Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114
115#include <asm/uaccess.h>
116#include <asm/system.h>
117
118#include <linux/netdevice.h>
119#include <net/protocol.h>
120#include <linux/skbuff.h>
121#include <net/net_namespace.h>
122#include <net/request_sock.h>
123#include <net/sock.h>
124#include <linux/net_tstamp.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127#include <net/cls_cgroup.h>
128
129#include <linux/filter.h>
130
131#include <trace/events/sock.h>
132
133#ifdef CONFIG_INET
134#include <net/tcp.h>
135#endif
136
137/*
138 * Each address family might have different locking rules, so we have
139 * one slock key per address family:
140 */
141static struct lock_class_key af_family_keys[AF_MAX];
142static struct lock_class_key af_family_slock_keys[AF_MAX];
143
144/*
145 * Make lock validator output more readable. (we pre-construct these
146 * strings build-time, so that runtime initialization of socket
147 * locks is fast):
148 */
149static const char *const af_family_key_strings[AF_MAX+1] = {
150 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
151 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
152 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
153 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
154 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
155 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
156 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
157 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
158 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
159 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
160 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
161 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
162 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
163 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
164};
165static const char *const af_family_slock_key_strings[AF_MAX+1] = {
166 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
167 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
168 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
169 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
170 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
171 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
172 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
173 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
174 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
175 "slock-27" , "slock-28" , "slock-AF_CAN" ,
176 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
177 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
178 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
179 "slock-AF_NFC" , "slock-AF_MAX"
180};
181static const char *const af_family_clock_key_strings[AF_MAX+1] = {
182 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
183 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
184 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
185 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
186 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
187 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
188 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
189 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
190 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
191 "clock-27" , "clock-28" , "clock-AF_CAN" ,
192 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
193 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
194 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
195 "clock-AF_NFC" , "clock-AF_MAX"
196};
197
198/*
199 * sk_callback_lock locking rules are per-address-family,
200 * so split the lock classes by using a per-AF key:
201 */
202static struct lock_class_key af_callback_keys[AF_MAX];
203
204/* Take into consideration the size of the struct sk_buff overhead in the
205 * determination of these values, since that is non-constant across
206 * platforms. This makes socket queueing behavior and performance
207 * not depend upon such differences.
208 */
209#define _SK_MEM_PACKETS 256
210#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
211#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
212#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
213
214/* Run time adjustable parameters. */
215__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
216__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
217__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
218__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
219
220/* Maximal space eaten by iovec or ancillary data plus some space */
221int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
222EXPORT_SYMBOL(sysctl_optmem_max);
223
224#if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
225int net_cls_subsys_id = -1;
226EXPORT_SYMBOL_GPL(net_cls_subsys_id);
227#endif
228
229static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
230{
231 struct timeval tv;
232
233 if (optlen < sizeof(tv))
234 return -EINVAL;
235 if (copy_from_user(&tv, optval, sizeof(tv)))
236 return -EFAULT;
237 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
238 return -EDOM;
239
240 if (tv.tv_sec < 0) {
241 static int warned __read_mostly;
242
243 *timeo_p = 0;
244 if (warned < 10 && net_ratelimit()) {
245 warned++;
246 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
247 "tries to set negative timeout\n",
248 current->comm, task_pid_nr(current));
249 }
250 return 0;
251 }
252 *timeo_p = MAX_SCHEDULE_TIMEOUT;
253 if (tv.tv_sec == 0 && tv.tv_usec == 0)
254 return 0;
255 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
256 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
257 return 0;
258}
259
260static void sock_warn_obsolete_bsdism(const char *name)
261{
262 static int warned;
263 static char warncomm[TASK_COMM_LEN];
264 if (strcmp(warncomm, current->comm) && warned < 5) {
265 strcpy(warncomm, current->comm);
266 printk(KERN_WARNING "process `%s' is using obsolete "
267 "%s SO_BSDCOMPAT\n", warncomm, name);
268 warned++;
269 }
270}
271
272static void sock_disable_timestamp(struct sock *sk, int flag)
273{
274 if (sock_flag(sk, flag)) {
275 sock_reset_flag(sk, flag);
276 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
277 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
278 net_disable_timestamp();
279 }
280 }
281}
282
283
284int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
285{
286 int err;
287 int skb_len;
288 unsigned long flags;
289 struct sk_buff_head *list = &sk->sk_receive_queue;
290
291 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
292 atomic_inc(&sk->sk_drops);
293 trace_sock_rcvqueue_full(sk, skb);
294 return -ENOMEM;
295 }
296
297 err = sk_filter(sk, skb);
298 if (err)
299 return err;
300
301 if (!sk_rmem_schedule(sk, skb->truesize)) {
302 atomic_inc(&sk->sk_drops);
303 return -ENOBUFS;
304 }
305
306 skb->dev = NULL;
307 skb_set_owner_r(skb, sk);
308
309 /* Cache the SKB length before we tack it onto the receive
310 * queue. Once it is added it no longer belongs to us and
311 * may be freed by other threads of control pulling packets
312 * from the queue.
313 */
314 skb_len = skb->len;
315
316 /* we escape from rcu protected region, make sure we dont leak
317 * a norefcounted dst
318 */
319 skb_dst_force(skb);
320
321 spin_lock_irqsave(&list->lock, flags);
322 skb->dropcount = atomic_read(&sk->sk_drops);
323 __skb_queue_tail(list, skb);
324 spin_unlock_irqrestore(&list->lock, flags);
325
326 if (!sock_flag(sk, SOCK_DEAD))
327 sk->sk_data_ready(sk, skb_len);
328 return 0;
329}
330EXPORT_SYMBOL(sock_queue_rcv_skb);
331
332int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
333{
334 int rc = NET_RX_SUCCESS;
335
336 if (sk_filter(sk, skb))
337 goto discard_and_relse;
338
339 skb->dev = NULL;
340
341 if (sk_rcvqueues_full(sk, skb)) {
342 atomic_inc(&sk->sk_drops);
343 goto discard_and_relse;
344 }
345 if (nested)
346 bh_lock_sock_nested(sk);
347 else
348 bh_lock_sock(sk);
349 if (!sock_owned_by_user(sk)) {
350 /*
351 * trylock + unlock semantics:
352 */
353 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
354
355 rc = sk_backlog_rcv(sk, skb);
356
357 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
358 } else if (sk_add_backlog(sk, skb)) {
359 bh_unlock_sock(sk);
360 atomic_inc(&sk->sk_drops);
361 goto discard_and_relse;
362 }
363
364 bh_unlock_sock(sk);
365out:
366 sock_put(sk);
367 return rc;
368discard_and_relse:
369 kfree_skb(skb);
370 goto out;
371}
372EXPORT_SYMBOL(sk_receive_skb);
373
374void sk_reset_txq(struct sock *sk)
375{
376 sk_tx_queue_clear(sk);
377}
378EXPORT_SYMBOL(sk_reset_txq);
379
380struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
381{
382 struct dst_entry *dst = __sk_dst_get(sk);
383
384 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
385 sk_tx_queue_clear(sk);
386 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
387 dst_release(dst);
388 return NULL;
389 }
390
391 return dst;
392}
393EXPORT_SYMBOL(__sk_dst_check);
394
395struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
396{
397 struct dst_entry *dst = sk_dst_get(sk);
398
399 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
400 sk_dst_reset(sk);
401 dst_release(dst);
402 return NULL;
403 }
404
405 return dst;
406}
407EXPORT_SYMBOL(sk_dst_check);
408
409static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
410{
411 int ret = -ENOPROTOOPT;
412#ifdef CONFIG_NETDEVICES
413 struct net *net = sock_net(sk);
414 char devname[IFNAMSIZ];
415 int index;
416
417 /* Sorry... */
418 ret = -EPERM;
419 if (!capable(CAP_NET_RAW))
420 goto out;
421
422 ret = -EINVAL;
423 if (optlen < 0)
424 goto out;
425
426 /* Bind this socket to a particular device like "eth0",
427 * as specified in the passed interface name. If the
428 * name is "" or the option length is zero the socket
429 * is not bound.
430 */
431 if (optlen > IFNAMSIZ - 1)
432 optlen = IFNAMSIZ - 1;
433 memset(devname, 0, sizeof(devname));
434
435 ret = -EFAULT;
436 if (copy_from_user(devname, optval, optlen))
437 goto out;
438
439 index = 0;
440 if (devname[0] != '\0') {
441 struct net_device *dev;
442
443 rcu_read_lock();
444 dev = dev_get_by_name_rcu(net, devname);
445 if (dev)
446 index = dev->ifindex;
447 rcu_read_unlock();
448 ret = -ENODEV;
449 if (!dev)
450 goto out;
451 }
452
453 lock_sock(sk);
454 sk->sk_bound_dev_if = index;
455 sk_dst_reset(sk);
456 release_sock(sk);
457
458 ret = 0;
459
460out:
461#endif
462
463 return ret;
464}
465
466static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
467{
468 if (valbool)
469 sock_set_flag(sk, bit);
470 else
471 sock_reset_flag(sk, bit);
472}
473
474/*
475 * This is meant for all protocols to use and covers goings on
476 * at the socket level. Everything here is generic.
