at v3.2 32 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 57 58 PERF_COUNT_HW_MAX, /* non-ABI */ 59}; 60 61/* 62 * Generalized hardware cache events: 63 * 64 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 65 * { read, write, prefetch } x 66 * { accesses, misses } 67 */ 68enum perf_hw_cache_id { 69 PERF_COUNT_HW_CACHE_L1D = 0, 70 PERF_COUNT_HW_CACHE_L1I = 1, 71 PERF_COUNT_HW_CACHE_LL = 2, 72 PERF_COUNT_HW_CACHE_DTLB = 3, 73 PERF_COUNT_HW_CACHE_ITLB = 4, 74 PERF_COUNT_HW_CACHE_BPU = 5, 75 PERF_COUNT_HW_CACHE_NODE = 6, 76 77 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 78}; 79 80enum perf_hw_cache_op_id { 81 PERF_COUNT_HW_CACHE_OP_READ = 0, 82 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 83 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 84 85 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 86}; 87 88enum perf_hw_cache_op_result_id { 89 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 90 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 91 92 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 93}; 94 95/* 96 * Special "software" events provided by the kernel, even if the hardware 97 * does not support performance events. These events measure various 98 * physical and sw events of the kernel (and allow the profiling of them as 99 * well): 100 */ 101enum perf_sw_ids { 102 PERF_COUNT_SW_CPU_CLOCK = 0, 103 PERF_COUNT_SW_TASK_CLOCK = 1, 104 PERF_COUNT_SW_PAGE_FAULTS = 2, 105 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 106 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 107 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 108 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 109 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 110 PERF_COUNT_SW_EMULATION_FAULTS = 8, 111 112 PERF_COUNT_SW_MAX, /* non-ABI */ 113}; 114 115/* 116 * Bits that can be set in attr.sample_type to request information 117 * in the overflow packets. 118 */ 119enum perf_event_sample_format { 120 PERF_SAMPLE_IP = 1U << 0, 121 PERF_SAMPLE_TID = 1U << 1, 122 PERF_SAMPLE_TIME = 1U << 2, 123 PERF_SAMPLE_ADDR = 1U << 3, 124 PERF_SAMPLE_READ = 1U << 4, 125 PERF_SAMPLE_CALLCHAIN = 1U << 5, 126 PERF_SAMPLE_ID = 1U << 6, 127 PERF_SAMPLE_CPU = 1U << 7, 128 PERF_SAMPLE_PERIOD = 1U << 8, 129 PERF_SAMPLE_STREAM_ID = 1U << 9, 130 PERF_SAMPLE_RAW = 1U << 10, 131 132 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 133}; 134 135/* 136 * The format of the data returned by read() on a perf event fd, 137 * as specified by attr.read_format: 138 * 139 * struct read_format { 140 * { u64 value; 141 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 142 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 143 * { u64 id; } && PERF_FORMAT_ID 144 * } && !PERF_FORMAT_GROUP 145 * 146 * { u64 nr; 147 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 148 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 149 * { u64 value; 150 * { u64 id; } && PERF_FORMAT_ID 151 * } cntr[nr]; 152 * } && PERF_FORMAT_GROUP 153 * }; 154 */ 155enum perf_event_read_format { 156 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 157 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 158 PERF_FORMAT_ID = 1U << 2, 159 PERF_FORMAT_GROUP = 1U << 3, 160 161 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 162}; 163 164#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 165 166/* 167 * Hardware event_id to monitor via a performance monitoring event: 168 */ 169struct perf_event_attr { 170 171 /* 172 * Major type: hardware/software/tracepoint/etc. 173 */ 174 __u32 type; 175 176 /* 177 * Size of the attr structure, for fwd/bwd compat. 178 */ 179 __u32 size; 180 181 /* 182 * Type specific configuration information. 