at v3.2 166 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/hash.h> 83#include <linux/slab.h> 84#include <linux/sched.h> 85#include <linux/mutex.h> 86#include <linux/string.h> 87#include <linux/mm.h> 88#include <linux/socket.h> 89#include <linux/sockios.h> 90#include <linux/errno.h> 91#include <linux/interrupt.h> 92#include <linux/if_ether.h> 93#include <linux/netdevice.h> 94#include <linux/etherdevice.h> 95#include <linux/ethtool.h> 96#include <linux/notifier.h> 97#include <linux/skbuff.h> 98#include <net/net_namespace.h> 99#include <net/sock.h> 100#include <linux/rtnetlink.h> 101#include <linux/proc_fs.h> 102#include <linux/seq_file.h> 103#include <linux/stat.h> 104#include <net/dst.h> 105#include <net/pkt_sched.h> 106#include <net/checksum.h> 107#include <net/xfrm.h> 108#include <linux/highmem.h> 109#include <linux/init.h> 110#include <linux/kmod.h> 111#include <linux/module.h> 112#include <linux/netpoll.h> 113#include <linux/rcupdate.h> 114#include <linux/delay.h> 115#include <net/wext.h> 116#include <net/iw_handler.h> 117#include <asm/current.h> 118#include <linux/audit.h> 119#include <linux/dmaengine.h> 120#include <linux/err.h> 121#include <linux/ctype.h> 122#include <linux/if_arp.h> 123#include <linux/if_vlan.h> 124#include <linux/ip.h> 125#include <net/ip.h> 126#include <linux/ipv6.h> 127#include <linux/in.h> 128#include <linux/jhash.h> 129#include <linux/random.h> 130#include <trace/events/napi.h> 131#include <trace/events/net.h> 132#include <trace/events/skb.h> 133#include <linux/pci.h> 134#include <linux/inetdevice.h> 135#include <linux/cpu_rmap.h> 136#include <linux/if_tunnel.h> 137#include <linux/if_pppox.h> 138#include <linux/ppp_defs.h> 139#include <linux/net_tstamp.h> 140 141#include "net-sysfs.h" 142 143/* Instead of increasing this, you should create a hash table. */ 144#define MAX_GRO_SKBS 8 145 146/* This should be increased if a protocol with a bigger head is added. */ 147#define GRO_MAX_HEAD (MAX_HEADER + 128) 148 149/* 150 * The list of packet types we will receive (as opposed to discard) 151 * and the routines to invoke. 152 * 153 * Why 16. Because with 16 the only overlap we get on a hash of the 154 * low nibble of the protocol value is RARP/SNAP/X.25. 155 * 156 * NOTE: That is no longer true with the addition of VLAN tags. Not 157 * sure which should go first, but I bet it won't make much 158 * difference if we are running VLANs. The good news is that 159 * this protocol won't be in the list unless compiled in, so 160 * the average user (w/out VLANs) will not be adversely affected. 161 * --BLG 162 * 163 * 0800 IP 164 * 8100 802.1Q VLAN 165 * 0001 802.3 166 * 0002 AX.25 167 * 0004 802.2 168 * 8035 RARP 169 * 0005 SNAP 170 * 0805 X.25 171 * 0806 ARP 172 * 8137 IPX 173 * 0009 Localtalk 174 * 86DD IPv6 175 */ 176 177#define PTYPE_HASH_SIZE (16) 178#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 179 180static DEFINE_SPINLOCK(ptype_lock); 181static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 182static struct list_head ptype_all __read_mostly; /* Taps */ 183 184/* 185 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 186 * semaphore. 187 * 188 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 189 * 190 * Writers must hold the rtnl semaphore while they loop through the 191 * dev_base_head list, and hold dev_base_lock for writing when they do the 192 * actual updates. This allows pure readers to access the list even 193 * while a writer is preparing to update it. 194 * 195 * To put it another way, dev_base_lock is held for writing only to 196 * protect against pure readers; the rtnl semaphore provides the 197 * protection against other writers. 198 * 199 * See, for example usages, register_netdevice() and 200 * unregister_netdevice(), which must be called with the rtnl 201 * semaphore held. 202 */ 203DEFINE_RWLOCK(dev_base_lock); 204EXPORT_SYMBOL(dev_base_lock); 205 206static inline void dev_base_seq_inc(struct net *net) 207{ 208 while (++net->dev_base_seq == 0); 209} 210 211static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 212{ 213 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 214 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 215} 216 217static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 218{ 219 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 220} 221 222static inline void rps_lock(struct softnet_data *sd) 223{ 224#ifdef CONFIG_RPS 225 spin_lock(&sd->input_pkt_queue.lock); 226#endif 227} 228 229static inline void rps_unlock(struct softnet_data *sd) 230{ 231#ifdef CONFIG_RPS 232 spin_unlock(&sd->input_pkt_queue.lock); 233#endif 234} 235 236/* Device list insertion */ 237static int list_netdevice(struct net_device *dev) 238{ 239 struct net *net = dev_net(dev); 240 241 ASSERT_RTNL(); 242 243 write_lock_bh(&dev_base_lock); 244 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 245 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 246 hlist_add_head_rcu(&dev->index_hlist, 247 dev_index_hash(net, dev->ifindex)); 248 write_unlock_bh(&dev_base_lock); 249 250 dev_base_seq_inc(net); 251 252 return 0; 253} 254 255/* Device list removal 256 * caller must respect a RCU grace period before freeing/reusing dev 257 */ 258static void unlist_netdevice(struct net_device *dev) 259{ 260 ASSERT_RTNL(); 261 262 /* Unlink dev from the device chain */ 263 write_lock_bh(&dev_base_lock); 264 list_del_rcu(&dev->dev_list); 265 hlist_del_rcu(&dev->name_hlist); 266 hlist_del_rcu(&dev->index_hlist); 267 write_unlock_bh(&dev_base_lock); 268 269 dev_base_seq_inc(dev_net(dev)); 270} 271 272/* 273 * Our notifier list 274 */ 275 276static RAW_NOTIFIER_HEAD(netdev_chain); 277 278/* 279 * Device drivers call our routines to queue packets here. We empty the 280 * queue in the local softnet handler. 281 */ 282 283DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 284EXPORT_PER_CPU_SYMBOL(softnet_data); 285 286#ifdef CONFIG_LOCKDEP 287/* 288 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 289 * according to dev->type 290 */ 291static const unsigned short netdev_lock_type[] = 292 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 293 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 294 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 295 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 296 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 297 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 298 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 299 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 300 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 301 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 302 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 303 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 304 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 305 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 306 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 307 ARPHRD_VOID, ARPHRD_NONE}; 308 309static const char *const netdev_lock_name[] = 310 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 311 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 312 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 313 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 314 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 315 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 316 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 317 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 318 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 319 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 320 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 321 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 322 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 323 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 324 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 325 "_xmit_VOID", "_xmit_NONE"}; 326 327static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 328static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 329 330static inline unsigned short netdev_lock_pos(unsigned short dev_type) 331{ 332 int i; 333 334 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 335 if (netdev_lock_type[i] == dev_type) 336 return i; 337 /* the last key is used by default */ 338 return ARRAY_SIZE(netdev_lock_type) - 1; 339} 340 341static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 342 unsigned short dev_type) 343{ 344 int i; 345 346 i = netdev_lock_pos(dev_type); 347 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 348 netdev_lock_name[i]); 349} 350 351static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 352{ 353 int i; 354 355 i = netdev_lock_pos(dev->type); 356 lockdep_set_class_and_name(&dev->addr_list_lock, 357 &netdev_addr_lock_key[i], 358 netdev_lock_name[i]); 359} 360#else 361static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 362 unsigned short dev_type) 363{ 364} 365static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 366{ 367} 368#endif 369 370/******************************************************************************* 371 372 Protocol management and registration routines 373 374*******************************************************************************/ 375 376/* 377 * Add a protocol ID to the list. Now that the input handler is 378 * smarter we can dispense with all the messy stuff that used to be 379 * here. 380 * 381 * BEWARE!!! Protocol handlers, mangling input packets, 382 * MUST BE last in hash buckets and checking protocol handlers 383 * MUST start from promiscuous ptype_all chain in net_bh. 384 * It is true now, do not change it. 385 * Explanation follows: if protocol handler, mangling packet, will 386 * be the first on list, it is not able to sense, that packet 387 * is cloned and should be copied-on-write, so that it will 388 * change it and subsequent readers will get broken packet. 389 * --ANK (980803) 390 */ 391 392static inline struct list_head *ptype_head(const struct packet_type *pt) 393{ 394 if (pt->type == htons(ETH_P_ALL)) 395 return &ptype_all; 396 else 397 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 398} 399 400/** 401 * dev_add_pack - add packet handler 402 * @pt: packet type declaration 403 * 404 * Add a protocol handler to the networking stack. The passed &packet_type 405 * is linked into kernel lists and may not be freed until it has been 406 * removed from the kernel lists. 407 * 408 * This call does not sleep therefore it can not 409 * guarantee all CPU's that are in middle of receiving packets 410 * will see the new packet type (until the next received packet). 411 */ 412 413void dev_add_pack(struct packet_type *pt) 414{ 415 struct list_head *head = ptype_head(pt); 416 417 spin_lock(&ptype_lock); 418 list_add_rcu(&pt->list, head); 419 spin_unlock(&ptype_lock); 420} 421EXPORT_SYMBOL(dev_add_pack); 422 423/** 424 * __dev_remove_pack - remove packet handler 425 * @pt: packet type declaration 426 * 427 * Remove a protocol handler that was previously added to the kernel 428 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 429 * from the kernel lists and can be freed or reused once this function 430 * returns. 431 * 432 * The packet type might still be in use by receivers 433 * and must not be freed until after all the CPU's have gone 434 * through a quiescent state. 435 */ 436void __dev_remove_pack(struct packet_type *pt) 437{ 438 struct list_head *head = ptype_head(pt); 439 struct packet_type *pt1; 440 441 spin_lock(&ptype_lock); 442 443 list_for_each_entry(pt1, head, list) { 444 if (pt == pt1) { 445 list_del_rcu(&pt->list); 446 goto out; 447 } 448 } 449 450 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 451out: 452 spin_unlock(&ptype_lock); 453} 454EXPORT_SYMBOL(__dev_remove_pack); 455 456/** 457 * dev_remove_pack - remove packet handler 458 * @pt: packet type declaration 459 * 460 * Remove a protocol handler that was previously added to the kernel 461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 462 * from the kernel lists and can be freed or reused once this function 463 * returns. 464 * 465 * This call sleeps to guarantee that no CPU is looking at the packet 466 * type after return. 467 */ 468void dev_remove_pack(struct packet_type *pt) 469{ 470 __dev_remove_pack(pt); 471 472 synchronize_net(); 473} 474EXPORT_SYMBOL(dev_remove_pack); 475 476/****************************************************************************** 477 478 Device Boot-time Settings Routines 479 480*******************************************************************************/ 481 482/* Boot time configuration table */ 483static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 484 485/** 486 * netdev_boot_setup_add - add new setup entry 487 * @name: name of the device 488 * @map: configured settings for the device 489 * 490 * Adds new setup entry to the dev_boot_setup list. The function 491 * returns 0 on error and 1 on success. This is a generic routine to 492 * all netdevices. 493 */ 494static int netdev_boot_setup_add(char *name, struct ifmap *map) 495{ 496 struct netdev_boot_setup *s; 497 int i; 498 499 s = dev_boot_setup; 500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 501 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 502 memset(s[i].name, 0, sizeof(s[i].name)); 503 strlcpy(s[i].name, name, IFNAMSIZ); 504 memcpy(&s[i].map, map, sizeof(s[i].map)); 505 break; 506 } 507 } 508 509 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 510} 511 512/** 513 * netdev_boot_setup_check - check boot time settings 514 * @dev: the netdevice 515 * 516 * Check boot time settings for the device. 517 * The found settings are set for the device to be used 518 * later in the device probing. 519 * Returns 0 if no settings found, 1 if they are. 520 */ 521int netdev_boot_setup_check(struct net_device *dev) 522{ 523 struct netdev_boot_setup *s = dev_boot_setup; 524 int i; 525 526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 527 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 528 !strcmp(dev->name, s[i].name)) { 529 dev->irq = s[i].map.irq; 530 dev->base_addr = s[i].map.base_addr; 531 dev->mem_start = s[i].map.mem_start; 532 dev->mem_end = s[i].map.mem_end; 533 return 1; 534 } 535 } 536 return 0; 537} 538EXPORT_SYMBOL(netdev_boot_setup_check); 539 540 541/** 542 * netdev_boot_base - get address from boot time settings 543 * @prefix: prefix for network device 544 * @unit: id for network device 545 * 546 * Check boot time settings for the base address of device. 547 * The found settings are set for the device to be used 548 * later in the device probing. 549 * Returns 0 if no settings found. 550 */ 551unsigned long netdev_boot_base(const char *prefix, int unit) 552{ 553 const struct netdev_boot_setup *s = dev_boot_setup; 554 char name[IFNAMSIZ]; 555 int i; 556 557 sprintf(name, "%s%d", prefix, unit); 558 559 /* 560 * If device already registered then return base of 1 561 * to indicate not to probe for this interface 562 */ 563 if (__dev_get_by_name(&init_net, name)) 564 return 1; 565 566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 567 if (!strcmp(name, s[i].name)) 568 return s[i].map.base_addr; 569 return 0; 570} 571 572/* 573 * Saves at boot time configured settings for any netdevice. 574 */ 575int __init netdev_boot_setup(char *str) 576{ 577 int ints[5]; 578 struct ifmap map; 579 580 str = get_options(str, ARRAY_SIZE(ints), ints); 581 if (!str || !*str) 582 return 0; 583 584 /* Save settings */ 585 memset(&map, 0, sizeof(map)); 586 if (ints[0] > 0) 587 map.irq = ints[1]; 588 if (ints[0] > 1) 589 map.base_addr = ints[2]; 590 if (ints[0] > 2) 591 map.mem_start = ints[3]; 592 if (ints[0] > 3) 593 map.mem_end = ints[4]; 594 595 /* Add new entry to the list */ 596 return netdev_boot_setup_add(str, &map); 597} 598 599__setup("netdev=", netdev_boot_setup); 600 601/******************************************************************************* 602 603 Device Interface Subroutines 604 605*******************************************************************************/ 606 607/** 608 * __dev_get_by_name - find a device by its name 609 * @net: the applicable net namespace 610 * @name: name to find 611 * 612 * Find an interface by name. Must be called under RTNL semaphore 613 * or @dev_base_lock. If the name is found a pointer to the device 614 * is returned. If the name is not found then %NULL is returned. The 615 * reference counters are not incremented so the caller must be 616 * careful with locks. 617 */ 618 619struct net_device *__dev_get_by_name(struct net *net, const char *name) 620{ 621 struct hlist_node *p; 622 struct net_device *dev; 623 struct hlist_head *head = dev_name_hash(net, name); 624 625 hlist_for_each_entry(dev, p, head, name_hlist) 626 if (!strncmp(dev->name, name, IFNAMSIZ)) 627 return dev; 628 629 return NULL; 630} 631EXPORT_SYMBOL(__dev_get_by_name); 632 633/** 634 * dev_get_by_name_rcu - find a device by its name 635 * @net: the applicable net namespace 636 * @name: name to find 637 * 638 * Find an interface by name. 639 * If the name is found a pointer to the device is returned. 640 * If the name is not found then %NULL is returned. 641 * The reference counters are not incremented so the caller must be 642 * careful with locks. The caller must hold RCU lock. 643 */ 644 645struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 646{ 647 struct hlist_node *p; 648 struct net_device *dev; 649 struct hlist_head *head = dev_name_hash(net, name); 650 651 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 652 if (!strncmp(dev->name, name, IFNAMSIZ)) 653 return dev; 654 655 return NULL; 656} 657EXPORT_SYMBOL(dev_get_by_name_rcu); 658 659/** 660 * dev_get_by_name - find a device by its name 661 * @net: the applicable net namespace 662 * @name: name to find 663 * 664 * Find an interface by name. This can be called from any 665 * context and does its own locking. The returned handle has 666 * the usage count incremented and the caller must use dev_put() to 667 * release it when it is no longer needed. %NULL is returned if no 668 * matching device is found. 669 */ 670 671struct net_device *dev_get_by_name(struct net *net, const char *name) 672{ 673 struct net_device *dev; 674 675 rcu_read_lock(); 676 dev = dev_get_by_name_rcu(net, name); 677 if (dev) 678 dev_hold(dev); 679 rcu_read_unlock(); 680 return dev; 681} 682EXPORT_SYMBOL(dev_get_by_name); 683 684/** 685 * __dev_get_by_index - find a device by its ifindex 686 * @net: the applicable net namespace 687 * @ifindex: index of device 688 * 689 * Search for an interface by index. Returns %NULL if the device 690 * is not found or a pointer to the device. The device has not 691 * had its reference counter increased so the caller must be careful 692 * about locking. The caller must hold either the RTNL semaphore 693 * or @dev_base_lock. 694 */ 695 696struct net_device *__dev_get_by_index(struct net *net, int ifindex) 697{ 698 struct hlist_node *p; 699 struct net_device *dev; 700 struct hlist_head *head = dev_index_hash(net, ifindex); 701 702 hlist_for_each_entry(dev, p, head, index_hlist) 703 if (dev->ifindex == ifindex) 704 return dev; 705 706 return NULL; 707} 708EXPORT_SYMBOL(__dev_get_by_index); 709 710/** 711 * dev_get_by_index_rcu - find a device by its ifindex 712 * @net: the applicable net namespace 713 * @ifindex: index of device 714 * 715 * Search for an interface by index. Returns %NULL if the device 716 * is not found or a pointer to the device. The device has not 717 * had its reference counter increased so the caller must be careful 718 * about locking. The caller must hold RCU lock. 719 */ 720 721struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 722{ 723 struct hlist_node *p; 724 struct net_device *dev; 725 struct hlist_head *head = dev_index_hash(net, ifindex); 726 727 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 728 if (dev->ifindex == ifindex) 729 return dev; 730 731 return NULL; 732} 733EXPORT_SYMBOL(dev_get_by_index_rcu); 734 735 736/** 737 * dev_get_by_index - find a device by its ifindex 738 * @net: the applicable net namespace 739 * @ifindex: index of device 740 * 741 * Search for an interface by index. Returns NULL if the device 742 * is not found or a pointer to the device. The device returned has 743 * had a reference added and the pointer is safe until the user calls 744 * dev_put to indicate they have finished with it. 745 */ 746 747struct net_device *dev_get_by_index(struct net *net, int ifindex) 748{ 749 struct net_device *dev; 750 751 rcu_read_lock(); 752 dev = dev_get_by_index_rcu(net, ifindex); 753 if (dev) 754 dev_hold(dev); 755 rcu_read_unlock(); 756 return dev; 757} 758EXPORT_SYMBOL(dev_get_by_index); 759 760/** 761 * dev_getbyhwaddr_rcu - find a device by its hardware address 762 * @net: the applicable net namespace 763 * @type: media type of device 764 * @ha: hardware address 765 * 766 * Search for an interface by MAC address. Returns NULL if the device 767 * is not found or a pointer to the device. 768 * The caller must hold RCU or RTNL. 769 * The returned device has not had its ref count increased 770 * and the caller must therefore be careful about locking 771 * 772 */ 773 774struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 775 const char *ha) 776{ 777 struct net_device *dev; 778 779 for_each_netdev_rcu(net, dev) 780 if (dev->type == type && 781 !memcmp(dev->dev_addr, ha, dev->addr_len)) 782 return dev; 783 784 return NULL; 785} 786EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 787 788struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 789{ 790 struct net_device *dev; 791 792 ASSERT_RTNL(); 793 for_each_netdev(net, dev) 794 if (dev->type == type) 795 return dev; 796 797 return NULL; 798} 799EXPORT_SYMBOL(__dev_getfirstbyhwtype); 800 801struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 802{ 803 struct net_device *dev, *ret = NULL; 804 805 rcu_read_lock(); 806 for_each_netdev_rcu(net, dev) 807 if (dev->type == type) { 808 dev_hold(dev); 809 ret = dev; 810 break; 811 } 812 rcu_read_unlock(); 813 return ret; 814} 815EXPORT_SYMBOL(dev_getfirstbyhwtype); 816 817/** 818 * dev_get_by_flags_rcu - find any device with given flags 819 * @net: the applicable net namespace 820 * @if_flags: IFF_* values 821 * @mask: bitmask of bits in if_flags to check 822 * 823 * Search for any interface with the given flags. Returns NULL if a device 824 * is not found or a pointer to the device. Must be called inside 825 * rcu_read_lock(), and result refcount is unchanged. 826 */ 827 828struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 829 unsigned short mask) 830{ 831 struct net_device *dev, *ret; 832 833 ret = NULL; 834 for_each_netdev_rcu(net, dev) { 835 if (((dev->flags ^ if_flags) & mask) == 0) { 836 ret = dev; 837 break; 838 } 839 } 840 return ret; 841} 842EXPORT_SYMBOL(dev_get_by_flags_rcu); 843 844/** 845 * dev_valid_name - check if name is okay for network device 846 * @name: name string 847 * 848 * Network device names need to be valid file names to 849 * to allow sysfs to work. We also disallow any kind of 850 * whitespace. 