence. 57 */ 58int __init security_init(void) 59{ 60 printk(KERN_INFO "Security Framework initialized\n"); 61 62 security_fixup_ops(&default_security_ops); 63 security_ops = &default_security_ops; 64 do_security_initcalls(); 65 66 return 0; 67} 68 69void reset_security_ops(void) 70{ 71 security_ops = &default_security_ops; 72} 73 74/* Save user chosen LSM */ 75static int __init choose_lsm(char *str) 76{ 77 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 78 return 1; 79} 80__setup("security=", choose_lsm); 81 82/** 83 * security_module_enable - Load given security module on boot ? 84 * @ops: a pointer to the struct security_operations that is to be checked. 85 * 86 * Each LSM must pass this method before registering its own operations 87 * to avoid security registration races. This method may also be used 88 * to check if your LSM is currently loaded during kernel initialization. 89 * 90 * Return true if: 91 * -The passed LSM is the one chosen by user at boot time, 92 * -or the passed LSM is configured as the default and the user did not 93 * choose an alternate LSM at boot time. 94 * Otherwise, return false. 95 */ 96int __init security_module_enable(struct security_operations *ops) 97{ 98 return !strcmp(ops->name, chosen_lsm); 99} 100 101/** 102 * register_security - registers a security framework with the kernel 103 * @ops: a pointer to the struct security_options that is to be registered 104 * 105 * This function allows a security module to register itself with the 106 * kernel security subsystem. Some rudimentary checking is done on the @ops 107 * value passed to this function. You'll need to check first if your LSM 108 * is allowed to register its @ops by calling security_module_enable(@ops). 109 * 110 * If there is already a security module registered with the kernel, 111 * an error will be returned. Otherwise %0 is returned on success. 112 */ 113int __init register_security(struct security_operations *ops) 114{ 115 if (verify(ops)) { 116 printk(KERN_DEBUG "%s could not verify " 117 "security_operations structure.\n", __func__); 118 return -EINVAL; 119 } 120 121 if (security_ops != &default_security_ops) 122 return -EAGAIN; 123 124 security_ops = ops; 125 126 return 0; 127} 128 129/* Security operations */ 130 131int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 132{ 133 return security_ops->ptrace_access_check(child, mode); 134} 135 136int security_ptrace_traceme(struct task_struct *parent) 137{ 138 return security_ops->ptrace_traceme(parent); 139} 140 141int security_capget(struct task_struct *target, 142 kernel_cap_t *effective, 143 kernel_cap_t *inheritable, 144 kernel_cap_t *permitted) 145{ 146 return security_ops->capget(target, effective, inheritable, permitted); 147} 148 149int security_capset(struct cred *new, const struct cred *old, 150 const kernel_cap_t *effective, 151 const kernel_cap_t *inheritable, 152 const kernel_cap_t *permitted) 153{ 154 return security_ops->capset(new, old, 155 effective, inheritable, permitted); 156} 157 158int security_capable(struct user_namespace *ns, const struct cred *cred, 159 int cap) 160{ 161 return security_ops->capable(current, cred, ns, cap, 162 SECURITY_CAP_AUDIT); 163} 164 165int security_real_capable(struct task_struct *tsk, struct user_namespace *ns, 166 int cap) 167{ 168 const struct cred *cred; 169 int ret; 170 171 cred = get_task_cred(tsk); 172 ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT); 173 put_cred(cred); 174 return ret; 175} 176 177int security_real_capable_noaudit(struct task_struct *tsk, 178 struct user_namespace *ns, int cap) 179{ 180 const struct cred *cred; 181 int ret; 182 183 cred = get_task_cred(tsk); 184 ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT); 185 put_cred(cred); 186 return ret; 187} 188 189int security_quotactl(int cmds, int type, int id, struct super_block *sb) 190{ 191 return security_ops->quotactl(cmds, type, id, sb); 192} 193 194int security_quota_on(struct dentry *dentry) 195{ 196 return security_ops->quota_on(dentry); 197} 198 199int security_syslog(int type) 200{ 201 return security_ops->syslog(type); 202} 203 204int security_settime(const struct timespec *ts, const struct timezone *tz) 205{ 206 return security_ops->settime(ts, tz); 207} 208 209int security_vm_enough_memory(long pages) 210{ 211 WARN_ON(current->mm == NULL); 212 return security_ops->vm_enough_memory(current->mm, pages); 213} 214 