183 */ 184 __u64 config; 185 186 union { 187 __u64 sample_period; 188 __u64 sample_freq; 189 }; 190 191 __u64 sample_type; 192 __u64 read_format; 193 194 __u64 disabled : 1, /* off by default */ 195 inherit : 1, /* children inherit it */ 196 pinned : 1, /* must always be on PMU */ 197 exclusive : 1, /* only group on PMU */ 198 exclude_user : 1, /* don't count user */ 199 exclude_kernel : 1, /* ditto kernel */ 200 exclude_hv : 1, /* ditto hypervisor */ 201 exclude_idle : 1, /* don't count when idle */ 202 mmap : 1, /* include mmap data */ 203 comm : 1, /* include comm data */ 204 freq : 1, /* use freq, not period */ 205 inherit_stat : 1, /* per task counts */ 206 enable_on_exec : 1, /* next exec enables */ 207 task : 1, /* trace fork/exit */ 208 watermark : 1, /* wakeup_watermark */ 209 /* 210 * precise_ip: 211 * 212 * 0 - SAMPLE_IP can have arbitrary skid 213 * 1 - SAMPLE_IP must have constant skid 214 * 2 - SAMPLE_IP requested to have 0 skid 215 * 3 - SAMPLE_IP must have 0 skid 216 * 217 * See also PERF_RECORD_MISC_EXACT_IP 218 */ 219 precise_ip : 2, /* skid constraint */ 220 mmap_data : 1, /* non-exec mmap data */ 221 sample_id_all : 1, /* sample_type all events */ 222 223 exclude_host : 1, /* don't count in host */ 224 exclude_guest : 1, /* don't count in guest */ 225 226 __reserved_1 : 43; 227 228 union { 229 __u32 wakeup_events; /* wakeup every n events */ 230 __u32 wakeup_watermark; /* bytes before wakeup */ 231 }; 232 233 __u32 bp_type; 234 union { 235 __u64 bp_addr; 236 __u64 config1; /* extension of config */ 237 }; 238 union { 239 __u64 bp_len; 240 __u64 config2; /* extension of config1 */ 241 }; 242}; 243 244/* 245 * Ioctls that can be done on a perf event fd: 246 */ 247#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 248#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 249#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 250#define PERF_EVENT_IOC_RESET _IO ('$', 3) 251#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 252#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 253#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 254 255enum perf_event_ioc_flags { 256 PERF_IOC_FLAG_GROUP = 1U << 0, 257}; 258 259/* 260 * Structure of the page that can be mapped via mmap 261 */ 262struct perf_event_mmap_page { 263 __u32 version; /* version number of this structure */ 264 __u32 compat_version; /* lowest version this is compat with */ 265 266 /* 267 * Bits needed to read the hw events in user-space. 268 * 269 * u32 seq; 270 * s64 count; 271 * 272 * do { 273 * seq = pc->lock; 274 * 275 * barrier() 276 * if (pc->index) { 277 * count = pmc_read(pc->index - 1); 278 * count += pc->offset; 279 * } else 280 * goto regular_read; 281 * 282 * barrier(); 283 * } while (pc->lock != seq); 284 * 285 * NOTE: for obvious reason this only works on self-monitoring 286 * processes. 287 */ 288 __u32 lock; /* seqlock for synchronization */ 289 __u32 index; /* hardware event identifier */ 290 __s64 offset; /* add to hardware event value */ 291 __u64 time_enabled; /* time event active */ 292 __u64 time_running; /* time event on cpu */ 293 294 /* 295 * Hole for extension of the self monitor capabilities 296 */ 297 298 __u64 __reserved[123]; /* align to 1k */ 299 300 /* 301 * Control data for the mmap() data buffer. 302 * 303 * User-space reading the @data_head value should issue an rmb(), on 304 * SMP capable platforms, after reading this value -- see 305 * perf_event_wakeup(). 306 * 307 * When the mapping is PROT_WRITE the @data_tail value should be 308 * written by userspace to reflect the last read data. In this case 309 * the kernel will not over-write unread data. 310 */ 311 __u64 data_head; /* head in the data section */ 312 __u64 data_tail; /* user-space written tail */ 313}; 314 315#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 316#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 317#define PERF_RECORD_MISC_KERNEL (1 << 0) 318#define PERF_RECORD_MISC_USER (2 << 0) 319#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 320#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 321#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 322 323/* 324 * Indicates that the content of PERF_SAMPLE_IP points to 325 * the actual instruction that triggered the event. See also 326 * perf_event_attr::precise_ip. 327 */ 328#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 329/* 330 * Reserve the last bit to indicate some extended misc field 331 */ 332#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 333 334struct perf_event_header { 335 __u32 type; 336 __u16 misc; 337 __u16 size; 338}; 339 340enum perf_event_type { 341 342 /* 343 * If perf_event_attr.sample_id_all is set then all event types will 344 * have the sample_type selected fields related to where/when 345 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) 346 * described in PERF_RECORD_SAMPLE below, it will be stashed just after 347 * the perf_event_header and the fields already present for the existing 348 * fields, i.e. at the end of the payload. That way a newer perf.data 349 * file will be supported by older perf tools, with these new optional 350 * fields being ignored. 