at v3.2 37 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <generated/bounds.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42#define MIGRATE_RESERVE 3 43#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44#define MIGRATE_TYPES 5 45 46#define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50extern int page_group_by_mobility_disabled; 51 52static inline int get_pageblock_migratetype(struct page *page) 53{ 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55} 56 57struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60}; 61 62struct pglist_data; 63 64/* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70#if defined(CONFIG_SMP) 71struct zone_padding { 72 char x[0]; 73} ____cacheline_internodealigned_in_smp; 74#define ZONE_PADDING(name) struct zone_padding name; 75#else 76#define ZONE_PADDING(name) 77#endif 78 79enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 104 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 105 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 106 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 107 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 108 NR_DIRTIED, /* page dirtyings since bootup */ 109 NR_WRITTEN, /* page writings since bootup */ 110#ifdef CONFIG_NUMA 111 NUMA_HIT, /* allocated in intended node */ 112 NUMA_MISS, /* allocated in non intended node */ 113 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 114 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 115 NUMA_LOCAL, /* allocation from local node */ 116 NUMA_OTHER, /* allocation from other node */ 117#endif 118 NR_ANON_TRANSPARENT_HUGEPAGES, 119 NR_VM_ZONE_STAT_ITEMS }; 120 121/* 122 * We do arithmetic on the LRU lists in various places in the code, 123 * so it is important to keep the active lists LRU_ACTIVE higher in 124 * the array than the corresponding inactive lists, and to keep 125 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 126 * 127 * This has to be kept in sync with the statistics in zone_stat_item 128 * above and the descriptions in vmstat_text in mm/vmstat.c 129 */ 130#define LRU_BASE 0 131#define LRU_ACTIVE 1 132#define LRU_FILE 2 133 134enum lru_list { 135 LRU_INACTIVE_ANON = LRU_BASE, 136 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 137 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 138 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 139 LRU_UNEVICTABLE, 140 NR_LRU_LISTS 141}; 142 143#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 144 145#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 146 147static inline int is_file_lru(enum lru_list l) 148{ 149 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 150} 151 152static inline int is_active_lru(enum lru_list l) 153{ 154 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 155} 156 157static inline int is_unevictable_lru(enum lru_list l) 158{ 159 return (l == LRU_UNEVICTABLE); 160} 161 162/* Mask used at gathering information at once (see memcontrol.c) */ 163#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 164#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 165#define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON) 166#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 167 168/* Isolate inactive pages */ 169#define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1) 170/* Isolate active pages */ 171#define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2) 172/* Isolate clean file */ 173#define ISOLATE_CLEAN ((__force isolate_mode_t)0x4) 174/* Isolate unmapped file */ 175#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8) 176 177/* LRU Isolation modes. */ 178typedef unsigned __bitwise__ isolate_mode_t; 179 180enum zone_watermarks { 181 WMARK_MIN, 182 WMARK_LOW, 183 WMARK_HIGH, 184 NR_WMARK 185}; 186 187#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 188#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 189#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 190 191struct per_cpu_pages { 192 int count; /* number of pages in the list */ 193 int high; /* high watermark, emptying needed */ 194 int batch; /* chunk size for buddy add/remove */ 195 196 /* Lists of pages, one per migrate type stored on the pcp-lists */ 197 struct list_head lists[MIGRATE_PCPTYPES]; 198}; 199 200struct per_cpu_pageset { 201 struct per_cpu_pages pcp; 202#ifdef CONFIG_NUMA 203 s8 expire; 204#endif 205#ifdef CONFIG_SMP 206 s8 stat_threshold; 207 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 208#endif 209}; 210 211#endif /* !