215int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 216{ 217 WARN_ON(mm == NULL); 218 return security_ops->vm_enough_memory(mm, pages); 219} 220 221int security_vm_enough_memory_kern(long pages) 222{ 223 /* If current->mm is a kernel thread then we will pass NULL, 224 for this specific case that is fine */ 225 return security_ops->vm_enough_memory(current->mm, pages); 226} 227 228int security_bprm_set_creds(struct linux_binprm *bprm) 229{ 230 return security_ops->bprm_set_creds(bprm); 231} 232 233int security_bprm_check(struct linux_binprm *bprm) 234{ 235 int ret; 236 237 ret = security_ops->bprm_check_security(bprm); 238 if (ret) 239 return ret; 240 return ima_bprm_check(bprm); 241} 242 243void security_bprm_committing_creds(struct linux_binprm *bprm) 244{ 245 security_ops->bprm_committing_creds(bprm); 246} 247 248void security_bprm_committed_creds(struct linux_binprm *bprm) 249{ 250 security_ops->bprm_committed_creds(bprm); 251} 252 253int security_bprm_secureexec(struct linux_binprm *bprm) 254{ 255 return security_ops->bprm_secureexec(bprm); 256} 257 258int security_sb_alloc(struct super_block *sb) 259{ 260 return security_ops->sb_alloc_security(sb); 261} 262 263void security_sb_free(struct super_block *sb) 264{ 265 security_ops->sb_free_security(sb); 266} 267 268int security_sb_copy_data(char *orig, char *copy) 269{ 270 return security_ops->sb_copy_data(orig, copy); 271} 272EXPORT_SYMBOL(security_sb_copy_data); 273 274int security_sb_remount(struct super_block *sb, void *data) 275{ 276 return security_ops->sb_remount(sb, data); 277} 278 279int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 280{ 281 return security_ops->sb_kern_mount(sb, flags, data); 282} 283 284int security_sb_show_options(struct seq_file *m, struct super_block *sb) 285{ 286 return security_ops->sb_show_options(m, sb); 287} 288 289int security_sb_statfs(struct dentry *dentry) 290{ 291 return security_ops->sb_statfs(dentry); 292} 293 294int security_sb_mount(char *dev_name, struct path *path, 295 char *type, unsigned long flags, void *data) 296{ 297 return security_ops->sb_mount(dev_name, path, type, flags, data); 298} 299 300int security_sb_umount(struct vfsmount *mnt, int flags) 301{ 302 return security_ops->sb_umount(mnt, flags); 303} 304 305int security_sb_pivotroot(struct path *old_path, struct path *new_path) 306{ 307 return security_ops->sb_pivotroot(old_path, new_path); 308} 309 310int security_sb_set_mnt_opts(struct super_block *sb, 311 struct security_mnt_opts *opts) 312{ 313 return security_ops->sb_set_mnt_opts(sb, opts); 314} 315EXPORT_SYMBOL(security_sb_set_mnt_opts); 316 317void security_sb_clone_mnt_opts(const struct super_block *oldsb, 318 struct super_block *newsb) 319{ 320 security_ops->sb_clone_mnt_opts(oldsb, newsb); 321} 322EXPORT_SYMBOL(security_sb_clone_mnt_opts); 323 324int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 325{ 326 return security_ops->sb_parse_opts_str(options, opts); 327} 328EXPORT_SYMBOL(security_sb_parse_opts_str); 329 330int security_inode_alloc(struct inode *inode) 331{ 332 inode->i_security = NULL; 333 return security_ops->inode_alloc_security(inode); 334} 335 336void security_inode_free(struct inode *inode) 337{ 338 integrity_inode_free(inode); 339 security_ops->inode_free_security(inode); 340} 341 342int security_inode_init_security(struct inode *inode, struct inode *dir, 343 const struct qstr *qstr, 344 const initxattrs initxattrs, void *fs_data) 345{ 346 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 347 struct xattr *lsm_xattr, *evm_xattr, *xattr; 348 int ret; 349 350 if (unlikely(IS_PRIVATE(inode))) 351 return 0; 352 353 memset(new_xattrs, 0, sizeof new_xattrs); 354 if (!initxattrs) 355 return security_ops->inode_init_security(inode, dir, qstr, 356 NULL, NULL, NULL); 357 lsm_xattr = new_xattrs; 358 ret = security_ops->inode_init_security(inode, dir, qstr, 359 &lsm_xattr->name, 360 &lsm_xattr->value, 361 &lsm_xattr->value_len); 362 if (ret) 363 goto out; 364 365 evm_xattr = lsm_xattr + 1; 366 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 367 if (ret) 368 goto out; 369 ret = initxattrs(inode, new_xattrs, fs_data); 370out: 371 for (xattr = new_xattrs; xattr->name != NULL; xattr++) { 372 kfree(xattr->name); 373 kfree(xattr->value); 374 } 375 return (ret == -EOPNOTSUPP) ? 