851 */ 852int dev_valid_name(const char *name) 853{ 854 if (*name == '\0') 855 return 0; 856 if (strlen(name) >= IFNAMSIZ) 857 return 0; 858 if (!strcmp(name, ".") || !strcmp(name, "..")) 859 return 0; 860 861 while (*name) { 862 if (*name == '/' || isspace(*name)) 863 return 0; 864 name++; 865 } 866 return 1; 867} 868EXPORT_SYMBOL(dev_valid_name); 869 870/** 871 * __dev_alloc_name - allocate a name for a device 872 * @net: network namespace to allocate the device name in 873 * @name: name format string 874 * @buf: scratch buffer and result name string 875 * 876 * Passed a format string - eg "lt%d" it will try and find a suitable 877 * id. It scans list of devices to build up a free map, then chooses 878 * the first empty slot. The caller must hold the dev_base or rtnl lock 879 * while allocating the name and adding the device in order to avoid 880 * duplicates. 881 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 882 * Returns the number of the unit assigned or a negative errno code. 883 */ 884 885static int __dev_alloc_name(struct net *net, const char *name, char *buf) 886{ 887 int i = 0; 888 const char *p; 889 const int max_netdevices = 8*PAGE_SIZE; 890 unsigned long *inuse; 891 struct net_device *d; 892 893 p = strnchr(name, IFNAMSIZ-1, '%'); 894 if (p) { 895 /* 896 * Verify the string as this thing may have come from 897 * the user. There must be either one "%d" and no other "%" 898 * characters. 899 */ 900 if (p[1] != 'd' || strchr(p + 2, '%')) 901 return -EINVAL; 902 903 /* Use one page as a bit array of possible slots */ 904 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 905 if (!inuse) 906 return -ENOMEM; 907 908 for_each_netdev(net, d) { 909 if (!sscanf(d->name, name, &i)) 910 continue; 911 if (i < 0 || i >= max_netdevices) 912 continue; 913 914 /* avoid cases where sscanf is not exact inverse of printf */ 915 snprintf(buf, IFNAMSIZ, name, i); 916 if (!strncmp(buf, d->name, IFNAMSIZ)) 917 set_bit(i, inuse); 918 } 919 920 i = find_first_zero_bit(inuse, max_netdevices); 921 free_page((unsigned long) inuse); 922 } 923 924 if (buf != name) 925 snprintf(buf, IFNAMSIZ, name, i); 926 if (!__dev_get_by_name(net, buf)) 927 return i; 928 929 /* It is possible to run out of possible slots 930 * when the name is long and there isn't enough space left 931 * for the digits, or if all bits are used. 932 */ 933 return -ENFILE; 934} 935 936/** 937 * dev_alloc_name - allocate a name for a device 938 * @dev: device 939 * @name: name format string 940 * 941 * Passed a format string - eg "lt%d" it will try and find a suitable 942 * id. It scans list of devices to build up a free map, then chooses 943 * the first empty slot. The caller must hold the dev_base or rtnl lock 944 * while allocating the name and adding the device in order to avoid 945 * duplicates. 946 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 947 * Returns the number of the unit assigned or a negative errno code. 948 */ 949 950int dev_alloc_name(struct net_device *dev, const char *name) 951{ 952 char buf[IFNAMSIZ]; 953 struct net *net; 954 int ret; 955 956 BUG_ON(!dev_net(dev)); 957 net = dev_net(dev); 958 ret = __dev_alloc_name(net, name, buf); 959 if (ret >= 0) 960 strlcpy(dev->name, buf, IFNAMSIZ); 961 return ret; 962} 963EXPORT_SYMBOL(dev_alloc_name); 964 965static int dev_get_valid_name(struct net_device *dev, const char *name) 966{ 967 struct net *net; 968 969 BUG_ON(!dev_net(dev)); 970 net = dev_net(dev); 971 972 if (!dev_valid_name(name)) 973 return -EINVAL; 974 975 if (strchr(name, '%')) 976 return dev_alloc_name(dev, name); 977 else if (__dev_get_by_name(net, name)) 978 return -EEXIST; 979 else if (dev->name != name) 980 strlcpy(dev->name, name, IFNAMSIZ); 981 982 return 0; 983} 984 985/** 986 * dev_change_name - change name of a device 987 * @dev: device 988 * @newname: name (or format string) must be at least IFNAMSIZ 989 * 990 * Change name of a device, can pass format strings "eth%d". 991 * for wildcarding. 992 */ 993int dev_change_name(struct net_device *dev, const char *newname) 994{ 995 char oldname[IFNAMSIZ]; 996 int err = 0; 997 int ret; 998 struct net *net; 999 1000 ASSERT_RTNL(); 1001 BUG_ON(!dev_net(dev)); 1002 1003 net = dev_net(dev); 1004 if (dev->flags & IFF_UP) 1005 return -EBUSY; 1006 1007 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1008 return 0; 1009 1010 memcpy(oldname, dev->name, IFNAMSIZ); 1011 1012 err = dev_get_valid_name(dev, newname); 1013 if (err < 0) 1014 return err; 1015 1016rollback: 1017 ret = device_rename(&dev->dev, dev->name); 1018 if (ret) { 1019 memcpy(dev->name, oldname, IFNAMSIZ); 1020 return ret; 1021 } 1022 1023 write_lock_bh(&dev_base_lock); 1024 hlist_del_rcu(&dev->name_hlist); 1025 write_unlock_bh(&dev_base_lock); 1026 1027 synchronize_rcu(); 1028 1029 write_lock_bh(&dev_base_lock); 1030 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1031 write_unlock_bh(&dev_base_lock); 1032 1033 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1034 ret = notifier_to_errno(ret); 1035 1036 if (ret) { 1037 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1038 if (err >= 0) { 1039 err = ret; 1040 memcpy(dev->name, oldname, IFNAMSIZ); 1041 goto rollback; 1042 } else { 1043 printk(KERN_ERR 1044 "%s: name change rollback failed: %d.\n", 1045 dev->name, ret); 1046 } 1047 } 1048 1049 return err; 1050} 1051 1052/** 1053 * dev_set_alias - change ifalias of a device 1054 * @dev: device 1055 * @alias: name up to IFALIASZ 1056 * @len: limit of bytes to copy from info 1057 * 1058 * Set ifalias for a device, 1059 */ 1060int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1061{ 1062 ASSERT_RTNL(); 1063 1064 if (len >= IFALIASZ) 1065 return -EINVAL; 1066 1067 if (!len) { 1068 if (dev->ifalias) { 1069 kfree(dev->ifalias); 1070 dev->ifalias = NULL; 1071 } 1072 return 0; 1073 } 1074 1075 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1076 if (!dev->ifalias) 1077 return -ENOMEM; 1078 1079 strlcpy(dev->ifalias, alias, len+1); 1080 return len; 1081} 1082 1083 1084/** 1085 * netdev_features_change - device changes features 1086 * @dev: device to cause notification 1087 * 1088 * Called to indicate a device has changed features. 1089 */ 1090void netdev_features_change(struct net_device *dev) 1091{ 1092 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1093} 1094EXPORT_SYMBOL(netdev_features_change); 1095 1096/** 1097 * netdev_state_change - device changes state 1098 * @dev: device to cause notification 1099 * 1100 * Called to indicate a device has changed state. This function calls 1101 * the notifier chains for netdev_chain and sends a NEWLINK message 1102 * to the routing socket. 1103 */ 1104void netdev_state_change(struct net_device *dev) 1105{ 1106 if (dev->flags & IFF_UP) { 1107 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1108 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1109 } 1110} 1111EXPORT_SYMBOL(netdev_state_change); 1112 1113int netdev_bonding_change(struct net_device *dev, unsigned long event) 1114{ 1115 return call_netdevice_notifiers(event, dev); 1116} 1117EXPORT_SYMBOL(netdev_bonding_change); 1118 1119/** 1120 * dev_load - load a network module 1121 * @net: the applicable net namespace 1122 * @name: name of interface 1123 * 1124 * If a network interface is not present and the process has suitable 1125 * privileges this function loads the module. If module loading is not 1126 * available in this kernel then it becomes a nop. 1127 */ 1128 1129void dev_load(struct net *net, const char *name) 1130{ 1131 struct net_device *dev; 1132 int no_module; 1133 1134 rcu_read_lock(); 1135 dev = dev_get_by_name_rcu(net, name); 1136 rcu_read_unlock(); 1137 1138 no_module = !dev; 1139 if (no_module && capable(CAP_NET_ADMIN)) 1140 no_module = request_module("netdev-%s", name); 1141 if (no_module && capable(CAP_SYS_MODULE)) { 1142 if (!request_module("%s", name)) 1143 pr_err("Loading kernel module for a network device " 1144"with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s " 1145"instead\n", name); 1146 } 1147} 1148EXPORT_SYMBOL(dev_load); 1149 1150static int __dev_open(struct net_device *dev) 1151{ 1152 const struct net_device_ops *ops = dev->netdev_ops; 1153 int ret; 1154 1155 ASSERT_RTNL(); 1156 1157 if (!netif_device_present(dev)) 1158 return -ENODEV; 1159 1160 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1161 ret = notifier_to_errno(ret); 1162 if (ret) 1163 return ret; 1164 1165 set_bit(__LINK_STATE_START, &dev->state); 1166 1167 if (ops->ndo_validate_addr) 1168 ret = ops->ndo_validate_addr(dev); 1169 1170 if (!ret && ops->ndo_open) 1171 ret = ops->ndo_open(dev); 1172 1173 if (ret) 1174 clear_bit(__LINK_STATE_START, &dev->state); 1175 else { 1176 dev->flags |= IFF_UP; 1177 net_dmaengine_get(); 1178 dev_set_rx_mode(dev); 1179 dev_activate(dev); 1180 } 1181 1182 return ret; 1183} 1184 1185/** 1186 * dev_open - prepare an interface for use. 1187 * @dev: device to open 1188 * 1189 * Takes a device from down to up state. The device's private open 1190 * function is invoked and then the multicast lists are loaded. Finally 1191 * the device is moved into the up state and a %NETDEV_UP message is 1192 * sent to the netdev notifier chain. 1193 * 1194 * Calling this function on an active interface is a nop. On a failure 1195 * a negative errno code is returned. 1196 */ 1197int dev_open(struct net_device *dev) 1198{ 1199 int ret; 1200 1201 if (dev->flags & IFF_UP) 1202 return 0; 1203 1204 ret = __dev_open(dev); 1205 if (ret < 0) 1206 return ret; 1207 1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1209 call_netdevice_notifiers(NETDEV_UP, dev); 1210 1211 return ret; 1212} 1213EXPORT_SYMBOL(dev_open); 1214 1215static int __dev_close_many(struct list_head *head) 1216{ 1217 struct net_device *dev; 1218 1219 ASSERT_RTNL(); 1220 might_sleep(); 1221 1222 list_for_each_entry(dev, head, unreg_list) { 1223 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1224 1225 clear_bit(__LINK_STATE_START, &dev->state); 1226 1227 /* Synchronize to scheduled poll. We cannot touch poll list, it 1228 * can be even on different cpu. So just clear netif_running(). 1229 * 1230 * dev->stop() will invoke napi_disable() on all of it's 1231 * napi_struct instances on this device. 1232 */ 1233 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1234 } 1235 1236 dev_deactivate_many(head); 1237 1238 list_for_each_entry(dev, head, unreg_list) { 1239 const struct net_device_ops *ops = dev->netdev_ops; 1240 1241 /* 1242 * Call the device specific close. This cannot fail. 1243 * Only if device is UP 1244 * 1245 * We allow it to be called even after a DETACH hot-plug 1246 * event. 1247 */ 1248 if (ops->ndo_stop) 1249 ops->ndo_stop(dev); 1250 1251 dev->flags &= ~IFF_UP; 1252 net_dmaengine_put(); 1253 } 1254 1255 return 0; 1256} 1257 1258static int __dev_close(struct net_device *dev) 1259{ 1260 int retval; 1261 LIST_HEAD(single); 1262 1263 list_add(&dev->unreg_list, &single); 1264 retval = __dev_close_many(&single); 1265 list_del(&single); 1266 return retval; 1267} 1268 1269static int dev_close_many(struct list_head *head) 1270{ 1271 struct net_device *dev, *tmp; 1272 LIST_HEAD(tmp_list); 1273 1274 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1275 if (!(dev->flags & IFF_UP)) 1276 list_move(&dev->unreg_list, &tmp_list); 1277 1278 __dev_close_many(head); 1279 1280 list_for_each_entry(dev, head, unreg_list) { 1281 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1282 call_netdevice_notifiers(NETDEV_DOWN, dev); 1283 } 1284 1285 /* rollback_registered_many needs the complete original list */ 1286 list_splice(&tmp_list, head); 1287 return 0; 1288} 1289 1290/** 1291 * dev_close - shutdown an interface. 1292 * @dev: device to shutdown 1293 * 1294 * This function moves an active device into down state. A 1295 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1296 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1297 * chain. 1298 */ 1299int dev_close(struct net_device *dev) 1300{ 1301 if (dev->flags & IFF_UP) { 1302 LIST_HEAD(single); 1303 1304 list_add(&dev->unreg_list, &single); 1305 dev_close_many(&single); 1306 list_del(&single); 1307 } 1308 return 0; 1309} 1310EXPORT_SYMBOL(dev_close); 1311 1312 1313/** 1314 * dev_disable_lro - disable Large Receive Offload on a device 1315 * @dev: device 1316 * 1317 * Disable Large Receive Offload (LRO) on a net device. Must be 1318 * called under RTNL. This is needed if received packets may be 1319 * forwarded to another interface. 1320 */ 1321void dev_disable_lro(struct net_device *dev) 1322{ 1323 u32 flags; 1324 1325 /* 1326 * If we're trying to disable lro on a vlan device 1327 * use the underlying physical device instead 1328 */ 1329 if (is_vlan_dev(dev)) 1330 dev = vlan_dev_real_dev(dev); 1331 1332 if (dev->ethtool_ops && dev->ethtool_ops->get_flags) 1333 flags = dev->ethtool_ops->get_flags(dev); 1334 else 1335 flags = ethtool_op_get_flags(dev); 1336 1337 if (!(flags & ETH_FLAG_LRO)) 1338 return; 1339 1340 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO); 1341 if (unlikely(dev->features & NETIF_F_LRO)) 1342 netdev_WARN(dev, "failed to disable LRO!\n"); 1343} 1344EXPORT_SYMBOL(dev_disable_lro); 1345 1346 1347static int dev_boot_phase = 1; 1348 1349/** 1350 * register_netdevice_notifier - register a network notifier block 1351 * @nb: notifier 1352 * 1353 * Register a notifier to be called when network device events occur. 1354 * The notifier passed is linked into the kernel structures and must 1355 * not be reused until it has been unregistered. A negative errno code 1356 * is returned on a failure. 1357 * 1358 * When registered all registration and up events are replayed 1359 * to the new notifier to allow device to have a race free 1360 * view of the network device list. 1361 */ 1362 1363int register_netdevice_notifier(struct notifier_block *nb) 1364{ 1365 struct net_device *dev; 1366 struct net_device *last; 1367 struct net *net; 1368 int err; 1369 1370 rtnl_lock(); 1371 err = raw_notifier_chain_register(&netdev_chain, nb); 1372 if (err) 1373 goto unlock; 1374 if (dev_boot_phase) 1375 goto unlock; 1376 for_each_net(net) { 1377 for_each_netdev(net, dev) { 1378 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1379 err = notifier_to_errno(err); 1380 if (err) 1381 goto rollback; 1382 1383 if (!(dev->flags & IFF_UP)) 1384 continue; 1385 1386 nb->notifier_call(nb, NETDEV_UP, dev); 1387 } 1388 } 1389 1390unlock: 1391 rtnl_unlock(); 1392 return err; 1393 1394rollback: 1395 last = dev; 1396 for_each_net(net) { 1397 for_each_netdev(net, dev) { 1398 if (dev == last) 1399 goto outroll; 1400 1401 if (dev->flags & IFF_UP) { 1402 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1403 nb->notifier_call(nb, NETDEV_DOWN, dev); 1404 } 1405 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1406 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1407 } 1408 } 1409 1410outroll: 1411 raw_notifier_chain_unregister(&netdev_chain, nb); 1412 goto unlock; 1413} 1414EXPORT_SYMBOL(register_netdevice_notifier); 1415 1416/** 1417 * unregister_netdevice_notifier - unregister a network notifier block 1418 * @nb: notifier 1419 * 1420 * Unregister a notifier previously registered by 1421 * register_netdevice_notifier(). The notifier is unlinked into the 1422 * kernel structures and may then be reused. A negative errno code 1423 * is returned on a failure. 1424 */ 1425 1426int unregister_netdevice_notifier(struct notifier_block *nb) 1427{ 1428 int err; 1429 1430 rtnl_lock(); 1431 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1432 rtnl_unlock(); 1433 return err; 1434} 1435EXPORT_SYMBOL(unregister_netdevice_notifier); 1436 1437/** 1438 * call_netdevice_notifiers - call all network notifier blocks 1439 * @val: value passed unmodified to notifier function 1440 * @dev: net_device pointer passed unmodified to notifier function 1441 * 1442 * Call all network notifier blocks. Parameters and return value 1443 * are as for raw_notifier_call_chain(). 1444 */ 1445 1446int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1447{ 1448 ASSERT_RTNL(); 1449 return raw_notifier_call_chain(&netdev_chain, val, dev); 1450} 1451EXPORT_SYMBOL(call_netdevice_notifiers); 1452 1453/* When > 0 there are consumers of rx skb time stamps */ 1454static atomic_t netstamp_needed = ATOMIC_INIT(0); 1455 1456void net_enable_timestamp(void) 1457{ 1458 atomic_inc(&netstamp_needed); 1459} 1460EXPORT_SYMBOL(net_enable_timestamp); 1461 1462void net_disable_timestamp(void) 1463{ 1464 atomic_dec(&netstamp_needed); 1465} 1466EXPORT_SYMBOL(net_disable_timestamp); 1467 1468static inline void net_timestamp_set(struct sk_buff *skb) 1469{ 1470 if (atomic_read(&netstamp_needed)) 1471 __net_timestamp(skb); 1472 else 1473 skb->tstamp.tv64 = 0; 1474} 1475 1476static inline void net_timestamp_check(struct sk_buff *skb) 1477{ 1478 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1479 __net_timestamp(skb); 1480} 1481 1482static int net_hwtstamp_validate(struct ifreq *ifr) 1483{ 1484 struct hwtstamp_config cfg; 1485 enum hwtstamp_tx_types tx_type; 1486 enum hwtstamp_rx_filters rx_filter; 1487 int tx_type_valid = 0; 1488 int rx_filter_valid = 0; 1489 1490 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1491 return -EFAULT; 1492 1493 if (cfg.flags) /* reserved for future extensions */ 1494 return -EINVAL; 1495 1496 tx_type = cfg.tx_type; 1497 rx_filter = cfg.rx_filter; 1498 1499 switch (tx_type) { 1500 case HWTSTAMP_TX_OFF: 1501 case HWTSTAMP_TX_ON: 1502 case HWTSTAMP_TX_ONESTEP_SYNC: 1503 tx_type_valid = 1; 1504 break; 1505 } 1506 1507 switch (rx_filter) { 1508 case HWTSTAMP_FILTER_NONE: 1509 case HWTSTAMP_FILTER_ALL: 1510 case HWTSTAMP_FILTER_SOME: 1511 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1512 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1513 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1514 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1515 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1516 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1517 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1518 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1519 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1520 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1521 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1522 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1523 rx_filter_valid = 1; 1524 break; 1525 } 1526 1527 if (!tx_type_valid || !rx_filter_valid) 1528 return -ERANGE; 1529 1530 return 0; 1531} 1532 1533static inline bool is_skb_forwardable(struct net_device *dev, 1534 struct sk_buff *skb) 1535{ 1536 unsigned int len; 1537 1538 if (!(dev->flags & IFF_UP)) 1539 return false; 1540 1541 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1542 if (skb->len <= len) 1543 return true; 1544 1545 /* if TSO is enabled, we don't care about the length as the packet 1546 * could be forwarded without being segmented before 1547 */ 1548 if (skb_is_gso(skb)) 1549 return true; 1550 1551 return false; 1552} 1553 1554/** 1555 * dev_forward_skb - loopback an skb to another netif 1556 * 1557 * @dev: destination network device 1558 * @skb: buffer to forward 1559 * 1560 * return values: 1561 * NET_RX_SUCCESS (no congestion) 1562 * NET_RX_DROP (packet was dropped, but freed) 1563 * 1564 * dev_forward_skb can be used for injecting an skb from the 1565 * start_xmit function of one device into the receive queue 1566 * of another device. 1567 * 1568 * The receiving device may be in another namespace, so 1569 * we have to clear all information in the skb that could 1570 * impact namespace isolation. 1571 */ 1572int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1573{ 1574 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1575 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1576 atomic_long_inc(&dev->rx_dropped); 1577 kfree_skb(skb); 1578 return NET_RX_DROP; 1579 } 1580 } 1581 1582 skb_orphan(skb); 1583 nf_reset(skb); 1584 1585 if (unlikely(!is_skb_forwardable(dev, skb))) { 1586 atomic_long_inc(&dev->rx_dropped); 1587 kfree_skb(skb); 1588 return NET_RX_DROP; 1589 } 1590 skb_set_dev(skb, dev); 1591 skb->tstamp.tv64 = 0; 1592 skb->pkt_type = PACKET_HOST; 1593 skb->protocol = eth_type_trans(skb, dev); 1594 return netif_rx(skb); 1595} 1596EXPORT_SYMBOL_GPL(dev_forward_skb); 1597 1598static inline int deliver_skb(struct sk_buff *skb, 1599 struct packet_type *pt_prev, 1600 struct net_device *orig_dev) 1601{ 1602 atomic_inc(&skb->users); 1603 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1604} 1605 1606/* 1607 * Support routine. Sends outgoing frames to any network 1608 * taps currently in use. 1609 */ 1610 1611static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1612{ 1613 struct packet_type *ptype; 1614 struct sk_buff *skb2 = NULL; 1615 struct packet_type *pt_prev = NULL; 1616 1617 rcu_read_lock(); 1618 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1619 /* Never send packets back to the socket 1620 * they originated from - MvS (miquels@drinkel.ow.org) 1621 */ 1622 if ((ptype->dev == dev || !ptype->dev) && 1623 (ptype->af_packet_priv == NULL || 1624 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1625 if (pt_prev) { 1626 deliver_skb(skb2, pt_prev, skb->dev); 1627 pt_prev = ptype; 1628 continue; 1629 } 1630 1631 skb2 = skb_clone(skb, GFP_ATOMIC); 1632 if (!skb2) 1633 break; 1634 1635 net_timestamp_set(skb2); 1636 1637 /* skb->nh should be correctly 1638 set by sender, so that the second statement is 1639 just protection against buggy protocols. 1640 */ 1641 skb_reset_mac_header(skb2); 1642 1643 if (skb_network_header(skb2) < skb2->data || 1644 skb2->network_header > skb2->tail) { 1645 if (net_ratelimit()) 1646 printk(KERN_CRIT "protocol %04x is " 1647 "buggy, dev %s\n", 1648 ntohs(skb2->protocol), 1649 dev->name); 1650 skb_reset_network_header(skb2); 1651 } 1652 1653 skb2->transport_header = skb2->network_header; 1654 skb2->pkt_type = PACKET_OUTGOING; 1655 pt_prev = ptype; 1656 } 1657 } 1658 if (pt_prev) 1659 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1660 rcu_read_unlock(); 1661} 1662 1663/* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1664 * @dev: Network device 1665 * @txq: number of queues available 1666 * 1667 * If real_num_tx_queues is changed the tc mappings may no longer be 1668 * valid. To resolve this verify the tc mapping remains valid and if 1669 * not NULL the mapping. With no priorities mapping to this 1670 * offset/count pair it will no longer be used. In the worst case TC0 1671 * is invalid nothing can be done so disable priority mappings. If is 1672 * expected that drivers will fix this mapping if they can before 1673 * calling netif_set_real_num_tx_queues. 