__GENERATING_BOUNDS.H */ 212 213enum zone_type { 214#ifdef CONFIG_ZONE_DMA 215 /* 216 * ZONE_DMA is used when there are devices that are not able 217 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 218 * carve out the portion of memory that is needed for these devices. 219 * The range is arch specific. 220 * 221 * Some examples 222 * 223 * Architecture Limit 224 * --------------------------- 225 * parisc, ia64, sparc <4G 226 * s390 <2G 227 * arm Various 228 * alpha Unlimited or 0-16MB. 229 * 230 * i386, x86_64 and multiple other arches 231 * <16M. 232 */ 233 ZONE_DMA, 234#endif 235#ifdef CONFIG_ZONE_DMA32 236 /* 237 * x86_64 needs two ZONE_DMAs because it supports devices that are 238 * only able to do DMA to the lower 16M but also 32 bit devices that 239 * can only do DMA areas below 4G. 240 */ 241 ZONE_DMA32, 242#endif 243 /* 244 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 245 * performed on pages in ZONE_NORMAL if the DMA devices support 246 * transfers to all addressable memory. 247 */ 248 ZONE_NORMAL, 249#ifdef CONFIG_HIGHMEM 250 /* 251 * A memory area that is only addressable by the kernel through 252 * mapping portions into its own address space. This is for example 253 * used by i386 to allow the kernel to address the memory beyond 254 * 900MB. The kernel will set up special mappings (page 255 * table entries on i386) for each page that the kernel needs to 256 * access. 257 */ 258 ZONE_HIGHMEM, 259#endif 260 ZONE_MOVABLE, 261 __MAX_NR_ZONES 262}; 263 264#ifndef __GENERATING_BOUNDS_H 265 266/* 267 * When a memory allocation must conform to specific limitations (such 268 * as being suitable for DMA) the caller will pass in hints to the 269 * allocator in the gfp_mask, in the zone modifier bits. These bits 270 * are used to select a priority ordered list of memory zones which 271 * match the requested limits. See gfp_zone() in include/linux/gfp.h 272 */ 273 274#if MAX_NR_ZONES < 2 275#define ZONES_SHIFT 0 276#elif MAX_NR_ZONES <= 2 277#define ZONES_SHIFT 1 278#elif MAX_NR_ZONES <= 4 279#define ZONES_SHIFT 2 280#else 281#error ZONES_SHIFT -- too many zones configured adjust calculation 282#endif 283 284struct zone_reclaim_stat { 285 /* 286 * The pageout code in vmscan.c keeps track of how many of the 287 * mem/swap backed and file backed pages are refeferenced. 288 * The higher the rotated/scanned ratio, the more valuable 289 * that cache is. 290 * 291 * The anon LRU stats live in [0], file LRU stats in [1] 292 */ 293 unsigned long recent_rotated[2]; 294 unsigned long recent_scanned[2]; 295}; 296 297struct zone { 298 /* Fields commonly accessed by the page allocator */ 299 300 /* zone watermarks, access with *_wmark_pages(zone) macros */ 301 unsigned long watermark[NR_WMARK]; 302 303 /* 304 * When free pages are below this point, additional steps are taken 305 * when reading the number of free pages to avoid per-cpu counter 306 * drift allowing watermarks to be breached 307 */ 308 unsigned long percpu_drift_mark; 309 310 /* 311 * We don't know if the memory that we're going to allocate will be freeable 312 * or/and it will be released eventually, so to avoid totally wasting several 313 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 314 * to run OOM on the lower zones despite there's tons of freeable ram 315 * on the higher zones). This array is recalculated at runtime if the 316 * sysctl_lowmem_reserve_ratio sysctl changes. 317 */ 318 unsigned long lowmem_reserve[MAX_NR_ZONES]; 319 320#ifdef CONFIG_NUMA 321 int node; 322 /* 323 * zone reclaim becomes active if more unmapped pages exist. 324 */ 325 unsigned long min_unmapped_pages; 326 unsigned long min_slab_pages; 327#endif 328 struct per_cpu_pageset __percpu *pageset; 329 /* 330 * free areas of different sizes 331 */ 332 spinlock_t lock; 333 int all_unreclaimable; /* All pages pinned */ 334#ifdef CONFIG_MEMORY_HOTPLUG 335 /* see spanned/present_pages for more description */ 336 seqlock_t span_seqlock; 337#endif 338 struct free_area free_area[MAX_ORDER]; 339 340#ifndef CONFIG_SPARSEMEM 341 /* 342 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 343 * In SPARSEMEM, this map is stored in struct mem_section 344 */ 345 unsigned long *pageblock_flags; 346#endif /* CONFIG_SPARSEMEM */ 347 348#ifdef CONFIG_COMPACTION 349 /* 350 * On compaction failure, 1<<compact_defer_shift compactions 351 * are skipped before trying again. The number attempted since 352 * last failure is tracked with compact_considered. 