477 */
478
479int sock_setsockopt(struct socket *sock, int level, int optname,
480 char __user *optval, unsigned int optlen)
481{
482 struct sock *sk = sock->sk;
483 int val;
484 int valbool;
485 struct linger ling;
486 int ret = 0;
487
488 /*
489 * Options without arguments
490 */
491
492 if (optname == SO_BINDTODEVICE)
493 return sock_bindtodevice(sk, optval, optlen);
494
495 if (optlen < sizeof(int))
496 return -EINVAL;
497
498 if (get_user(val, (int __user *)optval))
499 return -EFAULT;
500
501 valbool = val ? 1 : 0;
502
503 lock_sock(sk);
504
505 switch (optname) {
506 case SO_DEBUG:
507 if (val && !capable(CAP_NET_ADMIN))
508 ret = -EACCES;
509 else
510 sock_valbool_flag(sk, SOCK_DBG, valbool);
511 break;
512 case SO_REUSEADDR:
513 sk->sk_reuse = valbool;
514 break;
515 case SO_TYPE:
516 case SO_PROTOCOL:
517 case SO_DOMAIN:
518 case SO_ERROR:
519 ret = -ENOPROTOOPT;
520 break;
521 case SO_DONTROUTE:
522 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
523 break;
524 case SO_BROADCAST:
525 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
526 break;
527 case SO_SNDBUF:
528 /* Don't error on this BSD doesn't and if you think
529 about it this is right. Otherwise apps have to
530 play 'guess the biggest size' games. RCVBUF/SNDBUF
531 are treated in BSD as hints */
532
533 if (val > sysctl_wmem_max)
534 val = sysctl_wmem_max;
535set_sndbuf:
536 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
537 if ((val * 2) < SOCK_MIN_SNDBUF)
538 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
539 else
540 sk->sk_sndbuf = val * 2;
541
542 /*
543 * Wake up sending tasks if we
544 * upped the value.
545 */
546 sk->sk_write_space(sk);
547 break;
548
549 case SO_SNDBUFFORCE:
550 if (!capable(CAP_NET_ADMIN)) {
551 ret = -EPERM;
552 break;
553 }
554 goto set_sndbuf;
555
556 case SO_RCVBUF:
557 /* Don't error on this BSD doesn't and if you think
558 about it this is right. Otherwise apps have to
559 play 'guess the biggest size' games. RCVBUF/SNDBUF
560 are treated in BSD as hints */
561
562 if (val > sysctl_rmem_max)
563 val = sysctl_rmem_max;
564set_rcvbuf:
565 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
566 /*
567 * We double it on the way in to account for
568 * "struct sk_buff" etc. overhead. Applications
569 * assume that the SO_RCVBUF setting they make will
570 * allow that much actual data to be received on that
571 * socket.
572 *
573 * Applications are unaware that "struct sk_buff" and
574 * other overheads allocate from the receive buffer
575 * during socket buffer allocation.
576 *
577 * And after considering the possible alternatives,
578 * returning the value we actually used in getsockopt
579 * is the most desirable behavior.
580 */
581 if ((val * 2) < SOCK_MIN_RCVBUF)
582 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
583 else
584 sk->sk_rcvbuf = val * 2;
585 break;
586
587 case SO_RCVBUFFORCE:
588 if (!capable(CAP_NET_ADMIN)) {
589 ret = -EPERM;
590 break;
591 }
592 goto set_rcvbuf;
593
594 case SO_KEEPALIVE:
595#ifdef CONFIG_INET
596 if (sk->sk_protocol == IPPROTO_TCP)
597 tcp_set_keepalive(sk, valbool);
598#endif
599 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
600 break;
601
602 case SO_OOBINLINE:
603 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
604 break;
605
606 case SO_NO_CHECK:
607 sk->sk_no_check = valbool;
608 break;
609
610 case SO_PRIORITY:
611 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
612 sk->sk_priority = val;
613 else
614 ret = -EPERM;
615 break;
616
617 case SO_LINGER:
618 if (optlen < sizeof(ling)) {
619 ret = -EINVAL; /* 1003.1g */
620 break;
621 }
622 if (copy_from_user(&ling, optval, sizeof(ling))) {
623 ret = -EFAULT;
624 break;
625 }
626 if (!ling.l_onoff)
627 sock_reset_flag(sk, SOCK_LINGER);
628 else {
629#if (BITS_PER_LONG == 32)
630 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
631 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
632 else
633#endif
634 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
635 sock_set_flag(sk, SOCK_LINGER);
636 }
637 break;
638
639 case SO_BSDCOMPAT:
640 sock_warn_obsolete_bsdism("setsockopt");
641 break;
642
643 case SO_PASSCRED:
644 if (valbool)
645 set_bit(SOCK_PASSCRED, &sock->flags);
646 else
647 clear_bit(SOCK_PASSCRED, &sock->flags);
648 break;
649
650 case SO_TIMESTAMP:
651 case SO_TIMESTAMPNS:
652 if (valbool) {
653 if (optname == SO_TIMESTAMP)
654 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
655 else
656 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
657 sock_set_flag(sk, SOCK_RCVTSTAMP);
658 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
659 } else {
660 sock_reset_flag(sk, SOCK_RCVTSTAMP);
661 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
662 }
663 break;
664
665 case SO_TIMESTAMPING:
666 if (val & ~SOF_TIMESTAMPING_MASK) {
667 ret = -EINVAL;
668 break;
669 }
670 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
671 val & SOF_TIMESTAMPING_TX_HARDWARE);
672 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
673 val & SOF_TIMESTAMPING_TX_SOFTWARE);
674 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
675 val & SOF_TIMESTAMPING_RX_HARDWARE);
676 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
677 sock_enable_timestamp(sk,
678 SOCK_TIMESTAMPING_RX_SOFTWARE);
679 else
680 sock_disable_timestamp(sk,
681 SOCK_TIMESTAMPING_RX_SOFTWARE);
682 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
683 val & SOF_TIMESTAMPING_SOFTWARE);
684 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
685 val & SOF_TIMESTAMPING_SYS_HARDWARE);
686 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
687 val & SOF_TIMESTAMPING_RAW_HARDWARE);
688 break;
689
690 case SO_RCVLOWAT:
691 if (val < 0)
692 val = INT_MAX;
693 sk->sk_rcvlowat = val ? : 1;
694 break;
695
696 case SO_RCVTIMEO:
697 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
698 break;
699
700 case SO_SNDTIMEO:
701 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
702 break;
703
704 case SO_ATTACH_FILTER:
705 ret = -EINVAL;
706 if (optlen == sizeof(struct sock_fprog)) {
707 struct sock_fprog fprog;
708
709 ret = -EFAULT;
710 if (copy_from_user(&fprog, optval, sizeof(fprog)))
711 break;
712
713 ret = sk_attach_filter(&fprog, sk);
714 }
715 break;
716
717 case SO_DETACH_FILTER:
718 ret = sk_detach_filter(sk);
719 break;
720
721 case SO_PASSSEC:
722 if (valbool)
723 set_bit(SOCK_PASSSEC, &sock->flags);
724 else
725 clear_bit(SOCK_PASSSEC, &sock->flags);
726 break;
727 case SO_MARK:
728 if (!capable(CAP_NET_ADMIN))
729 ret = -EPERM;
730 else
731 sk->sk_mark = val;
732 break;
733
734 /* We implement the SO_SNDLOWAT etc to
735 not be settable (1003.1g 5.3) */
736 case SO_RXQ_OVFL:
737 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
738 break;
739 default:
740 ret = -ENOPROTOOPT;
741 break;
742 }
743 release_sock(sk);
744 return ret;
745}
746EXPORT_SYMBOL(sock_setsockopt);
747
748
749void cred_to_ucred(struct pid *pid, const struct cred *cred,
750 struct ucred *ucred)
751{
752 ucred->pid = pid_vnr(pid);
753 ucred->uid = ucred->gid = -1;
754 if (cred) {
755 struct user_namespace *current_ns = current_user_ns();
756
757 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
758 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
759 }
760}
761EXPORT_SYMBOL_GPL(cred_to_ucred);
762
763int sock_getsockopt(struct socket *sock, int level, int optname,
764 char __user *optval, int __user *optlen)
765{
766 struct sock *sk = sock->sk;
767
768 union {
769 int val;
770 struct linger ling;
771 struct timeval tm;
772 } v;
773
774 int lv = sizeof(int);
775 int len;
776
777 if (get_user(len, optlen))
778 return -EFAULT;
779 if (len < 0)
780 return -EINVAL;
781
782 memset(&v, 0, sizeof(v));
783
784 switch (optname) {
785 case SO_DEBUG:
786 v.val = sock_flag(sk, SOCK_DBG);
787 break;
788
789 case SO_DONTROUTE:
790 v.val = sock_flag(sk, SOCK_LOCALROUTE);
791 break;
792
793 case SO_BROADCAST:
794 v.val = !!sock_flag(sk, SOCK_BROADCAST);
795 break;
796
797 case SO_SNDBUF:
798 v.val = sk->sk_sndbuf;
799 break;
800
801 case SO_RCVBUF:
802 v.val = sk->sk_rcvbuf;
803 break;
804
805 case SO_REUSEADDR:
806 v.val = sk->sk_reuse;
807 break;
808
809 case SO_KEEPALIVE:
810 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
811 break;
812
813 case SO_TYPE:
814 v.val = sk->sk_type;
815 break;
816
817 case SO_PROTOCOL:
818 v.val = sk->sk_protocol;
819 break;
820
821 case SO_DOMAIN:
822 v.val = sk->sk_family;
823 break;
824
825 case SO_ERROR:
826 v.val = -sock_error(sk);
827 if (v.val == 0)
828 v.val = xchg(&sk->sk_err_soft, 0);
829 break;
830
831 case SO_OOBINLINE:
832 v.val = !!sock_flag(sk, SOCK_URGINLINE);
833 break;
834
835 case SO_NO_CHECK:
836 v.val = sk->sk_no_check;
837 break;
838
839 case SO_PRIORITY:
840 v.val = sk->sk_priority;
841 break;
842
843 case SO_LINGER:
844 lv = sizeof(v.ling);
845 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
846 v.ling.l_linger = sk->sk_lingertime / HZ;