0 : ret; 376} 377EXPORT_SYMBOL(security_inode_init_security); 378 379int security_old_inode_init_security(struct inode *inode, struct inode *dir, 380 const struct qstr *qstr, char **name, 381 void **value, size_t *len) 382{ 383 if (unlikely(IS_PRIVATE(inode))) 384 return -EOPNOTSUPP; 385 return security_ops->inode_init_security(inode, dir, qstr, name, value, 386 len); 387} 388EXPORT_SYMBOL(security_old_inode_init_security); 389 390#ifdef CONFIG_SECURITY_PATH 391int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 392 unsigned int dev) 393{ 394 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 395 return 0; 396 return security_ops->path_mknod(dir, dentry, mode, dev); 397} 398EXPORT_SYMBOL(security_path_mknod); 399 400int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) 401{ 402 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 403 return 0; 404 return security_ops->path_mkdir(dir, dentry, mode); 405} 406EXPORT_SYMBOL(security_path_mkdir); 407 408int security_path_rmdir(struct path *dir, struct dentry *dentry) 409{ 410 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 411 return 0; 412 return security_ops->path_rmdir(dir, dentry); 413} 414 415int security_path_unlink(struct path *dir, struct dentry *dentry) 416{ 417 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 418 return 0; 419 return security_ops->path_unlink(dir, dentry); 420} 421EXPORT_SYMBOL(security_path_unlink); 422 423int security_path_symlink(struct path *dir, struct dentry *dentry, 424 const char *old_name) 425{ 426 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 427 return 0; 428 return security_ops->path_symlink(dir, dentry, old_name); 429} 430 431int security_path_link(struct dentry *old_dentry, struct path *new_dir, 432 struct dentry *new_dentry) 433{ 434 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 435 return 0; 436 return security_ops->path_link(old_dentry, new_dir, new_dentry); 437} 438 439int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 440 struct path *new_dir, struct dentry *new_dentry) 441{ 442 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 443 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 444 return 0; 445 return security_ops->path_rename(old_dir, old_dentry, new_dir, 446 new_dentry); 447} 448EXPORT_SYMBOL(security_path_rename); 449 450int security_path_truncate(struct path *path) 451{ 452 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 453 return 0; 454 return security_ops->path_truncate(path); 455} 456 457int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 458 mode_t mode) 459{ 460 if (unlikely(IS_PRIVATE(dentry->d_inode))) 461 return 0; 462 return security_ops->path_chmod(dentry, mnt, mode); 463} 464 465int security_path_chown(struct path *path, uid_t uid, gid_t gid) 466{ 467 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 468 return 0; 469 return security_ops->path_chown(path, uid, gid); 470} 471 472int security_path_chroot(struct path *path) 473{ 474 return security_ops->path_chroot(path); 475} 476#endif 477 478int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 479{ 480 if (unlikely(IS_PRIVATE(dir))) 481 return 0; 482 return security_ops->inode_create(dir, dentry, mode); 483} 484EXPORT_SYMBOL_GPL(security_inode_create); 485 486int security_inode_link(struct dentry *old_dentry, struct inode *dir, 487 struct dentry *new_dentry) 488{ 489 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 490 return 0; 491 return security_ops->inode_link(old_dentry, dir, new_dentry); 492} 493 494int security_inode_unlink(struct inode *dir, struct dentry *dentry) 495{ 496 if (unlikely(IS_PRIVATE(dentry->d_inode))) 497 return 0; 498 return security_ops->inode_unlink(dir, dentry); 499} 500 501int security_inode_symlink(struct inode *dir, struct dentry *dentry, 502 const char *old_name) 503{ 504 if (unlikely(IS_PRIVATE(dir))) 505 return 0; 506 return security_ops->inode_symlink(dir, dentry, old_name); 507} 508 509int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 510{ 511 if (unlikely(IS_PRIVATE(dir))) 512 return 0; 513 return security_ops->inode_mkdir(dir, dentry, mode); 514} 515EXPORT_SYMBOL_GPL(security_inode_mkdir); 516 517int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 518{ 519 if (unlikely(IS_PRIVATE(dentry->d_inode))) 520 return 0; 521 return security_ops->inode_rmdir(dir, dentry); 522} 523 524int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 525{ 526 if (unlikely(IS_PRIVATE(dir))) 527 return 0; 528 return security_ops->inode_mknod(dir, dentry, mode, dev); 529} 530 531int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 