351 * 352 * The MMAP events record the PROT_EXEC mappings so that we can 353 * correlate userspace IPs to code. They have the following structure: 354 * 355 * struct { 356 * struct perf_event_header header; 357 * 358 * u32 pid, tid; 359 * u64 addr; 360 * u64 len; 361 * u64 pgoff; 362 * char filename[]; 363 * }; 364 */ 365 PERF_RECORD_MMAP = 1, 366 367 /* 368 * struct { 369 * struct perf_event_header header; 370 * u64 id; 371 * u64 lost; 372 * }; 373 */ 374 PERF_RECORD_LOST = 2, 375 376 /* 377 * struct { 378 * struct perf_event_header header; 379 * 380 * u32 pid, tid; 381 * char comm[]; 382 * }; 383 */ 384 PERF_RECORD_COMM = 3, 385 386 /* 387 * struct { 388 * struct perf_event_header header; 389 * u32 pid, ppid; 390 * u32 tid, ptid; 391 * u64 time; 392 * }; 393 */ 394 PERF_RECORD_EXIT = 4, 395 396 /* 397 * struct { 398 * struct perf_event_header header; 399 * u64 time; 400 * u64 id; 401 * u64 stream_id; 402 * }; 403 */ 404 PERF_RECORD_THROTTLE = 5, 405 PERF_RECORD_UNTHROTTLE = 6, 406 407 /* 408 * struct { 409 * struct perf_event_header header; 410 * u32 pid, ppid; 411 * u32 tid, ptid; 412 * u64 time; 413 * }; 414 */ 415 PERF_RECORD_FORK = 7, 416 417 /* 418 * struct { 419 * struct perf_event_header header; 420 * u32 pid, tid; 421 * 422 * struct read_format values; 423 * }; 424 */ 425 PERF_RECORD_READ = 8, 426 427 /* 428 * struct { 429 * struct perf_event_header header; 430 * 431 * { u64 ip; } && PERF_SAMPLE_IP 432 * { u32 pid, tid; } && PERF_SAMPLE_TID 433 * { u64 time; } && PERF_SAMPLE_TIME 434 * { u64 addr; } && PERF_SAMPLE_ADDR 435 * { u64 id; } && PERF_SAMPLE_ID 436 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 437 * { u32 cpu, res; } && PERF_SAMPLE_CPU 438 * { u64 period; } && PERF_SAMPLE_PERIOD 439 * 440 * { struct read_format values; } && PERF_SAMPLE_READ 441 * 442 * { u64 nr, 443 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 444 * 445 * # 446 * # The RAW record below is opaque data wrt the ABI 447 * # 448 * # That is, the ABI doesn't make any promises wrt to 449 * # the stability of its content, it may vary depending 450 * # on event, hardware, kernel version and phase of 451 * # the moon. 452 * # 453 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 454 * # 455 * 456 * { u32 size; 457 * char data[size];}&& PERF_SAMPLE_RAW 458 * }; 459 */ 460 PERF_RECORD_SAMPLE = 9, 461 462 PERF_RECORD_MAX, /* non-ABI */ 463}; 464 465enum perf_callchain_context { 466 PERF_CONTEXT_HV = (__u64)-32, 467 PERF_CONTEXT_KERNEL = (__u64)-128, 468 PERF_CONTEXT_USER = (__u64)-512, 469 470 PERF_CONTEXT_GUEST = (__u64)-2048, 471 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 472 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 473 474 PERF_CONTEXT_MAX = (__u64)-4095, 475}; 476 477#define PERF_FLAG_FD_NO_GROUP (1U << 0) 478#define PERF_FLAG_FD_OUTPUT (1U << 1) 479#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */ 480 481#ifdef __KERNEL__ 482/* 483 * Kernel-internal data types and definitions: 484 */ 485 486#ifdef CONFIG_PERF_EVENTS 487# include <linux/cgroup.h> 488# include <asm/perf_event.h> 489# include <asm/local64.h> 490#endif 491 492struct perf_guest_info_callbacks { 493 int (*is_in_guest)(void); 494 int (*is_user_mode)(void); 495 unsigned long (*get_guest_ip)(void); 496}; 497 498#ifdef CONFIG_HAVE_HW_BREAKPOINT 499#include <asm/hw_breakpoint.h> 500#endif 501 502#include <linux/list.h> 503#include <linux/mutex.h> 504#include <linux/rculist.h> 505#include <linux/rcupdate.h> 506#include <linux/spinlock.h> 507#include <linux/hrtimer.h> 508#include <linux/fs.h> 509#include <linux/pid_namespace.h> 