353 */ 354 unsigned int compact_considered; 355 unsigned int compact_defer_shift; 356#endif 357 358 ZONE_PADDING(_pad1_) 359 360 /* Fields commonly accessed by the page reclaim scanner */ 361 spinlock_t lru_lock; 362 struct zone_lru { 363 struct list_head list; 364 } lru[NR_LRU_LISTS]; 365 366 struct zone_reclaim_stat reclaim_stat; 367 368 unsigned long pages_scanned; /* since last reclaim */ 369 unsigned long flags; /* zone flags, see below */ 370 371 /* Zone statistics */ 372 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 373 374 /* 375 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 376 * this zone's LRU. Maintained by the pageout code. 377 */ 378 unsigned int inactive_ratio; 379 380 381 ZONE_PADDING(_pad2_) 382 /* Rarely used or read-mostly fields */ 383 384 /* 385 * wait_table -- the array holding the hash table 386 * wait_table_hash_nr_entries -- the size of the hash table array 387 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 388 * 389 * The purpose of all these is to keep track of the people 390 * waiting for a page to become available and make them 391 * runnable again when possible. The trouble is that this 392 * consumes a lot of space, especially when so few things 393 * wait on pages at a given time. So instead of using 394 * per-page waitqueues, we use a waitqueue hash table. 395 * 396 * The bucket discipline is to sleep on the same queue when 397 * colliding and wake all in that wait queue when removing. 398 * When something wakes, it must check to be sure its page is 399 * truly available, a la thundering herd. The cost of a 400 * collision is great, but given the expected load of the 401 * table, they should be so rare as to be outweighed by the 402 * benefits from the saved space. 403 * 404 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 405 * primary users of these fields, and in mm/page_alloc.c 406 * free_area_init_core() performs the initialization of them. 407 */ 408 wait_queue_head_t * wait_table; 409 unsigned long wait_table_hash_nr_entries; 410 unsigned long wait_table_bits; 411 412 /* 413 * Discontig memory support fields. 414 */ 415 struct pglist_data *zone_pgdat; 416 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 417 unsigned long zone_start_pfn; 418 419 /* 420 * zone_start_pfn, spanned_pages and present_pages are all 421 * protected by span_seqlock. It is a seqlock because it has 422 * to be read outside of zone->lock, and it is done in the main 423 * allocator path. But, it is written quite infrequently. 424 * 425 * The lock is declared along with zone->lock because it is 426 * frequently read in proximity to zone->lock. It's good to 427 * give them a chance of being in the same cacheline. 428 */ 429 unsigned long spanned_pages; /* total size, including holes */ 430 unsigned long present_pages; /* amount of memory (excluding holes) */ 431 432 /* 433 * rarely used fields: 434 */ 435 const char *name; 436} ____cacheline_internodealigned_in_smp; 437 438typedef enum { 439 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 440 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 441 ZONE_CONGESTED, /* zone has many dirty pages backed by 442 * a congested BDI 443 */ 444} zone_flags_t; 445 446static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 447{ 448 set_bit(flag, &zone->flags); 449} 450 451static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 452{ 453 return test_and_set_bit(flag, &zone->flags); 454} 455 456static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 457{ 458 clear_bit(flag, &zone->flags); 459} 460 461static inline int zone_is_reclaim_congested(const struct zone *zone) 462{ 463 return test_bit(ZONE_CONGESTED, &zone->flags); 464} 465 466static inline int zone_is_reclaim_locked(const struct zone *zone) 467{ 468 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 469} 470 471static inline int zone_is_oom_locked(const struct zone *zone) 472{ 473 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 474} 475 476/* 477 * The "priority" of VM scanning is how much of the queues we will scan in one 478 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 479 * queues ("queue_length >> 12") during an aging round. 480 */ 481#define DEF_PRIORITY 12 482 483/* Maximum number of zones on a zonelist */ 484#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 485 486#ifdef CONFIG_NUMA 487 488/* 489 * The NUMA zonelists are doubled because we need zonelists that restrict the 490 * allocations to a single node for GFP_THISNODE. 