1674 */ 1675static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1676{ 1677 int i; 1678 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1679 1680 /* If TC0 is invalidated disable TC mapping */ 1681 if (tc->offset + tc->count > txq) { 1682 pr_warning("Number of in use tx queues changed " 1683 "invalidating tc mappings. Priority " 1684 "traffic classification disabled!\n"); 1685 dev->num_tc = 0; 1686 return; 1687 } 1688 1689 /* Invalidated prio to tc mappings set to TC0 */ 1690 for (i = 1; i < TC_BITMASK + 1; i++) { 1691 int q = netdev_get_prio_tc_map(dev, i); 1692 1693 tc = &dev->tc_to_txq[q]; 1694 if (tc->offset + tc->count > txq) { 1695 pr_warning("Number of in use tx queues " 1696 "changed. Priority %i to tc " 1697 "mapping %i is no longer valid " 1698 "setting map to 0\n", 1699 i, q); 1700 netdev_set_prio_tc_map(dev, i, 0); 1701 } 1702 } 1703} 1704 1705/* 1706 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1707 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1708 */ 1709int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1710{ 1711 int rc; 1712 1713 if (txq < 1 || txq > dev->num_tx_queues) 1714 return -EINVAL; 1715 1716 if (dev->reg_state == NETREG_REGISTERED || 1717 dev->reg_state == NETREG_UNREGISTERING) { 1718 ASSERT_RTNL(); 1719 1720 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1721 txq); 1722 if (rc) 1723 return rc; 1724 1725 if (dev->num_tc) 1726 netif_setup_tc(dev, txq); 1727 1728 if (txq < dev->real_num_tx_queues) 1729 qdisc_reset_all_tx_gt(dev, txq); 1730 } 1731 1732 dev->real_num_tx_queues = txq; 1733 return 0; 1734} 1735EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1736 1737#ifdef CONFIG_RPS 1738/** 1739 * netif_set_real_num_rx_queues - set actual number of RX queues used 1740 * @dev: Network device 1741 * @rxq: Actual number of RX queues 1742 * 1743 * This must be called either with the rtnl_lock held or before 1744 * registration of the net device. Returns 0 on success, or a 1745 * negative error code. If called before registration, it always 1746 * succeeds. 1747 */ 1748int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1749{ 1750 int rc; 1751 1752 if (rxq < 1 || rxq > dev->num_rx_queues) 1753 return -EINVAL; 1754 1755 if (dev->reg_state == NETREG_REGISTERED) { 1756 ASSERT_RTNL(); 1757 1758 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1759 rxq); 1760 if (rc) 1761 return rc; 1762 } 1763 1764 dev->real_num_rx_queues = rxq; 1765 return 0; 1766} 1767EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1768#endif 1769 1770static inline void __netif_reschedule(struct Qdisc *q) 1771{ 1772 struct softnet_data *sd; 1773 unsigned long flags; 1774 1775 local_irq_save(flags); 1776 sd = &__get_cpu_var(softnet_data); 1777 q->next_sched = NULL; 1778 *sd->output_queue_tailp = q; 1779 sd->output_queue_tailp = &q->next_sched; 1780 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1781 local_irq_restore(flags); 1782} 1783 1784void __netif_schedule(struct Qdisc *q) 1785{ 1786 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1787 __netif_reschedule(q); 1788} 1789EXPORT_SYMBOL(__netif_schedule); 1790 1791void dev_kfree_skb_irq(struct sk_buff *skb) 1792{ 1793 if (atomic_dec_and_test(&skb->users)) { 1794 struct softnet_data *sd; 1795 unsigned long flags; 1796 1797 local_irq_save(flags); 1798 sd = &__get_cpu_var(softnet_data); 1799 skb->next = sd->completion_queue; 1800 sd->completion_queue = skb; 1801 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1802 local_irq_restore(flags); 1803 } 1804} 1805EXPORT_SYMBOL(dev_kfree_skb_irq); 1806 1807void dev_kfree_skb_any(struct sk_buff *skb) 1808{ 1809 if (in_irq() || irqs_disabled()) 1810 dev_kfree_skb_irq(skb); 1811 else 1812 dev_kfree_skb(skb); 1813} 1814EXPORT_SYMBOL(dev_kfree_skb_any); 1815 1816 1817/** 1818 * netif_device_detach - mark device as removed 1819 * @dev: network device 1820 * 1821 * Mark device as removed from system and therefore no longer available. 1822 */ 1823void netif_device_detach(struct net_device *dev) 1824{ 1825 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1826 netif_running(dev)) { 1827 netif_tx_stop_all_queues(dev); 1828 } 1829} 1830EXPORT_SYMBOL(netif_device_detach); 1831 1832/** 1833 * netif_device_attach - mark device as attached 1834 * @dev: network device 1835 * 1836 * Mark device as attached from system and restart if needed. 1837 */ 1838void netif_device_attach(struct net_device *dev) 1839{ 1840 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1841 netif_running(dev)) { 1842 netif_tx_wake_all_queues(dev); 1843 __netdev_watchdog_up(dev); 1844 } 1845} 1846EXPORT_SYMBOL(netif_device_attach); 1847 1848/** 1849 * skb_dev_set -- assign a new device to a buffer 1850 * @skb: buffer for the new device 1851 * @dev: network device 1852 * 1853 * If an skb is owned by a device already, we have to reset 1854 * all data private to the namespace a device belongs to 1855 * before assigning it a new device. 1856 */ 1857#ifdef CONFIG_NET_NS 1858void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1859{ 1860 skb_dst_drop(skb); 1861 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1862 secpath_reset(skb); 1863 nf_reset(skb); 1864 skb_init_secmark(skb); 1865 skb->mark = 0; 1866 skb->priority = 0; 1867 skb->nf_trace = 0; 1868 skb->ipvs_property = 0; 1869#ifdef CONFIG_NET_SCHED 1870 skb->tc_index = 0; 1871#endif 1872 } 1873 skb->dev = dev; 1874} 1875EXPORT_SYMBOL(skb_set_dev); 1876#endif /* CONFIG_NET_NS */ 1877 1878/* 1879 * Invalidate hardware checksum when packet is to be mangled, and 1880 * complete checksum manually on outgoing path. 1881 */ 1882int skb_checksum_help(struct sk_buff *skb) 1883{ 1884 __wsum csum; 1885 int ret = 0, offset; 1886 1887 if (skb->ip_summed == CHECKSUM_COMPLETE) 1888 goto out_set_summed; 1889 1890 if (unlikely(skb_shinfo(skb)->gso_size)) { 1891 /* Let GSO fix up the checksum. */ 1892 goto out_set_summed; 1893 } 1894 1895 offset = skb_checksum_start_offset(skb); 1896 BUG_ON(offset >= skb_headlen(skb)); 1897 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1898 1899 offset += skb->csum_offset; 1900 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1901 1902 if (skb_cloned(skb) && 1903 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1904 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1905 if (ret) 1906 goto out; 1907 } 1908 1909 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1910out_set_summed: 1911 skb->ip_summed = CHECKSUM_NONE; 1912out: 1913 return ret; 1914} 1915EXPORT_SYMBOL(skb_checksum_help); 1916 1917/** 1918 * skb_gso_segment - Perform segmentation on skb. 1919 * @skb: buffer to segment 1920 * @features: features for the output path (see dev->features) 1921 * 1922 * This function segments the given skb and returns a list of segments. 1923 * 1924 * It may return NULL if the skb requires no segmentation. This is 1925 * only possible when GSO is used for verifying header integrity. 1926 */ 1927struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features) 1928{ 1929 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1930 struct packet_type *ptype; 1931 __be16 type = skb->protocol; 1932 int vlan_depth = ETH_HLEN; 1933 int err; 1934 1935 while (type == htons(ETH_P_8021Q)) { 1936 struct vlan_hdr *vh; 1937 1938 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1939 return ERR_PTR(-EINVAL); 1940 1941 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1942 type = vh->h_vlan_encapsulated_proto; 1943 vlan_depth += VLAN_HLEN; 1944 } 1945 1946 skb_reset_mac_header(skb); 1947 skb->mac_len = skb->network_header - skb->mac_header; 1948 __skb_pull(skb, skb->mac_len); 1949 1950 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1951 struct net_device *dev = skb->dev; 1952 struct ethtool_drvinfo info = {}; 1953 1954 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1955 dev->ethtool_ops->get_drvinfo(dev, &info); 1956 1957 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1958 info.driver, dev ? dev->features : 0L, 1959 skb->sk ? skb->sk->sk_route_caps : 0L, 1960 skb->len, skb->data_len, skb->ip_summed); 1961 1962 if (skb_header_cloned(skb) && 1963 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1964 return ERR_PTR(err); 1965 } 1966 1967 rcu_read_lock(); 1968 list_for_each_entry_rcu(ptype, 1969 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1970 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1971 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1972 err = ptype->gso_send_check(skb); 1973 segs = ERR_PTR(err); 1974 if (err || skb_gso_ok(skb, features)) 1975 break; 1976 __skb_push(skb, (skb->data - 1977 skb_network_header(skb))); 1978 } 1979 segs = ptype->gso_segment(skb, features); 1980 break; 1981 } 1982 } 1983 rcu_read_unlock(); 1984 1985 __skb_push(skb, skb->data - skb_mac_header(skb)); 1986 1987 return segs; 1988} 1989EXPORT_SYMBOL(skb_gso_segment); 1990 1991/* Take action when hardware reception checksum errors are detected. */ 1992#ifdef CONFIG_BUG 1993void netdev_rx_csum_fault(struct net_device *dev) 1994{ 1995 if (net_ratelimit()) { 1996 printk(KERN_ERR "%s: hw csum failure.\n", 1997 dev ? dev->name : "<unknown>"); 1998 dump_stack(); 1999 } 2000} 2001EXPORT_SYMBOL(netdev_rx_csum_fault); 2002#endif 2003 2004/* Actually, we should eliminate this check as soon as we know, that: 2005 * 1. IOMMU is present and allows to map all the memory. 2006 * 2. No high memory really exists on this machine. 2007 */ 2008 2009static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2010{ 2011#ifdef CONFIG_HIGHMEM 2012 int i; 2013 if (!(dev->features & NETIF_F_HIGHDMA)) { 2014 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2015 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2016 if (PageHighMem(skb_frag_page(frag))) 2017 return 1; 2018 } 2019 } 2020 2021 if (PCI_DMA_BUS_IS_PHYS) { 2022 struct device *pdev = dev->dev.parent; 2023 2024 if (!pdev) 2025 return 0; 2026 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2027 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2028 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2029 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2030 return 1; 2031 } 2032 } 2033#endif 2034 return 0; 2035} 2036 2037struct dev_gso_cb { 2038 void (*destructor)(struct sk_buff *skb); 2039}; 2040 2041#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2042 2043static void dev_gso_skb_destructor(struct sk_buff *skb) 2044{ 2045 struct dev_gso_cb *cb; 2046 2047 do { 2048 struct sk_buff *nskb = skb->next; 2049 2050 skb->next = nskb->next; 2051 nskb->next = NULL; 2052 kfree_skb(nskb); 2053 } while (skb->next); 2054 2055 cb = DEV_GSO_CB(skb); 2056 if (cb->destructor) 2057 cb->destructor(skb); 2058} 2059 2060/** 2061 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2062 * @skb: buffer to segment 2063 * @features: device features as applicable to this skb 2064 * 2065 * This function segments the given skb and stores the list of segments 2066 * in skb->next. 2067 */ 2068static int dev_gso_segment(struct sk_buff *skb, int features) 2069{ 2070 struct sk_buff *segs; 2071 2072 segs = skb_gso_segment(skb, features); 2073 2074 /* Verifying header integrity only. */ 2075 if (!segs) 2076 return 0; 2077 2078 if (IS_ERR(segs)) 2079 return PTR_ERR(segs); 2080 2081 skb->next = segs; 2082 DEV_GSO_CB(skb)->destructor = skb->destructor; 2083 skb->destructor = dev_gso_skb_destructor; 2084 2085 return 0; 2086} 2087 2088/* 2089 * Try to orphan skb early, right before transmission by the device. 2090 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2091 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2092 */ 2093static inline void skb_orphan_try(struct sk_buff *skb) 2094{ 2095 struct sock *sk = skb->sk; 2096 2097 if (sk && !skb_shinfo(skb)->tx_flags) { 2098 /* skb_tx_hash() wont be able to get sk. 2099 * We copy sk_hash into skb->rxhash 2100 */ 2101 if (!skb->rxhash) 2102 skb->rxhash = sk->sk_hash; 2103 skb_orphan(skb); 2104 } 2105} 2106 2107static bool can_checksum_protocol(unsigned long features, __be16 protocol) 2108{ 2109 return ((features & NETIF_F_GEN_CSUM) || 2110 ((features & NETIF_F_V4_CSUM) && 2111 protocol == htons(ETH_P_IP)) || 2112 ((features & NETIF_F_V6_CSUM) && 2113 protocol == htons(ETH_P_IPV6)) || 2114 ((features & NETIF_F_FCOE_CRC) && 2115 protocol == htons(ETH_P_FCOE))); 2116} 2117 2118static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features) 2119{ 2120 if (!can_checksum_protocol(features, protocol)) { 2121 features &= ~NETIF_F_ALL_CSUM; 2122 features &= ~NETIF_F_SG; 2123 } else if (illegal_highdma(skb->dev, skb)) { 2124 features &= ~NETIF_F_SG; 2125 } 2126 2127 return features; 2128} 2129 2130u32 netif_skb_features(struct sk_buff *skb) 2131{ 2132 __be16 protocol = skb->protocol; 2133 u32 features = skb->dev->features; 2134 2135 if (protocol == htons(ETH_P_8021Q)) { 2136 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2137 protocol = veh->h_vlan_encapsulated_proto; 2138 } else if (!vlan_tx_tag_present(skb)) { 2139 return harmonize_features(skb, protocol, features); 2140 } 2141 2142 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2143 2144 if (protocol != htons(ETH_P_8021Q)) { 2145 return harmonize_features(skb, protocol, features); 2146 } else { 2147 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2148 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2149 return harmonize_features(skb, protocol, features); 2150 } 2151} 2152EXPORT_SYMBOL(netif_skb_features); 2153 2154/* 2155 * Returns true if either: 2156 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2157 * 2. skb is fragmented and the device does not support SG, or if 2158 * at least one of fragments is in highmem and device does not 2159 * support DMA from it. 2160 */ 2161static inline int skb_needs_linearize(struct sk_buff *skb, 2162 int features) 2163{ 2164 return skb_is_nonlinear(skb) && 2165 ((skb_has_frag_list(skb) && 2166 !(features & NETIF_F_FRAGLIST)) || 2167 (skb_shinfo(skb)->nr_frags && 2168 !(features & NETIF_F_SG))); 2169} 2170 2171int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2172 struct netdev_queue *txq) 2173{ 2174 const struct net_device_ops *ops = dev->netdev_ops; 2175 int rc = NETDEV_TX_OK; 2176 unsigned int skb_len; 2177 2178 if (likely(!skb->next)) { 2179 u32 features; 2180 2181 /* 2182 * If device doesn't need skb->dst, release it right now while 2183 * its hot in this cpu cache 2184 */ 2185 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2186 skb_dst_drop(skb); 2187 2188 if (!list_empty(&ptype_all)) 2189 dev_queue_xmit_nit(skb, dev); 2190 2191 skb_orphan_try(skb); 2192 2193 features = netif_skb_features(skb); 2194 2195 if (vlan_tx_tag_present(skb) && 2196 !(features & NETIF_F_HW_VLAN_TX)) { 2197 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2198 if (unlikely(!skb)) 2199 goto out; 2200 2201 skb->vlan_tci = 0; 2202 } 2203 2204 if (netif_needs_gso(skb, features)) { 2205 if (unlikely(dev_gso_segment(skb, features))) 2206 goto out_kfree_skb; 2207 if (skb->next) 2208 goto gso; 2209 } else { 2210 if (skb_needs_linearize(skb, features) && 2211 __skb_linearize(skb)) 2212 goto out_kfree_skb; 2213 2214 /* If packet is not checksummed and device does not 2215 * support checksumming for this protocol, complete 2216 * checksumming here. 2217 */ 2218 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2219 skb_set_transport_header(skb, 2220 skb_checksum_start_offset(skb)); 2221 if (!(features & NETIF_F_ALL_CSUM) && 2222 skb_checksum_help(skb)) 2223 goto out_kfree_skb; 2224 } 2225 } 2226 2227 skb_len = skb->len; 2228 rc = ops->ndo_start_xmit(skb, dev); 2229 trace_net_dev_xmit(skb, rc, dev, skb_len); 2230 if (rc == NETDEV_TX_OK) 2231 txq_trans_update(txq); 2232 return rc; 2233 } 2234 2235gso: 2236 do { 2237 struct sk_buff *nskb = skb->next; 2238 2239 skb->next = nskb->next; 2240 nskb->next = NULL; 2241 2242 /* 2243 * If device doesn't need nskb->dst, release it right now while 2244 * its hot in this cpu cache 2245 */ 2246 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2247 skb_dst_drop(nskb); 2248 2249 skb_len = nskb->len; 2250 rc = ops->ndo_start_xmit(nskb, dev); 2251 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2252 if (unlikely(rc != NETDEV_TX_OK)) { 2253 if (rc & ~NETDEV_TX_MASK) 2254 goto out_kfree_gso_skb; 2255 nskb->next = skb->next; 2256 skb->next = nskb; 2257 return rc; 2258 } 2259 txq_trans_update(txq); 2260 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2261 return NETDEV_TX_BUSY; 2262 } while (skb->next); 2263 2264out_kfree_gso_skb: 2265 if (likely(skb->next == NULL)) 2266 skb->destructor = DEV_GSO_CB(skb)->destructor; 2267out_kfree_skb: 2268 kfree_skb(skb); 2269out: 2270 return rc; 2271} 2272 2273static u32 hashrnd __read_mostly; 2274 2275/* 2276 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2277 * to be used as a distribution range. 2278 */ 2279u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2280 unsigned int num_tx_queues) 2281{ 2282 u32 hash; 2283 u16 qoffset = 0; 2284 u16 qcount = num_tx_queues; 2285 2286 if (skb_rx_queue_recorded(skb)) { 2287 hash = skb_get_rx_queue(skb); 2288 while (unlikely(hash >= num_tx_queues)) 2289 hash -= num_tx_queues; 2290 return hash; 2291 } 2292 2293 if (dev->num_tc) { 2294 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2295 qoffset = dev->tc_to_txq[tc].offset; 2296 qcount = dev->tc_to_txq[tc].count; 2297 } 2298 2299 if (skb->sk && skb->sk->sk_hash) 2300 hash = skb->sk->sk_hash; 2301 else 2302 hash = (__force u16) skb->protocol ^ skb->rxhash; 2303 hash = jhash_1word(hash, hashrnd); 2304 2305 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2306} 2307EXPORT_SYMBOL(__skb_tx_hash); 2308 2309static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2310{ 2311 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2312 if (net_ratelimit()) { 2313 pr_warning("%s selects TX queue %d, but " 2314 "real number of TX queues is %d\n", 2315 dev->name, queue_index, dev->real_num_tx_queues); 2316 } 2317 return 0; 2318 } 2319 return queue_index; 2320} 2321 2322static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2323{ 2324#ifdef CONFIG_XPS 2325 struct xps_dev_maps *dev_maps; 2326 struct xps_map *map; 2327 int queue_index = -1; 2328 2329 rcu_read_lock(); 2330 dev_maps = rcu_dereference(dev->xps_maps); 2331 if (dev_maps) { 2332 map = rcu_dereference( 2333 dev_maps->cpu_map[raw_smp_processor_id()]); 2334 if (map) { 2335 if (map->len == 1) 2336 queue_index = map->queues[0]; 2337 else { 2338 u32 hash; 2339 if (skb->sk && skb->sk->sk_hash) 2340 hash = skb->sk->sk_hash; 2341 else 2342 hash = (__force u16) skb->protocol ^ 2343 skb->rxhash; 2344 hash = jhash_1word(hash, hashrnd); 2345 queue_index = map->queues[ 2346 ((u64)hash * map->len) >> 32]; 2347 } 2348 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2349 queue_index = -1; 2350 } 2351 } 2352 rcu_read_unlock(); 2353 2354 return queue_index; 2355#else 2356 return -1; 2357#endif 2358} 2359 2360static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2361 struct sk_buff *skb) 2362{ 2363 int queue_index; 2364 const struct net_device_ops *ops = dev->netdev_ops; 2365 2366 if (dev->real_num_tx_queues == 1) 2367 queue_index = 0; 2368 else if (ops->ndo_select_queue) { 2369 queue_index = ops->ndo_select_queue(dev, skb); 2370 queue_index = dev_cap_txqueue(dev, queue_index); 2371 } else { 2372 struct sock *sk = skb->sk; 2373 queue_index = sk_tx_queue_get(sk); 2374 2375 if (queue_index < 0 || skb->ooo_okay || 2376 queue_index >= dev->real_num_tx_queues) { 2377 int old_index = queue_index; 2378 2379 queue_index = get_xps_queue(dev, skb); 2380 if (queue_index < 0) 2381 queue_index = skb_tx_hash(dev, skb); 2382 2383 if (queue_index != old_index && sk) { 2384 struct dst_entry *dst = 2385 rcu_dereference_check(sk->sk_dst_cache, 1); 2386 2387 if (dst && skb_dst(skb) == dst) 2388 sk_tx_queue_set(sk, queue_index); 2389 } 2390 } 2391 } 2392 2393 skb_set_queue_mapping(skb, queue_index); 2394 return netdev_get_tx_queue(dev, queue_index); 2395} 2396 2397static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2398 struct net_device *dev, 2399 struct netdev_queue *txq) 2400{ 2401 spinlock_t *root_lock = qdisc_lock(q); 2402 bool contended; 2403 int rc; 2404 2405 qdisc_skb_cb(skb)->pkt_len = skb->len; 2406 qdisc_calculate_pkt_len(skb, q); 2407 /* 2408 * Heuristic to force contended enqueues to serialize on a 2409 * separate lock before trying to get qdisc main lock. 2410 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2411 * and dequeue packets faster. 2412 */ 2413 contended = qdisc_is_running(q); 2414 if (unlikely(contended)) 2415 spin_lock(&q->busylock); 2416 2417 spin_lock(root_lock); 2418 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2419 kfree_skb(skb); 2420 rc = NET_XMIT_DROP; 2421 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2422 qdisc_run_begin(q)) { 2423 /* 2424 * This is a work-conserving queue; there are no old skbs 2425 * waiting to be sent out; and the qdisc is not running - 2426 * xmit the skb directly. 2427 */ 2428 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2429 skb_dst_force(skb); 2430 2431 qdisc_bstats_update(q, skb); 2432 2433 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2434 if (unlikely(contended)) { 2435 spin_unlock(&q->busylock); 2436 contended = false; 2437 } 2438 __qdisc_run(q); 2439 } else 2440 qdisc_run_end(q); 2441 2442 rc = NET_XMIT_SUCCESS; 2443 } else { 2444 skb_dst_force(skb); 2445 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2446 if (qdisc_run_begin(q)) { 2447 if (unlikely(contended)) { 2448 spin_unlock(&q->busylock); 2449 contended = false; 2450 } 2451 __qdisc_run(q); 2452 } 2453 } 2454 spin_unlock(root_lock); 2455 if (unlikely(contended)) 2456 spin_unlock(&q->busylock); 2457 return rc; 2458} 2459 2460static DEFINE_PER_CPU(int, xmit_recursion); 2461#define RECURSION_LIMIT 10 2462 2463/** 2464 * dev_queue_xmit - transmit a buffer 2465 * @skb: buffer to transmit 2466 * 2467 * Queue a buffer for transmission to a network device. The caller must 2468 * have set the device and priority and built the buffer before calling 2469 * this function. The function can be called from an interrupt. 2470 * 2471 * A negative errno code is returned on a failure. A success does not 2472 * guarantee the frame will be transmitted as it may be dropped due 2473 * to congestion or traffic shaping. 2474 * 2475 * ----------------------------------------------------------------------------------- 2476 * I notice this method can also return errors from the queue disciplines, 2477 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2478 * be positive. 2479 * 2480 * Regardless of the return value, the skb is consumed, so it is currently 2481 * difficult to retry a send to this method. (You can bump the ref count 2482 * before sending to hold a reference for retry if you are careful.) 