847 break;
848
849 case SO_BSDCOMPAT:
850 sock_warn_obsolete_bsdism("getsockopt");
851 break;
852
853 case SO_TIMESTAMP:
854 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
855 !sock_flag(sk, SOCK_RCVTSTAMPNS);
856 break;
857
858 case SO_TIMESTAMPNS:
859 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
860 break;
861
862 case SO_TIMESTAMPING:
863 v.val = 0;
864 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
865 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
866 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
867 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
868 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
869 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
870 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
871 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
872 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
873 v.val |= SOF_TIMESTAMPING_SOFTWARE;
874 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
875 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
876 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
877 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
878 break;
879
880 case SO_RCVTIMEO:
881 lv = sizeof(struct timeval);
882 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
883 v.tm.tv_sec = 0;
884 v.tm.tv_usec = 0;
885 } else {
886 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
887 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
888 }
889 break;
890
891 case SO_SNDTIMEO:
892 lv = sizeof(struct timeval);
893 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
894 v.tm.tv_sec = 0;
895 v.tm.tv_usec = 0;
896 } else {
897 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
898 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
899 }
900 break;
901
902 case SO_RCVLOWAT:
903 v.val = sk->sk_rcvlowat;
904 break;
905
906 case SO_SNDLOWAT:
907 v.val = 1;
908 break;
909
910 case SO_PASSCRED:
911 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
912 break;
913
914 case SO_PEERCRED:
915 {
916 struct ucred peercred;
917 if (len > sizeof(peercred))
918 len = sizeof(peercred);
919 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
920 if (copy_to_user(optval, &peercred, len))
921 return -EFAULT;
922 goto lenout;
923 }
924
925 case SO_PEERNAME:
926 {
927 char address[128];
928
929 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
930 return -ENOTCONN;
931 if (lv < len)
932 return -EINVAL;
933 if (copy_to_user(optval, address, len))
934 return -EFAULT;
935 goto lenout;
936 }
937
938 /* Dubious BSD thing... Probably nobody even uses it, but
939 * the UNIX standard wants it for whatever reason... -DaveM
940 */
941 case SO_ACCEPTCONN:
942 v.val = sk->sk_state == TCP_LISTEN;
943 break;
944
945 case SO_PASSSEC:
946 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
947 break;
948
949 case SO_PEERSEC:
950 return security_socket_getpeersec_stream(sock, optval, optlen, len);
951
952 case SO_MARK:
953 v.val = sk->sk_mark;
954 break;
955
956 case SO_RXQ_OVFL:
957 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
958 break;
959
960 default:
961 return -ENOPROTOOPT;
962 }
963
964 if (len > lv)
965 len = lv;
966 if (copy_to_user(optval, &v, len))
967 return -EFAULT;
968lenout:
969 if (put_user(len, optlen))
970 return -EFAULT;
971 return 0;
972}
973
974/*
975 * Initialize an sk_lock.
976 *
977 * (We also register the sk_lock with the lock validator.)
978 */
979static inline void sock_lock_init(struct sock *sk)
980{
981 sock_lock_init_class_and_name(sk,
982 af_family_slock_key_strings[sk->sk_family],
983 af_family_slock_keys + sk->sk_family,
984 af_family_key_strings[sk->sk_family],
985 af_family_keys + sk->sk_family);
986}
987
988/*
989 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
990 * even temporarly, because of RCU lookups. sk_node should also be left as is.
991 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
992 */
993static void sock_copy(struct sock *nsk, const struct sock *osk)
994{
995#ifdef CONFIG_SECURITY_NETWORK
996 void *sptr = nsk->sk_security;
997#endif
998 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
999
1000 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1001 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1002
1003#ifdef CONFIG_SECURITY_NETWORK
1004 nsk->sk_security = sptr;
1005 security_sk_clone(osk, nsk);
1006#endif
1007}
1008
1009/*
1010 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1011 * un-modified. Special care is taken when initializing object to zero.
1012 */
1013static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1014{
1015 if (offsetof(struct sock, sk_node.next) != 0)
1016 memset(sk, 0, offsetof(struct sock, sk_node.next));
1017 memset(&sk->sk_node.pprev, 0,
1018 size - offsetof(struct sock, sk_node.pprev));
1019}
1020
1021void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1022{
1023 unsigned long nulls1, nulls2;
1024
1025 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1026 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1027 if (nulls1 > nulls2)
1028 swap(nulls1, nulls2);
1029
1030 if (nulls1 != 0)
1031 memset((char *)sk, 0, nulls1);
1032 memset((char *)sk + nulls1 + sizeof(void *), 0,
1033 nulls2 - nulls1 - sizeof(void *));
1034 memset((char *)sk + nulls2 + sizeof(void *), 0,
1035 size - nulls2 - sizeof(void *));
1036}
1037EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1038
1039static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1040 int family)
1041{
1042 struct sock *sk;
1043 struct kmem_cache *slab;
1044
1045 slab = prot->slab;
1046 if (slab != NULL) {
1047 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1048 if (!sk)
1049 return sk;
1050 if (priority & __GFP_ZERO) {
1051 if (prot->clear_sk)
1052 prot->clear_sk(sk, prot->obj_size);
1053 else
1054 sk_prot_clear_nulls(sk, prot->obj_size);
1055 }
1056 } else
1057 sk = kmalloc(prot->obj_size, priority);
1058
1059 if (sk != NULL) {
1060 kmemcheck_annotate_bitfield(sk, flags);
1061
1062 if (security_sk_alloc(sk, family, priority))
1063 goto out_free;
1064
1065 if (!try_module_get(prot->owner))
1066 goto out_free_sec;
1067 sk_tx_queue_clear(sk);
1068 }
1069
1070 return sk;
1071
1072out_free_sec:
1073 security_sk_free(sk);
1074out_free:
1075 if (slab != NULL)
1076 kmem_cache_free(slab, sk);
1077 else
1078 kfree(sk);
1079 return NULL;
1080}
1081
1082static void sk_prot_free(struct proto *prot, struct sock *sk)
1083{
1084 struct kmem_cache *slab;
1085 struct module *owner;
1086
1087 owner = prot->owner;
1088 slab = prot->slab;
1089
1090 security_sk_free(sk);
1091 if (slab != NULL)
1092 kmem_cache_free(slab, sk);
1093 else
1094 kfree(sk);
1095 module_put(owner);
1096}
1097
1098#ifdef CONFIG_CGROUPS
1099void sock_update_classid(struct sock *sk)
1100{
1101 u32 classid;
1102
1103 rcu_read_lock(); /* doing current task, which cannot vanish. */
1104 classid = task_cls_classid(current);
1105 rcu_read_unlock();
1106 if (classid && classid != sk->sk_classid)
1107 sk->sk_classid = classid;
1108}
1109EXPORT_SYMBOL(sock_update_classid);
1110#endif
1111
1112/**
1113 * sk_alloc - All socket objects are allocated here
1114 * @net: the applicable net namespace
1115 * @family: protocol family
1116 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1117 * @prot: struct proto associated with this new sock instance
1118 */
1119struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1120 struct proto *prot)
1121{
1122 struct sock *sk;
1123
1124 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1125 if (sk) {
1126 sk->sk_family = family;
1127 /*
1128 * See comment in struct sock definition to understand
1129 * why we need sk_prot_creator -acme
1130 */
1131 sk->sk_prot = sk->sk_prot_creator = prot;
1132 sock_lock_init(sk);
1133 sock_net_set(sk, get_net(net));
1134 atomic_set(&sk->sk_wmem_alloc, 1);
1135
1136 sock_update_classid(sk);
1137 }
1138
1139 return sk;
1140}
1141EXPORT_SYMBOL(sk_alloc);
1142
1143static void __sk_free(struct sock *sk)
1144{
1145 struct sk_filter *filter;
1146
1147 if (sk->sk_destruct)
1148 sk->sk_destruct(sk);
1149
1150 filter = rcu_dereference_check(sk->sk_filter,
1151 atomic_read(&sk->sk_wmem_alloc) == 0);
1152 if (filter) {
1153 sk_filter_uncharge(sk, filter);
1154 RCU_INIT_POINTER(sk->sk_filter, NULL);
1155 }
1156
1157 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1158 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1159
1160 if (atomic_read(&sk->sk_omem_alloc))
1161 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1162 __func__, atomic_read(&sk->sk_omem_alloc));
1163
1164 if (sk->sk_peer_cred)
1165 put_cred(sk->sk_peer_cred);
1166 put_pid(sk->sk_peer_pid);
1167 put_net(sock_net(sk));
1168 sk_prot_free(sk->sk_prot_creator, sk);
1169}
1170
1171void sk_free(struct sock *sk)
1172{
1173 /*
1174 * We subtract one from sk_wmem_alloc and can know if
1175 * some packets are still in some tx queue.
