at v3.2 9.2 kB view raw
1#ifndef _LINUX_SLUB_DEF_H 2#define _LINUX_SLUB_DEF_H 3 4/* 5 * SLUB : A Slab allocator without object queues. 6 * 7 * (C) 2007 SGI, Christoph Lameter 8 */ 9#include <linux/types.h> 10#include <linux/gfp.h> 11#include <linux/workqueue.h> 12#include <linux/kobject.h> 13 14#include <linux/kmemleak.h> 15 16enum stat_item { 17 ALLOC_FASTPATH, /* Allocation from cpu slab */ 18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 19 FREE_FASTPATH, /* Free to cpu slub */ 20 FREE_SLOWPATH, /* Freeing not to cpu slab */ 21 FREE_FROZEN, /* Freeing to frozen slab */ 22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */ 25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 27 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 28 FREE_SLAB, /* Slab freed to the page allocator */ 29 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 30 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 31 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 32 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 33 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 34 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 35 DEACTIVATE_BYPASS, /* Implicit deactivation */ 36 ORDER_FALLBACK, /* Number of times fallback was necessary */ 37 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ 38 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */ 39 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 40 CPU_PARTIAL_FREE, /* USed cpu partial on free */ 41 NR_SLUB_STAT_ITEMS }; 42 43struct kmem_cache_cpu { 44 void **freelist; /* Pointer to next available object */ 45 unsigned long tid; /* Globally unique transaction id */ 46 struct page *page; /* The slab from which we are allocating */ 47 struct page *partial; /* Partially allocated frozen slabs */ 48 int node; /* The node of the page (or -1 for debug) */ 49#ifdef CONFIG_SLUB_STATS 50 unsigned stat[NR_SLUB_STAT_ITEMS]; 51#endif 52}; 53 54struct kmem_cache_node { 55 spinlock_t list_lock; /* Protect partial list and nr_partial */ 56 unsigned long nr_partial; 57 struct list_head partial; 58#ifdef CONFIG_SLUB_DEBUG 59 atomic_long_t nr_slabs; 60 atomic_long_t total_objects; 61 struct list_head full; 62#endif 63}; 64 65/* 66 * Word size structure that can be atomically updated or read and that 67 * contains both the order and the number of objects that a slab of the 68 * given order would contain. 69 */ 70struct kmem_cache_order_objects { 71 unsigned long x; 72}; 73 74/* 75 * Slab cache management. 76 */ 77struct kmem_cache { 78 struct kmem_cache_cpu __percpu *cpu_slab; 79 /* Used for retriving partial slabs etc */ 80 unsigned long flags; 81 unsigned long min_partial; 82 int size; /* The size of an object including meta data */ 83 int objsize; /* The size of an object without meta data */ 84 int offset; /* Free pointer offset. */ 85 int cpu_partial; /* Number of per cpu partial objects to keep around */ 86 struct kmem_cache_order_objects oo; 87 88 /* Allocation and freeing of slabs */ 89 struct kmem_cache_order_objects max; 90 struct kmem_cache_order_objects min; 91 gfp_t allocflags; /* gfp flags to use on each alloc */ 92 int refcount; /* Refcount for slab cache destroy */ 93 void (*ctor)(void *); 94 int inuse; /* Offset to metadata */ 95 int align; /* Alignment */ 96 int reserved; /* Reserved bytes at the end of slabs */ 97 const char *name; /* Name (only for display!) */ 98 struct list_head list; /* List of slab caches */ 99#ifdef CONFIG_SYSFS 100 struct kobject kobj; /* For sysfs */ 101#endif 102 103#ifdef CONFIG_NUMA 104 /* 105 * Defragmentation by allocating from a remote node. 106 */ 107 int remote_node_defrag_ratio; 108#endif 109 struct kmem_cache_node *node[MAX_NUMNODES]; 110}; 111 112/* 113 * Kmalloc subsystem. 114 */ 115#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 116#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 117#else 118#define KMALLOC_MIN_SIZE 8 119#endif 120 121#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 122 123/* 124 * Maximum kmalloc object size handled by SLUB. Larger object allocations 125 * are passed through to the page allocator. The page allocator "fastpath" 126 * is relatively slow so we need this value sufficiently high so that 127 * performance critical objects are allocated through the SLUB fastpath. 128 * 129 * This should be dropped to PAGE_SIZE / 2 once the page allocator 130 * "fastpath" becomes competitive with the slab allocator fastpaths. 131 */ 132#define SLUB_MAX_SIZE (2 * PAGE_SIZE) 133 134#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2) 135 136#ifdef CONFIG_ZONE_DMA 137#define SLUB_DMA __GFP_DMA 138#else 139/* Disable DMA functionality */ 140#define SLUB_DMA (__force gfp_t)0 141#endif 142 143/* 144 * We keep the general caches in an array of slab caches that are used for 145 * 2^x bytes of allocations. 