2483 * 2484 * When calling this method, interrupts MUST be enabled. This is because 2485 * the BH enable code must have IRQs enabled so that it will not deadlock. 2486 * --BLG 2487 */ 2488int dev_queue_xmit(struct sk_buff *skb) 2489{ 2490 struct net_device *dev = skb->dev; 2491 struct netdev_queue *txq; 2492 struct Qdisc *q; 2493 int rc = -ENOMEM; 2494 2495 /* Disable soft irqs for various locks below. Also 2496 * stops preemption for RCU. 2497 */ 2498 rcu_read_lock_bh(); 2499 2500 txq = dev_pick_tx(dev, skb); 2501 q = rcu_dereference_bh(txq->qdisc); 2502 2503#ifdef CONFIG_NET_CLS_ACT 2504 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2505#endif 2506 trace_net_dev_queue(skb); 2507 if (q->enqueue) { 2508 rc = __dev_xmit_skb(skb, q, dev, txq); 2509 goto out; 2510 } 2511 2512 /* The device has no queue. Common case for software devices: 2513 loopback, all the sorts of tunnels... 2514 2515 Really, it is unlikely that netif_tx_lock protection is necessary 2516 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2517 counters.) 2518 However, it is possible, that they rely on protection 2519 made by us here. 2520 2521 Check this and shot the lock. It is not prone from deadlocks. 2522 Either shot noqueue qdisc, it is even simpler 8) 2523 */ 2524 if (dev->flags & IFF_UP) { 2525 int cpu = smp_processor_id(); /* ok because BHs are off */ 2526 2527 if (txq->xmit_lock_owner != cpu) { 2528 2529 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2530 goto recursion_alert; 2531 2532 HARD_TX_LOCK(dev, txq, cpu); 2533 2534 if (!netif_tx_queue_stopped(txq)) { 2535 __this_cpu_inc(xmit_recursion); 2536 rc = dev_hard_start_xmit(skb, dev, txq); 2537 __this_cpu_dec(xmit_recursion); 2538 if (dev_xmit_complete(rc)) { 2539 HARD_TX_UNLOCK(dev, txq); 2540 goto out; 2541 } 2542 } 2543 HARD_TX_UNLOCK(dev, txq); 2544 if (net_ratelimit()) 2545 printk(KERN_CRIT "Virtual device %s asks to " 2546 "queue packet!\n", dev->name); 2547 } else { 2548 /* Recursion is detected! It is possible, 2549 * unfortunately 2550 */ 2551recursion_alert: 2552 if (net_ratelimit()) 2553 printk(KERN_CRIT "Dead loop on virtual device " 2554 "%s, fix it urgently!\n", dev->name); 2555 } 2556 } 2557 2558 rc = -ENETDOWN; 2559 rcu_read_unlock_bh(); 2560 2561 kfree_skb(skb); 2562 return rc; 2563out: 2564 rcu_read_unlock_bh(); 2565 return rc; 2566} 2567EXPORT_SYMBOL(dev_queue_xmit); 2568 2569 2570/*======================================================================= 2571 Receiver routines 2572 =======================================================================*/ 2573 2574int netdev_max_backlog __read_mostly = 1000; 2575int netdev_tstamp_prequeue __read_mostly = 1; 2576int netdev_budget __read_mostly = 300; 2577int weight_p __read_mostly = 64; /* old backlog weight */ 2578 2579/* Called with irq disabled */ 2580static inline void ____napi_schedule(struct softnet_data *sd, 2581 struct napi_struct *napi) 2582{ 2583 list_add_tail(&napi->poll_list, &sd->poll_list); 2584 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2585} 2586 2587/* 2588 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2589 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2590 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2591 * if hash is a canonical 4-tuple hash over transport ports. 2592 */ 2593void __skb_get_rxhash(struct sk_buff *skb) 2594{ 2595 int nhoff, hash = 0, poff; 2596 const struct ipv6hdr *ip6; 2597 const struct iphdr *ip; 2598 const struct vlan_hdr *vlan; 2599 u8 ip_proto; 2600 u32 addr1, addr2; 2601 u16 proto; 2602 union { 2603 u32 v32; 2604 u16 v16[2]; 2605 } ports; 2606 2607 nhoff = skb_network_offset(skb); 2608 proto = skb->protocol; 2609 2610again: 2611 switch (proto) { 2612 case __constant_htons(ETH_P_IP): 2613ip: 2614 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2615 goto done; 2616 2617 ip = (const struct iphdr *) (skb->data + nhoff); 2618 if (ip_is_fragment(ip)) 2619 ip_proto = 0; 2620 else 2621 ip_proto = ip->protocol; 2622 addr1 = (__force u32) ip->saddr; 2623 addr2 = (__force u32) ip->daddr; 2624 nhoff += ip->ihl * 4; 2625 break; 2626 case __constant_htons(ETH_P_IPV6): 2627ipv6: 2628 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2629 goto done; 2630 2631 ip6 = (const struct ipv6hdr *) (skb->data + nhoff); 2632 ip_proto = ip6->nexthdr; 2633 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2634 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2635 nhoff += 40; 2636 break; 2637 case __constant_htons(ETH_P_8021Q): 2638 if (!pskb_may_pull(skb, sizeof(*vlan) + nhoff)) 2639 goto done; 2640 vlan = (const struct vlan_hdr *) (skb->data + nhoff); 2641 proto = vlan->h_vlan_encapsulated_proto; 2642 nhoff += sizeof(*vlan); 2643 goto again; 2644 case __constant_htons(ETH_P_PPP_SES): 2645 if (!pskb_may_pull(skb, PPPOE_SES_HLEN + nhoff)) 2646 goto done; 2647 proto = *((__be16 *) (skb->data + nhoff + 2648 sizeof(struct pppoe_hdr))); 2649 nhoff += PPPOE_SES_HLEN; 2650 switch (proto) { 2651 case __constant_htons(PPP_IP): 2652 goto ip; 2653 case __constant_htons(PPP_IPV6): 2654 goto ipv6; 2655 default: 2656 goto done; 2657 } 2658 default: 2659 goto done; 2660 } 2661 2662 switch (ip_proto) { 2663 case IPPROTO_GRE: 2664 if (pskb_may_pull(skb, nhoff + 16)) { 2665 u8 *h = skb->data + nhoff; 2666 __be16 flags = *(__be16 *)h; 2667 2668 /* 2669 * Only look inside GRE if version zero and no 2670 * routing 2671 */ 2672 if (!(flags & (GRE_VERSION|GRE_ROUTING))) { 2673 proto = *(__be16 *)(h + 2); 2674 nhoff += 4; 2675 if (flags & GRE_CSUM) 2676 nhoff += 4; 2677 if (flags & GRE_KEY) 2678 nhoff += 4; 2679 if (flags & GRE_SEQ) 2680 nhoff += 4; 2681 goto again; 2682 } 2683 } 2684 break; 2685 case IPPROTO_IPIP: 2686 goto again; 2687 default: 2688 break; 2689 } 2690 2691 ports.v32 = 0; 2692 poff = proto_ports_offset(ip_proto); 2693 if (poff >= 0) { 2694 nhoff += poff; 2695 if (pskb_may_pull(skb, nhoff + 4)) { 2696 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2697 if (ports.v16[1] < ports.v16[0]) 2698 swap(ports.v16[0], ports.v16[1]); 2699 skb->l4_rxhash = 1; 2700 } 2701 } 2702 2703 /* get a consistent hash (same value on both flow directions) */ 2704 if (addr2 < addr1) 2705 swap(addr1, addr2); 2706 2707 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2708 if (!hash) 2709 hash = 1; 2710 2711done: 2712 skb->rxhash = hash; 2713} 2714EXPORT_SYMBOL(__skb_get_rxhash); 2715 2716#ifdef CONFIG_RPS 2717 2718/* One global table that all flow-based protocols share. */ 2719struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2720EXPORT_SYMBOL(rps_sock_flow_table); 2721 2722static struct rps_dev_flow * 2723set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2724 struct rps_dev_flow *rflow, u16 next_cpu) 2725{ 2726 if (next_cpu != RPS_NO_CPU) { 2727#ifdef CONFIG_RFS_ACCEL 2728 struct netdev_rx_queue *rxqueue; 2729 struct rps_dev_flow_table *flow_table; 2730 struct rps_dev_flow *old_rflow; 2731 u32 flow_id; 2732 u16 rxq_index; 2733 int rc; 2734 2735 /* Should we steer this flow to a different hardware queue? */ 2736 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2737 !(dev->features & NETIF_F_NTUPLE)) 2738 goto out; 2739 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2740 if (rxq_index == skb_get_rx_queue(skb)) 2741 goto out; 2742 2743 rxqueue = dev->_rx + rxq_index; 2744 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2745 if (!flow_table) 2746 goto out; 2747 flow_id = skb->rxhash & flow_table->mask; 2748 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2749 rxq_index, flow_id); 2750 if (rc < 0) 2751 goto out; 2752 old_rflow = rflow; 2753 rflow = &flow_table->flows[flow_id]; 2754 rflow->filter = rc; 2755 if (old_rflow->filter == rflow->filter) 2756 old_rflow->filter = RPS_NO_FILTER; 2757 out: 2758#endif 2759 rflow->last_qtail = 2760 per_cpu(softnet_data, next_cpu).input_queue_head; 2761 } 2762 2763 rflow->cpu = next_cpu; 2764 return rflow; 2765} 2766 2767/* 2768 * get_rps_cpu is called from netif_receive_skb and returns the target 2769 * CPU from the RPS map of the receiving queue for a given skb. 2770 * rcu_read_lock must be held on entry. 2771 */ 2772static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2773 struct rps_dev_flow **rflowp) 2774{ 2775 struct netdev_rx_queue *rxqueue; 2776 struct rps_map *map; 2777 struct rps_dev_flow_table *flow_table; 2778 struct rps_sock_flow_table *sock_flow_table; 2779 int cpu = -1; 2780 u16 tcpu; 2781 2782 if (skb_rx_queue_recorded(skb)) { 2783 u16 index = skb_get_rx_queue(skb); 2784 if (unlikely(index >= dev->real_num_rx_queues)) { 2785 WARN_ONCE(dev->real_num_rx_queues > 1, 2786 "%s received packet on queue %u, but number " 2787 "of RX queues is %u\n", 2788 dev->name, index, dev->real_num_rx_queues); 2789 goto done; 2790 } 2791 rxqueue = dev->_rx + index; 2792 } else 2793 rxqueue = dev->_rx; 2794 2795 map = rcu_dereference(rxqueue->rps_map); 2796 if (map) { 2797 if (map->len == 1 && 2798 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2799 tcpu = map->cpus[0]; 2800 if (cpu_online(tcpu)) 2801 cpu = tcpu; 2802 goto done; 2803 } 2804 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2805 goto done; 2806 } 2807 2808 skb_reset_network_header(skb); 2809 if (!skb_get_rxhash(skb)) 2810 goto done; 2811 2812 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2813 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2814 if (flow_table && sock_flow_table) { 2815 u16 next_cpu; 2816 struct rps_dev_flow *rflow; 2817 2818 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2819 tcpu = rflow->cpu; 2820 2821 next_cpu = sock_flow_table->ents[skb->rxhash & 2822 sock_flow_table->mask]; 2823 2824 /* 2825 * If the desired CPU (where last recvmsg was done) is 2826 * different from current CPU (one in the rx-queue flow 2827 * table entry), switch if one of the following holds: 2828 * - Current CPU is unset (equal to RPS_NO_CPU). 2829 * - Current CPU is offline. 2830 * - The current CPU's queue tail has advanced beyond the 2831 * last packet that was enqueued using this table entry. 2832 * This guarantees that all previous packets for the flow 2833 * have been dequeued, thus preserving in order delivery. 2834 */ 2835 if (unlikely(tcpu != next_cpu) && 2836 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2837 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2838 rflow->last_qtail)) >= 0)) 2839 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2840 2841 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2842 *rflowp = rflow; 2843 cpu = tcpu; 2844 goto done; 2845 } 2846 } 2847 2848 if (map) { 2849 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2850 2851 if (cpu_online(tcpu)) { 2852 cpu = tcpu; 2853 goto done; 2854 } 2855 } 2856 2857done: 2858 return cpu; 2859} 2860 2861#ifdef CONFIG_RFS_ACCEL 2862 2863/** 2864 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2865 * @dev: Device on which the filter was set 2866 * @rxq_index: RX queue index 2867 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2868 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2869 * 2870 * Drivers that implement ndo_rx_flow_steer() should periodically call 2871 * this function for each installed filter and remove the filters for 2872 * which it returns %true. 2873 */ 2874bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2875 u32 flow_id, u16 filter_id) 2876{ 2877 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2878 struct rps_dev_flow_table *flow_table; 2879 struct rps_dev_flow *rflow; 2880 bool expire = true; 2881 int cpu; 2882 2883 rcu_read_lock(); 2884 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2885 if (flow_table && flow_id <= flow_table->mask) { 2886 rflow = &flow_table->flows[flow_id]; 2887 cpu = ACCESS_ONCE(rflow->cpu); 2888 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2889 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2890 rflow->last_qtail) < 2891 (int)(10 * flow_table->mask))) 2892 expire = false; 2893 } 2894 rcu_read_unlock(); 2895 return expire; 2896} 2897EXPORT_SYMBOL(rps_may_expire_flow); 2898 2899#endif /* CONFIG_RFS_ACCEL */ 2900 2901/* Called from hardirq (IPI) context */ 2902static void rps_trigger_softirq(void *data) 2903{ 2904 struct softnet_data *sd = data; 2905 2906 ____napi_schedule(sd, &sd->backlog); 2907 sd->received_rps++; 2908} 2909 2910#endif /* CONFIG_RPS */ 2911 2912/* 2913 * Check if this softnet_data structure is another cpu one 2914 * If yes, queue it to our IPI list and return 1 2915 * If no, return 0 2916 */ 2917static int rps_ipi_queued(struct softnet_data *sd) 2918{ 2919#ifdef CONFIG_RPS 2920 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2921 2922 if (sd != mysd) { 2923 sd->rps_ipi_next = mysd->rps_ipi_list; 2924 mysd->rps_ipi_list = sd; 2925 2926 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2927 return 1; 2928 } 2929#endif /* CONFIG_RPS */ 2930 return 0; 2931} 2932 2933/* 2934 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2935 * queue (may be a remote CPU queue). 2936 */ 2937static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2938 unsigned int *qtail) 2939{ 2940 struct softnet_data *sd; 2941 unsigned long flags; 2942 2943 sd = &per_cpu(softnet_data, cpu); 2944 2945 local_irq_save(flags); 2946 2947 rps_lock(sd); 2948 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2949 if (skb_queue_len(&sd->input_pkt_queue)) { 2950enqueue: 2951 __skb_queue_tail(&sd->input_pkt_queue, skb); 2952 input_queue_tail_incr_save(sd, qtail); 2953 rps_unlock(sd); 2954 local_irq_restore(flags); 2955 return NET_RX_SUCCESS; 2956 } 2957 2958 /* Schedule NAPI for backlog device 2959 * We can use non atomic operation since we own the queue lock 2960 */ 2961 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2962 if (!rps_ipi_queued(sd)) 2963 ____napi_schedule(sd, &sd->backlog); 2964 } 2965 goto enqueue; 2966 } 2967 2968 sd->dropped++; 2969 rps_unlock(sd); 2970 2971 local_irq_restore(flags); 2972 2973 atomic_long_inc(&skb->dev->rx_dropped); 2974 kfree_skb(skb); 2975 return NET_RX_DROP; 2976} 2977 2978/** 2979 * netif_rx - post buffer to the network code 2980 * @skb: buffer to post 2981 * 2982 * This function receives a packet from a device driver and queues it for 2983 * the upper (protocol) levels to process. It always succeeds. The buffer 2984 * may be dropped during processing for congestion control or by the 2985 * protocol layers. 2986 * 2987 * return values: 2988 * NET_RX_SUCCESS (no congestion) 2989 * NET_RX_DROP (packet was dropped) 2990 * 2991 */ 2992 2993int netif_rx(struct sk_buff *skb) 2994{ 2995 int ret; 2996 2997 /* if netpoll wants it, pretend we never saw it */ 2998 if (netpoll_rx(skb)) 2999 return NET_RX_DROP; 3000 3001 if (netdev_tstamp_prequeue) 3002 net_timestamp_check(skb); 3003 3004 trace_netif_rx(skb); 3005#ifdef CONFIG_RPS 3006 { 3007 struct rps_dev_flow voidflow, *rflow = &voidflow; 3008 int cpu; 3009 3010 preempt_disable(); 3011 rcu_read_lock(); 3012 3013 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3014 if (cpu < 0) 3015 cpu = smp_processor_id(); 3016 3017 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3018 3019 rcu_read_unlock(); 3020 preempt_enable(); 3021 } 3022#else 3023 { 3024 unsigned int qtail; 3025 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3026 put_cpu(); 3027 } 3028#endif 3029 return ret; 3030} 3031EXPORT_SYMBOL(netif_rx); 3032 3033int netif_rx_ni(struct sk_buff *skb) 3034{ 3035 int err; 3036 3037 preempt_disable(); 3038 err = netif_rx(skb); 3039 if (local_softirq_pending()) 3040 do_softirq(); 3041 preempt_enable(); 3042 3043 return err; 3044} 3045EXPORT_SYMBOL(netif_rx_ni); 3046 3047static void net_tx_action(struct softirq_action *h) 3048{ 3049 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3050 3051 if (sd->completion_queue) { 3052 struct sk_buff *clist; 3053 3054 local_irq_disable(); 3055 clist = sd->completion_queue; 3056 sd->completion_queue = NULL; 3057 local_irq_enable(); 3058 3059 while (clist) { 3060 struct sk_buff *skb = clist; 3061 clist = clist->next; 3062 3063 WARN_ON(atomic_read(&skb->users)); 3064 trace_kfree_skb(skb, net_tx_action); 3065 __kfree_skb(skb); 3066 } 3067 } 3068 3069 if (sd->output_queue) { 3070 struct Qdisc *head; 3071 3072 local_irq_disable(); 3073 head = sd->output_queue; 3074 sd->output_queue = NULL; 3075 sd->output_queue_tailp = &sd->output_queue; 3076 local_irq_enable(); 3077 3078 while (head) { 3079 struct Qdisc *q = head; 3080 spinlock_t *root_lock; 3081 3082 head = head->next_sched; 3083 3084 root_lock = qdisc_lock(q); 3085 if (spin_trylock(root_lock)) { 3086 smp_mb__before_clear_bit(); 3087 clear_bit(__QDISC_STATE_SCHED, 3088 &q->state); 3089 qdisc_run(q); 3090 spin_unlock(root_lock); 3091 } else { 3092 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3093 &q->state)) { 3094 __netif_reschedule(q); 3095 } else { 3096 smp_mb__before_clear_bit(); 3097 clear_bit(__QDISC_STATE_SCHED, 3098 &q->state); 3099 } 3100 } 3101 } 3102 } 3103} 3104 3105#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3106 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3107/* This hook is defined here for ATM LANE */ 3108int (*br_fdb_test_addr_hook)(struct net_device *dev, 3109 unsigned char *addr) __read_mostly; 3110EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3111#endif 3112 3113#ifdef CONFIG_NET_CLS_ACT 3114/* TODO: Maybe we should just force sch_ingress to be compiled in 3115 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3116 * a compare and 2 stores extra right now if we dont have it on 3117 * but have CONFIG_NET_CLS_ACT 3118 * NOTE: This doesn't stop any functionality; if you dont have 3119 * the ingress scheduler, you just can't add policies on ingress. 3120 * 3121 */ 3122static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3123{ 3124 struct net_device *dev = skb->dev; 3125 u32 ttl = G_TC_RTTL(skb->tc_verd); 3126 int result = TC_ACT_OK; 3127 struct Qdisc *q; 3128 3129 if (unlikely(MAX_RED_LOOP < ttl++)) { 3130 if (net_ratelimit()) 3131 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 3132 skb->skb_iif, dev->ifindex); 3133 return TC_ACT_SHOT; 3134 } 3135 3136 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3137 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3138 3139 q = rxq->qdisc; 3140 if (q != &noop_qdisc) { 3141 spin_lock(qdisc_lock(q)); 3142 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3143 result = qdisc_enqueue_root(skb, q); 3144 spin_unlock(qdisc_lock(q)); 3145 } 3146 3147 return result; 3148} 3149 3150static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3151 struct packet_type **pt_prev, 3152 int *ret, struct net_device *orig_dev) 3153{ 3154 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3155 3156 if (!rxq || rxq->qdisc == &noop_qdisc) 3157 goto out; 3158 3159 if (*pt_prev) { 3160 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3161 *pt_prev = NULL; 3162 } 3163 3164 switch (ing_filter(skb, rxq)) { 3165 case TC_ACT_SHOT: 3166 case TC_ACT_STOLEN: 3167 kfree_skb(skb); 3168 return NULL; 3169 } 3170 3171out: 3172 skb->tc_verd = 0; 3173 return skb; 3174} 3175#endif 3176 3177/** 3178 * netdev_rx_handler_register - register receive handler 3179 * @dev: device to register a handler for 3180 * @rx_handler: receive handler to register 3181 * @rx_handler_data: data pointer that is used by rx handler 3182 * 3183 * Register a receive hander for a device. This handler will then be 3184 * called from __netif_receive_skb. A negative errno code is returned 3185 * on a failure. 3186 * 3187 * The caller must hold the rtnl_mutex. 3188 * 3189 * For a general description of rx_handler, see enum rx_handler_result. 3190 */ 3191int netdev_rx_handler_register(struct net_device *dev, 3192 rx_handler_func_t *rx_handler, 3193 void *rx_handler_data) 3194{ 3195 ASSERT_RTNL(); 3196 3197 if (dev->rx_handler) 3198 return -EBUSY; 3199 3200 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3201 rcu_assign_pointer(dev->rx_handler, rx_handler); 3202 3203 return 0; 3204} 3205EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3206 3207/** 3208 * netdev_rx_handler_unregister - unregister receive handler 3209 * @dev: device to unregister a handler from 3210 * 3211 * Unregister a receive hander from a device. 3212 * 3213 * The caller must hold the rtnl_mutex. 3214 */ 3215void netdev_rx_handler_unregister(struct net_device *dev) 3216{ 3217 3218 ASSERT_RTNL(); 3219 RCU_INIT_POINTER(dev->rx_handler, NULL); 3220 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3221} 3222EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3223 3224static int __netif_receive_skb(struct sk_buff *skb) 3225{ 3226 struct packet_type *ptype, *pt_prev; 3227 rx_handler_func_t *rx_handler; 3228 struct net_device *orig_dev; 3229 struct net_device *null_or_dev; 3230 bool deliver_exact = false; 3231 int ret = NET_RX_DROP; 3232 __be16 type; 3233 3234 if (!netdev_tstamp_prequeue) 3235 net_timestamp_check(skb); 3236 3237 trace_netif_receive_skb(skb); 3238 3239 /* if we've gotten here through NAPI, check netpoll */ 3240 if (netpoll_receive_skb(skb)) 3241 return NET_RX_DROP; 3242 3243 if (!skb->skb_iif) 3244 skb->skb_iif = skb->dev->ifindex; 3245 orig_dev = skb->dev; 3246 3247 skb_reset_network_header(skb); 3248 skb_reset_transport_header(skb); 3249 skb_reset_mac_len(skb); 3250 3251 pt_prev = NULL; 3252 3253 rcu_read_lock(); 3254 3255another_round: 3256 3257 __this_cpu_inc(softnet_data.processed); 3258 3259 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3260 skb = vlan_untag(skb); 3261 if (unlikely(!skb)) 3262 goto out; 3263 } 3264 3265#ifdef CONFIG_NET_CLS_ACT 3266 if (skb->tc_verd & TC_NCLS) { 3267 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3268 goto ncls; 3269 } 3270#endif 3271 3272 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3273 if (!ptype->dev || ptype->dev == skb->dev) { 3274 if (pt_prev) 3275 ret = deliver_skb(skb, pt_prev, orig_dev); 3276 pt_prev = ptype; 3277 } 3278 } 3279 3280#ifdef CONFIG_NET_CLS_ACT 3281 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3282 if (!skb) 3283 goto out; 3284ncls: 3285#endif 3286 3287 rx_handler = rcu_dereference(skb->dev->rx_handler); 3288 if (vlan_tx_tag_present(skb)) { 3289 if (pt_prev) { 3290 ret = deliver_skb(skb, pt_prev, orig_dev); 3291 pt_prev = NULL; 3292 } 3293 if (vlan_do_receive(&skb, !rx_handler)) 3294 goto another_round; 3295 else if (unlikely(!skb)) 3296 goto out; 3297 } 3298 3299 if (rx_handler) { 3300 if (pt_prev) { 3301 ret = deliver_skb(skb, pt_prev, orig_dev); 3302 pt_prev = NULL; 3303 } 3304 switch (rx_handler(&skb)) { 3305 case RX_HANDLER_CONSUMED: 3306 goto out; 3307 case RX_HANDLER_ANOTHER: 3308 goto another_round; 3309 case RX_HANDLER_EXACT: 3310 deliver_exact = true; 3311 case RX_HANDLER_PASS: 3312 break; 3313 default: 3314 BUG(); 3315 } 3316 } 3317 3318 /* deliver only exact match when indicated */ 3319 null_or_dev = deliver_exact ? skb->dev : NULL; 3320 3321 type = skb->protocol; 3322 list_for_each_entry_rcu(ptype, 3323 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3324 if (ptype->type == type && 3325 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3326 ptype->dev == orig_dev)) { 3327 if (pt_prev) 3328 ret = deliver_skb(skb, pt_prev, orig_dev); 3329 pt_prev = ptype; 3330 } 3331 } 3332 3333 if (pt_prev) { 3334 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3335 } else { 3336 atomic_long_inc(&skb->dev->rx_dropped); 3337 kfree_skb(skb); 3338 /* Jamal, now you will not able to escape explaining 3339 * me how you were going to use this. :-) 3340 */ 3341 ret = NET_RX_DROP; 3342 } 3343 3344out: 3345 rcu_read_unlock(); 3346 return ret; 3347} 3348 3349/** 3350 * netif_receive_skb - process receive buffer from network 3351 * @skb: buffer to process 3352 * 3353 * netif_receive_skb() is the main receive data processing function. 