510#include <linux/workqueue.h> 511#include <linux/ftrace.h> 512#include <linux/cpu.h> 513#include <linux/irq_work.h> 514#include <linux/jump_label.h> 515#include <linux/atomic.h> 516#include <asm/local.h> 517 518#define PERF_MAX_STACK_DEPTH 255 519 520struct perf_callchain_entry { 521 __u64 nr; 522 __u64 ip[PERF_MAX_STACK_DEPTH]; 523}; 524 525struct perf_raw_record { 526 u32 size; 527 void *data; 528}; 529 530struct perf_branch_entry { 531 __u64 from; 532 __u64 to; 533 __u64 flags; 534}; 535 536struct perf_branch_stack { 537 __u64 nr; 538 struct perf_branch_entry entries[0]; 539}; 540 541struct task_struct; 542 543/* 544 * extra PMU register associated with an event 545 */ 546struct hw_perf_event_extra { 547 u64 config; /* register value */ 548 unsigned int reg; /* register address or index */ 549 int alloc; /* extra register already allocated */ 550 int idx; /* index in shared_regs->regs[] */ 551}; 552 553/** 554 * struct hw_perf_event - performance event hardware details: 555 */ 556struct hw_perf_event { 557#ifdef CONFIG_PERF_EVENTS 558 union { 559 struct { /* hardware */ 560 u64 config; 561 u64 last_tag; 562 unsigned long config_base; 563 unsigned long event_base; 564 int idx; 565 int last_cpu; 566 struct hw_perf_event_extra extra_reg; 567 }; 568 struct { /* software */ 569 struct hrtimer hrtimer; 570 }; 571#ifdef CONFIG_HAVE_HW_BREAKPOINT 572 struct { /* breakpoint */ 573 struct arch_hw_breakpoint info; 574 struct list_head bp_list; 575 /* 576 * Crufty hack to avoid the chicken and egg 577 * problem hw_breakpoint has with context 578 * creation and event initalization. 579 */ 580 struct task_struct *bp_target; 581 }; 582#endif 583 }; 584 int state; 585 local64_t prev_count; 586 u64 sample_period; 587 u64 last_period; 588 local64_t period_left; 589 u64 interrupts; 590 591 u64 freq_time_stamp; 592 u64 freq_count_stamp; 593#endif 594}; 595 596/* 597 * hw_perf_event::state flags 598 */ 599#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 600#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 601#define PERF_HES_ARCH 0x04 602 603struct perf_event; 604 605/* 606 * Common implementation detail of pmu::{start,commit,cancel}_txn 607 */ 608#define PERF_EVENT_TXN 0x1 609 610/** 611 * struct pmu - generic performance monitoring unit 612 */ 613struct pmu { 614 struct list_head entry; 615 616 struct device *dev; 617 char *name; 618 int type; 619 620 int * __percpu pmu_disable_count; 621 struct perf_cpu_context * __percpu pmu_cpu_context; 622 int task_ctx_nr; 623 624 /* 625 * Fully disable/enable this PMU, can be used to protect from the PMI 626 * as well as for lazy/batch writing of the MSRs. 627 */ 628 void (*pmu_enable) (struct pmu *pmu); /* optional */ 629 void (*pmu_disable) (struct pmu *pmu); /* optional */ 630 631 /* 632 * Try and initialize the event for this PMU. 633 * Should return -ENOENT when the @event doesn't match this PMU. 634 */ 635 int (*event_init) (struct perf_event *event); 636 637#define PERF_EF_START 0x01 /* start the counter when adding */ 638#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 639#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 640 641 /* 642 * Adds/Removes a counter to/from the PMU, can be done inside 643 * a transaction, see the ->*_txn() methods. 644 */ 645 int (*add) (struct perf_event *event, int flags); 646 void (*del) (struct perf_event *event, int flags); 647 648 /* 649 * Starts/Stops a counter present on the PMU. The PMI handler 650 * should stop the counter when perf_event_overflow() returns 651 * !0. ->start() will be used to continue. 652 */ 653 void (*start) (struct perf_event *event, int flags); 654 void (*stop) (struct perf_event *event, int flags); 655 656 /* 657 * Updates the counter value of the event. 658 */ 659 void (*read) (struct perf_event *event); 660 661 /* 662 * Group events scheduling is treated as a transaction, add 663 * group events as a whole and perform one schedulability test. 664 * If the test fails, roll back the whole group 665 * 666 * Start the transaction, after this ->add() doesn't need to 667 * do schedulability tests. 