532 struct inode *new_dir, struct dentry *new_dentry) 533{ 534 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 535 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 536 return 0; 537 return security_ops->inode_rename(old_dir, old_dentry, 538 new_dir, new_dentry); 539} 540 541int security_inode_readlink(struct dentry *dentry) 542{ 543 if (unlikely(IS_PRIVATE(dentry->d_inode))) 544 return 0; 545 return security_ops->inode_readlink(dentry); 546} 547 548int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 549{ 550 if (unlikely(IS_PRIVATE(dentry->d_inode))) 551 return 0; 552 return security_ops->inode_follow_link(dentry, nd); 553} 554 555int security_inode_permission(struct inode *inode, int mask) 556{ 557 if (unlikely(IS_PRIVATE(inode))) 558 return 0; 559 return security_ops->inode_permission(inode, mask); 560} 561 562int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 563{ 564 int ret; 565 566 if (unlikely(IS_PRIVATE(dentry->d_inode))) 567 return 0; 568 ret = security_ops->inode_setattr(dentry, attr); 569 if (ret) 570 return ret; 571 return evm_inode_setattr(dentry, attr); 572} 573EXPORT_SYMBOL_GPL(security_inode_setattr); 574 575int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 576{ 577 if (unlikely(IS_PRIVATE(dentry->d_inode))) 578 return 0; 579 return security_ops->inode_getattr(mnt, dentry); 580} 581 582int security_inode_setxattr(struct dentry *dentry, const char *name, 583 const void *value, size_t size, int flags) 584{ 585 int ret; 586 587 if (unlikely(IS_PRIVATE(dentry->d_inode))) 588 return 0; 589 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 590 if (ret) 591 return ret; 592 return evm_inode_setxattr(dentry, name, value, size); 593} 594 595void security_inode_post_setxattr(struct dentry *dentry, const char *name, 596 const void *value, size_t size, int flags) 597{ 598 if (unlikely(IS_PRIVATE(dentry->d_inode))) 599 return; 600 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 601 evm_inode_post_setxattr(dentry, name, value, size); 602} 603 604int security_inode_getxattr(struct dentry *dentry, const char *name) 605{ 606 if (unlikely(IS_PRIVATE(dentry->d_inode))) 607 return 0; 608 return security_ops->inode_getxattr(dentry, name); 609} 610 611int security_inode_listxattr(struct dentry *dentry) 612{ 613 if (unlikely(IS_PRIVATE(dentry->d_inode))) 614 return 0; 615 return security_ops->inode_listxattr(dentry); 616} 617 618int security_inode_removexattr(struct dentry *dentry, const char *name) 619{ 620 int ret; 621 622 if (unlikely(IS_PRIVATE(dentry->d_inode))) 623 return 0; 624 ret = security_ops->inode_removexattr(dentry, name); 625 if (ret) 626 return ret; 627 return evm_inode_removexattr(dentry, name); 628} 629 630int security_inode_need_killpriv(struct dentry *dentry) 631{ 632 return security_ops->inode_need_killpriv(dentry); 633} 634 635int security_inode_killpriv(struct dentry *dentry) 636{ 637 return security_ops->inode_killpriv(dentry); 638} 639 640int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 641{ 642 if (unlikely(IS_PRIVATE(inode))) 643 return -EOPNOTSUPP; 644 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 645} 646 647int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 648{ 649 if (unlikely(IS_PRIVATE(inode))) 650 return -EOPNOTSUPP; 651 return security_ops->inode_setsecurity(inode, name, value, size, flags); 652} 653 654int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 655{ 656 if (unlikely(IS_PRIVATE(inode))) 657 return 0; 658 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 659} 660 661void security_inode_getsecid(const struct inode *inode, u32 *secid) 662{ 663 security_ops->inode_getsecid(inode, secid); 664} 665 666int security_file_permission(struct file *file, int mask) 667{ 668 int ret; 669 670 ret = security_ops->file_permission(file, mask); 671 if (ret) 672 return ret; 673 674 return fsnotify_perm(file, mask); 675} 676 677int security_file_alloc(struct file *file) 678{ 679 return security_ops->file_alloc_security(file); 680} 681 682void security_file_free(struct file *file) 683{ 684 security_ops->file_free_security(file); 685} 686 687int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 688{ 689 return security_ops->file_ioctl(file, cmd, arg); 690} 691 692int security_file_mmap(struct file *file, unsigned long reqprot, 693 unsigned long prot, unsigned long flags, 694 unsigned long addr, unsigned long addr_only) 695{ 696 int ret; 697 698 