3354 * It always succeeds. The buffer may be dropped during processing 3355 * for congestion control or by the protocol layers. 3356 * 3357 * This function may only be called from softirq context and interrupts 3358 * should be enabled. 3359 * 3360 * Return values (usually ignored): 3361 * NET_RX_SUCCESS: no congestion 3362 * NET_RX_DROP: packet was dropped 3363 */ 3364int netif_receive_skb(struct sk_buff *skb) 3365{ 3366 if (netdev_tstamp_prequeue) 3367 net_timestamp_check(skb); 3368 3369 if (skb_defer_rx_timestamp(skb)) 3370 return NET_RX_SUCCESS; 3371 3372#ifdef CONFIG_RPS 3373 { 3374 struct rps_dev_flow voidflow, *rflow = &voidflow; 3375 int cpu, ret; 3376 3377 rcu_read_lock(); 3378 3379 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3380 3381 if (cpu >= 0) { 3382 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3383 rcu_read_unlock(); 3384 } else { 3385 rcu_read_unlock(); 3386 ret = __netif_receive_skb(skb); 3387 } 3388 3389 return ret; 3390 } 3391#else 3392 return __netif_receive_skb(skb); 3393#endif 3394} 3395EXPORT_SYMBOL(netif_receive_skb); 3396 3397/* Network device is going away, flush any packets still pending 3398 * Called with irqs disabled. 3399 */ 3400static void flush_backlog(void *arg) 3401{ 3402 struct net_device *dev = arg; 3403 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3404 struct sk_buff *skb, *tmp; 3405 3406 rps_lock(sd); 3407 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3408 if (skb->dev == dev) { 3409 __skb_unlink(skb, &sd->input_pkt_queue); 3410 kfree_skb(skb); 3411 input_queue_head_incr(sd); 3412 } 3413 } 3414 rps_unlock(sd); 3415 3416 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3417 if (skb->dev == dev) { 3418 __skb_unlink(skb, &sd->process_queue); 3419 kfree_skb(skb); 3420 input_queue_head_incr(sd); 3421 } 3422 } 3423} 3424 3425static int napi_gro_complete(struct sk_buff *skb) 3426{ 3427 struct packet_type *ptype; 3428 __be16 type = skb->protocol; 3429 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3430 int err = -ENOENT; 3431 3432 if (NAPI_GRO_CB(skb)->count == 1) { 3433 skb_shinfo(skb)->gso_size = 0; 3434 goto out; 3435 } 3436 3437 rcu_read_lock(); 3438 list_for_each_entry_rcu(ptype, head, list) { 3439 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3440 continue; 3441 3442 err = ptype->gro_complete(skb); 3443 break; 3444 } 3445 rcu_read_unlock(); 3446 3447 if (err) { 3448 WARN_ON(&ptype->list == head); 3449 kfree_skb(skb); 3450 return NET_RX_SUCCESS; 3451 } 3452 3453out: 3454 return netif_receive_skb(skb); 3455} 3456 3457inline void napi_gro_flush(struct napi_struct *napi) 3458{ 3459 struct sk_buff *skb, *next; 3460 3461 for (skb = napi->gro_list; skb; skb = next) { 3462 next = skb->next; 3463 skb->next = NULL; 3464 napi_gro_complete(skb); 3465 } 3466 3467 napi->gro_count = 0; 3468 napi->gro_list = NULL; 3469} 3470EXPORT_SYMBOL(napi_gro_flush); 3471 3472enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3473{ 3474 struct sk_buff **pp = NULL; 3475 struct packet_type *ptype; 3476 __be16 type = skb->protocol; 3477 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3478 int same_flow; 3479 int mac_len; 3480 enum gro_result ret; 3481 3482 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3483 goto normal; 3484 3485 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3486 goto normal; 3487 3488 rcu_read_lock(); 3489 list_for_each_entry_rcu(ptype, head, list) { 3490 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3491 continue; 3492 3493 skb_set_network_header(skb, skb_gro_offset(skb)); 3494 mac_len = skb->network_header - skb->mac_header; 3495 skb->mac_len = mac_len; 3496 NAPI_GRO_CB(skb)->same_flow = 0; 3497 NAPI_GRO_CB(skb)->flush = 0; 3498 NAPI_GRO_CB(skb)->free = 0; 3499 3500 pp = ptype->gro_receive(&napi->gro_list, skb); 3501 break; 3502 } 3503 rcu_read_unlock(); 3504 3505 if (&ptype->list == head) 3506 goto normal; 3507 3508 same_flow = NAPI_GRO_CB(skb)->same_flow; 3509 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3510 3511 if (pp) { 3512 struct sk_buff *nskb = *pp; 3513 3514 *pp = nskb->next; 3515 nskb->next = NULL; 3516 napi_gro_complete(nskb); 3517 napi->gro_count--; 3518 } 3519 3520 if (same_flow) 3521 goto ok; 3522 3523 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3524 goto normal; 3525 3526 napi->gro_count++; 3527 NAPI_GRO_CB(skb)->count = 1; 3528 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3529 skb->next = napi->gro_list; 3530 napi->gro_list = skb; 3531 ret = GRO_HELD; 3532 3533pull: 3534 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3535 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3536 3537 BUG_ON(skb->end - skb->tail < grow); 3538 3539 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3540 3541 skb->tail += grow; 3542 skb->data_len -= grow; 3543 3544 skb_shinfo(skb)->frags[0].page_offset += grow; 3545 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3546 3547 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3548 skb_frag_unref(skb, 0); 3549 memmove(skb_shinfo(skb)->frags, 3550 skb_shinfo(skb)->frags + 1, 3551 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3552 } 3553 } 3554 3555ok: 3556 return ret; 3557 3558normal: 3559 ret = GRO_NORMAL; 3560 goto pull; 3561} 3562EXPORT_SYMBOL(dev_gro_receive); 3563 3564static inline gro_result_t 3565__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3566{ 3567 struct sk_buff *p; 3568 3569 for (p = napi->gro_list; p; p = p->next) { 3570 unsigned long diffs; 3571 3572 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3573 diffs |= p->vlan_tci ^ skb->vlan_tci; 3574 diffs |= compare_ether_header(skb_mac_header(p), 3575 skb_gro_mac_header(skb)); 3576 NAPI_GRO_CB(p)->same_flow = !diffs; 3577 NAPI_GRO_CB(p)->flush = 0; 3578 } 3579 3580 return dev_gro_receive(napi, skb); 3581} 3582 3583gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3584{ 3585 switch (ret) { 3586 case GRO_NORMAL: 3587 if (netif_receive_skb(skb)) 3588 ret = GRO_DROP; 3589 break; 3590 3591 case GRO_DROP: 3592 case GRO_MERGED_FREE: 3593 kfree_skb(skb); 3594 break; 3595 3596 case GRO_HELD: 3597 case GRO_MERGED: 3598 break; 3599 } 3600 3601 return ret; 3602} 3603EXPORT_SYMBOL(napi_skb_finish); 3604 3605void skb_gro_reset_offset(struct sk_buff *skb) 3606{ 3607 NAPI_GRO_CB(skb)->data_offset = 0; 3608 NAPI_GRO_CB(skb)->frag0 = NULL; 3609 NAPI_GRO_CB(skb)->frag0_len = 0; 3610 3611 if (skb->mac_header == skb->tail && 3612 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3613 NAPI_GRO_CB(skb)->frag0 = 3614 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3615 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3616 } 3617} 3618EXPORT_SYMBOL(skb_gro_reset_offset); 3619 3620gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3621{ 3622 skb_gro_reset_offset(skb); 3623 3624 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3625} 3626EXPORT_SYMBOL(napi_gro_receive); 3627 3628static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3629{ 3630 __skb_pull(skb, skb_headlen(skb)); 3631 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3632 skb->vlan_tci = 0; 3633 skb->dev = napi->dev; 3634 skb->skb_iif = 0; 3635 3636 napi->skb = skb; 3637} 3638 3639struct sk_buff *napi_get_frags(struct napi_struct *napi) 3640{ 3641 struct sk_buff *skb = napi->skb; 3642 3643 if (!skb) { 3644 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3645 if (skb) 3646 napi->skb = skb; 3647 } 3648 return skb; 3649} 3650EXPORT_SYMBOL(napi_get_frags); 3651 3652gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3653 gro_result_t ret) 3654{ 3655 switch (ret) { 3656 case GRO_NORMAL: 3657 case GRO_HELD: 3658 skb->protocol = eth_type_trans(skb, skb->dev); 3659 3660 if (ret == GRO_HELD) 3661 skb_gro_pull(skb, -ETH_HLEN); 3662 else if (netif_receive_skb(skb)) 3663 ret = GRO_DROP; 3664 break; 3665 3666 case GRO_DROP: 3667 case GRO_MERGED_FREE: 3668 napi_reuse_skb(napi, skb); 3669 break; 3670 3671 case GRO_MERGED: 3672 break; 3673 } 3674 3675 return ret; 3676} 3677EXPORT_SYMBOL(napi_frags_finish); 3678 3679struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3680{ 3681 struct sk_buff *skb = napi->skb; 3682 struct ethhdr *eth; 3683 unsigned int hlen; 3684 unsigned int off; 3685 3686 napi->skb = NULL; 3687 3688 skb_reset_mac_header(skb); 3689 skb_gro_reset_offset(skb); 3690 3691 off = skb_gro_offset(skb); 3692 hlen = off + sizeof(*eth); 3693 eth = skb_gro_header_fast(skb, off); 3694 if (skb_gro_header_hard(skb, hlen)) { 3695 eth = skb_gro_header_slow(skb, hlen, off); 3696 if (unlikely(!eth)) { 3697 napi_reuse_skb(napi, skb); 3698 skb = NULL; 3699 goto out; 3700 } 3701 } 3702 3703 skb_gro_pull(skb, sizeof(*eth)); 3704 3705 /* 3706 * This works because the only protocols we care about don't require 3707 * special handling. We'll fix it up properly at the end. 3708 */ 3709 skb->protocol = eth->h_proto; 3710 3711out: 3712 return skb; 3713} 3714EXPORT_SYMBOL(napi_frags_skb); 3715 3716gro_result_t napi_gro_frags(struct napi_struct *napi) 3717{ 3718 struct sk_buff *skb = napi_frags_skb(napi); 3719 3720 if (!skb) 3721 return GRO_DROP; 3722 3723 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3724} 3725EXPORT_SYMBOL(napi_gro_frags); 3726 3727/* 3728 * net_rps_action sends any pending IPI's for rps. 3729 * Note: called with local irq disabled, but exits with local irq enabled. 3730 */ 3731static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3732{ 3733#ifdef CONFIG_RPS 3734 struct softnet_data *remsd = sd->rps_ipi_list; 3735 3736 if (remsd) { 3737 sd->rps_ipi_list = NULL; 3738 3739 local_irq_enable(); 3740 3741 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3742 while (remsd) { 3743 struct softnet_data *next = remsd->rps_ipi_next; 3744 3745 if (cpu_online(remsd->cpu)) 3746 __smp_call_function_single(remsd->cpu, 3747 &remsd->csd, 0); 3748 remsd = next; 3749 } 3750 } else 3751#endif 3752 local_irq_enable(); 3753} 3754 3755static int process_backlog(struct napi_struct *napi, int quota) 3756{ 3757 int work = 0; 3758 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3759 3760#ifdef CONFIG_RPS 3761 /* Check if we have pending ipi, its better to send them now, 3762 * not waiting net_rx_action() end. 3763 */ 3764 if (sd->rps_ipi_list) { 3765 local_irq_disable(); 3766 net_rps_action_and_irq_enable(sd); 3767 } 3768#endif 3769 napi->weight = weight_p; 3770 local_irq_disable(); 3771 while (work < quota) { 3772 struct sk_buff *skb; 3773 unsigned int qlen; 3774 3775 while ((skb = __skb_dequeue(&sd->process_queue))) { 3776 local_irq_enable(); 3777 __netif_receive_skb(skb); 3778 local_irq_disable(); 3779 input_queue_head_incr(sd); 3780 if (++work >= quota) { 3781 local_irq_enable(); 3782 return work; 3783 } 3784 } 3785 3786 rps_lock(sd); 3787 qlen = skb_queue_len(&sd->input_pkt_queue); 3788 if (qlen) 3789 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3790 &sd->process_queue); 3791 3792 if (qlen < quota - work) { 3793 /* 3794 * Inline a custom version of __napi_complete(). 3795 * only current cpu owns and manipulates this napi, 3796 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3797 * we can use a plain write instead of clear_bit(), 3798 * and we dont need an smp_mb() memory barrier. 3799 */ 3800 list_del(&napi->poll_list); 3801 napi->state = 0; 3802 3803 quota = work + qlen; 3804 } 3805 rps_unlock(sd); 3806 } 3807 local_irq_enable(); 3808 3809 return work; 3810} 3811 3812/** 3813 * __napi_schedule - schedule for receive 3814 * @n: entry to schedule 3815 * 3816 * The entry's receive function will be scheduled to run 3817 */ 3818void __napi_schedule(struct napi_struct *n) 3819{ 3820 unsigned long flags; 3821 3822 local_irq_save(flags); 3823 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3824 local_irq_restore(flags); 3825} 3826EXPORT_SYMBOL(__napi_schedule); 3827 3828void __napi_complete(struct napi_struct *n) 3829{ 3830 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3831 BUG_ON(n->gro_list); 3832 3833 list_del(&n->poll_list); 3834 smp_mb__before_clear_bit(); 3835 clear_bit(NAPI_STATE_SCHED, &n->state); 3836} 3837EXPORT_SYMBOL(__napi_complete); 3838 3839void napi_complete(struct napi_struct *n) 3840{ 3841 unsigned long flags; 3842 3843 /* 3844 * don't let napi dequeue from the cpu poll list 3845 * just in case its running on a different cpu 3846 */ 3847 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3848 return; 3849 3850 napi_gro_flush(n); 3851 local_irq_save(flags); 3852 __napi_complete(n); 3853 local_irq_restore(flags); 3854} 3855EXPORT_SYMBOL(napi_complete); 3856 3857void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3858 int (*poll)(struct napi_struct *, int), int weight) 3859{ 3860 INIT_LIST_HEAD(&napi->poll_list); 3861 napi->gro_count = 0; 3862 napi->gro_list = NULL; 3863 napi->skb = NULL; 3864 napi->poll = poll; 3865 napi->weight = weight; 3866 list_add(&napi->dev_list, &dev->napi_list); 3867 napi->dev = dev; 3868#ifdef CONFIG_NETPOLL 3869 spin_lock_init(&napi->poll_lock); 3870 napi->poll_owner = -1; 3871#endif 3872 set_bit(NAPI_STATE_SCHED, &napi->state); 3873} 3874EXPORT_SYMBOL(netif_napi_add); 3875 3876void netif_napi_del(struct napi_struct *napi) 3877{ 3878 struct sk_buff *skb, *next; 3879 3880 list_del_init(&napi->dev_list); 3881 napi_free_frags(napi); 3882 3883 for (skb = napi->gro_list; skb; skb = next) { 3884 next = skb->next; 3885 skb->next = NULL; 3886 kfree_skb(skb); 3887 } 3888 3889 napi->gro_list = NULL; 3890 napi->gro_count = 0; 3891} 3892EXPORT_SYMBOL(netif_napi_del); 3893 3894static void net_rx_action(struct softirq_action *h) 3895{ 3896 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3897 unsigned long time_limit = jiffies + 2; 3898 int budget = netdev_budget; 3899 void *have; 3900 3901 local_irq_disable(); 3902 3903 while (!list_empty(&sd->poll_list)) { 3904 struct napi_struct *n; 3905 int work, weight; 3906 3907 /* If softirq window is exhuasted then punt. 3908 * Allow this to run for 2 jiffies since which will allow 3909 * an average latency of 1.5/HZ. 3910 */ 3911 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3912 goto softnet_break; 3913 3914 local_irq_enable(); 3915 3916 /* Even though interrupts have been re-enabled, this 3917 * access is safe because interrupts can only add new 3918 * entries to the tail of this list, and only ->poll() 3919 * calls can remove this head entry from the list. 3920 */ 3921 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3922 3923 have = netpoll_poll_lock(n); 3924 3925 weight = n->weight; 3926 3927 /* This NAPI_STATE_SCHED test is for avoiding a race 3928 * with netpoll's poll_napi(). Only the entity which 3929 * obtains the lock and sees NAPI_STATE_SCHED set will 3930 * actually make the ->poll() call. Therefore we avoid 3931 * accidentally calling ->poll() when NAPI is not scheduled. 3932 */ 3933 work = 0; 3934 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3935 work = n->poll(n, weight); 3936 trace_napi_poll(n); 3937 } 3938 3939 WARN_ON_ONCE(work > weight); 3940 3941 budget -= work; 3942 3943 local_irq_disable(); 3944 3945 /* Drivers must not modify the NAPI state if they 3946 * consume the entire weight. In such cases this code 3947 * still "owns" the NAPI instance and therefore can 3948 * move the instance around on the list at-will. 3949 */ 3950 if (unlikely(work == weight)) { 3951 if (unlikely(napi_disable_pending(n))) { 3952 local_irq_enable(); 3953 napi_complete(n); 3954 local_irq_disable(); 3955 } else 3956 list_move_tail(&n->poll_list, &sd->poll_list); 3957 } 3958 3959 netpoll_poll_unlock(have); 3960 } 3961out: 3962 net_rps_action_and_irq_enable(sd); 3963 3964#ifdef CONFIG_NET_DMA 3965 /* 3966 * There may not be any more sk_buffs coming right now, so push 3967 * any pending DMA copies to hardware 3968 */ 3969 dma_issue_pending_all(); 3970#endif 3971 3972 return; 3973 3974softnet_break: 3975 sd->time_squeeze++; 3976 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3977 goto out; 3978} 3979 3980static gifconf_func_t *gifconf_list[NPROTO]; 3981 3982/** 3983 * register_gifconf - register a SIOCGIF handler 3984 * @family: Address family 3985 * @gifconf: Function handler 3986 * 3987 * Register protocol dependent address dumping routines. The handler 3988 * that is passed must not be freed or reused until it has been replaced 3989 * by another handler. 3990 */ 3991int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3992{ 3993 if (family >= NPROTO) 3994 return -EINVAL; 3995 gifconf_list[family] = gifconf; 3996 return 0; 3997} 3998EXPORT_SYMBOL(register_gifconf); 3999 4000 4001/* 4002 * Map an interface index to its name (SIOCGIFNAME) 4003 */ 4004 4005/* 4006 * We need this ioctl for efficient implementation of the 4007 * if_indextoname() function required by the IPv6 API. Without 4008 * it, we would have to search all the interfaces to find a 4009 * match. --pb 4010 */ 4011 4012static int dev_ifname(struct net *net, struct ifreq __user *arg) 4013{ 4014 struct net_device *dev; 4015 struct ifreq ifr; 4016 4017 /* 4018 * Fetch the caller's info block. 4019 */ 4020 4021 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4022 return -EFAULT; 4023 4024 rcu_read_lock(); 4025 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 4026 if (!dev) { 4027 rcu_read_unlock(); 4028 return -ENODEV; 4029 } 4030 4031 strcpy(ifr.ifr_name, dev->name); 4032 rcu_read_unlock(); 4033 4034 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 4035 return -EFAULT; 4036 return 0; 4037} 4038 4039/* 4040 * Perform a SIOCGIFCONF call. This structure will change 4041 * size eventually, and there is nothing I can do about it. 4042 * Thus we will need a 'compatibility mode'. 4043 */ 4044 4045static int dev_ifconf(struct net *net, char __user *arg) 4046{ 4047 struct ifconf ifc; 4048 struct net_device *dev; 4049 char __user *pos; 4050 int len; 4051 int total; 4052 int i; 4053 4054 /* 4055 * Fetch the caller's info block. 4056 */ 4057 4058 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4059 return -EFAULT; 4060 4061 pos = ifc.ifc_buf; 4062 len = ifc.ifc_len; 4063 4064 /* 4065 * Loop over the interfaces, and write an info block for each. 4066 */ 4067 4068 total = 0; 4069 for_each_netdev(net, dev) { 4070 for (i = 0; i < NPROTO; i++) { 4071 if (gifconf_list[i]) { 4072 int done; 4073 if (!pos) 4074 done = gifconf_list[i](dev, NULL, 0); 4075 else 4076 done = gifconf_list[i](dev, pos + total, 4077 len - total); 4078 if (done < 0) 4079 return -EFAULT; 4080 total += done; 4081 } 4082 } 4083 } 4084 4085 /* 4086 * All done. Write the updated control block back to the caller. 4087 */ 4088 ifc.ifc_len = total; 4089 4090 /* 4091 * Both BSD and Solaris return 0 here, so we do too. 4092 */ 4093 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4094} 4095 4096#ifdef CONFIG_PROC_FS 4097 4098#define BUCKET_SPACE (32 - NETDEV_HASHBITS) 4099 4100struct dev_iter_state { 4101 struct seq_net_private p; 4102 unsigned int pos; /* bucket << BUCKET_SPACE + offset */ 4103}; 4104 4105#define get_bucket(x) ((x) >> BUCKET_SPACE) 4106#define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4107#define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4108 4109static inline struct net_device *dev_from_same_bucket(struct seq_file *seq) 4110{ 4111 struct dev_iter_state *state = seq->private; 4112 struct net *net = seq_file_net(seq); 4113 struct net_device *dev; 4114 struct hlist_node *p; 4115 struct hlist_head *h; 4116 unsigned int count, bucket, offset; 4117 4118 bucket = get_bucket(state->pos); 4119 offset = get_offset(state->pos); 4120 h = &net->dev_name_head[bucket]; 4121 count = 0; 4122 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4123 if (count++ == offset) { 4124 state->pos = set_bucket_offset(bucket, count); 4125 return dev; 4126 } 4127 } 4128 4129 return NULL; 4130} 4131 4132static inline struct net_device *dev_from_new_bucket(struct seq_file *seq) 4133{ 4134 struct dev_iter_state *state = seq->private; 4135 struct net_device *dev; 4136 unsigned int bucket; 4137 4138 bucket = get_bucket(state->pos); 4139 do { 4140 dev = dev_from_same_bucket(seq); 4141 if (dev) 4142 return dev; 4143 4144 bucket++; 4145 state->pos = set_bucket_offset(bucket, 0); 4146 } while (bucket < NETDEV_HASHENTRIES); 4147 4148 return NULL; 4149} 4150 4151/* 4152 * This is invoked by the /proc filesystem handler to display a device 4153 * in detail. 4154 */ 4155void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4156 __acquires(RCU) 4157{ 4158 struct dev_iter_state *state = seq->private; 4159 4160 rcu_read_lock(); 4161 if (!