1176 * If not null, sock_wfree() will call __sk_free(sk) later
1177 */
1178 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1179 __sk_free(sk);
1180}
1181EXPORT_SYMBOL(sk_free);
1182
1183/*
1184 * Last sock_put should drop reference to sk->sk_net. It has already
1185 * been dropped in sk_change_net. Taking reference to stopping namespace
1186 * is not an option.
1187 * Take reference to a socket to remove it from hash _alive_ and after that
1188 * destroy it in the context of init_net.
1189 */
1190void sk_release_kernel(struct sock *sk)
1191{
1192 if (sk == NULL || sk->sk_socket == NULL)
1193 return;
1194
1195 sock_hold(sk);
1196 sock_release(sk->sk_socket);
1197 release_net(sock_net(sk));
1198 sock_net_set(sk, get_net(&init_net));
1199 sock_put(sk);
1200}
1201EXPORT_SYMBOL(sk_release_kernel);
1202
1203struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1204{
1205 struct sock *newsk;
1206
1207 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1208 if (newsk != NULL) {
1209 struct sk_filter *filter;
1210
1211 sock_copy(newsk, sk);
1212
1213 /* SANITY */
1214 get_net(sock_net(newsk));
1215 sk_node_init(&newsk->sk_node);
1216 sock_lock_init(newsk);
1217 bh_lock_sock(newsk);
1218 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1219 newsk->sk_backlog.len = 0;
1220
1221 atomic_set(&newsk->sk_rmem_alloc, 0);
1222 /*
1223 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1224 */
1225 atomic_set(&newsk->sk_wmem_alloc, 1);
1226 atomic_set(&newsk->sk_omem_alloc, 0);
1227 skb_queue_head_init(&newsk->sk_receive_queue);
1228 skb_queue_head_init(&newsk->sk_write_queue);
1229#ifdef CONFIG_NET_DMA
1230 skb_queue_head_init(&newsk->sk_async_wait_queue);
1231#endif
1232
1233 spin_lock_init(&newsk->sk_dst_lock);
1234 rwlock_init(&newsk->sk_callback_lock);
1235 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1236 af_callback_keys + newsk->sk_family,
1237 af_family_clock_key_strings[newsk->sk_family]);
1238
1239 newsk->sk_dst_cache = NULL;
1240 newsk->sk_wmem_queued = 0;
1241 newsk->sk_forward_alloc = 0;
1242 newsk->sk_send_head = NULL;
1243 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1244
1245 sock_reset_flag(newsk, SOCK_DONE);
1246 skb_queue_head_init(&newsk->sk_error_queue);
1247
1248 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1249 if (filter != NULL)
1250 sk_filter_charge(newsk, filter);
1251
1252 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1253 /* It is still raw copy of parent, so invalidate
1254 * destructor and make plain sk_free() */
1255 newsk->sk_destruct = NULL;
1256 bh_unlock_sock(newsk);
1257 sk_free(newsk);
1258 newsk = NULL;
1259 goto out;
1260 }
1261
1262 newsk->sk_err = 0;
1263 newsk->sk_priority = 0;
1264 /*
1265 * Before updating sk_refcnt, we must commit prior changes to memory
1266 * (Documentation/RCU/rculist_nulls.txt for details)
1267 */
1268 smp_wmb();
1269 atomic_set(&newsk->sk_refcnt, 2);
1270
1271 /*
1272 * Increment the counter in the same struct proto as the master
1273 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1274 * is the same as sk->sk_prot->socks, as this field was copied
1275 * with memcpy).
1276 *
1277 * This _changes_ the previous behaviour, where
1278 * tcp_create_openreq_child always was incrementing the
1279 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1280 * to be taken into account in all callers. -acme
1281 */
1282 sk_refcnt_debug_inc(newsk);
1283 sk_set_socket(newsk, NULL);
1284 newsk->sk_wq = NULL;
1285
1286 if (newsk->sk_prot->sockets_allocated)
1287 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1288
1289 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1290 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1291 net_enable_timestamp();
1292 }
1293out:
1294 return newsk;
1295}
1296EXPORT_SYMBOL_GPL(sk_clone);
1297
1298void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1299{
1300 __sk_dst_set(sk, dst);
1301 sk->sk_route_caps = dst->dev->features;
1302 if (sk->sk_route_caps & NETIF_F_GSO)
1303 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1304 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1305 if (sk_can_gso(sk)) {
1306 if (dst->header_len) {
1307 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1308 } else {
1309 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1310 sk->sk_gso_max_size = dst->dev->gso_max_size;
1311 }
1312 }
1313}
1314EXPORT_SYMBOL_GPL(sk_setup_caps);
1315
1316void __init sk_init(void)
1317{
1318 if (totalram_pages <= 4096) {
1319 sysctl_wmem_max = 32767;
1320 sysctl_rmem_max = 32767;
1321 sysctl_wmem_default = 32767;
1322 sysctl_rmem_default = 32767;
1323 } else if (totalram_pages >= 131072) {
1324 sysctl_wmem_max = 131071;
1325 sysctl_rmem_max = 131071;
1326 }
1327}
1328
1329/*
1330 * Simple resource managers for sockets.
1331 */
1332
1333
1334/*
1335 * Write buffer destructor automatically called from kfree_skb.
1336 */
1337void sock_wfree(struct sk_buff *skb)
1338{
1339 struct sock *sk = skb->sk;
1340 unsigned int len = skb->truesize;
1341
1342 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1343 /*
1344 * Keep a reference on sk_wmem_alloc, this will be released
1345 * after sk_write_space() call
1346 */
1347 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1348 sk->sk_write_space(sk);
1349 len = 1;
1350 }
1351 /*
1352 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1353 * could not do because of in-flight packets
1354 */
1355 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1356 __sk_free(sk);
1357}
1358EXPORT_SYMBOL(sock_wfree);
1359
1360/*
1361 * Read buffer destructor automatically called from kfree_skb.
1362 */
1363void sock_rfree(struct sk_buff *skb)
1364{
1365 struct sock *sk = skb->sk;
1366 unsigned int len = skb->truesize;
1367
1368 atomic_sub(len, &sk->sk_rmem_alloc);
1369 sk_mem_uncharge(sk, len);
1370}
1371EXPORT_SYMBOL(sock_rfree);
1372
1373
1374int sock_i_uid(struct sock *sk)
1375{
1376 int uid;
1377
1378 read_lock_bh(&sk->sk_callback_lock);
1379 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1380 read_unlock_bh(&sk->sk_callback_lock);
1381 return uid;
1382}
1383EXPORT_SYMBOL(sock_i_uid);
1384
1385unsigned long sock_i_ino(struct sock *sk)
1386{
1387 unsigned long ino;
1388
1389 read_lock_bh(&sk->sk_callback_lock);
1390 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1391 read_unlock_bh(&sk->sk_callback_lock);
1392 return ino;
1393}
1394EXPORT_SYMBOL(sock_i_ino);
1395
1396/*
1397 * Allocate a skb from the socket's send buffer.