668 */ 669 void (*start_txn) (struct pmu *pmu); /* optional */ 670 /* 671 * If ->start_txn() disabled the ->add() schedulability test 672 * then ->commit_txn() is required to perform one. On success 673 * the transaction is closed. On error the transaction is kept 674 * open until ->cancel_txn() is called. 675 */ 676 int (*commit_txn) (struct pmu *pmu); /* optional */ 677 /* 678 * Will cancel the transaction, assumes ->del() is called 679 * for each successful ->add() during the transaction. 680 */ 681 void (*cancel_txn) (struct pmu *pmu); /* optional */ 682}; 683 684/** 685 * enum perf_event_active_state - the states of a event 686 */ 687enum perf_event_active_state { 688 PERF_EVENT_STATE_ERROR = -2, 689 PERF_EVENT_STATE_OFF = -1, 690 PERF_EVENT_STATE_INACTIVE = 0, 691 PERF_EVENT_STATE_ACTIVE = 1, 692}; 693 694struct file; 695struct perf_sample_data; 696 697typedef void (*perf_overflow_handler_t)(struct perf_event *, 698 struct perf_sample_data *, 699 struct pt_regs *regs); 700 701enum perf_group_flag { 702 PERF_GROUP_SOFTWARE = 0x1, 703}; 704 705#define SWEVENT_HLIST_BITS 8 706#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 707 708struct swevent_hlist { 709 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 710 struct rcu_head rcu_head; 711}; 712 713#define PERF_ATTACH_CONTEXT 0x01 714#define PERF_ATTACH_GROUP 0x02 715#define PERF_ATTACH_TASK 0x04 716 717#ifdef CONFIG_CGROUP_PERF 718/* 719 * perf_cgroup_info keeps track of time_enabled for a cgroup. 720 * This is a per-cpu dynamically allocated data structure. 721 */ 722struct perf_cgroup_info { 723 u64 time; 724 u64 timestamp; 725}; 726 727struct perf_cgroup { 728 struct cgroup_subsys_state css; 729 struct perf_cgroup_info *info; /* timing info, one per cpu */ 730}; 731#endif 732 733struct ring_buffer; 734 735/** 736 * struct perf_event - performance event kernel representation: 737 */ 738struct perf_event { 739#ifdef CONFIG_PERF_EVENTS 740 struct list_head group_entry; 741 struct list_head event_entry; 742 struct list_head sibling_list; 743 struct hlist_node hlist_entry; 744 int nr_siblings; 745 int group_flags; 746 struct perf_event *group_leader; 747 struct pmu *pmu; 748 749 enum perf_event_active_state state; 750 unsigned int attach_state; 751 local64_t count; 752 atomic64_t child_count; 753 754 /* 755 * These are the total time in nanoseconds that the event 756 * has been enabled (i.e. eligible to run, and the task has 757 * been scheduled in, if this is a per-task event) 758 * and running (scheduled onto the CPU), respectively. 759 * 760 * They are computed from tstamp_enabled, tstamp_running and 761 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 762 */ 763 u64 total_time_enabled; 764 u64 total_time_running; 765 766 /* 767 * These are timestamps used for computing total_time_enabled 768 * and total_time_running when the event is in INACTIVE or 769 * ACTIVE state, measured in nanoseconds from an arbitrary point 770 * in time. 771 * tstamp_enabled: the notional time when the event was enabled 772 * tstamp_running: the notional time when the event was scheduled on 773 * tstamp_stopped: in INACTIVE state, the notional time when the 774 * event was scheduled off. 775 */ 776 u64 tstamp_enabled; 777 u64 tstamp_running; 778 u64 tstamp_stopped; 779 780 /* 781 * timestamp shadows the actual context timing but it can 782 * be safely used in NMI interrupt context. It reflects the 783 * context time as it was when the event was last scheduled in. 784 * 785 * ctx_time already accounts for ctx->timestamp. Therefore to 786 * compute ctx_time for a sample, simply add perf_clock(). 787 */ 788 u64 shadow_ctx_time; 789 790 struct perf_event_attr attr; 791 u16 header_size; 792 u16 id_header_size; 793 u16 read_size; 794 struct hw_perf_event hw; 795 796 struct perf_event_context *ctx; 797 struct file *filp; 798 799 /* 800 * These accumulate total time (in nanoseconds) that children 801 * events have been enabled and running, respectively. 