*pos) 4162 return SEQ_START_TOKEN; 4163 4164 /* check for end of the hash */ 4165 if (state->pos == 0 && *pos > 1) 4166 return NULL; 4167 4168 return dev_from_new_bucket(seq); 4169} 4170 4171void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4172{ 4173 struct net_device *dev; 4174 4175 ++*pos; 4176 4177 if (v == SEQ_START_TOKEN) 4178 return dev_from_new_bucket(seq); 4179 4180 dev = dev_from_same_bucket(seq); 4181 if (dev) 4182 return dev; 4183 4184 return dev_from_new_bucket(seq); 4185} 4186 4187void dev_seq_stop(struct seq_file *seq, void *v) 4188 __releases(RCU) 4189{ 4190 rcu_read_unlock(); 4191} 4192 4193static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4194{ 4195 struct rtnl_link_stats64 temp; 4196 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4197 4198 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4199 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4200 dev->name, stats->rx_bytes, stats->rx_packets, 4201 stats->rx_errors, 4202 stats->rx_dropped + stats->rx_missed_errors, 4203 stats->rx_fifo_errors, 4204 stats->rx_length_errors + stats->rx_over_errors + 4205 stats->rx_crc_errors + stats->rx_frame_errors, 4206 stats->rx_compressed, stats->multicast, 4207 stats->tx_bytes, stats->tx_packets, 4208 stats->tx_errors, stats->tx_dropped, 4209 stats->tx_fifo_errors, stats->collisions, 4210 stats->tx_carrier_errors + 4211 stats->tx_aborted_errors + 4212 stats->tx_window_errors + 4213 stats->tx_heartbeat_errors, 4214 stats->tx_compressed); 4215} 4216 4217/* 4218 * Called from the PROCfs module. This now uses the new arbitrary sized 4219 * /proc/net interface to create /proc/net/dev 4220 */ 4221static int dev_seq_show(struct seq_file *seq, void *v) 4222{ 4223 if (v == SEQ_START_TOKEN) 4224 seq_puts(seq, "Inter-| Receive " 4225 " | Transmit\n" 4226 " face |bytes packets errs drop fifo frame " 4227 "compressed multicast|bytes packets errs " 4228 "drop fifo colls carrier compressed\n"); 4229 else 4230 dev_seq_printf_stats(seq, v); 4231 return 0; 4232} 4233 4234static struct softnet_data *softnet_get_online(loff_t *pos) 4235{ 4236 struct softnet_data *sd = NULL; 4237 4238 while (*pos < nr_cpu_ids) 4239 if (cpu_online(*pos)) { 4240 sd = &per_cpu(softnet_data, *pos); 4241 break; 4242 } else 4243 ++*pos; 4244 return sd; 4245} 4246 4247static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4248{ 4249 return softnet_get_online(pos); 4250} 4251 4252static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4253{ 4254 ++*pos; 4255 return softnet_get_online(pos); 4256} 4257 4258static void softnet_seq_stop(struct seq_file *seq, void *v) 4259{ 4260} 4261 4262static int softnet_seq_show(struct seq_file *seq, void *v) 4263{ 4264 struct softnet_data *sd = v; 4265 4266 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4267 sd->processed, sd->dropped, sd->time_squeeze, 0, 4268 0, 0, 0, 0, /* was fastroute */ 4269 sd->cpu_collision, sd->received_rps); 4270 return 0; 4271} 4272 4273static const struct seq_operations dev_seq_ops = { 4274 .start = dev_seq_start, 4275 .next = dev_seq_next, 4276 .stop = dev_seq_stop, 4277 .show = dev_seq_show, 4278}; 4279 4280static int dev_seq_open(struct inode *inode, struct file *file) 4281{ 4282 return seq_open_net(inode, file, &dev_seq_ops, 4283 sizeof(struct dev_iter_state)); 4284} 4285 4286int dev_seq_open_ops(struct inode *inode, struct file *file, 4287 const struct seq_operations *ops) 4288{ 4289 return seq_open_net(inode, file, ops, sizeof(struct dev_iter_state)); 4290} 4291 4292static const struct file_operations dev_seq_fops = { 4293 .owner = THIS_MODULE, 4294 .open = dev_seq_open, 4295 .read = seq_read, 4296 .llseek = seq_lseek, 4297 .release = seq_release_net, 4298}; 4299 4300static const struct seq_operations softnet_seq_ops = { 4301 .start = softnet_seq_start, 4302 .next = softnet_seq_next, 4303 .stop = softnet_seq_stop, 4304 .show = softnet_seq_show, 4305}; 4306 4307static int softnet_seq_open(struct inode *inode, struct file *file) 4308{ 4309 return seq_open(file, &softnet_seq_ops); 4310} 4311 4312static const struct file_operations softnet_seq_fops = { 4313 .owner = THIS_MODULE, 4314 .open = softnet_seq_open, 4315 .read = seq_read, 4316 .llseek = seq_lseek, 4317 .release = seq_release, 4318}; 4319 4320static void *ptype_get_idx(loff_t pos) 4321{ 4322 struct packet_type *pt = NULL; 4323 loff_t i = 0; 4324 int t; 4325 4326 list_for_each_entry_rcu(pt, &ptype_all, list) { 4327 if (i == pos) 4328 return pt; 4329 ++i; 4330 } 4331 4332 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4333 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4334 if (i == pos) 4335 return pt; 4336 ++i; 4337 } 4338 } 4339 return NULL; 4340} 4341 4342static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4343 __acquires(RCU) 4344{ 4345 rcu_read_lock(); 4346 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4347} 4348 4349static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4350{ 4351 struct packet_type *pt; 4352 struct list_head *nxt; 4353 int hash; 4354 4355 ++*pos; 4356 if (v == SEQ_START_TOKEN) 4357 return ptype_get_idx(0); 4358 4359 pt = v; 4360 nxt = pt->list.next; 4361 if (pt->type == htons(ETH_P_ALL)) { 4362 if (nxt != &ptype_all) 4363 goto found; 4364 hash = 0; 4365 nxt = ptype_base[0].next; 4366 } else 4367 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4368 4369 while (nxt == &ptype_base[hash]) { 4370 if (++hash >= PTYPE_HASH_SIZE) 4371 return NULL; 4372 nxt = ptype_base[hash].next; 4373 } 4374found: 4375 return list_entry(nxt, struct packet_type, list); 4376} 4377 4378static void ptype_seq_stop(struct seq_file *seq, void *v) 4379 __releases(RCU) 4380{ 4381 rcu_read_unlock(); 4382} 4383 4384static int ptype_seq_show(struct seq_file *seq, void *v) 4385{ 4386 struct packet_type *pt = v; 4387 4388 if (v == SEQ_START_TOKEN) 4389 seq_puts(seq, "Type Device Function\n"); 4390 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4391 if (pt->type == htons(ETH_P_ALL)) 4392 seq_puts(seq, "ALL "); 4393 else 4394 seq_printf(seq, "%04x", ntohs(pt->type)); 4395 4396 seq_printf(seq, " %-8s %pF\n", 4397 pt->dev ? pt->dev->name : "", pt->func); 4398 } 4399 4400 return 0; 4401} 4402 4403static const struct seq_operations ptype_seq_ops = { 4404 .start = ptype_seq_start, 4405 .next = ptype_seq_next, 4406 .stop = ptype_seq_stop, 4407 .show = ptype_seq_show, 4408}; 4409 4410static int ptype_seq_open(struct inode *inode, struct file *file) 4411{ 4412 return seq_open_net(inode, file, &ptype_seq_ops, 4413 sizeof(struct seq_net_private)); 4414} 4415 4416static const struct file_operations ptype_seq_fops = { 4417 .owner = THIS_MODULE, 4418 .open = ptype_seq_open, 4419 .read = seq_read, 4420 .llseek = seq_lseek, 4421 .release = seq_release_net, 4422}; 4423 4424 4425static int __net_init dev_proc_net_init(struct net *net) 4426{ 4427 int rc = -ENOMEM; 4428 4429 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4430 goto out; 4431 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4432 goto out_dev; 4433 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4434 goto out_softnet; 4435 4436 if (wext_proc_init(net)) 4437 goto out_ptype; 4438 rc = 0; 4439out: 4440 return rc; 4441out_ptype: 4442 proc_net_remove(net, "ptype"); 4443out_softnet: 4444 proc_net_remove(net, "softnet_stat"); 4445out_dev: 4446 proc_net_remove(net, "dev"); 4447 goto out; 4448} 4449 4450static void __net_exit dev_proc_net_exit(struct net *net) 4451{ 4452 wext_proc_exit(net); 4453 4454 proc_net_remove(net, "ptype"); 4455 proc_net_remove(net, "softnet_stat"); 4456 proc_net_remove(net, "dev"); 4457} 4458 4459static struct pernet_operations __net_initdata dev_proc_ops = { 4460 .init = dev_proc_net_init, 4461 .exit = dev_proc_net_exit, 4462}; 4463 4464static int __init dev_proc_init(void) 4465{ 4466 return register_pernet_subsys(&dev_proc_ops); 4467} 4468#else 4469#define dev_proc_init() 0 4470#endif /* CONFIG_PROC_FS */ 4471 4472 4473/** 4474 * netdev_set_master - set up master pointer 4475 * @slave: slave device 4476 * @master: new master device 4477 * 4478 * Changes the master device of the slave. Pass %NULL to break the 4479 * bonding. The caller must hold the RTNL semaphore. On a failure 4480 * a negative errno code is returned. On success the reference counts 4481 * are adjusted and the function returns zero. 4482 */ 4483int netdev_set_master(struct net_device *slave, struct net_device *master) 4484{ 4485 struct net_device *old = slave->master; 4486 4487 ASSERT_RTNL(); 4488 4489 if (master) { 4490 if (old) 4491 return -EBUSY; 4492 dev_hold(master); 4493 } 4494 4495 slave->master = master; 4496 4497 if (old) 4498 dev_put(old); 4499 return 0; 4500} 4501EXPORT_SYMBOL(netdev_set_master); 4502 4503/** 4504 * netdev_set_bond_master - set up bonding master/slave pair 4505 * @slave: slave device 4506 * @master: new master device 4507 * 4508 * Changes the master device of the slave. Pass %NULL to break the 4509 * bonding. The caller must hold the RTNL semaphore. On a failure 4510 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4511 * to the routing socket and the function returns zero. 4512 */ 4513int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4514{ 4515 int err; 4516 4517 ASSERT_RTNL(); 4518 4519 err = netdev_set_master(slave, master); 4520 if (err) 4521 return err; 4522 if (master) 4523 slave->flags |= IFF_SLAVE; 4524 else 4525 slave->flags &= ~IFF_SLAVE; 4526 4527 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4528 return 0; 4529} 4530EXPORT_SYMBOL(netdev_set_bond_master); 4531 4532static void dev_change_rx_flags(struct net_device *dev, int flags) 4533{ 4534 const struct net_device_ops *ops = dev->netdev_ops; 4535 4536 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4537 ops->ndo_change_rx_flags(dev, flags); 4538} 4539 4540static int __dev_set_promiscuity(struct net_device *dev, int inc) 4541{ 4542 unsigned short old_flags = dev->flags; 4543 uid_t uid; 4544 gid_t gid; 4545 4546 ASSERT_RTNL(); 4547 4548 dev->flags |= IFF_PROMISC; 4549 dev->promiscuity += inc; 4550 if (dev->promiscuity == 0) { 4551 /* 4552 * Avoid overflow. 4553 * If inc causes overflow, untouch promisc and return error. 4554 */ 4555 if (inc < 0) 4556 dev->flags &= ~IFF_PROMISC; 4557 else { 4558 dev->promiscuity -= inc; 4559 printk(KERN_WARNING "%s: promiscuity touches roof, " 4560 "set promiscuity failed, promiscuity feature " 4561 "of device might be broken.\n", dev->name); 4562 return -EOVERFLOW; 4563 } 4564 } 4565 if (dev->flags != old_flags) { 4566 printk(KERN_INFO "device %s %s promiscuous mode\n", 4567 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4568 "left"); 4569 if (audit_enabled) { 4570 current_uid_gid(&uid, &gid); 4571 audit_log(current->audit_context, GFP_ATOMIC, 4572 AUDIT_ANOM_PROMISCUOUS, 4573 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4574 dev->name, (dev->flags & IFF_PROMISC), 4575 (old_flags & IFF_PROMISC), 4576 audit_get_loginuid(current), 4577 uid, gid, 4578 audit_get_sessionid(current)); 4579 } 4580 4581 dev_change_rx_flags(dev, IFF_PROMISC); 4582 } 4583 return 0; 4584} 4585 4586/** 4587 * dev_set_promiscuity - update promiscuity count on a device 4588 * @dev: device 4589 * @inc: modifier 4590 * 4591 * Add or remove promiscuity from a device. While the count in the device 4592 * remains above zero the interface remains promiscuous. Once it hits zero 4593 * the device reverts back to normal filtering operation. A negative inc 4594 * value is used to drop promiscuity on the device. 4595 * Return 0 if successful or a negative errno code on error. 4596 */ 4597int dev_set_promiscuity(struct net_device *dev, int inc) 4598{ 4599 unsigned short old_flags = dev->flags; 4600 int err; 4601 4602 err = __dev_set_promiscuity(dev, inc); 4603 if (err < 0) 4604 return err; 4605 if (dev->flags != old_flags) 4606 dev_set_rx_mode(dev); 4607 return err; 4608} 4609EXPORT_SYMBOL(dev_set_promiscuity); 4610 4611/** 4612 * dev_set_allmulti - update allmulti count on a device 4613 * @dev: device 4614 * @inc: modifier 4615 * 4616 * Add or remove reception of all multicast frames to a device. While the 4617 * count in the device remains above zero the interface remains listening 4618 * to all interfaces. Once it hits zero the device reverts back to normal 4619 * filtering operation. A negative @inc value is used to drop the counter 4620 * when releasing a resource needing all multicasts. 4621 * Return 0 if successful or a negative errno code on error. 4622 */ 4623 4624int dev_set_allmulti(struct net_device *dev, int inc) 4625{ 4626 unsigned short old_flags = dev->flags; 4627 4628 ASSERT_RTNL(); 4629 4630 dev->flags |= IFF_ALLMULTI; 4631 dev->allmulti += inc; 4632 if (dev->allmulti == 0) { 4633 /* 4634 * Avoid overflow. 4635 * If inc causes overflow, untouch allmulti and return error. 4636 */ 4637 if (inc < 0) 4638 dev->flags &= ~IFF_ALLMULTI; 4639 else { 4640 dev->allmulti -= inc; 4641 printk(KERN_WARNING "%s: allmulti touches roof, " 4642 "set allmulti failed, allmulti feature of " 4643 "device might be broken.\n", dev->name); 4644 return -EOVERFLOW; 4645 } 4646 } 4647 if (dev->flags ^ old_flags) { 4648 dev_change_rx_flags(dev, IFF_ALLMULTI); 4649 dev_set_rx_mode(dev); 4650 } 4651 return 0; 4652} 4653EXPORT_SYMBOL(dev_set_allmulti); 4654 4655/* 4656 * Upload unicast and multicast address lists to device and 4657 * configure RX filtering. When the device doesn't support unicast 4658 * filtering it is put in promiscuous mode while unicast addresses 4659 * are present. 4660 */ 4661void __dev_set_rx_mode(struct net_device *dev) 4662{ 4663 const struct net_device_ops *ops = dev->netdev_ops; 4664 4665 /* dev_open will call this function so the list will stay sane. */ 4666 if (!(dev->flags&IFF_UP)) 4667 return; 4668 4669 if (!netif_device_present(dev)) 4670 return; 4671 4672 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4673 /* Unicast addresses changes may only happen under the rtnl, 4674 * therefore calling __dev_set_promiscuity here is safe. 4675 */ 4676 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4677 __dev_set_promiscuity(dev, 1); 4678 dev->uc_promisc = true; 4679 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4680 __dev_set_promiscuity(dev, -1); 4681 dev->uc_promisc = false; 4682 } 4683 } 4684 4685 if (ops->ndo_set_rx_mode) 4686 ops->ndo_set_rx_mode(dev); 4687} 4688 4689void dev_set_rx_mode(struct net_device *dev) 4690{ 4691 netif_addr_lock_bh(dev); 4692 __dev_set_rx_mode(dev); 4693 netif_addr_unlock_bh(dev); 4694} 4695 4696/** 4697 * dev_get_flags - get flags reported to userspace 4698 * @dev: device 4699 * 4700 * Get the combination of flag bits exported through APIs to userspace. 4701 */ 4702unsigned dev_get_flags(const struct net_device *dev) 4703{ 4704 unsigned flags; 4705 4706 flags = (dev->flags & ~(IFF_PROMISC | 4707 IFF_ALLMULTI | 4708 IFF_RUNNING | 4709 IFF_LOWER_UP | 4710 IFF_DORMANT)) | 4711 (dev->gflags & (IFF_PROMISC | 4712 IFF_ALLMULTI)); 4713 4714 if (netif_running(dev)) { 4715 if (netif_oper_up(dev)) 4716 flags |= IFF_RUNNING; 4717 if (netif_carrier_ok(dev)) 4718 flags |= IFF_LOWER_UP; 4719 if (netif_dormant(dev)) 4720 flags |= IFF_DORMANT; 4721 } 4722 4723 return flags; 4724} 4725EXPORT_SYMBOL(dev_get_flags); 4726 4727int __dev_change_flags(struct net_device *dev, unsigned int flags) 4728{ 4729 int old_flags = dev->flags; 4730 int ret; 4731 4732 ASSERT_RTNL(); 4733 4734 /* 4735 * Set the flags on our device. 4736 */ 4737 4738 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4739 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4740 IFF_AUTOMEDIA)) | 4741 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4742 IFF_ALLMULTI)); 4743 4744 /* 4745 * Load in the correct multicast list now the flags have changed. 4746 */ 4747 4748 if ((old_flags ^ flags) & IFF_MULTICAST) 4749 dev_change_rx_flags(dev, IFF_MULTICAST); 4750 4751 dev_set_rx_mode(dev); 4752 4753 /* 4754 * Have we downed the interface. We handle IFF_UP ourselves 4755 * according to user attempts to set it, rather than blindly 4756 * setting it. 4757 */ 4758 4759 ret = 0; 4760 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4761 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4762 4763 if (!ret) 4764 dev_set_rx_mode(dev); 4765 } 4766 4767 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4768 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4769 4770 dev->gflags ^= IFF_PROMISC; 4771 dev_set_promiscuity(dev, inc); 4772 } 4773 4774 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4775 is important. Some (broken) drivers set IFF_PROMISC, when 4776 IFF_ALLMULTI is requested not asking us and not reporting. 4777 */ 4778 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4779 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4780 4781 dev->gflags ^= IFF_ALLMULTI; 4782 dev_set_allmulti(dev, inc); 4783 } 4784 4785 return ret; 4786} 4787 4788void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4789{ 4790 unsigned int changes = dev->flags ^ old_flags; 4791 4792 if (changes & IFF_UP) { 4793 if (dev->flags & IFF_UP) 4794 call_netdevice_notifiers(NETDEV_UP, dev); 4795 else 4796 call_netdevice_notifiers(NETDEV_DOWN, dev); 4797 } 4798 4799 if (dev->flags & IFF_UP && 4800 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4801 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4802} 4803 4804/** 4805 * dev_change_flags - change device settings 4806 * @dev: device 4807 * @flags: device state flags 4808 * 4809 * Change settings on device based state flags. The flags are 4810 * in the userspace exported format. 4811 */ 4812int dev_change_flags(struct net_device *dev, unsigned flags) 4813{ 4814 int ret, changes; 4815 int old_flags = dev->flags; 4816 4817 ret = __dev_change_flags(dev, flags); 4818 if (ret < 0) 4819 return ret; 4820 4821 changes = old_flags ^ dev->flags; 4822 if (changes) 4823 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4824 4825 __dev_notify_flags(dev, old_flags); 4826 return ret; 4827} 4828EXPORT_SYMBOL(dev_change_flags); 4829 4830/** 4831 * dev_set_mtu - Change maximum transfer unit 4832 * @dev: device 4833 * @new_mtu: new transfer unit 4834 * 4835 * Change the maximum transfer size of the network device. 4836 */ 4837int dev_set_mtu(struct net_device *dev, int new_mtu) 4838{ 4839 const struct net_device_ops *ops = dev->netdev_ops; 4840 int err; 4841 4842 if (new_mtu == dev->mtu) 4843 return 0; 4844 4845 /* MTU must be positive. */ 4846 if (new_mtu < 0) 4847 return -EINVAL; 4848 4849 if (!netif_device_present(dev)) 4850 return -ENODEV; 4851 4852 err = 0; 4853 if (ops->ndo_change_mtu) 4854 err = ops->ndo_change_mtu(dev, new_mtu); 4855 else 4856 dev->mtu = new_mtu; 4857 4858 if (!err && dev->flags & IFF_UP) 4859 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4860 return err; 4861} 4862EXPORT_SYMBOL(dev_set_mtu); 4863 4864/** 4865 * dev_set_group - Change group this device belongs to 4866 * @dev: device 4867 * @new_group: group this device should belong to 4868 */ 4869void dev_set_group(struct net_device *dev, int new_group) 4870{ 4871 dev->group = new_group; 4872} 4873EXPORT_SYMBOL(dev_set_group); 4874 4875/** 4876 * dev_set_mac_address - Change Media Access Control Address 4877 * @dev: device 4878 * @sa: new address 4879 * 4880 * Change the hardware (MAC) address of the device 4881 */ 4882int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4883{ 4884 const struct net_device_ops *ops = dev->netdev_ops; 4885 int err; 4886 4887 if (!ops->ndo_set_mac_address) 4888 return -EOPNOTSUPP; 4889 if (sa->sa_family != dev->type) 4890 return -EINVAL; 4891 if (!netif_device_present(dev)) 4892 return -ENODEV; 4893 err = ops->ndo_set_mac_address(dev, sa); 4894 if (!err) 4895 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4896 return err; 4897} 4898EXPORT_SYMBOL(dev_set_mac_address); 4899 4900/* 4901 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4902 */ 4903static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4904{ 4905 int err; 4906 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4907 4908 if (!dev) 4909 return -ENODEV; 4910 4911 switch (cmd) { 4912 case SIOCGIFFLAGS: /* Get interface flags */ 4913 ifr->ifr_flags = (short) dev_get_flags(dev); 4914 return 0; 4915 4916 case SIOCGIFMETRIC: /* Get the metric on the interface 4917 (currently unused) */ 4918 ifr->ifr_metric = 0; 4919 return 0; 4920 4921 case SIOCGIFMTU: /* Get the MTU of a device */ 4922 ifr->ifr_mtu = dev->mtu; 4923 return 0; 4924 4925 case SIOCGIFHWADDR: 4926 if (!dev->addr_len) 4927 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4928 else 4929 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4930 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4931 ifr->ifr_hwaddr.sa_family = dev->type; 4932 return 0; 4933 4934 case SIOCGIFSLAVE: 4935 err = -EINVAL; 4936 break; 4937 4938 case SIOCGIFMAP: 4939 ifr->ifr_map.mem_start = dev->mem_start; 4940 ifr->ifr_map.mem_end = dev->mem_end; 4941 ifr->ifr_map.base_addr = dev->base_addr; 4942 ifr->ifr_map.irq = dev->irq; 4943 ifr->ifr_map.dma = dev->dma; 4944 ifr->ifr_map.port = dev->if_port; 4945 return 0; 4946 4947 case SIOCGIFINDEX: 4948 ifr->ifr_ifindex = dev->ifindex; 4949 return 0; 4950 4951 case SIOCGIFTXQLEN: 4952 ifr->ifr_qlen = dev->tx_queue_len; 4953 return 0; 4954 4955 default: 4956 /* dev_ioctl() should ensure this case 4957 * is never reached 4958 */ 4959 WARN_ON(1); 4960 err = -ENOTTY; 4961 break; 4962 4963 } 4964 return err; 4965} 4966 4967/* 4968 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4969 */ 4970static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4971{ 4972 int err; 4973 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4974 const struct net_device_ops *ops; 4975 4976 if (!dev) 4977 return -ENODEV; 4978 4979 ops = dev->netdev_ops; 4980 4981 switch (cmd) { 4982 case SIOCSIFFLAGS: /* Set interface flags */ 4983 return dev_change_flags(dev, ifr->ifr_flags); 4984 4985 case SIOCSIFMETRIC: /* Set the metric on the interface 4986 (currently unused) */ 4987 return -EOPNOTSUPP; 4988 4989 case SIOCSIFMTU: /* Set the MTU of a device */ 4990 return dev_set_mtu(dev, ifr->ifr_mtu); 4991 4992 case SIOCSIFHWADDR: 4993 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4994 4995 case SIOCSIFHWBROADCAST: 4996 if (ifr->ifr_hwaddr.sa_family != dev->type) 4997 return -EINVAL; 4998 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4999 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 5000 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5001 return 0; 5002 5003 case SIOCSIFMAP: 5004 if (ops->ndo_set_config) { 5005 if (!netif_device_present(dev)) 5006 return -ENODEV; 5007 return ops->ndo_set_config(dev, &ifr->ifr_map); 5008 } 5009 return -EOPNOTSUPP; 5010 5011 case SIOCADDMULTI: 5012 if (!ops->ndo_set_rx_mode || 5013 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 5014 return -EINVAL; 5015 if (!netif_device_present(dev)) 5016 return -ENODEV; 5017 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 5018 5019 case SIOCDELMULTI: 5020 if (!ops->ndo_set_rx_mode || 5021 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 5022 return -EINVAL; 5023 if (!netif_device_present(dev)) 5024 return -ENODEV; 5025 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 5026 5027 case SIOCSIFTXQLEN: 5028 if (ifr->ifr_qlen < 0) 5029 return -EINVAL; 5030 dev->tx_queue_len = ifr->ifr_qlen; 5031 return 0; 5032 5033 case SIOCSIFNAME: 5034 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 5035 return dev_change_name(dev, ifr->ifr_newname); 5036 5037 case SIOCSHWTSTAMP: 5038 err = net_hwtstamp_validate(ifr); 5039 if (err) 5040 return err; 5041 /* fall through */ 5042 5043 /* 5044 * Unknown or private ioctl 5045 */ 5046 default: 5047 if ((cmd >= SIOCDEVPRIVATE && 5048 cmd <= SIOCDEVPRIVATE + 15) || 5049 cmd == SIOCBONDENSLAVE || 5050 cmd == SIOCBONDRELEASE || 5051 cmd == SIOCBONDSETHWADDR || 5052 cmd == SIOCBONDSLAVEINFOQUERY || 5053 cmd == SIOCBONDINFOQUERY || 5054 cmd == SIOCBONDCHANGEACTIVE || 5055 cmd == SIOCGMIIPHY || 5056 cmd == SIOCGMIIREG || 5057 cmd == SIOCSMIIREG || 5058 cmd == SIOCBRADDIF || 5059 cmd == SIOCBRDELIF || 5060 cmd == SIOCSHWTSTAMP || 5061 cmd == SIOCWANDEV) { 5062 err = -EOPNOTSUPP; 5063 if (ops->ndo_do_ioctl) { 5064 if (netif_device_present(dev)) 5065 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5066 else 5067 err = -ENODEV; 5068 } 5069 } else 5070 err = -EINVAL; 5071 5072 } 5073 return err; 5074} 5075 5076/* 5077 * This function handles all "interface"-type I/O control requests. The actual 5078 * 'doing' part of this is dev_ifsioc above. 