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 699 if (ret) 700 return ret; 701 return ima_file_mmap(file, prot); 702} 703 704int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 705 unsigned long prot) 706{ 707 return security_ops->file_mprotect(vma, reqprot, prot); 708} 709 710int security_file_lock(struct file *file, unsigned int cmd) 711{ 712 return security_ops->file_lock(file, cmd); 713} 714 715int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 716{ 717 return security_ops->file_fcntl(file, cmd, arg); 718} 719 720int security_file_set_fowner(struct file *file) 721{ 722 return security_ops->file_set_fowner(file); 723} 724 725int security_file_send_sigiotask(struct task_struct *tsk, 726 struct fown_struct *fown, int sig) 727{ 728 return security_ops->file_send_sigiotask(tsk, fown, sig); 729} 730 731int security_file_receive(struct file *file) 732{ 733 return security_ops->file_receive(file); 734} 735 736int security_dentry_open(struct file *file, const struct cred *cred) 737{ 738 int ret; 739 740 ret = security_ops->dentry_open(file, cred); 741 if (ret) 742 return ret; 743 744 return fsnotify_perm(file, MAY_OPEN); 745} 746 747int security_task_create(unsigned long clone_flags) 748{ 749 return security_ops->task_create(clone_flags); 750} 751 752int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 753{ 754 return security_ops->cred_alloc_blank(cred, gfp); 755} 756 757void security_cred_free(struct cred *cred) 758{ 759 security_ops->cred_free(cred); 760} 761 762int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 763{ 764 return security_ops->cred_prepare(new, old, gfp); 765} 766 767void security_transfer_creds(struct cred *new, const struct cred *old) 768{ 769 security_ops->cred_transfer(new, old); 770} 771 772int security_kernel_act_as(struct cred *new, u32 secid) 773{ 774 return security_ops->kernel_act_as(new, secid); 775} 776 777int security_kernel_create_files_as(struct cred *new, struct inode *inode) 778{ 779 return security_ops->kernel_create_files_as(new, inode); 780} 781 782int security_kernel_module_request(char *kmod_name) 783{ 784 return security_ops->kernel_module_request(kmod_name); 785} 786 787int security_task_fix_setuid(struct cred *new, const struct cred *old, 788 int flags) 789{ 790 return security_ops->task_fix_setuid(new, old, flags); 791} 792 793int security_task_setpgid(struct task_struct *p, pid_t pgid) 794{ 795 return security_ops->task_setpgid(p, pgid); 796} 797 798int security_task_getpgid(struct task_struct *p) 799{ 800 return security_ops->task_getpgid(p); 801} 802 803int security_task_getsid(struct task_struct *p) 804{ 805 return security_ops->task_getsid(p); 806} 807 808void security_task_getsecid(struct task_struct *p, u32 *secid) 809{ 810 security_ops->task_getsecid(p, secid); 811} 812EXPORT_SYMBOL(security_task_getsecid); 813 814int security_task_setnice(struct task_struct *p, int nice) 815{ 816 return security_ops->task_setnice(p, nice); 817} 818 819int security_task_setioprio(struct task_struct *p, int ioprio) 820{ 821 return security_ops->task_setioprio(p, ioprio); 822} 823 824int security_task_getioprio(struct task_struct *p) 825{ 826 return security_ops->task_getioprio(p); 827} 828 829int security_task_setrlimit(struct task_struct *p, unsigned int resource, 830 struct rlimit *new_rlim) 831{ 832 return security_ops->task_setrlimit(p, resource, new_rlim); 833} 834 835int security_task_setscheduler(struct task_struct *p) 836{ 837 return security_ops->task_setscheduler(p); 838} 839 840int security_task_getscheduler(struct task_struct *p) 841{ 842 return security_ops->task_getscheduler(p); 843} 844 845int security_task_movememory(struct task_struct *p) 846{ 847 return security_ops->task_movememory(p); 848} 849 850int security_task_kill(struct task_struct *p, struct siginfo *info, 851 int sig, u32 secid) 852{ 853 return security_ops->task_kill(p, info, sig, secid); 854} 855 856int security_task_wait(struct task_struct *p) 857{ 858 return security_ops->task_wait(p); 859} 860 861int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 862 unsigned long arg4, unsigned long arg5) 863{ 864 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 865} 866 867void security_task_to_inode(struct task_struct *p, struct inode *inode) 868{ 869 security_ops->task_to_inode(p, inode); 870} 871 872int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 873{ 874 return security_ops->ipc_permission(ipcp, flag); 