1398 */
1399struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1400 gfp_t priority)
1401{
1402 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1403 struct sk_buff *skb = alloc_skb(size, priority);
1404 if (skb) {
1405 skb_set_owner_w(skb, sk);
1406 return skb;
1407 }
1408 }
1409 return NULL;
1410}
1411EXPORT_SYMBOL(sock_wmalloc);
1412
1413/*
1414 * Allocate a skb from the socket's receive buffer.
1415 */
1416struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1417 gfp_t priority)
1418{
1419 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1420 struct sk_buff *skb = alloc_skb(size, priority);
1421 if (skb) {
1422 skb_set_owner_r(skb, sk);
1423 return skb;
1424 }
1425 }
1426 return NULL;
1427}
1428
1429/*
1430 * Allocate a memory block from the socket's option memory buffer.
1431 */
1432void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1433{
1434 if ((unsigned)size <= sysctl_optmem_max &&
1435 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1436 void *mem;
1437 /* First do the add, to avoid the race if kmalloc
1438 * might sleep.
1439 */
1440 atomic_add(size, &sk->sk_omem_alloc);
1441 mem = kmalloc(size, priority);
1442 if (mem)
1443 return mem;
1444 atomic_sub(size, &sk->sk_omem_alloc);
1445 }
1446 return NULL;
1447}
1448EXPORT_SYMBOL(sock_kmalloc);
1449
1450/*
1451 * Free an option memory block.
1452 */
1453void sock_kfree_s(struct sock *sk, void *mem, int size)
1454{
1455 kfree(mem);
1456 atomic_sub(size, &sk->sk_omem_alloc);
1457}
1458EXPORT_SYMBOL(sock_kfree_s);
1459
1460/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1461 I think, these locks should be removed for datagram sockets.
1462 */
1463static long sock_wait_for_wmem(struct sock *sk, long timeo)
1464{
1465 DEFINE_WAIT(wait);
1466
1467 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1468 for (;;) {
1469 if (!timeo)
1470 break;
1471 if (signal_pending(current))
1472 break;
1473 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1474 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1475 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1476 break;
1477 if (sk->sk_shutdown & SEND_SHUTDOWN)
1478 break;
1479 if (sk->sk_err)
1480 break;
1481 timeo = schedule_timeout(timeo);
1482 }
1483 finish_wait(sk_sleep(sk), &wait);
1484 return timeo;
1485}
1486
1487
1488/*
1489 * Generic send/receive buffer handlers
1490 */
1491
1492struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1493 unsigned long data_len, int noblock,
1494 int *errcode)
1495{
1496 struct sk_buff *skb;
1497 gfp_t gfp_mask;
1498 long timeo;
1499 int err;
1500
1501 gfp_mask = sk->sk_allocation;
1502 if (gfp_mask & __GFP_WAIT)
1503 gfp_mask |= __GFP_REPEAT;
1504
1505 timeo = sock_sndtimeo(sk, noblock);
1506 while (1) {
1507 err = sock_error(sk);
1508 if (err != 0)
1509 goto failure;
1510
1511 err = -EPIPE;
1512 if (sk->sk_shutdown & SEND_SHUTDOWN)
1513 goto failure;
1514
1515 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1516 skb = alloc_skb(header_len, gfp_mask);
1517 if (skb) {
1518 int npages;
1519 int i;
1520
1521 /* No pages, we're done... */
1522 if (!data_len)
1523 break;
1524
1525 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1526 skb->truesize += data_len;
1527 skb_shinfo(skb)->nr_frags = npages;
1528 for (i = 0; i < npages; i++) {
1529 struct page *page;
1530
1531 page = alloc_pages(sk->sk_allocation, 0);
1532 if (!page) {
1533 err = -ENOBUFS;
1534 skb_shinfo(skb)->nr_frags = i;
1535 kfree_skb(skb);
1536 goto failure;
1537 }
1538
1539 __skb_fill_page_desc(skb, i,
1540 page, 0,
1541 (data_len >= PAGE_SIZE ?
1542 PAGE_SIZE :
1543 data_len));
1544 data_len -= PAGE_SIZE;
1545 }
1546
1547 /* Full success... */
1548 break;
1549 }
1550 err = -ENOBUFS;
1551 goto failure;
1552 }
1553 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1554 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1555 err = -EAGAIN;
1556 if (!timeo)
1557 goto failure;
1558 if (signal_pending(current))
1559 goto interrupted;
1560 timeo = sock_wait_for_wmem(sk, timeo);
1561 }
1562
1563 skb_set_owner_w(skb, sk);
1564 return skb;
1565
1566interrupted:
1567 err = sock_intr_errno(timeo);
1568failure:
1569 *errcode = err;
1570 return NULL;
1571}
1572EXPORT_SYMBOL(sock_alloc_send_pskb);
1573
1574struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1575 int noblock, int *errcode)
1576{
1577 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1578}
1579EXPORT_SYMBOL(sock_alloc_send_skb);
1580
1581static void __lock_sock(struct sock *sk)
1582 __releases(&sk->sk_lock.slock)
1583 __acquires(&sk->sk_lock.slock)
1584{
1585 DEFINE_WAIT(wait);
1586
1587 for (;;) {
1588 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1589 TASK_UNINTERRUPTIBLE);
1590 spin_unlock_bh(&sk->sk_lock.slock);
1591 schedule();
1592 spin_lock_bh(&sk->sk_lock.slock);
1593 if (!sock_owned_by_user(sk))
1594 break;
1595 }
1596 finish_wait(&sk->sk_lock.wq, &wait);
1597}
1598
1599static void __release_sock(struct sock *sk)
1600 __releases(&sk->sk_lock.slock)
1601 __acquires(&sk->sk_lock.slock)
1602{
1603 struct sk_buff *skb = sk->sk_backlog.head;
1604
1605 do {
1606 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1607 bh_unlock_sock(sk);
1608
1609 do {
1610 struct sk_buff *next = skb->next;
1611
1612 WARN_ON_ONCE(skb_dst_is_noref(skb));
1613 skb->next = NULL;
1614 sk_backlog_rcv(sk, skb);
1615
1616 /*
1617 * We are in process context here with softirqs
1618 * disabled, use cond_resched_softirq() to preempt.
1619 * This is safe to do because we've taken the backlog
1620 * queue private:
1621 */
1622 cond_resched_softirq();
1623
1624 skb = next;
1625 } while (skb != NULL);
1626
1627 bh_lock_sock(sk);
1628 } while ((skb = sk->sk_backlog.head) != NULL);
1629
1630 /*
1631 * Doing the zeroing here guarantee we can not loop forever
1632 * while a wild producer attempts to flood us.
1633 */
1634 sk->sk_backlog.len = 0;
1635}
1636
1637/**
1638 * sk_wait_data - wait for data to arrive at sk_receive_queue
1639 * @sk: sock to wait on
1640 * @timeo: for how long
1641 *
1642 * Now socket state including sk->sk_err is changed only under lock,
1643 * hence we may omit checks after joining wait queue.
1644 * We check receive queue before schedule() only as optimization;
1645 * it is very likely that release_sock() added new data.
1646 */
1647int sk_wait_data(struct sock *sk, long *timeo)
1648{
1649 int rc;
1650 DEFINE_WAIT(wait);
1651
1652 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1653 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1654 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1655 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1656 finish_wait(sk_sleep(sk), &wait);
1657 return rc;
1658}
1659EXPORT_SYMBOL(sk_wait_data);
1660
1661/**
1662 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1663 * @sk: socket
1664 * @size: memory size to allocate
1665 * @kind: allocation type
1666 *
1667 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1668 * rmem allocation. This function assumes that protocols which have
1669 * memory_pressure use sk_wmem_queued as write buffer accounting.
1670 */
1671int __sk_mem_schedule(struct sock *sk, int size, int kind)
1672{
1673 struct proto *prot = sk->sk_prot;
1674 int amt = sk_mem_pages(size);
1675 long allocated;
1676
1677 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1678 allocated = atomic_long_add_return(amt, prot->memory_allocated);
1679
1680 /* Under limit. */
1681 if (allocated <= prot->sysctl_mem[0]) {
1682 if (prot->memory_pressure && *prot->memory_pressure)
1683 *prot->memory_pressure = 0;
1684 return 1;
1685 }
1686
1687 /* Under pressure. */
1688 if (allocated > prot->sysctl_mem[1])
1689 if (prot->enter_memory_pressure)
1690 prot->enter_memory_pressure(sk);
1691
1692 /* Over hard limit. */
1693 if (allocated > prot->sysctl_mem[2])
1694 goto suppress_allocation;
1695
1696 /* guarantee minimum buffer size under pressure */
1697 if (kind == SK_MEM_RECV) {
1698 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1699 return 1;
1700 } else { /* SK_MEM_SEND */
1701 if (sk->sk_type == SOCK_STREAM) {
1702 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1703 return 1;
1704 } else if (atomic_read(&sk->sk_wmem_alloc) <
1705 prot->sysctl_wmem[0])
1706 return 1;
1707 }
1708
1709 if (prot->memory_pressure) {
1710 int alloc;
1711
1712 if (!*prot->memory_pressure)
1713 return 1;
1714 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1715 if (prot->sysctl_mem[2] > alloc *
1716 sk_mem_pages(sk->sk_wmem_queued +
1717 atomic_read(&sk->sk_rmem_alloc) +
1718 sk->sk_forward_alloc))
1719 return 1;
1720 }
1721
1722suppress_allocation:
1723
1724 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1725 sk_stream_moderate_sndbuf(sk);
1726
1727 /* Fail only if socket is _under_ its sndbuf.