5079 */ 5080 5081/** 5082 * dev_ioctl - network device ioctl 5083 * @net: the applicable net namespace 5084 * @cmd: command to issue 5085 * @arg: pointer to a struct ifreq in user space 5086 * 5087 * Issue ioctl functions to devices. This is normally called by the 5088 * user space syscall interfaces but can sometimes be useful for 5089 * other purposes. The return value is the return from the syscall if 5090 * positive or a negative errno code on error. 5091 */ 5092 5093int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5094{ 5095 struct ifreq ifr; 5096 int ret; 5097 char *colon; 5098 5099 /* One special case: SIOCGIFCONF takes ifconf argument 5100 and requires shared lock, because it sleeps writing 5101 to user space. 5102 */ 5103 5104 if (cmd == SIOCGIFCONF) { 5105 rtnl_lock(); 5106 ret = dev_ifconf(net, (char __user *) arg); 5107 rtnl_unlock(); 5108 return ret; 5109 } 5110 if (cmd == SIOCGIFNAME) 5111 return dev_ifname(net, (struct ifreq __user *)arg); 5112 5113 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5114 return -EFAULT; 5115 5116 ifr.ifr_name[IFNAMSIZ-1] = 0; 5117 5118 colon = strchr(ifr.ifr_name, ':'); 5119 if (colon) 5120 *colon = 0; 5121 5122 /* 5123 * See which interface the caller is talking about. 5124 */ 5125 5126 switch (cmd) { 5127 /* 5128 * These ioctl calls: 5129 * - can be done by all. 5130 * - atomic and do not require locking. 5131 * - return a value 5132 */ 5133 case SIOCGIFFLAGS: 5134 case SIOCGIFMETRIC: 5135 case SIOCGIFMTU: 5136 case SIOCGIFHWADDR: 5137 case SIOCGIFSLAVE: 5138 case SIOCGIFMAP: 5139 case SIOCGIFINDEX: 5140 case SIOCGIFTXQLEN: 5141 dev_load(net, ifr.ifr_name); 5142 rcu_read_lock(); 5143 ret = dev_ifsioc_locked(net, &ifr, cmd); 5144 rcu_read_unlock(); 5145 if (!ret) { 5146 if (colon) 5147 *colon = ':'; 5148 if (copy_to_user(arg, &ifr, 5149 sizeof(struct ifreq))) 5150 ret = -EFAULT; 5151 } 5152 return ret; 5153 5154 case SIOCETHTOOL: 5155 dev_load(net, ifr.ifr_name); 5156 rtnl_lock(); 5157 ret = dev_ethtool(net, &ifr); 5158 rtnl_unlock(); 5159 if (!ret) { 5160 if (colon) 5161 *colon = ':'; 5162 if (copy_to_user(arg, &ifr, 5163 sizeof(struct ifreq))) 5164 ret = -EFAULT; 5165 } 5166 return ret; 5167 5168 /* 5169 * These ioctl calls: 5170 * - require superuser power. 5171 * - require strict serialization. 5172 * - return a value 5173 */ 5174 case SIOCGMIIPHY: 5175 case SIOCGMIIREG: 5176 case SIOCSIFNAME: 5177 if (!capable(CAP_NET_ADMIN)) 5178 return -EPERM; 5179 dev_load(net, ifr.ifr_name); 5180 rtnl_lock(); 5181 ret = dev_ifsioc(net, &ifr, cmd); 5182 rtnl_unlock(); 5183 if (!ret) { 5184 if (colon) 5185 *colon = ':'; 5186 if (copy_to_user(arg, &ifr, 5187 sizeof(struct ifreq))) 5188 ret = -EFAULT; 5189 } 5190 return ret; 5191 5192 /* 5193 * These ioctl calls: 5194 * - require superuser power. 5195 * - require strict serialization. 5196 * - do not return a value 5197 */ 5198 case SIOCSIFFLAGS: 5199 case SIOCSIFMETRIC: 5200 case SIOCSIFMTU: 5201 case SIOCSIFMAP: 5202 case SIOCSIFHWADDR: 5203 case SIOCSIFSLAVE: 5204 case SIOCADDMULTI: 5205 case SIOCDELMULTI: 5206 case SIOCSIFHWBROADCAST: 5207 case SIOCSIFTXQLEN: 5208 case SIOCSMIIREG: 5209 case SIOCBONDENSLAVE: 5210 case SIOCBONDRELEASE: 5211 case SIOCBONDSETHWADDR: 5212 case SIOCBONDCHANGEACTIVE: 5213 case SIOCBRADDIF: 5214 case SIOCBRDELIF: 5215 case SIOCSHWTSTAMP: 5216 if (!capable(CAP_NET_ADMIN)) 5217 return -EPERM; 5218 /* fall through */ 5219 case SIOCBONDSLAVEINFOQUERY: 5220 case SIOCBONDINFOQUERY: 5221 dev_load(net, ifr.ifr_name); 5222 rtnl_lock(); 5223 ret = dev_ifsioc(net, &ifr, cmd); 5224 rtnl_unlock(); 5225 return ret; 5226 5227 case SIOCGIFMEM: 5228 /* Get the per device memory space. We can add this but 5229 * currently do not support it */ 5230 case SIOCSIFMEM: 5231 /* Set the per device memory buffer space. 5232 * Not applicable in our case */ 5233 case SIOCSIFLINK: 5234 return -ENOTTY; 5235 5236 /* 5237 * Unknown or private ioctl. 5238 */ 5239 default: 5240 if (cmd == SIOCWANDEV || 5241 (cmd >= SIOCDEVPRIVATE && 5242 cmd <= SIOCDEVPRIVATE + 15)) { 5243 dev_load(net, ifr.ifr_name); 5244 rtnl_lock(); 5245 ret = dev_ifsioc(net, &ifr, cmd); 5246 rtnl_unlock(); 5247 if (!ret && copy_to_user(arg, &ifr, 5248 sizeof(struct ifreq))) 5249 ret = -EFAULT; 5250 return ret; 5251 } 5252 /* Take care of Wireless Extensions */ 5253 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5254 return wext_handle_ioctl(net, &ifr, cmd, arg); 5255 return -ENOTTY; 5256 } 5257} 5258 5259 5260/** 5261 * dev_new_index - allocate an ifindex 5262 * @net: the applicable net namespace 5263 * 5264 * Returns a suitable unique value for a new device interface 5265 * number. The caller must hold the rtnl semaphore or the 5266 * dev_base_lock to be sure it remains unique. 5267 */ 5268static int dev_new_index(struct net *net) 5269{ 5270 static int ifindex; 5271 for (;;) { 5272 if (++ifindex <= 0) 5273 ifindex = 1; 5274 if (!__dev_get_by_index(net, ifindex)) 5275 return ifindex; 5276 } 5277} 5278 5279/* Delayed registration/unregisteration */ 5280static LIST_HEAD(net_todo_list); 5281 5282static void net_set_todo(struct net_device *dev) 5283{ 5284 list_add_tail(&dev->todo_list, &net_todo_list); 5285} 5286 5287static void rollback_registered_many(struct list_head *head) 5288{ 5289 struct net_device *dev, *tmp; 5290 5291 BUG_ON(dev_boot_phase); 5292 ASSERT_RTNL(); 5293 5294 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5295 /* Some devices call without registering 5296 * for initialization unwind. Remove those 5297 * devices and proceed with the remaining. 5298 */ 5299 if (dev->reg_state == NETREG_UNINITIALIZED) { 5300 pr_debug("unregister_netdevice: device %s/%p never " 5301 "was registered\n", dev->name, dev); 5302 5303 WARN_ON(1); 5304 list_del(&dev->unreg_list); 5305 continue; 5306 } 5307 dev->dismantle = true; 5308 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5309 } 5310 5311 /* If device is running, close it first. */ 5312 dev_close_many(head); 5313 5314 list_for_each_entry(dev, head, unreg_list) { 5315 /* And unlink it from device chain. */ 5316 unlist_netdevice(dev); 5317 5318 dev->reg_state = NETREG_UNREGISTERING; 5319 } 5320 5321 synchronize_net(); 5322 5323 list_for_each_entry(dev, head, unreg_list) { 5324 /* Shutdown queueing discipline. */ 5325 dev_shutdown(dev); 5326 5327 5328 /* Notify protocols, that we are about to destroy 5329 this device. They should clean all the things. 5330 */ 5331 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5332 5333 if (!dev->rtnl_link_ops || 5334 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5335 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5336 5337 /* 5338 * Flush the unicast and multicast chains 5339 */ 5340 dev_uc_flush(dev); 5341 dev_mc_flush(dev); 5342 5343 if (dev->netdev_ops->ndo_uninit) 5344 dev->netdev_ops->ndo_uninit(dev); 5345 5346 /* Notifier chain MUST detach us from master device. */ 5347 WARN_ON(dev->master); 5348 5349 /* Remove entries from kobject tree */ 5350 netdev_unregister_kobject(dev); 5351 } 5352 5353 /* Process any work delayed until the end of the batch */ 5354 dev = list_first_entry(head, struct net_device, unreg_list); 5355 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5356 5357 synchronize_net(); 5358 5359 list_for_each_entry(dev, head, unreg_list) 5360 dev_put(dev); 5361} 5362 5363static void rollback_registered(struct net_device *dev) 5364{ 5365 LIST_HEAD(single); 5366 5367 list_add(&dev->unreg_list, &single); 5368 rollback_registered_many(&single); 5369 list_del(&single); 5370} 5371 5372static u32 netdev_fix_features(struct net_device *dev, u32 features) 5373{ 5374 /* Fix illegal checksum combinations */ 5375 if ((features & NETIF_F_HW_CSUM) && 5376 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5377 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5378 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5379 } 5380 5381 if ((features & NETIF_F_NO_CSUM) && 5382 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5383 netdev_warn(dev, "mixed no checksumming and other settings.\n"); 5384 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5385 } 5386 5387 /* Fix illegal SG+CSUM combinations. */ 5388 if ((features & NETIF_F_SG) && 5389 !(features & NETIF_F_ALL_CSUM)) { 5390 netdev_dbg(dev, 5391 "Dropping NETIF_F_SG since no checksum feature.\n"); 5392 features &= ~NETIF_F_SG; 5393 } 5394 5395 /* TSO requires that SG is present as well. */ 5396 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5397 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5398 features &= ~NETIF_F_ALL_TSO; 5399 } 5400 5401 /* TSO ECN requires that TSO is present as well. */ 5402 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5403 features &= ~NETIF_F_TSO_ECN; 5404 5405 /* Software GSO depends on SG. */ 5406 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5407 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5408 features &= ~NETIF_F_GSO; 5409 } 5410 5411 /* UFO needs SG and checksumming */ 5412 if (features & NETIF_F_UFO) { 5413 /* maybe split UFO into V4 and V6? */ 5414 if (!((features & NETIF_F_GEN_CSUM) || 5415 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5416 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5417 netdev_dbg(dev, 5418 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5419 features &= ~NETIF_F_UFO; 5420 } 5421 5422 if (!(features & NETIF_F_SG)) { 5423 netdev_dbg(dev, 5424 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5425 features &= ~NETIF_F_UFO; 5426 } 5427 } 5428 5429 return features; 5430} 5431 5432int __netdev_update_features(struct net_device *dev) 5433{ 5434 u32 features; 5435 int err = 0; 5436 5437 ASSERT_RTNL(); 5438 5439 features = netdev_get_wanted_features(dev); 5440 5441 if (dev->netdev_ops->ndo_fix_features) 5442 features = dev->netdev_ops->ndo_fix_features(dev, features); 5443 5444 /* driver might be less strict about feature dependencies */ 5445 features = netdev_fix_features(dev, features); 5446 5447 if (dev->features == features) 5448 return 0; 5449 5450 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n", 5451 dev->features, features); 5452 5453 if (dev->netdev_ops->ndo_set_features) 5454 err = dev->netdev_ops->ndo_set_features(dev, features); 5455 5456 if (unlikely(err < 0)) { 5457 netdev_err(dev, 5458 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n", 5459 err, features, dev->features); 5460 return -1; 5461 } 5462 5463 if (!err) 5464 dev->features = features; 5465 5466 return 1; 5467} 5468 5469/** 5470 * netdev_update_features - recalculate device features 5471 * @dev: the device to check 5472 * 5473 * Recalculate dev->features set and send notifications if it 5474 * has changed. Should be called after driver or hardware dependent 5475 * conditions might have changed that influence the features. 5476 */ 5477void netdev_update_features(struct net_device *dev) 5478{ 5479 if (__netdev_update_features(dev)) 5480 netdev_features_change(dev); 5481} 5482EXPORT_SYMBOL(netdev_update_features); 5483 5484/** 5485 * netdev_change_features - recalculate device features 5486 * @dev: the device to check 5487 * 5488 * Recalculate dev->features set and send notifications even 5489 * if they have not changed. Should be called instead of 5490 * netdev_update_features() if also dev->vlan_features might 5491 * have changed to allow the changes to be propagated to stacked 5492 * VLAN devices. 5493 */ 5494void netdev_change_features(struct net_device *dev) 5495{ 5496 __netdev_update_features(dev); 5497 netdev_features_change(dev); 5498} 5499EXPORT_SYMBOL(netdev_change_features); 5500 5501/** 5502 * netif_stacked_transfer_operstate - transfer operstate 5503 * @rootdev: the root or lower level device to transfer state from 5504 * @dev: the device to transfer operstate to 5505 * 5506 * Transfer operational state from root to device. This is normally 5507 * called when a stacking relationship exists between the root 5508 * device and the device(a leaf device). 5509 */ 5510void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5511 struct net_device *dev) 5512{ 5513 if (rootdev->operstate == IF_OPER_DORMANT) 5514 netif_dormant_on(dev); 5515 else 5516 netif_dormant_off(dev); 5517 5518 if (netif_carrier_ok(rootdev)) { 5519 if (!netif_carrier_ok(dev)) 5520 netif_carrier_on(dev); 5521 } else { 5522 if (netif_carrier_ok(dev)) 5523 netif_carrier_off(dev); 5524 } 5525} 5526EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5527 5528#ifdef CONFIG_RPS 5529static int netif_alloc_rx_queues(struct net_device *dev) 5530{ 5531 unsigned int i, count = dev->num_rx_queues; 5532 struct netdev_rx_queue *rx; 5533 5534 BUG_ON(count < 1); 5535 5536 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5537 if (!rx) { 5538 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5539 return -ENOMEM; 5540 } 5541 dev->_rx = rx; 5542 5543 for (i = 0; i < count; i++) 5544 rx[i].dev = dev; 5545 return 0; 5546} 5547#endif 5548 5549static void netdev_init_one_queue(struct net_device *dev, 5550 struct netdev_queue *queue, void *_unused) 5551{ 5552 /* Initialize queue lock */ 5553 spin_lock_init(&queue->_xmit_lock); 5554 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5555 queue->xmit_lock_owner = -1; 5556 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5557 queue->dev = dev; 5558} 5559 5560static int netif_alloc_netdev_queues(struct net_device *dev) 5561{ 5562 unsigned int count = dev->num_tx_queues; 5563 struct netdev_queue *tx; 5564 5565 BUG_ON(count < 1); 5566 5567 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5568 if (!tx) { 5569 pr_err("netdev: Unable to allocate %u tx queues.\n", 5570 count); 5571 return -ENOMEM; 5572 } 5573 dev->_tx = tx; 5574 5575 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5576 spin_lock_init(&dev->tx_global_lock); 5577 5578 return 0; 5579} 5580 5581/** 5582 * register_netdevice - register a network device 5583 * @dev: device to register 5584 * 5585 * Take a completed network device structure and add it to the kernel 5586 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5587 * chain. 0 is returned on success. A negative errno code is returned 5588 * on a failure to set up the device, or if the name is a duplicate. 5589 * 5590 * Callers must hold the rtnl semaphore. You may want 5591 * register_netdev() instead of this. 5592 * 5593 * BUGS: 5594 * The locking appears insufficient to guarantee two parallel registers 5595 * will not get the same name. 5596 */ 5597 5598int register_netdevice(struct net_device *dev) 5599{ 5600 int ret; 5601 struct net *net = dev_net(dev); 5602 5603 BUG_ON(dev_boot_phase); 5604 ASSERT_RTNL(); 5605 5606 might_sleep(); 5607 5608 /* When net_device's are persistent, this will be fatal. */ 5609 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5610 BUG_ON(!net); 5611 5612 spin_lock_init(&dev->addr_list_lock); 5613 netdev_set_addr_lockdep_class(dev); 5614 5615 dev->iflink = -1; 5616 5617 ret = dev_get_valid_name(dev, dev->name); 5618 if (ret < 0) 5619 goto out; 5620 5621 /* Init, if this function is available */ 5622 if (dev->netdev_ops->ndo_init) { 5623 ret = dev->netdev_ops->ndo_init(dev); 5624 if (ret) { 5625 if (ret > 0) 5626 ret = -EIO; 5627 goto out; 5628 } 5629 } 5630 5631 dev->ifindex = dev_new_index(net); 5632 if (dev->iflink == -1) 5633 dev->iflink = dev->ifindex; 5634 5635 /* Transfer changeable features to wanted_features and enable 5636 * software offloads (GSO and GRO). 5637 */ 5638 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5639 dev->features |= NETIF_F_SOFT_FEATURES; 5640 dev->wanted_features = dev->features & dev->hw_features; 5641 5642 /* Turn on no cache copy if HW is doing checksum */ 5643 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5644 if ((dev->features & NETIF_F_ALL_CSUM) && 5645 !(dev->features & NETIF_F_NO_CSUM)) { 5646 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5647 dev->features |= NETIF_F_NOCACHE_COPY; 5648 } 5649 5650 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5651 */ 5652 dev->vlan_features |= NETIF_F_HIGHDMA; 5653 5654 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5655 ret = notifier_to_errno(ret); 5656 if (ret) 5657 goto err_uninit; 5658 5659 ret = netdev_register_kobject(dev); 5660 if (ret) 5661 goto err_uninit; 5662 dev->reg_state = NETREG_REGISTERED; 5663 5664 __netdev_update_features(dev); 5665 5666 /* 5667 * Default initial state at registry is that the 5668 * device is present. 5669 */ 5670 5671 set_bit(__LINK_STATE_PRESENT, &dev->state); 5672 5673 dev_init_scheduler(dev); 5674 dev_hold(dev); 5675 list_netdevice(dev); 5676 5677 /* Notify protocols, that a new device appeared. */ 5678 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5679 ret = notifier_to_errno(ret); 5680 if (ret) { 5681 rollback_registered(dev); 5682 dev->reg_state = NETREG_UNREGISTERED; 5683 } 5684 /* 5685 * Prevent userspace races by waiting until the network 5686 * device is fully setup before sending notifications. 5687 */ 5688 if (!dev->rtnl_link_ops || 5689 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5690 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5691 5692out: 5693 return ret; 5694 5695err_uninit: 5696 if (dev->netdev_ops->ndo_uninit) 5697 dev->netdev_ops->ndo_uninit(dev); 5698 goto out; 5699} 5700EXPORT_SYMBOL(register_netdevice); 5701 5702/** 5703 * init_dummy_netdev - init a dummy network device for NAPI 5704 * @dev: device to init 5705 * 5706 * This takes a network device structure and initialize the minimum 5707 * amount of fields so it can be used to schedule NAPI polls without 5708 * registering a full blown interface. This is to be used by drivers 5709 * that need to tie several hardware interfaces to a single NAPI 5710 * poll scheduler due to HW limitations. 5711 */ 5712int init_dummy_netdev(struct net_device *dev) 5713{ 5714 /* Clear everything. Note we don't initialize spinlocks 5715 * are they aren't supposed to be taken by any of the 5716 * NAPI code and this dummy netdev is supposed to be 5717 * only ever used for NAPI polls 5718 */ 5719 memset(dev, 0, sizeof(struct net_device)); 5720 5721 /* make sure we BUG if trying to hit standard 5722 * register/unregister code path 5723 */ 5724 dev->reg_state = NETREG_DUMMY; 5725 5726 /* NAPI wants this */ 5727 INIT_LIST_HEAD(&dev->napi_list); 5728 5729 /* a dummy interface is started by default */ 5730 set_bit(__LINK_STATE_PRESENT, &dev->state); 5731 set_bit(__LINK_STATE_START, &dev->state); 5732 5733 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5734 * because users of this 'device' dont need to change 5735 * its refcount. 5736 */ 5737 5738 return 0; 5739} 5740EXPORT_SYMBOL_GPL(init_dummy_netdev); 5741 5742 5743/** 5744 * register_netdev - register a network device 5745 * @dev: device to register 5746 * 5747 * Take a completed network device structure and add it to the kernel 5748 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5749 * chain. 0 is returned on success. A negative errno code is returned 5750 * on a failure to set up the device, or if the name is a duplicate. 5751 * 5752 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5753 * and expands the device name if you passed a format string to 5754 * alloc_netdev. 5755 */ 5756int register_netdev(struct net_device *dev) 5757{ 5758 int err; 5759 5760 rtnl_lock(); 5761 err = register_netdevice(dev); 5762 rtnl_unlock(); 5763 return err; 5764} 5765EXPORT_SYMBOL(register_netdev); 5766 5767int netdev_refcnt_read(const struct net_device *dev) 5768{ 5769 int i, refcnt = 0; 5770 5771 for_each_possible_cpu(i) 5772 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5773 return refcnt; 5774} 5775EXPORT_SYMBOL(netdev_refcnt_read); 5776 5777/* 5778 * netdev_wait_allrefs - wait until all references are gone. 5779 * 5780 * This is called when unregistering network devices. 5781 * 5782 * Any protocol or device that holds a reference should register 5783 * for netdevice notification, and cleanup and put back the 5784 * reference if they receive an UNREGISTER event. 5785 * We can get stuck here if buggy protocols don't correctly 5786 * call dev_put. 5787 */ 5788static void netdev_wait_allrefs(struct net_device *dev) 5789{ 5790 unsigned long rebroadcast_time, warning_time; 5791 int refcnt; 5792 5793 linkwatch_forget_dev(dev); 5794 5795 rebroadcast_time = warning_time = jiffies; 5796 refcnt = netdev_refcnt_read(dev); 5797 5798 while (refcnt != 0) { 5799 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5800 rtnl_lock(); 5801 5802 /* Rebroadcast unregister notification */ 5803 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5804 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5805 * should have already handle it the first time */ 5806 5807 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5808 &dev->state)) { 5809 /* We must not have linkwatch events 5810 * pending on unregister. If this 5811 * happens, we simply run the queue 5812 * unscheduled, resulting in a noop 5813 * for this device. 5814 */ 5815 linkwatch_run_queue(); 5816 } 5817 5818 __rtnl_unlock(); 5819 5820 rebroadcast_time = jiffies; 5821 } 5822 5823 msleep(250); 5824 5825 refcnt = netdev_refcnt_read(dev); 5826 5827 if (time_after(jiffies, warning_time + 10 * HZ)) { 5828 printk(KERN_EMERG "unregister_netdevice: " 5829 "waiting for %s to become free. Usage " 5830 "count = %d\n", 5831 dev->name, refcnt); 5832 warning_time = jiffies; 5833 } 5834 } 5835} 5836 5837/* The sequence is: 5838 * 5839 * rtnl_lock(); 5840 * ... 5841 * register_netdevice(x1); 5842 * register_netdevice(x2); 5843 * ... 5844 * unregister_netdevice(y1); 5845 * unregister_netdevice(y2); 5846 * ... 5847 * rtnl_unlock(); 5848 * free_netdev(y1); 5849 * free_netdev(y2); 5850 * 5851 * We are invoked by rtnl_unlock(). 5852 * This allows us to deal with problems: 5853 * 1) We can delete sysfs objects which invoke hotplug 5854 * without deadlocking with linkwatch via keventd. 5855 * 2) Since we run with the RTNL semaphore not held, we can sleep 5856 * safely in order to wait for the netdev refcnt to drop to zero. 5857 * 5858 * We must not return until all unregister events added during 5859 * the interval the lock was held have been completed. 