875} 876 877void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 878{ 879 security_ops->ipc_getsecid(ipcp, secid); 880} 881 882int security_msg_msg_alloc(struct msg_msg *msg) 883{ 884 return security_ops->msg_msg_alloc_security(msg); 885} 886 887void security_msg_msg_free(struct msg_msg *msg) 888{ 889 security_ops->msg_msg_free_security(msg); 890} 891 892int security_msg_queue_alloc(struct msg_queue *msq) 893{ 894 return security_ops->msg_queue_alloc_security(msq); 895} 896 897void security_msg_queue_free(struct msg_queue *msq) 898{ 899 security_ops->msg_queue_free_security(msq); 900} 901 902int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 903{ 904 return security_ops->msg_queue_associate(msq, msqflg); 905} 906 907int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 908{ 909 return security_ops->msg_queue_msgctl(msq, cmd); 910} 911 912int security_msg_queue_msgsnd(struct msg_queue *msq, 913 struct msg_msg *msg, int msqflg) 914{ 915 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 916} 917 918int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 919 struct task_struct *target, long type, int mode) 920{ 921 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 922} 923 924int security_shm_alloc(struct shmid_kernel *shp) 925{ 926 return security_ops->shm_alloc_security(shp); 927} 928 929void security_shm_free(struct shmid_kernel *shp) 930{ 931 security_ops->shm_free_security(shp); 932} 933 934int security_shm_associate(struct shmid_kernel *shp, int shmflg) 935{ 936 return security_ops->shm_associate(shp, shmflg); 937} 938 939int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 940{ 941 return security_ops->shm_shmctl(shp, cmd); 942} 943 944int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 945{ 946 return security_ops->shm_shmat(shp, shmaddr, shmflg); 947} 948 949int security_sem_alloc(struct sem_array *sma) 950{ 951 return security_ops->sem_alloc_security(sma); 952} 953 954void security_sem_free(struct sem_array *sma) 955{ 956 security_ops->sem_free_security(sma); 957} 958 959int security_sem_associate(struct sem_array *sma, int semflg) 960{ 961 return security_ops->sem_associate(sma, semflg); 962} 963 964int security_sem_semctl(struct sem_array *sma, int cmd) 965{ 966 return security_ops->sem_semctl(sma, cmd); 967} 968 969int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 970 unsigned nsops, int alter) 971{ 972 return security_ops->sem_semop(sma, sops, nsops, alter); 973} 974 975void security_d_instantiate(struct dentry *dentry, struct inode *inode) 976{ 977 if (unlikely(inode && IS_PRIVATE(inode))) 978 return; 979 security_ops->d_instantiate(dentry, inode); 980} 981EXPORT_SYMBOL(security_d_instantiate); 982 983int security_getprocattr(struct task_struct *p, char *name, char **value) 984{ 985 return security_ops->getprocattr(p, name, value); 986} 987 988int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 989{ 990 return security_ops->setprocattr(p, name, value, size); 991} 992 993int security_netlink_send(struct sock *sk, struct sk_buff *skb) 994{ 995 return security_ops->netlink_send(sk, skb); 996} 997 998int security_netlink_recv(struct sk_buff *skb, int cap) 999{ 1000 return security_ops->netlink_recv(skb, cap); 1001} 1002EXPORT_SYMBOL(security_netlink_recv); 1003 1004int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1005{ 1006 return security_ops->secid_to_secctx(secid, secdata, seclen); 1007} 1008EXPORT_SYMBOL(security_secid_to_secctx); 1009 1010int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1011{ 1012 return security_ops->secctx_to_secid(secdata, seclen, secid); 1013} 1014EXPORT_SYMBOL(security_secctx_to_secid); 1015 1016void security_release_secctx(char *secdata, u32 seclen) 1017{ 1018 security_ops->release_secctx(secdata, seclen); 1019} 1020EXPORT_SYMBOL(security_release_secctx); 1021 1022int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1023{ 1024 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1025} 1026EXPORT_SYMBOL(security_inode_notifysecctx); 1027 1028int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1029{ 1030 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1031} 1032EXPORT_SYMBOL(security_inode_setsecctx); 1033 1034int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1035{ 1036 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1037} 1038EXPORT_SYMBOL(security_inode_getsecctx); 1039 1040#ifdef CONFIG_SECURITY_NETWORK 1041 