491 * 492 * [0] : Zonelist with fallback 493 * [1] : No fallback (GFP_THISNODE) 494 */ 495#define MAX_ZONELISTS 2 496 497 498/* 499 * We cache key information from each zonelist for smaller cache 500 * footprint when scanning for free pages in get_page_from_freelist(). 501 * 502 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 503 * up short of free memory since the last time (last_fullzone_zap) 504 * we zero'd fullzones. 505 * 2) The array z_to_n[] maps each zone in the zonelist to its node 506 * id, so that we can efficiently evaluate whether that node is 507 * set in the current tasks mems_allowed. 508 * 509 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 510 * indexed by a zones offset in the zonelist zones[] array. 511 * 512 * The get_page_from_freelist() routine does two scans. During the 513 * first scan, we skip zones whose corresponding bit in 'fullzones' 514 * is set or whose corresponding node in current->mems_allowed (which 515 * comes from cpusets) is not set. During the second scan, we bypass 516 * this zonelist_cache, to ensure we look methodically at each zone. 517 * 518 * Once per second, we zero out (zap) fullzones, forcing us to 519 * reconsider nodes that might have regained more free memory. 520 * The field last_full_zap is the time we last zapped fullzones. 521 * 522 * This mechanism reduces the amount of time we waste repeatedly 523 * reexaming zones for free memory when they just came up low on 524 * memory momentarilly ago. 525 * 526 * The zonelist_cache struct members logically belong in struct 527 * zonelist. However, the mempolicy zonelists constructed for 528 * MPOL_BIND are intentionally variable length (and usually much 529 * shorter). A general purpose mechanism for handling structs with 530 * multiple variable length members is more mechanism than we want 531 * here. We resort to some special case hackery instead. 532 * 533 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 534 * part because they are shorter), so we put the fixed length stuff 535 * at the front of the zonelist struct, ending in a variable length 536 * zones[], as is needed by MPOL_BIND. 537 * 538 * Then we put the optional zonelist cache on the end of the zonelist 539 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 540 * the fixed length portion at the front of the struct. This pointer 541 * both enables us to find the zonelist cache, and in the case of 542 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 543 * to know that the zonelist cache is not there. 544 * 545 * The end result is that struct zonelists come in two flavors: 546 * 1) The full, fixed length version, shown below, and 547 * 2) The custom zonelists for MPOL_BIND. 548 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 549 * 550 * Even though there may be multiple CPU cores on a node modifying 551 * fullzones or last_full_zap in the same zonelist_cache at the same 552 * time, we don't lock it. This is just hint data - if it is wrong now 553 * and then, the allocator will still function, perhaps a bit slower. 554 */ 555 556 557struct zonelist_cache { 558 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 559 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 560 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 561}; 562#else 563#define MAX_ZONELISTS 1 564struct zonelist_cache; 565#endif 566 567/* 568 * This struct contains information about a zone in a zonelist. It is stored 569 * here to avoid dereferences into large structures and lookups of tables 570 */ 571struct zoneref { 572 struct zone *zone; /* Pointer to actual zone */ 573 int zone_idx; /* zone_idx(zoneref->zone) */ 574}; 575 576/* 577 * One allocation request operates on a zonelist. A zonelist 578 * is a list of zones, the first one is the 'goal' of the 579 * allocation, the other zones are fallback zones, in decreasing 580 * priority. 581 * 582 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 583 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 584 * * 585 * To speed the reading of the zonelist, the zonerefs contain the zone index 586 * of the entry being read. Helper functions to access information given 587 * a struct zoneref are 588 * 589 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 590 * zonelist_zone_idx() - Return the index of the zone for an entry 591 * zonelist_node_idx() - Return the index of the node for an entry 592 */ 593struct zonelist { 594 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 595 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 596#ifdef CONFIG_NUMA 597 struct zonelist_cache zlcache; // optional ... 