5860 */ 5861void netdev_run_todo(void) 5862{ 5863 struct list_head list; 5864 5865 /* Snapshot list, allow later requests */ 5866 list_replace_init(&net_todo_list, &list); 5867 5868 __rtnl_unlock(); 5869 5870 /* Wait for rcu callbacks to finish before attempting to drain 5871 * the device list. This usually avoids a 250ms wait. 5872 */ 5873 if (!list_empty(&list)) 5874 rcu_barrier(); 5875 5876 while (!list_empty(&list)) { 5877 struct net_device *dev 5878 = list_first_entry(&list, struct net_device, todo_list); 5879 list_del(&dev->todo_list); 5880 5881 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5882 printk(KERN_ERR "network todo '%s' but state %d\n", 5883 dev->name, dev->reg_state); 5884 dump_stack(); 5885 continue; 5886 } 5887 5888 dev->reg_state = NETREG_UNREGISTERED; 5889 5890 on_each_cpu(flush_backlog, dev, 1); 5891 5892 netdev_wait_allrefs(dev); 5893 5894 /* paranoia */ 5895 BUG_ON(netdev_refcnt_read(dev)); 5896 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5897 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5898 WARN_ON(dev->dn_ptr); 5899 5900 if (dev->destructor) 5901 dev->destructor(dev); 5902 5903 /* Free network device */ 5904 kobject_put(&dev->dev.kobj); 5905 } 5906} 5907 5908/* Convert net_device_stats to rtnl_link_stats64. They have the same 5909 * fields in the same order, with only the type differing. 5910 */ 5911static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5912 const struct net_device_stats *netdev_stats) 5913{ 5914#if BITS_PER_LONG == 64 5915 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5916 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5917#else 5918 size_t i, n = sizeof(*stats64) / sizeof(u64); 5919 const unsigned long *src = (const unsigned long *)netdev_stats; 5920 u64 *dst = (u64 *)stats64; 5921 5922 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5923 sizeof(*stats64) / sizeof(u64)); 5924 for (i = 0; i < n; i++) 5925 dst[i] = src[i]; 5926#endif 5927} 5928 5929/** 5930 * dev_get_stats - get network device statistics 5931 * @dev: device to get statistics from 5932 * @storage: place to store stats 5933 * 5934 * Get network statistics from device. Return @storage. 5935 * The device driver may provide its own method by setting 5936 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5937 * otherwise the internal statistics structure is used. 5938 */ 5939struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5940 struct rtnl_link_stats64 *storage) 5941{ 5942 const struct net_device_ops *ops = dev->netdev_ops; 5943 5944 if (ops->ndo_get_stats64) { 5945 memset(storage, 0, sizeof(*storage)); 5946 ops->ndo_get_stats64(dev, storage); 5947 } else if (ops->ndo_get_stats) { 5948 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5949 } else { 5950 netdev_stats_to_stats64(storage, &dev->stats); 5951 } 5952 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5953 return storage; 5954} 5955EXPORT_SYMBOL(dev_get_stats); 5956 5957struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5958{ 5959 struct netdev_queue *queue = dev_ingress_queue(dev); 5960 5961#ifdef CONFIG_NET_CLS_ACT 5962 if (queue) 5963 return queue; 5964 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5965 if (!queue) 5966 return NULL; 5967 netdev_init_one_queue(dev, queue, NULL); 5968 queue->qdisc = &noop_qdisc; 5969 queue->qdisc_sleeping = &noop_qdisc; 5970 rcu_assign_pointer(dev->ingress_queue, queue); 5971#endif 5972 return queue; 5973} 5974 5975/** 5976 * alloc_netdev_mqs - allocate network device 5977 * @sizeof_priv: size of private data to allocate space for 5978 * @name: device name format string 5979 * @setup: callback to initialize device 5980 * @txqs: the number of TX subqueues to allocate 5981 * @rxqs: the number of RX subqueues to allocate 5982 * 5983 * Allocates a struct net_device with private data area for driver use 5984 * and performs basic initialization. Also allocates subquue structs 5985 * for each queue on the device. 5986 */ 5987struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5988 void (*setup)(struct net_device *), 5989 unsigned int txqs, unsigned int rxqs) 5990{ 5991 struct net_device *dev; 5992 size_t alloc_size; 5993 struct net_device *p; 5994 5995 BUG_ON(strlen(name) >= sizeof(dev->name)); 5996 5997 if (txqs < 1) { 5998 pr_err("alloc_netdev: Unable to allocate device " 5999 "with zero queues.\n"); 6000 return NULL; 6001 } 6002 6003#ifdef CONFIG_RPS 6004 if (rxqs < 1) { 6005 pr_err("alloc_netdev: Unable to allocate device " 6006 "with zero RX queues.\n"); 6007 return NULL; 6008 } 6009#endif 6010 6011 alloc_size = sizeof(struct net_device); 6012 if (sizeof_priv) { 6013 /* ensure 32-byte alignment of private area */ 6014 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6015 alloc_size += sizeof_priv; 6016 } 6017 /* ensure 32-byte alignment of whole construct */ 6018 alloc_size += NETDEV_ALIGN - 1; 6019 6020 p = kzalloc(alloc_size, GFP_KERNEL); 6021 if (!p) { 6022 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 6023 return NULL; 6024 } 6025 6026 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6027 dev->padded = (char *)dev - (char *)p; 6028 6029 dev->pcpu_refcnt = alloc_percpu(int); 6030 if (!dev->pcpu_refcnt) 6031 goto free_p; 6032 6033 if (dev_addr_init(dev)) 6034 goto free_pcpu; 6035 6036 dev_mc_init(dev); 6037 dev_uc_init(dev); 6038 6039 dev_net_set(dev, &init_net); 6040 6041 dev->gso_max_size = GSO_MAX_SIZE; 6042 6043 INIT_LIST_HEAD(&dev->napi_list); 6044 INIT_LIST_HEAD(&dev->unreg_list); 6045 INIT_LIST_HEAD(&dev->link_watch_list); 6046 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6047 setup(dev); 6048 6049 dev->num_tx_queues = txqs; 6050 dev->real_num_tx_queues = txqs; 6051 if (netif_alloc_netdev_queues(dev)) 6052 goto free_all; 6053 6054#ifdef CONFIG_RPS 6055 dev->num_rx_queues = rxqs; 6056 dev->real_num_rx_queues = rxqs; 6057 if (netif_alloc_rx_queues(dev)) 6058 goto free_all; 6059#endif 6060 6061 strcpy(dev->name, name); 6062 dev->group = INIT_NETDEV_GROUP; 6063 return dev; 6064 6065free_all: 6066 free_netdev(dev); 6067 return NULL; 6068 6069free_pcpu: 6070 free_percpu(dev->pcpu_refcnt); 6071 kfree(dev->_tx); 6072#ifdef CONFIG_RPS 6073 kfree(dev->_rx); 6074#endif 6075 6076free_p: 6077 kfree(p); 6078 return NULL; 6079} 6080EXPORT_SYMBOL(alloc_netdev_mqs); 6081 6082/** 6083 * free_netdev - free network device 6084 * @dev: device 6085 * 6086 * This function does the last stage of destroying an allocated device 6087 * interface. The reference to the device object is released. 6088 * If this is the last reference then it will be freed. 6089 */ 6090void free_netdev(struct net_device *dev) 6091{ 6092 struct napi_struct *p, *n; 6093 6094 release_net(dev_net(dev)); 6095 6096 kfree(dev->_tx); 6097#ifdef CONFIG_RPS 6098 kfree(dev->_rx); 6099#endif 6100 6101 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6102 6103 /* Flush device addresses */ 6104 dev_addr_flush(dev); 6105 6106 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6107 netif_napi_del(p); 6108 6109 free_percpu(dev->pcpu_refcnt); 6110 dev->pcpu_refcnt = NULL; 6111 6112 /* Compatibility with error handling in drivers */ 6113 if (dev->reg_state == NETREG_UNINITIALIZED) { 6114 kfree((char *)dev - dev->padded); 6115 return; 6116 } 6117 6118 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6119 dev->reg_state = NETREG_RELEASED; 6120 6121 /* will free via device release */ 6122 put_device(&dev->dev); 6123} 6124EXPORT_SYMBOL(free_netdev); 6125 6126/** 6127 * synchronize_net - Synchronize with packet receive processing 6128 * 6129 * Wait for packets currently being received to be done. 6130 * Does not block later packets from starting. 6131 */ 6132void synchronize_net(void) 6133{ 6134 might_sleep(); 6135 if (rtnl_is_locked()) 6136 synchronize_rcu_expedited(); 6137 else 6138 synchronize_rcu(); 6139} 6140EXPORT_SYMBOL(synchronize_net); 6141 6142/** 6143 * unregister_netdevice_queue - remove device from the kernel 6144 * @dev: device 6145 * @head: list 6146 * 6147 * This function shuts down a device interface and removes it 6148 * from the kernel tables. 6149 * If head not NULL, device is queued to be unregistered later. 6150 * 6151 * Callers must hold the rtnl semaphore. You may want 6152 * unregister_netdev() instead of this. 6153 */ 6154 6155void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6156{ 6157 ASSERT_RTNL(); 6158 6159 if (head) { 6160 list_move_tail(&dev->unreg_list, head); 6161 } else { 6162 rollback_registered(dev); 6163 /* Finish processing unregister after unlock */ 6164 net_set_todo(dev); 6165 } 6166} 6167EXPORT_SYMBOL(unregister_netdevice_queue); 6168 6169/** 6170 * unregister_netdevice_many - unregister many devices 6171 * @head: list of devices 6172 */ 6173void unregister_netdevice_many(struct list_head *head) 6174{ 6175 struct net_device *dev; 6176 6177 if (!list_empty(head)) { 6178 rollback_registered_many(head); 6179 list_for_each_entry(dev, head, unreg_list) 6180 net_set_todo(dev); 6181 } 6182} 6183EXPORT_SYMBOL(unregister_netdevice_many); 6184 6185/** 6186 * unregister_netdev - remove device from the kernel 6187 * @dev: device 6188 * 6189 * This function shuts down a device interface and removes it 6190 * from the kernel tables. 6191 * 6192 * This is just a wrapper for unregister_netdevice that takes 6193 * the rtnl semaphore. In general you want to use this and not 6194 * unregister_netdevice. 6195 */ 6196void unregister_netdev(struct net_device *dev) 6197{ 6198 rtnl_lock(); 6199 unregister_netdevice(dev); 6200 rtnl_unlock(); 6201} 6202EXPORT_SYMBOL(unregister_netdev); 6203 6204/** 6205 * dev_change_net_namespace - move device to different nethost namespace 6206 * @dev: device 6207 * @net: network namespace 6208 * @pat: If not NULL name pattern to try if the current device name 6209 * is already taken in the destination network namespace. 6210 * 6211 * This function shuts down a device interface and moves it 6212 * to a new network namespace. On success 0 is returned, on 6213 * a failure a netagive errno code is returned. 6214 * 6215 * Callers must hold the rtnl semaphore. 6216 */ 6217 6218int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6219{ 6220 int err; 6221 6222 ASSERT_RTNL(); 6223 6224 /* Don't allow namespace local devices to be moved. */ 6225 err = -EINVAL; 6226 if (dev->features & NETIF_F_NETNS_LOCAL) 6227 goto out; 6228 6229 /* Ensure the device has been registrered */ 6230 err = -EINVAL; 6231 if (dev->reg_state != NETREG_REGISTERED) 6232 goto out; 6233 6234 /* Get out if there is nothing todo */ 6235 err = 0; 6236 if (net_eq(dev_net(dev), net)) 6237 goto out; 6238 6239 /* Pick the destination device name, and ensure 6240 * we can use it in the destination network namespace. 6241 */ 6242 err = -EEXIST; 6243 if (__dev_get_by_name(net, dev->name)) { 6244 /* We get here if we can't use the current device name */ 6245 if (!pat) 6246 goto out; 6247 if (dev_get_valid_name(dev, pat) < 0) 6248 goto out; 6249 } 6250 6251 /* 6252 * And now a mini version of register_netdevice unregister_netdevice. 6253 */ 6254 6255 /* If device is running close it first. */ 6256 dev_close(dev); 6257 6258 /* And unlink it from device chain */ 6259 err = -ENODEV; 6260 unlist_netdevice(dev); 6261 6262 synchronize_net(); 6263 6264 /* Shutdown queueing discipline. */ 6265 dev_shutdown(dev); 6266 6267 /* Notify protocols, that we are about to destroy 6268 this device. They should clean all the things. 6269 6270 Note that dev->reg_state stays at NETREG_REGISTERED. 6271 This is wanted because this way 8021q and macvlan know 6272 the device is just moving and can keep their slaves up. 6273 */ 6274 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6275 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6276 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6277 6278 /* 6279 * Flush the unicast and multicast chains 6280 */ 6281 dev_uc_flush(dev); 6282 dev_mc_flush(dev); 6283 6284 /* Actually switch the network namespace */ 6285 dev_net_set(dev, net); 6286 6287 /* If there is an ifindex conflict assign a new one */ 6288 if (__dev_get_by_index(net, dev->ifindex)) { 6289 int iflink = (dev->iflink == dev->ifindex); 6290 dev->ifindex = dev_new_index(net); 6291 if (iflink) 6292 dev->iflink = dev->ifindex; 6293 } 6294 6295 /* Fixup kobjects */ 6296 err = device_rename(&dev->dev, dev->name); 6297 WARN_ON(err); 6298 6299 /* Add the device back in the hashes */ 6300 list_netdevice(dev); 6301 6302 /* Notify protocols, that a new device appeared. */ 6303 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6304 6305 /* 6306 * Prevent userspace races by waiting until the network 6307 * device is fully setup before sending notifications. 6308 */ 6309 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6310 6311 synchronize_net(); 6312 err = 0; 6313out: 6314 return err; 6315} 6316EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6317 6318static int dev_cpu_callback(struct notifier_block *nfb, 6319 unsigned long action, 6320 void *ocpu) 6321{ 6322 struct sk_buff **list_skb; 6323 struct sk_buff *skb; 6324 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6325 struct softnet_data *sd, *oldsd; 6326 6327 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6328 return NOTIFY_OK; 6329 6330 local_irq_disable(); 6331 cpu = smp_processor_id(); 6332 sd = &per_cpu(softnet_data, cpu); 6333 oldsd = &per_cpu(softnet_data, oldcpu); 6334 6335 /* Find end of our completion_queue. */ 6336 list_skb = &sd->completion_queue; 6337 while (*list_skb) 6338 list_skb = &(*list_skb)->next; 6339 /* Append completion queue from offline CPU. */ 6340 *list_skb = oldsd->completion_queue; 6341 oldsd->completion_queue = NULL; 6342 6343 /* Append output queue from offline CPU. */ 6344 if (oldsd->output_queue) { 6345 *sd->output_queue_tailp = oldsd->output_queue; 6346 sd->output_queue_tailp = oldsd->output_queue_tailp; 6347 oldsd->output_queue = NULL; 6348 oldsd->output_queue_tailp = &oldsd->output_queue; 6349 } 6350 /* Append NAPI poll list from offline CPU. */ 6351 if (!list_empty(&oldsd->poll_list)) { 6352 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6353 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6354 } 6355 6356 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6357 local_irq_enable(); 6358 6359 /* Process offline CPU's input_pkt_queue */ 6360 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6361 netif_rx(skb); 6362 input_queue_head_incr(oldsd); 6363 } 6364 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6365 netif_rx(skb); 6366 input_queue_head_incr(oldsd); 6367 } 6368 6369 return NOTIFY_OK; 6370} 6371 6372 6373/** 6374 * netdev_increment_features - increment feature set by one 6375 * @all: current feature set 6376 * @one: new feature set 6377 * @mask: mask feature set 6378 * 6379 * Computes a new feature set after adding a device with feature set 6380 * @one to the master device with current feature set @all. Will not 6381 * enable anything that is off in @mask. Returns the new feature set. 6382 */ 6383u32 netdev_increment_features(u32 all, u32 one, u32 mask) 6384{ 6385 if (mask & NETIF_F_GEN_CSUM) 6386 mask |= NETIF_F_ALL_CSUM; 6387 mask |= NETIF_F_VLAN_CHALLENGED; 6388 6389 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6390 all &= one | ~NETIF_F_ALL_FOR_ALL; 6391 6392 /* If device needs checksumming, downgrade to it. */ 6393 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM)) 6394 all &= ~NETIF_F_NO_CSUM; 6395 6396 /* If one device supports hw checksumming, set for all. */ 6397 if (all & NETIF_F_GEN_CSUM) 6398 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6399 6400 return all; 6401} 6402EXPORT_SYMBOL(netdev_increment_features); 6403 6404static struct hlist_head *netdev_create_hash(void) 6405{ 6406 int i; 6407 struct hlist_head *hash; 6408 6409 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6410 if (hash != NULL) 6411 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6412 INIT_HLIST_HEAD(&hash[i]); 6413 6414 return hash; 6415} 6416 6417/* Initialize per network namespace state */ 6418static int __net_init netdev_init(struct net *net) 6419{ 6420 INIT_LIST_HEAD(&net->dev_base_head); 6421 6422 net->dev_name_head = netdev_create_hash(); 6423 if (net->dev_name_head == NULL) 6424 goto err_name; 6425 6426 net->dev_index_head = netdev_create_hash(); 6427 if (net->dev_index_head == NULL) 6428 goto err_idx; 6429 6430 return 0; 6431 6432err_idx: 6433 kfree(net->dev_name_head); 6434err_name: 6435 return -ENOMEM; 6436} 6437 6438/** 6439 * netdev_drivername - network driver for the device 6440 * @dev: network device 6441 * 6442 * Determine network driver for device. 6443 */ 6444const char *netdev_drivername(const struct net_device *dev) 6445{ 6446 const struct device_driver *driver; 6447 const struct device *parent; 6448 const char *empty = ""; 6449 6450 parent = dev->dev.parent; 6451 if (!parent) 6452 return empty; 6453 6454 driver = parent->driver; 6455 if (driver && driver->name) 6456 return driver->name; 6457 return empty; 6458} 6459 6460int __netdev_printk(const char *level, const struct net_device *dev, 6461 struct va_format *vaf) 6462{ 6463 int r; 6464 6465 if (dev && dev->dev.parent) 6466 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6467 netdev_name(dev), vaf); 6468 else if (dev) 6469 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6470 else 6471 r = printk("%s(NULL net_device): %pV", level, vaf); 6472 6473 return r; 6474} 6475EXPORT_SYMBOL(__netdev_printk); 6476 6477int netdev_printk(const char *level, const struct net_device *dev, 6478 const char *format, ...) 6479{ 6480 struct va_format vaf; 6481 va_list args; 6482 int r; 6483 6484 va_start(args, format); 6485 6486 vaf.fmt = format; 6487 vaf.va = &args; 6488 6489 r = __netdev_printk(level, dev, &vaf); 6490 va_end(args); 6491 6492 return r; 6493} 6494EXPORT_SYMBOL(netdev_printk); 6495 6496#define define_netdev_printk_level(func, level) \ 6497int func(const struct net_device *dev, const char *fmt, ...) \ 6498{ \ 6499 int r; \ 6500 struct va_format vaf; \ 6501 va_list args; \ 6502 \ 6503 va_start(args, fmt); \ 6504 \ 6505 vaf.fmt = fmt; \ 6506 vaf.va = &args; \ 6507 \ 6508 r = __netdev_printk(level, dev, &vaf); \ 6509 va_end(args); \ 6510 \ 6511 return r; \ 6512} \ 6513EXPORT_SYMBOL(func); 6514 6515define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6516define_netdev_printk_level(netdev_alert, KERN_ALERT); 6517define_netdev_printk_level(netdev_crit, KERN_CRIT); 6518define_netdev_printk_level(netdev_err, KERN_ERR); 6519define_netdev_printk_level(netdev_warn, KERN_WARNING); 6520define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6521define_netdev_printk_level(netdev_info, KERN_INFO); 6522 6523static void __net_exit netdev_exit(struct net *net) 6524{ 6525 kfree(net->dev_name_head); 6526 kfree(net->dev_index_head); 6527} 6528 6529static struct pernet_operations __net_initdata netdev_net_ops = { 6530 .init = netdev_init, 6531 .exit = netdev_exit, 6532}; 6533 6534static void __net_exit default_device_exit(struct net *net) 6535{ 6536 struct net_device *dev, *aux; 6537 /* 6538 * Push all migratable network devices back to the 6539 * initial network namespace 6540 */ 6541 rtnl_lock(); 6542 for_each_netdev_safe(net, dev, aux) { 6543 int err; 6544 char fb_name[IFNAMSIZ]; 6545 6546 /* Ignore unmoveable devices (i.e. loopback) */ 6547 if (dev->features & NETIF_F_NETNS_LOCAL) 6548 continue; 6549 6550 /* Leave virtual devices for the generic cleanup */ 6551 if (dev->rtnl_link_ops) 6552 continue; 6553 6554 /* Push remaining network devices to init_net */ 6555 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6556 err = dev_change_net_namespace(dev, &init_net, fb_name); 6557 if (err) { 6558 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6559 __func__, dev->name, err); 6560 BUG(); 6561 } 6562 } 6563 rtnl_unlock(); 6564} 6565 6566static void __net_exit default_device_exit_batch(struct list_head *net_list) 6567{ 6568 /* At exit all network devices most be removed from a network 6569 * namespace. Do this in the reverse order of registration. 6570 * Do this across as many network namespaces as possible to 6571 * improve batching efficiency. 6572 */ 6573 struct net_device *dev; 6574 struct net *net; 6575 LIST_HEAD(dev_kill_list); 6576 6577 rtnl_lock(); 6578 list_for_each_entry(net, net_list, exit_list) { 6579 for_each_netdev_reverse(net, dev) { 6580 if (dev->rtnl_link_ops) 6581 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6582 else 6583 unregister_netdevice_queue(dev, &dev_kill_list); 6584 } 6585 } 6586 unregister_netdevice_many(&dev_kill_list); 6587 list_del(&dev_kill_list); 6588 rtnl_unlock(); 6589} 6590 6591static struct pernet_operations __net_initdata default_device_ops = { 6592 .exit = default_device_exit, 6593 .exit_batch = default_device_exit_batch, 6594}; 6595 6596/* 6597 * Initialize the DEV module. At boot time this walks the device list and 6598 * unhooks any devices that fail to initialise (normally hardware not 6599 * present) and leaves us with a valid list of present and active devices. 6600 * 6601 */ 6602 6603/* 6604 * This is called single threaded during boot, so no need 6605 * to take the rtnl semaphore. 6606 */ 6607static int __init net_dev_init(void) 6608{ 6609 int i, rc = -ENOMEM; 6610 6611 BUG_ON(!dev_boot_phase); 6612 6613 if (dev_proc_init()) 6614 goto out; 6615 6616 if (netdev_kobject_init()) 6617 goto out; 6618 6619 INIT_LIST_HEAD(&ptype_all); 6620 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6621 INIT_LIST_HEAD(&ptype_base[i]); 6622 6623 if (register_pernet_subsys(&netdev_net_ops)) 6624 goto out; 6625 6626 /* 6627 * Initialise the packet receive queues. 6628 */ 6629 6630 for_each_possible_cpu(i) { 6631 struct softnet_data *sd = &per_cpu(softnet_data, i); 6632 6633 memset(sd, 0, sizeof(*sd)); 6634 skb_queue_head_init(&sd->input_pkt_queue); 6635 skb_queue_head_init(&sd->process_queue); 6636 sd->completion_queue = NULL; 6637 INIT_LIST_HEAD(&sd->poll_list); 6638 sd->output_queue = NULL; 6639 sd->output_queue_tailp = &sd->output_queue; 6640#ifdef CONFIG_RPS 6641 sd->csd.func = rps_trigger_softirq; 6642 sd->csd.info = sd; 6643 sd->csd.flags = 0; 6644 sd->cpu = i; 6645#endif 6646 6647 sd->backlog.poll = process_backlog; 6648 sd->backlog.weight = weight_p; 6649 sd->backlog.gro_list = NULL; 6650 sd->backlog.gro_count = 0; 6651 } 6652 6653 dev_boot_phase = 0; 6654 6655 /* The loopback device is special if any other network devices 6656 * is present in a network namespace the loopback device must 6657 * be present. Since we now dynamically allocate and free the 6658 * loopback device ensure this invariant is maintained by 6659 * keeping the loopback device as the first device on the 6660 * list of network devices. Ensuring the loopback devices 6661 * is the first device that appears and the last network device 6662 * that disappears. 6663 */ 6664 if (register_pernet_device(&loopback_net_ops)) 6665 goto out; 6666 6667 if (register_pernet_device(&default_device_ops)) 6668 goto out; 6669 6670 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6671 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6672 6673 hotcpu_notifier(dev_cpu_callback, 0); 6674 dst_init(); 6675 dev_mcast_init(); 6676 rc = 0; 6677out: 6678 return rc; 6679} 6680 6681subsys_initcall(net_dev_init); 6682 6683static int __init initialize_hashrnd(void) 6684{ 6685 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6686 return 0; 6687} 6688 6689late_initcall_sync(initialize_hashrnd); 6690