1728 * In this case we cannot block, so that we have to fail.
1729 */
1730 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1731 return 1;
1732 }
1733
1734 trace_sock_exceed_buf_limit(sk, prot, allocated);
1735
1736 /* Alas. Undo changes. */
1737 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1738 atomic_long_sub(amt, prot->memory_allocated);
1739 return 0;
1740}
1741EXPORT_SYMBOL(__sk_mem_schedule);
1742
1743/**
1744 * __sk_reclaim - reclaim memory_allocated
1745 * @sk: socket
1746 */
1747void __sk_mem_reclaim(struct sock *sk)
1748{
1749 struct proto *prot = sk->sk_prot;
1750
1751 atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1752 prot->memory_allocated);
1753 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1754
1755 if (prot->memory_pressure && *prot->memory_pressure &&
1756 (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1757 *prot->memory_pressure = 0;
1758}
1759EXPORT_SYMBOL(__sk_mem_reclaim);
1760
1761
1762/*
1763 * Set of default routines for initialising struct proto_ops when
1764 * the protocol does not support a particular function. In certain
1765 * cases where it makes no sense for a protocol to have a "do nothing"
1766 * function, some default processing is provided.
1767 */
1768
1769int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1770{
1771 return -EOPNOTSUPP;
1772}
1773EXPORT_SYMBOL(sock_no_bind);
1774
1775int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1776 int len, int flags)
1777{
1778 return -EOPNOTSUPP;
1779}
1780EXPORT_SYMBOL(sock_no_connect);
1781
1782int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1783{
1784 return -EOPNOTSUPP;
1785}
1786EXPORT_SYMBOL(sock_no_socketpair);
1787
1788int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1789{
1790 return -EOPNOTSUPP;
1791}
1792EXPORT_SYMBOL(sock_no_accept);
1793
1794int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1795 int *len, int peer)
1796{
1797 return -EOPNOTSUPP;
1798}
1799EXPORT_SYMBOL(sock_no_getname);
1800
1801unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1802{
1803 return 0;
1804}
1805EXPORT_SYMBOL(sock_no_poll);
1806
1807int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1808{
1809 return -EOPNOTSUPP;
1810}
1811EXPORT_SYMBOL(sock_no_ioctl);
1812
1813int sock_no_listen(struct socket *sock, int backlog)
1814{
1815 return -EOPNOTSUPP;
1816}
1817EXPORT_SYMBOL(sock_no_listen);
1818
1819int sock_no_shutdown(struct socket *sock, int how)
1820{
1821 return -EOPNOTSUPP;
1822}
1823EXPORT_SYMBOL(sock_no_shutdown);
1824
1825int sock_no_setsockopt(struct socket *sock, int level, int optname,
1826 char __user *optval, unsigned int optlen)
1827{
1828 return -EOPNOTSUPP;
1829}
1830EXPORT_SYMBOL(sock_no_setsockopt);
1831
1832int sock_no_getsockopt(struct socket *sock, int level, int optname,
1833 char __user *optval, int __user *optlen)
1834{
1835 return -EOPNOTSUPP;
1836}
1837EXPORT_SYMBOL(sock_no_getsockopt);
1838
1839int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1840 size_t len)
1841{
1842 return -EOPNOTSUPP;
1843}
1844EXPORT_SYMBOL(sock_no_sendmsg);
1845
1846int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1847 size_t len, int flags)
1848{
1849 return -EOPNOTSUPP;
1850}
1851EXPORT_SYMBOL(sock_no_recvmsg);
1852
1853int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1854{
1855 /* Mirror missing mmap method error code */
1856 return -ENODEV;
1857}
1858EXPORT_SYMBOL(sock_no_mmap);
1859
1860ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1861{
1862 ssize_t res;
1863 struct msghdr msg = {.msg_flags = flags};
1864 struct kvec iov;
1865 char *kaddr = kmap(page);
1866 iov.iov_base = kaddr + offset;
1867 iov.iov_len = size;
1868 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1869 kunmap(page);
1870 return res;
1871}
1872EXPORT_SYMBOL(sock_no_sendpage);
1873
1874/*
1875 * Default Socket Callbacks
1876 */
1877
1878static void sock_def_wakeup(struct sock *sk)
1879{
1880 struct socket_wq *wq;
1881
1882 rcu_read_lock();
1883 wq = rcu_dereference(sk->sk_wq);
1884 if (wq_has_sleeper(wq))
1885 wake_up_interruptible_all(&wq->wait);
1886 rcu_read_unlock();
1887}
1888
1889static void sock_def_error_report(struct sock *sk)
1890{
1891 struct socket_wq *wq;
1892
1893 rcu_read_lock();
1894 wq = rcu_dereference(sk->sk_wq);
1895 if (wq_has_sleeper(wq))
1896 wake_up_interruptible_poll(&wq->wait, POLLERR);
1897 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1898 rcu_read_unlock();
1899}
1900
1901static void sock_def_readable(struct sock *sk, int len)
1902{
1903 struct socket_wq *wq;
1904
1905 rcu_read_lock();
1906 wq = rcu_dereference(sk->sk_wq);
1907 if (wq_has_sleeper(wq))
1908 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1909 POLLRDNORM | POLLRDBAND);
1910 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1911 rcu_read_unlock();
1912}
1913
1914static void sock_def_write_space(struct sock *sk)
1915{
1916 struct socket_wq *wq;
1917
1918 rcu_read_lock();
1919
1920 /* Do not wake up a writer until he can make "significant"
1921 * progress. --DaveM
1922 */
1923 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1924 wq = rcu_dereference(sk->sk_wq);
1925 if (wq_has_sleeper(wq))
1926 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1927 POLLWRNORM | POLLWRBAND);
1928
1929 /* Should agree with poll, otherwise some programs break */
1930 if (sock_writeable(sk))
1931 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1932 }
1933
1934 rcu_read_unlock();
1935}
1936
1937static void sock_def_destruct(struct sock *sk)
1938{
1939 kfree(sk->sk_protinfo);
1940}
1941
1942void sk_send_sigurg(struct sock *sk)
1943{
1944 if (sk->sk_socket && sk->sk_socket->file)
1945 if (send_sigurg(&sk->sk_socket->file->f_owner))
1946 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1947}
1948EXPORT_SYMBOL(sk_send_sigurg);
1949
1950void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1951 unsigned long expires)
1952{
1953 if (!mod_timer(timer, expires))
1954 sock_hold(sk);
1955}
1956EXPORT_SYMBOL(sk_reset_timer);
1957
1958void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1959{
1960 if (timer_pending(timer) && del_timer(timer))
1961 __sock_put(sk);
1962}
1963EXPORT_SYMBOL(sk_stop_timer);
1964
1965void sock_init_data(struct socket *sock, struct sock *sk)
1966{
1967 skb_queue_head_init(&sk->sk_receive_queue);
1968 skb_queue_head_init(&sk->sk_write_queue);
1969 skb_queue_head_init(&sk->sk_error_queue);
1970#ifdef CONFIG_NET_DMA
1971 skb_queue_head_init(&sk->sk_async_wait_queue);
1972#endif
1973
1974 sk->sk_send_head = NULL;
1975
1976 init_timer(&sk->sk_timer);
1977
1978 sk->sk_allocation = GFP_KERNEL;
1979 sk->sk_rcvbuf = sysctl_rmem_default;
1980 sk->sk_sndbuf = sysctl_wmem_default;
1981 sk->sk_state = TCP_CLOSE;
1982 sk_set_socket(sk, sock);
1983
1984 sock_set_flag(sk, SOCK_ZAPPED);
1985
1986 if (sock) {
1987 sk->sk_type = sock->type;
1988 sk->sk_wq = sock->wq;
1989 sock->sk = sk;
1990 } else
1991 sk->sk_wq = NULL;
1992
1993 spin_lock_init(&sk->sk_dst_lock);
1994 rwlock_init(&sk->sk_callback_lock);
1995 lockdep_set_class_and_name(&sk->sk_callback_lock,
1996 af_callback_keys + sk->sk_family,
1997 af_family_clock_key_strings[sk->sk_family]);
1998
1999 sk->sk_state_change = sock_def_wakeup;