146 */ 147extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 148 149/* 150 * Sorry that the following has to be that ugly but some versions of GCC 151 * have trouble with constant propagation and loops. 152 */ 153static __always_inline int kmalloc_index(size_t size) 154{ 155 if (!size) 156 return 0; 157 158 if (size <= KMALLOC_MIN_SIZE) 159 return KMALLOC_SHIFT_LOW; 160 161 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 162 return 1; 163 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 164 return 2; 165 if (size <= 8) return 3; 166 if (size <= 16) return 4; 167 if (size <= 32) return 5; 168 if (size <= 64) return 6; 169 if (size <= 128) return 7; 170 if (size <= 256) return 8; 171 if (size <= 512) return 9; 172 if (size <= 1024) return 10; 173 if (size <= 2 * 1024) return 11; 174 if (size <= 4 * 1024) return 12; 175/* 176 * The following is only needed to support architectures with a larger page 177 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page 178 * size we would have to go up to 128k. 179 */ 180 if (size <= 8 * 1024) return 13; 181 if (size <= 16 * 1024) return 14; 182 if (size <= 32 * 1024) return 15; 183 if (size <= 64 * 1024) return 16; 184 if (size <= 128 * 1024) return 17; 185 if (size <= 256 * 1024) return 18; 186 if (size <= 512 * 1024) return 19; 187 if (size <= 1024 * 1024) return 20; 188 if (size <= 2 * 1024 * 1024) return 21; 189 BUG(); 190 return -1; /* Will never be reached */ 191 192/* 193 * What we really wanted to do and cannot do because of compiler issues is: 194 * int i; 195 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) 196 * if (size <= (1 << i)) 197 * return i; 198 */ 199} 200 201/* 202 * Find the slab cache for a given combination of allocation flags and size. 203 * 204 * This ought to end up with a global pointer to the right cache 205 * in kmalloc_caches. 206 */ 207static __always_inline struct kmem_cache *kmalloc_slab(size_t size) 208{ 209 int index = kmalloc_index(size); 210 211 if (index == 0) 212 return NULL; 213 214 return kmalloc_caches[index]; 215} 216 217void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 218void *__kmalloc(size_t size, gfp_t flags); 219 220static __always_inline void * 221kmalloc_order(size_t size, gfp_t flags, unsigned int order) 222{ 223 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order); 224 kmemleak_alloc(ret, size, 1, flags); 225 return ret; 226} 227 228/** 229 * Calling this on allocated memory will check that the memory 230 * is expected to be in use, and print warnings if not. 231 */ 232#ifdef CONFIG_SLUB_DEBUG 233extern bool verify_mem_not_deleted(const void *x); 234#else 235static inline bool verify_mem_not_deleted(const void *x) 236{ 237 return true; 238} 239#endif 240 241#ifdef CONFIG_TRACING 242extern void * 243kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size); 244extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 245#else 246static __always_inline void * 247kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 248{ 249 return kmem_cache_alloc(s, gfpflags); 250} 251 252static __always_inline void * 253kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 254{ 255 return kmalloc_order(size, flags, order); 256} 257#endif 258 259static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 260{ 261 unsigned int order = get_order(size); 262 return kmalloc_order_trace(size, flags, order); 263} 264 265static __always_inline void *kmalloc(size_t size, gfp_t flags) 266{ 267 if (__builtin_constant_p(size)) { 268 if (size > SLUB_MAX_SIZE) 269 return kmalloc_large(size, flags); 270 271 if (!(flags & SLUB_DMA)) { 272 struct kmem_cache *s = kmalloc_slab(size); 273 274 if (!s) 275 return ZERO_SIZE_PTR; 276 277 return kmem_cache_alloc_trace(s, flags, size); 278 } 279 } 280 return __kmalloc(size, flags); 281} 282 283#ifdef CONFIG_NUMA 284void *__kmalloc_node(size_t size, gfp_t flags, int node); 285void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 286 287#ifdef CONFIG_TRACING 288extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 289 gfp_t gfpflags, 290 int node, size_t size); 291#else 292static __always_inline void * 293kmem_cache_alloc_node_trace(struct kmem_cache *s, 294 gfp_t gfpflags, 295 int node, size_t size) 296{ 297 return kmem_cache_alloc_node(s, gfpflags, node); 298} 299#endif 300 301static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 302{ 303 if (__builtin_constant_p(size) && 304 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) { 305 struct kmem_cache *s = kmalloc_slab(size); 306 307 if (!s) 308 return ZERO_SIZE_PTR; 309 310 return kmem_cache_alloc_node_trace(s, flags, node, size); 311 } 312 return __kmalloc_node(size, flags, node); 313} 314#endif 315 316#endif /* _LINUX_SLUB_DEF_H */