802 */ 803 atomic64_t child_total_time_enabled; 804 atomic64_t child_total_time_running; 805 806 /* 807 * Protect attach/detach and child_list: 808 */ 809 struct mutex child_mutex; 810 struct list_head child_list; 811 struct perf_event *parent; 812 813 int oncpu; 814 int cpu; 815 816 struct list_head owner_entry; 817 struct task_struct *owner; 818 819 /* mmap bits */ 820 struct mutex mmap_mutex; 821 atomic_t mmap_count; 822 int mmap_locked; 823 struct user_struct *mmap_user; 824 struct ring_buffer *rb; 825 struct list_head rb_entry; 826 827 /* poll related */ 828 wait_queue_head_t waitq; 829 struct fasync_struct *fasync; 830 831 /* delayed work for NMIs and such */ 832 int pending_wakeup; 833 int pending_kill; 834 int pending_disable; 835 struct irq_work pending; 836 837 atomic_t event_limit; 838 839 void (*destroy)(struct perf_event *); 840 struct rcu_head rcu_head; 841 842 struct pid_namespace *ns; 843 u64 id; 844 845 perf_overflow_handler_t overflow_handler; 846 void *overflow_handler_context; 847 848#ifdef CONFIG_EVENT_TRACING 849 struct ftrace_event_call *tp_event; 850 struct event_filter *filter; 851#endif 852 853#ifdef CONFIG_CGROUP_PERF 854 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 855 int cgrp_defer_enabled; 856#endif 857 858#endif /* CONFIG_PERF_EVENTS */ 859}; 860 861enum perf_event_context_type { 862 task_context, 863 cpu_context, 864}; 865 866/** 867 * struct perf_event_context - event context structure 868 * 869 * Used as a container for task events and CPU events as well: 870 */ 871struct perf_event_context { 872 struct pmu *pmu; 873 enum perf_event_context_type type; 874 /* 875 * Protect the states of the events in the list, 876 * nr_active, and the list: 877 */ 878 raw_spinlock_t lock; 879 /* 880 * Protect the list of events. Locking either mutex or lock 881 * is sufficient to ensure the list doesn't change; to change 882 * the list you need to lock both the mutex and the spinlock. 883 */ 884 struct mutex mutex; 885 886 struct list_head pinned_groups; 887 struct list_head flexible_groups; 888 struct list_head event_list; 889 int nr_events; 890 int nr_active; 891 int is_active; 892 int nr_stat; 893 int rotate_disable; 894 atomic_t refcount; 895 struct task_struct *task; 896 897 /* 898 * Context clock, runs when context enabled. 899 */ 900 u64 time; 901 u64 timestamp; 902 903 /* 904 * These fields let us detect when two contexts have both 905 * been cloned (inherited) from a common ancestor. 906 */ 907 struct perf_event_context *parent_ctx; 908 u64 parent_gen; 909 u64 generation; 910 int pin_count; 911 int nr_cgroups; /* cgroup events present */ 912 struct rcu_head rcu_head; 913}; 914 915/* 916 * Number of contexts where an event can trigger: 917 * task, softirq, hardirq, nmi. 918 */ 919#define PERF_NR_CONTEXTS 4 920 921/** 922 * struct perf_event_cpu_context - per cpu event context structure 923 */ 924struct perf_cpu_context { 925 struct perf_event_context ctx; 926 struct perf_event_context *task_ctx; 927 int active_oncpu; 928 int exclusive; 929 struct list_head rotation_list; 930 int jiffies_interval; 931 struct pmu *active_pmu; 932 struct perf_cgroup *cgrp; 933}; 934 935struct perf_output_handle { 936 struct perf_event *event; 937 struct ring_buffer *rb; 938 unsigned long wakeup; 939 unsigned long size; 940 void *addr; 941 int page; 942}; 943 944#ifdef CONFIG_PERF_EVENTS 945 946extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 947extern void perf_pmu_unregister(struct pmu *pmu); 948 949extern int perf_num_counters(void); 950extern const char *perf_pmu_name(void); 951extern void __perf_event_task_sched_in(struct task_struct *prev, 952 struct task_struct *task); 953extern void __perf_event_task_sched_out(struct task_struct *prev, 954 struct task_struct *next); 955extern int perf_event_init_task(struct task_struct *child); 956extern void perf_event_exit_task(struct task_struct *child); 957extern void perf_event_free_task(struct task_struct *task); 958extern void perf_event_delayed_put(struct task_struct *task); 959extern void perf_event_print_debug(void); 960extern void perf_pmu_disable(struct pmu *pmu); 961extern void perf_pmu_enable(struct pmu *pmu); 962extern int perf_event_task_disable(void); 963extern int perf_event_task_enable(void); 964extern int perf_event_refresh(struct perf_event *event, int refresh); 965extern void perf_event_update_userpage(struct perf_event *event); 