2000 sk->sk_data_ready = sock_def_readable;
2001 sk->sk_write_space = sock_def_write_space;
2002 sk->sk_error_report = sock_def_error_report;
2003 sk->sk_destruct = sock_def_destruct;
2004
2005 sk->sk_sndmsg_page = NULL;
2006 sk->sk_sndmsg_off = 0;
2007
2008 sk->sk_peer_pid = NULL;
2009 sk->sk_peer_cred = NULL;
2010 sk->sk_write_pending = 0;
2011 sk->sk_rcvlowat = 1;
2012 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2013 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2014
2015 sk->sk_stamp = ktime_set(-1L, 0);
2016
2017 /*
2018 * Before updating sk_refcnt, we must commit prior changes to memory
2019 * (Documentation/RCU/rculist_nulls.txt for details)
2020 */
2021 smp_wmb();
2022 atomic_set(&sk->sk_refcnt, 1);
2023 atomic_set(&sk->sk_drops, 0);
2024}
2025EXPORT_SYMBOL(sock_init_data);
2026
2027void lock_sock_nested(struct sock *sk, int subclass)
2028{
2029 might_sleep();
2030 spin_lock_bh(&sk->sk_lock.slock);
2031 if (sk->sk_lock.owned)
2032 __lock_sock(sk);
2033 sk->sk_lock.owned = 1;
2034 spin_unlock(&sk->sk_lock.slock);
2035 /*
2036 * The sk_lock has mutex_lock() semantics here:
2037 */
2038 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2039 local_bh_enable();
2040}
2041EXPORT_SYMBOL(lock_sock_nested);
2042
2043void release_sock(struct sock *sk)
2044{
2045 /*
2046 * The sk_lock has mutex_unlock() semantics:
2047 */
2048 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2049
2050 spin_lock_bh(&sk->sk_lock.slock);
2051 if (sk->sk_backlog.tail)
2052 __release_sock(sk);
2053 sk->sk_lock.owned = 0;
2054 if (waitqueue_active(&sk->sk_lock.wq))
2055 wake_up(&sk->sk_lock.wq);
2056 spin_unlock_bh(&sk->sk_lock.slock);
2057}
2058EXPORT_SYMBOL(release_sock);
2059
2060/**
2061 * lock_sock_fast - fast version of lock_sock
2062 * @sk: socket
2063 *
2064 * This version should be used for very small section, where process wont block
2065 * return false if fast path is taken
2066 * sk_lock.slock locked, owned = 0, BH disabled
2067 * return true if slow path is taken
2068 * sk_lock.slock unlocked, owned = 1, BH enabled
2069 */
2070bool lock_sock_fast(struct sock *sk)
2071{
2072 might_sleep();
2073 spin_lock_bh(&sk->sk_lock.slock);
2074
2075 if (!sk->sk_lock.owned)
2076 /*
2077 * Note : We must disable BH
2078 */
2079 return false;
2080
2081 __lock_sock(sk);
2082 sk->sk_lock.owned = 1;
2083 spin_unlock(&sk->sk_lock.slock);
2084 /*
2085 * The sk_lock has mutex_lock() semantics here:
2086 */
2087 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2088 local_bh_enable();
2089 return true;
2090}
2091EXPORT_SYMBOL(lock_sock_fast);
2092
2093int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2094{
2095 struct timeval tv;
2096 if (!sock_flag(sk, SOCK_TIMESTAMP))
2097 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2098 tv = ktime_to_timeval(sk->sk_stamp);
2099 if (tv.tv_sec == -1)
2100 return -ENOENT;
2101 if (tv.tv_sec == 0) {
2102 sk->sk_stamp = ktime_get_real();
2103 tv = ktime_to_timeval(sk->sk_stamp);
2104 }
2105 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2106}
2107EXPORT_SYMBOL(sock_get_timestamp);
2108
2109int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2110{
2111 struct timespec ts;
2112 if (!sock_flag(sk, SOCK_TIMESTAMP))
2113 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2114 ts = ktime_to_timespec(sk->sk_stamp);
2115 if (ts.tv_sec == -1)
2116 return -ENOENT;
2117 if (ts.tv_sec == 0) {
2118 sk->sk_stamp = ktime_get_real();
2119 ts = ktime_to_timespec(sk->sk_stamp);
2120 }
2121 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2122}
2123EXPORT_SYMBOL(sock_get_timestampns);
2124
2125void sock_enable_timestamp(struct sock *sk, int flag)
2126{
2127 if (!sock_flag(sk, flag)) {
2128 sock_set_flag(sk, flag);
2129 /*
2130 * we just set one of the two flags which require net
2131 * time stamping, but time stamping might have been on
2132 * already because of the other one
2133 */
2134 if (!sock_flag(sk,
2135 flag == SOCK_TIMESTAMP ?
2136 SOCK_TIMESTAMPING_RX_SOFTWARE :
2137 SOCK_TIMESTAMP))
2138 net_enable_timestamp();
2139 }
2140}
2141
2142/*
2143 * Get a socket option on an socket.
2144 *
2145 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2146 * asynchronous errors should be reported by getsockopt. We assume
2147 * this means if you specify SO_ERROR (otherwise whats the point of it).
2148 */
2149int sock_common_getsockopt(struct socket *sock, int level, int optname,
2150 char __user *optval, int __user *optlen)
2151{
2152 struct sock *sk = sock->sk;
2153
2154 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2155}
2156EXPORT_SYMBOL(sock_common_getsockopt);
2157
2158#ifdef CONFIG_COMPAT
2159int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2160 char __user *optval, int __user *optlen)
2161{
2162 struct sock *sk = sock->sk;
2163
2164 if (sk->sk_prot->compat_getsockopt != NULL)
2165 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2166 optval, optlen);
2167 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2168}
2169EXPORT_SYMBOL(compat_sock_common_getsockopt);
2170#endif
2171
2172int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2173 struct msghdr *msg, size_t size, int flags)
2174{
2175 struct sock *sk = sock->sk;
2176 int addr_len = 0;
2177 int err;
2178
2179 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2180 flags & ~MSG_DONTWAIT, &addr_len);
2181 if (err >= 0)
2182 msg->msg_namelen = addr_len;
2183 return err;
2184}
2185EXPORT_SYMBOL(sock_common_recvmsg);
2186
2187/*
2188 * Set socket options on an inet socket.
2189 */
2190int sock_common_setsockopt(struct socket *sock, int level, int optname,
2191 char __user *optval, unsigned int optlen)
2192{
2193 struct sock *sk = sock->sk;
2194
2195 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2196}
2197EXPORT_SYMBOL(sock_common_setsockopt);
2198
2199#ifdef CONFIG_COMPAT
2200int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2201 char __user *optval, unsigned int optlen)
2202{
2203 struct sock *sk = sock->sk;
2204
2205 if (sk->sk_prot->compat_setsockopt != NULL)
2206 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2207 optval, optlen);
2208 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2209}
2210EXPORT_SYMBOL(compat_sock_common_setsockopt);
2211#endif
2212
2213void sk_common_release(struct sock *sk)
2214{
2215 if (sk->sk_prot->destroy)
2216 sk->sk_prot->destroy(sk);
2217
2218 /*
2219 * Observation: when sock_common_release is called, processes have
2220 * no access to socket. But net still has.
2221 * Step one, detach it from networking:
2222 *
2223 * A. Remove from hash tables.
2224 */
2225
2226 sk->sk_prot->unhash(sk);
2227
2228 /*
2229 * In this point socket cannot receive new packets, but it is possible
2230 * that some packets are in flight because some CPU runs receiver and
2231 * did hash table lookup before we unhashed socket. They will achieve
2232 * receive queue and will be purged by socket destructor.
2233 *
2234 * Also we still have packets pending on receive queue and probably,
2235 * our own packets waiting in device queues. sock_destroy will drain
2236 * receive queue, but transmitted packets will delay socket destruction
2237 * until the last reference will be released.