1042int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1043{ 1044 return security_ops->unix_stream_connect(sock, other, newsk); 1045} 1046EXPORT_SYMBOL(security_unix_stream_connect); 1047 1048int security_unix_may_send(struct socket *sock, struct socket *other) 1049{ 1050 return security_ops->unix_may_send(sock, other); 1051} 1052EXPORT_SYMBOL(security_unix_may_send); 1053 1054int security_socket_create(int family, int type, int protocol, int kern) 1055{ 1056 return security_ops->socket_create(family, type, protocol, kern); 1057} 1058 1059int security_socket_post_create(struct socket *sock, int family, 1060 int type, int protocol, int kern) 1061{ 1062 return security_ops->socket_post_create(sock, family, type, 1063 protocol, kern); 1064} 1065 1066int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1067{ 1068 return security_ops->socket_bind(sock, address, addrlen); 1069} 1070 1071int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1072{ 1073 return security_ops->socket_connect(sock, address, addrlen); 1074} 1075 1076int security_socket_listen(struct socket *sock, int backlog) 1077{ 1078 return security_ops->socket_listen(sock, backlog); 1079} 1080 1081int security_socket_accept(struct socket *sock, struct socket *newsock) 1082{ 1083 return security_ops->socket_accept(sock, newsock); 1084} 1085 1086int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1087{ 1088 return security_ops->socket_sendmsg(sock, msg, size); 1089} 1090 1091int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1092 int size, int flags) 1093{ 1094 return security_ops->socket_recvmsg(sock, msg, size, flags); 1095} 1096 1097int security_socket_getsockname(struct socket *sock) 1098{ 1099 return security_ops->socket_getsockname(sock); 1100} 1101 1102int security_socket_getpeername(struct socket *sock) 1103{ 1104 return security_ops->socket_getpeername(sock); 1105} 1106 1107int security_socket_getsockopt(struct socket *sock, int level, int optname) 1108{ 1109 return security_ops->socket_getsockopt(sock, level, optname); 1110} 1111 1112int security_socket_setsockopt(struct socket *sock, int level, int optname) 1113{ 1114 return security_ops->socket_setsockopt(sock, level, optname); 1115} 1116 1117int security_socket_shutdown(struct socket *sock, int how) 1118{ 1119 return security_ops->socket_shutdown(sock, how); 1120} 1121 1122int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1123{ 1124 return security_ops->socket_sock_rcv_skb(sk, skb); 1125} 1126EXPORT_SYMBOL(security_sock_rcv_skb); 1127 1128int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1129 int __user *optlen, unsigned len) 1130{ 1131 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1132} 1133 1134int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1135{ 1136 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1137} 1138EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1139 1140int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1141{ 1142 return security_ops->sk_alloc_security(sk, family, priority); 1143} 1144 1145void security_sk_free(struct sock *sk) 1146{ 1147 security_ops->sk_free_security(sk); 1148} 1149 1150void security_sk_clone(const struct sock *sk, struct sock *newsk) 1151{ 1152 security_ops->sk_clone_security(sk, newsk); 1153} 1154EXPORT_SYMBOL(security_sk_clone); 1155 1156void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1157{ 1158 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1159} 1160EXPORT_SYMBOL(security_sk_classify_flow); 1161 1162void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1163{ 1164 security_ops->req_classify_flow(req, fl); 1165} 1166EXPORT_SYMBOL(security_req_classify_flow); 1167 1168void security_sock_graft(struct sock *sk, struct socket *parent) 1169{ 1170 security_ops->sock_graft(sk, parent); 1171} 1172EXPORT_SYMBOL(security_sock_graft); 1173 1174int security_inet_conn_request(struct sock *sk, 1175 struct sk_buff *skb, struct request_sock *req) 1176{ 1177 return security_ops->inet_conn_request(sk, skb, req); 1178} 1179EXPORT_SYMBOL(security_inet_conn_request); 1180 1181void security_inet_csk_clone(struct sock *newsk, 1182 const struct request_sock *req) 1183{ 1184 security_ops->inet_csk_clone(newsk, req); 1185} 1186 1187void security_inet_conn_established(struct sock *sk, 1188 struct sk_buff *skb) 1189{ 1190 security_ops->inet_conn_established(sk, skb); 1191} 1192 1193int security_secmark_relabel_packet(u32 secid) 1194{ 1195 return