966extern int perf_event_release_kernel(struct perf_event *event); 967extern struct perf_event * 968perf_event_create_kernel_counter(struct perf_event_attr *attr, 969 int cpu, 970 struct task_struct *task, 971 perf_overflow_handler_t callback, 972 void *context); 973extern u64 perf_event_read_value(struct perf_event *event, 974 u64 *enabled, u64 *running); 975 976struct perf_sample_data { 977 u64 type; 978 979 u64 ip; 980 struct { 981 u32 pid; 982 u32 tid; 983 } tid_entry; 984 u64 time; 985 u64 addr; 986 u64 id; 987 u64 stream_id; 988 struct { 989 u32 cpu; 990 u32 reserved; 991 } cpu_entry; 992 u64 period; 993 struct perf_callchain_entry *callchain; 994 struct perf_raw_record *raw; 995}; 996 997static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr) 998{ 999 data->addr = addr; 1000 data->raw = NULL; 1001} 1002 1003extern void perf_output_sample(struct perf_output_handle *handle, 1004 struct perf_event_header *header, 1005 struct perf_sample_data *data, 1006 struct perf_event *event); 1007extern void perf_prepare_sample(struct perf_event_header *header, 1008 struct perf_sample_data *data, 1009 struct perf_event *event, 1010 struct pt_regs *regs); 1011 1012extern int perf_event_overflow(struct perf_event *event, 1013 struct perf_sample_data *data, 1014 struct pt_regs *regs); 1015 1016static inline bool is_sampling_event(struct perf_event *event) 1017{ 1018 return event->attr.sample_period != 0; 1019} 1020 1021/* 1022 * Return 1 for a software event, 0 for a hardware event 1023 */ 1024static inline int is_software_event(struct perf_event *event) 1025{ 1026 return event->pmu->task_ctx_nr == perf_sw_context; 1027} 1028 1029extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1030 1031extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1032 1033#ifndef perf_arch_fetch_caller_regs 1034static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1035#endif 1036 1037/* 1038 * Take a snapshot of the regs. Skip ip and frame pointer to 1039 * the nth caller. We only need a few of the regs: 1040 * - ip for PERF_SAMPLE_IP 1041 * - cs for user_mode() tests 1042 * - bp for callchains 1043 * - eflags, for future purposes, just in case 1044 */ 1045static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1046{ 1047 memset(regs, 0, sizeof(*regs)); 1048 1049 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1050} 1051 1052static __always_inline void 1053perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1054{ 1055 struct pt_regs hot_regs; 1056 1057 if (static_branch(&perf_swevent_enabled[event_id])) { 1058 if (!regs) { 1059 perf_fetch_caller_regs(&hot_regs); 1060 regs = &hot_regs; 1061 } 1062 __perf_sw_event(event_id, nr, regs, addr); 1063 } 1064} 1065 1066extern struct jump_label_key perf_sched_events; 1067 1068static inline void perf_event_task_sched_in(struct task_struct *prev, 1069 struct task_struct *task) 1070{ 1071 if (static_branch(&perf_sched_events)) 1072 __perf_event_task_sched_in(prev, task); 1073} 1074 1075static inline void perf_event_task_sched_out(struct task_struct *prev, 1076 struct task_struct *next) 1077{ 1078 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 1079 1080 if (static_branch(&perf_sched_events)) 1081 __perf_event_task_sched_out(prev, next); 1082} 1083 1084extern void perf_event_mmap(struct vm_area_struct *vma); 1085extern struct perf_guest_info_callbacks *perf_guest_cbs; 1086extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1087extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1088 1089extern void perf_event_comm(struct task_struct *tsk); 1090extern void perf_event_fork(struct task_struct *tsk); 1091 1092/* Callchains */ 1093DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1094 1095extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 1096extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 1097 1098static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1099{ 1100 if (entry->nr < PERF_MAX_STACK_DEPTH) 1101 entry->ip[entry->nr++] = ip; 1102} 1103 1104extern int sysctl_perf_event_paranoid; 1105extern int sysctl_perf_event_mlock; 1106extern int sysctl_perf_event_sample_rate; 1107 1108extern int perf_proc_update_handler(struct