2238 */
2239
2240 sock_orphan(sk);
2241
2242 xfrm_sk_free_policy(sk);
2243
2244 sk_refcnt_debug_release(sk);
2245 sock_put(sk);
2246}
2247EXPORT_SYMBOL(sk_common_release);
2248
2249static DEFINE_RWLOCK(proto_list_lock);
2250static LIST_HEAD(proto_list);
2251
2252#ifdef CONFIG_PROC_FS
2253#define PROTO_INUSE_NR 64 /* should be enough for the first time */
2254struct prot_inuse {
2255 int val[PROTO_INUSE_NR];
2256};
2257
2258static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2259
2260#ifdef CONFIG_NET_NS
2261void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2262{
2263 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2264}
2265EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2266
2267int sock_prot_inuse_get(struct net *net, struct proto *prot)
2268{
2269 int cpu, idx = prot->inuse_idx;
2270 int res = 0;
2271
2272 for_each_possible_cpu(cpu)
2273 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2274
2275 return res >= 0 ? res : 0;
2276}
2277EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2278
2279static int __net_init sock_inuse_init_net(struct net *net)
2280{
2281 net->core.inuse = alloc_percpu(struct prot_inuse);
2282 return net->core.inuse ? 0 : -ENOMEM;
2283}
2284
2285static void __net_exit sock_inuse_exit_net(struct net *net)
2286{
2287 free_percpu(net->core.inuse);
2288}
2289
2290static struct pernet_operations net_inuse_ops = {
2291 .init = sock_inuse_init_net,
2292 .exit = sock_inuse_exit_net,
2293};
2294
2295static __init int net_inuse_init(void)
2296{
2297 if (register_pernet_subsys(&net_inuse_ops))
2298 panic("Cannot initialize net inuse counters");
2299
2300 return 0;
2301}
2302
2303core_initcall(net_inuse_init);
2304#else
2305static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2306
2307void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2308{
2309 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2310}
2311EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2312
2313int sock_prot_inuse_get(struct net *net, struct proto *prot)
2314{
2315 int cpu, idx = prot->inuse_idx;
2316 int res = 0;
2317
2318 for_each_possible_cpu(cpu)
2319 res += per_cpu(prot_inuse, cpu).val[idx];
2320
2321 return res >= 0 ? res : 0;
2322}
2323EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2324#endif
2325
2326static void assign_proto_idx(struct proto *prot)
2327{
2328 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2329
2330 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2331 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2332 return;
2333 }
2334
2335 set_bit(prot->inuse_idx, proto_inuse_idx);
2336}
2337
2338static void release_proto_idx(struct proto *prot)
2339{
2340 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2341 clear_bit(prot->inuse_idx, proto_inuse_idx);
2342}
2343#else
2344static inline void assign_proto_idx(struct proto *prot)
2345{
2346}
2347
2348static inline void release_proto_idx(struct proto *prot)
2349{
2350}
2351#endif
2352
2353int proto_register(struct proto *prot, int alloc_slab)
2354{
2355 if (alloc_slab) {
2356 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2357 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2358 NULL);
2359
2360 if (prot->slab == NULL) {
2361 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2362 prot->name);
2363 goto out;
2364 }
2365
2366 if (prot->rsk_prot != NULL) {
2367 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2368 if (prot->rsk_prot->slab_name == NULL)
2369 goto out_free_sock_slab;
2370
2371 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2372 prot->rsk_prot->obj_size, 0,
2373 SLAB_HWCACHE_ALIGN, NULL);
2374
2375 if (prot->rsk_prot->slab == NULL) {
2376 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2377 prot->name);
2378 goto out_free_request_sock_slab_name;
2379 }
2380 }
2381
2382 if (prot->twsk_prot != NULL) {
2383 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2384
2385 if (prot->twsk_prot->twsk_slab_name == NULL)
2386 goto out_free_request_sock_slab;
2387
2388 prot->twsk_prot->twsk_slab =
2389 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2390 prot->twsk_prot->twsk_obj_size,
2391 0,
2392 SLAB_HWCACHE_ALIGN |
2393 prot->slab_flags,
2394 NULL);
2395 if (prot->twsk_prot->twsk_slab == NULL)
2396 goto out_free_timewait_sock_slab_name;
2397 }
2398 }
2399
2400 write_lock(&proto_list_lock);
2401 list_add(&prot->node, &proto_list);
2402 assign_proto_idx(prot);
2403 write_unlock(&proto_list_lock);
2404 return 0;
2405
2406out_free_timewait_sock_slab_name:
2407 kfree(prot->twsk_prot->twsk_slab_name);
2408out_free_request_sock_slab:
2409 if (prot->rsk_prot && prot->rsk_prot->slab) {
2410 kmem_cache_destroy(prot->rsk_prot->slab);
2411 prot->rsk_prot->slab = NULL;
2412 }
2413out_free_request_sock_slab_name:
2414 if (prot->rsk_prot)
2415 kfree(prot->rsk_prot->slab_name);
2416out_free_sock_slab:
2417 kmem_cache_destroy(prot->slab);
2418 prot->slab = NULL;
2419out:
2420 return -ENOBUFS;
2421}
2422EXPORT_SYMBOL(proto_register);
2423
2424void proto_unregister(struct proto *prot)
2425{
2426 write_lock(&proto_list_lock);
2427 release_proto_idx(prot);
2428 list_del(&prot->node);
2429 write_unlock(&proto_list_lock);
2430
2431 if (prot->slab != NULL) {
2432 kmem_cache_destroy(prot->slab);
2433 prot->slab = NULL;
2434 }
2435
2436 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2437 kmem_cache_destroy(prot->rsk_prot->slab);
2438 kfree(prot->rsk_prot->slab_name);
2439 prot->rsk_prot->slab = NULL;
2440 }
2441
2442 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2443 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2444 kfree(prot->twsk_prot->twsk_slab_name);
2445 prot->twsk_prot->twsk_slab = NULL;
2446 }
2447}
2448EXPORT_SYMBOL(proto_unregister);
2449
2450#ifdef CONFIG_PROC_FS
2451static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2452 __acquires(proto_list_lock)
2453{
2454 read_lock(&proto_list_lock);
2455 return seq_list_start_head(&proto_list, *pos);
2456}
2457
2458static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2459{
2460 return seq_list_next(v, &proto_list, pos);
2461}
2462
2463static void proto_seq_stop(struct seq_file *seq, void *v)
2464 __releases(proto_list_lock)
2465{
2466 read_unlock(&proto_list_lock);
2467}
2468
2469static char proto_method_implemented(const void *method)
2470{
2471 return method == NULL ? 'n' : 'y';
2472}
2473
2474static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2475{
2476 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2477 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2478 proto->name,
2479 proto->obj_size,
2480 sock_prot_inuse_get(seq_file_net(seq), proto),
2481 proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2482 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2483 proto->max_header,
2484 proto->slab == NULL ? "no" : "yes",
2485 module_name(proto->owner),
2486 proto_method_implemented(proto->close),
2487 proto_method_implemented(proto->connect),
2488 proto_method_implemented(proto->disconnect),
2489 proto_method_implemented(proto->accept),
2490 proto_method_implemented(proto->ioctl),
2491 proto_method_implemented(proto->init),
2492 proto_method_implemented(proto->destroy),
2493 proto_method_implemented(proto->shutdown),
2494 proto_method_implemented(proto->setsockopt),
2495 proto_method_implemented(proto->getsockopt),
2496 proto_method_implemented(proto->sendmsg),
2497 proto_method_implemented(proto->recvmsg),
2498 proto_method_implemented(proto->sendpage),
2499 proto_method_implemented(proto->bind),
2500 proto_method_implemented(proto->backlog_rcv),
2501 proto_method_implemented(proto->hash),
2502 proto_method_implemented(proto->unhash),
2503 proto_method_implemented(proto->get_port),
2504 proto_method_implemented(proto->enter_memory_pressure));
2505}
2506
2507static int proto_seq_show(struct seq_file *seq, void *v)
2508{
2509 if (v == &proto_list)
2510 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2511 "protocol",
2512 "size",
2513 "sockets",
2514 "memory",
2515 "press",
2516 "maxhdr",
2517 "slab",
2518 "module",
2519 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2520 else
2521 proto_seq_printf(seq, list_entry(v, struct proto, node));
2522 return 0;
2523}
2524
2525static const struct seq_operations proto_seq_ops = {
2526 .start = proto_seq_start,
2527 .next = proto_seq_next,
2528 .stop = proto_seq_stop,
2529 .show = proto_seq_show,
2530};
2531
2532static int proto_seq_open(struct inode *inode, struct file *file)
2533{
2534 return seq_open_net(inode, file, &proto_seq_ops,
2535 sizeof(struct seq_net_private));
2536}
2537
2538static const struct file_operations proto_seq_fops = {
2539 .owner = THIS_MODULE,
2540 .open = proto_seq_open,
2541 .read = seq_read,
2542 .llseek = seq_lseek,
2543 .release = seq_release_net,
2544};
2545
2546static __net_init int proto_init_net(struct net *net)
2547{
2548 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2549 return -ENOMEM;
2550
2551 return 0;
2552}
2553
2554static __net_exit void proto_exit_net(struct net *net)
2555{
2556 proc_net_remove(net, "protocols");
2557}
2558
2559
2560static __net_initdata struct pernet_operations proto_net_ops = {
2561 .init = proto_init_net,
2562 .exit = proto_exit_net,
2563};
2564
2565static int __init proto_init(void)
2566{
2567 return register_pernet_subsys(&proto_net_ops);
2568}
2569
2570subsys_initcall(proto_init);
2571
2572#endif /* PROC_FS */