security_ops->secmark_relabel_packet(secid); 1196} 1197EXPORT_SYMBOL(security_secmark_relabel_packet); 1198 1199void security_secmark_refcount_inc(void) 1200{ 1201 security_ops->secmark_refcount_inc(); 1202} 1203EXPORT_SYMBOL(security_secmark_refcount_inc); 1204 1205void security_secmark_refcount_dec(void) 1206{ 1207 security_ops->secmark_refcount_dec(); 1208} 1209EXPORT_SYMBOL(security_secmark_refcount_dec); 1210 1211int security_tun_dev_create(void) 1212{ 1213 return security_ops->tun_dev_create(); 1214} 1215EXPORT_SYMBOL(security_tun_dev_create); 1216 1217void security_tun_dev_post_create(struct sock *sk) 1218{ 1219 return security_ops->tun_dev_post_create(sk); 1220} 1221EXPORT_SYMBOL(security_tun_dev_post_create); 1222 1223int security_tun_dev_attach(struct sock *sk) 1224{ 1225 return security_ops->tun_dev_attach(sk); 1226} 1227EXPORT_SYMBOL(security_tun_dev_attach); 1228 1229#endif /* CONFIG_SECURITY_NETWORK */ 1230 1231#ifdef CONFIG_SECURITY_NETWORK_XFRM 1232 1233int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1234{ 1235 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1236} 1237EXPORT_SYMBOL(security_xfrm_policy_alloc); 1238 1239int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1240 struct xfrm_sec_ctx **new_ctxp) 1241{ 1242 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1243} 1244 1245void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1246{ 1247 security_ops->xfrm_policy_free_security(ctx); 1248} 1249EXPORT_SYMBOL(security_xfrm_policy_free); 1250 1251int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1252{ 1253 return security_ops->xfrm_policy_delete_security(ctx); 1254} 1255 1256int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1257{ 1258 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1259} 1260EXPORT_SYMBOL(security_xfrm_state_alloc); 1261 1262int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1263 struct xfrm_sec_ctx *polsec, u32 secid) 1264{ 1265 if (!polsec) 1266 return 0; 1267 /* 1268 * We want the context to be taken from secid which is usually 1269 * from the sock. 1270 */ 1271 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1272} 1273 1274int security_xfrm_state_delete(struct xfrm_state *x) 1275{ 1276 return security_ops->xfrm_state_delete_security(x); 1277} 1278EXPORT_SYMBOL(security_xfrm_state_delete); 1279 1280void security_xfrm_state_free(struct xfrm_state *x) 1281{ 1282 security_ops->xfrm_state_free_security(x); 1283} 1284 1285int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1286{ 1287 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1288} 1289 1290int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1291 struct xfrm_policy *xp, 1292 const struct flowi *fl) 1293{ 1294 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1295} 1296 1297int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1298{ 1299 return security_ops->xfrm_decode_session(skb, secid, 1); 1300} 1301 1302void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1303{ 1304 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1305 1306 BUG_ON(rc); 1307} 1308EXPORT_SYMBOL(security_skb_classify_flow); 1309 1310#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1311 1312#ifdef CONFIG_KEYS 1313 1314int security_key_alloc(struct key *key, const struct cred *cred, 1315 unsigned long flags) 1316{ 1317 return security_ops->key_alloc(key, cred, flags); 1318} 1319 1320void security_key_free(struct key *key) 1321{ 1322 security_ops->key_free(key); 1323} 1324 1325int security_key_permission(key_ref_t key_ref, 1326 const struct cred *cred, key_perm_t perm) 1327{ 1328 return security_ops->key_permission(key_ref, cred, perm); 1329} 1330 1331int security_key_getsecurity(struct key *key, char **_buffer) 1332{ 1333 return security_ops->key_getsecurity(key, _buffer); 1334} 1335 1336#endif /* CONFIG_KEYS */ 1337 1338#ifdef CONFIG_AUDIT 1339 1340int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1341{ 1342 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1343} 1344 1345int security_audit_rule_known(struct audit_krule *krule) 1346{ 1347 return security_ops->audit_rule_known(krule); 1348} 1349 1350void security_audit_rule_free(void *lsmrule) 1351{ 1352 security_ops->audit_rule_free(lsmrule); 1353} 1354 1355int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1356 struct audit_context *actx) 1357{ 1358 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1359} 1360 1361#endif /* CONFIG_AUDIT */