ctl_table *table, int write, 1109 void __user *buffer, size_t *lenp, 1110 loff_t *ppos); 1111 1112static inline bool perf_paranoid_tracepoint_raw(void) 1113{ 1114 return sysctl_perf_event_paranoid > -1; 1115} 1116 1117static inline bool perf_paranoid_cpu(void) 1118{ 1119 return sysctl_perf_event_paranoid > 0; 1120} 1121 1122static inline bool perf_paranoid_kernel(void) 1123{ 1124 return sysctl_perf_event_paranoid > 1; 1125} 1126 1127extern void perf_event_init(void); 1128extern void perf_tp_event(u64 addr, u64 count, void *record, 1129 int entry_size, struct pt_regs *regs, 1130 struct hlist_head *head, int rctx); 1131extern void perf_bp_event(struct perf_event *event, void *data); 1132 1133#ifndef perf_misc_flags 1134# define perf_misc_flags(regs) \ 1135 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1136# define perf_instruction_pointer(regs) instruction_pointer(regs) 1137#endif 1138 1139extern int perf_output_begin(struct perf_output_handle *handle, 1140 struct perf_event *event, unsigned int size); 1141extern void perf_output_end(struct perf_output_handle *handle); 1142extern void perf_output_copy(struct perf_output_handle *handle, 1143 const void *buf, unsigned int len); 1144extern int perf_swevent_get_recursion_context(void); 1145extern void perf_swevent_put_recursion_context(int rctx); 1146extern void perf_event_enable(struct perf_event *event); 1147extern void perf_event_disable(struct perf_event *event); 1148extern void perf_event_task_tick(void); 1149#else 1150static inline void 1151perf_event_task_sched_in(struct task_struct *prev, 1152 struct task_struct *task) { } 1153static inline void 1154perf_event_task_sched_out(struct task_struct *prev, 1155 struct task_struct *next) { } 1156static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1157static inline void perf_event_exit_task(struct task_struct *child) { } 1158static inline void perf_event_free_task(struct task_struct *task) { } 1159static inline void perf_event_delayed_put(struct task_struct *task) { } 1160static inline void perf_event_print_debug(void) { } 1161static inline int perf_event_task_disable(void) { return -EINVAL; } 1162static inline int perf_event_task_enable(void) { return -EINVAL; } 1163static inline int perf_event_refresh(struct perf_event *event, int refresh) 1164{ 1165 return -EINVAL; 1166} 1167 1168static inline void 1169perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1170static inline void 1171perf_bp_event(struct perf_event *event, void *data) { } 1172 1173static inline int perf_register_guest_info_callbacks 1174(struct perf_guest_info_callbacks *callbacks) { return 0; } 1175static inline int perf_unregister_guest_info_callbacks 1176(struct perf_guest_info_callbacks *callbacks) { return 0; } 1177 1178static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1179static inline void perf_event_comm(struct task_struct *tsk) { } 1180static inline void perf_event_fork(struct task_struct *tsk) { } 1181static inline void perf_event_init(void) { } 1182static inline int perf_swevent_get_recursion_context(void) { return -1; } 1183static inline void perf_swevent_put_recursion_context(int rctx) { } 1184static inline void perf_event_enable(struct perf_event *event) { } 1185static inline void perf_event_disable(struct perf_event *event) { } 1186static inline void perf_event_task_tick(void) { } 1187#endif 1188 1189#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1190 1191/* 1192 * This has to have a higher priority than migration_notifier in sched.c. 1193 */ 1194#define perf_cpu_notifier(fn) \ 1195do { \ 1196 static struct notifier_block fn##_nb __cpuinitdata = \ 1197 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1198 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1199 (void *)(unsigned long)smp_processor_id()); \ 1200 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1201 (void *)(unsigned long)smp_processor_id()); \ 1202 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1203 (void *)(unsigned long)smp_processor_id()); \ 1204 register_cpu_notifier(&fn##_nb); \ 1205} while (0) 1206 1207#endif /* __KERNEL__ */ 1208#endif /* _LINUX_PERF_EVENT_H */