598#endif 599}; 600 601#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 602struct node_active_region { 603 unsigned long start_pfn; 604 unsigned long end_pfn; 605 int nid; 606}; 607#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 608 609#ifndef CONFIG_DISCONTIGMEM 610/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 611extern struct page *mem_map; 612#endif 613 614/* 615 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 616 * (mostly NUMA machines?) to denote a higher-level memory zone than the 617 * zone denotes. 618 * 619 * On NUMA machines, each NUMA node would have a pg_data_t to describe 620 * it's memory layout. 621 * 622 * Memory statistics and page replacement data structures are maintained on a 623 * per-zone basis. 624 */ 625struct bootmem_data; 626typedef struct pglist_data { 627 struct zone node_zones[MAX_NR_ZONES]; 628 struct zonelist node_zonelists[MAX_ZONELISTS]; 629 int nr_zones; 630#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 631 struct page *node_mem_map; 632#ifdef CONFIG_CGROUP_MEM_RES_CTLR 633 struct page_cgroup *node_page_cgroup; 634#endif 635#endif 636#ifndef CONFIG_NO_BOOTMEM 637 struct bootmem_data *bdata; 638#endif 639#ifdef CONFIG_MEMORY_HOTPLUG 640 /* 641 * Must be held any time you expect node_start_pfn, node_present_pages 642 * or node_spanned_pages stay constant. Holding this will also 643 * guarantee that any pfn_valid() stays that way. 644 * 645 * Nests above zone->lock and zone->size_seqlock. 646 */ 647 spinlock_t node_size_lock; 648#endif 649 unsigned long node_start_pfn; 650 unsigned long node_present_pages; /* total number of physical pages */ 651 unsigned long node_spanned_pages; /* total size of physical page 652 range, including holes */ 653 int node_id; 654 wait_queue_head_t kswapd_wait; 655 struct task_struct *kswapd; 656 int kswapd_max_order; 657 enum zone_type classzone_idx; 658} pg_data_t; 659 660#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 661#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 662#ifdef CONFIG_FLAT_NODE_MEM_MAP 663#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 664#else 665#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 666#endif 667#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 668 669#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 670 671#define node_end_pfn(nid) ({\ 672 pg_data_t *__pgdat = NODE_DATA(nid);\ 673 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\ 674}) 675 676#include <linux/memory_hotplug.h> 677 678extern struct mutex zonelists_mutex; 679void build_all_zonelists(void *data); 680void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 681bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 682 int classzone_idx, int alloc_flags); 683bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 684 int classzone_idx, int alloc_flags); 685enum memmap_context { 686 MEMMAP_EARLY, 687 MEMMAP_HOTPLUG, 688}; 689extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 690 unsigned long size, 691 enum memmap_context context); 692 693#ifdef CONFIG_HAVE_MEMORY_PRESENT 694void memory_present(int nid, unsigned long start, unsigned long end); 695#else 696static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 697#endif 698 699#ifdef CONFIG_HAVE_MEMORYLESS_NODES 700int local_memory_node(int node_id); 701#else 702static inline int local_memory_node(int node_id) { return node_id; }; 703#endif 704 705#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 706unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 707#endif 708 709/* 710 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 711 */ 712#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 713 714static inline int populated_zone(struct zone *zone) 715{ 716 return (!!zone->present_pages); 717} 718 719extern int movable_zone; 720 721static inline int zone_movable_is_highmem(void) 722{ 723#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 724 return movable_zone == ZONE_HIGHMEM; 725#else 726 return 0; 727#endif 728} 729 730static inline int is_highmem_idx(enum zone_type idx) 731{ 732#ifdef CONFIG_HIGHMEM 733 return (idx == ZONE_HIGHMEM || 734 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 735#else 736 return 0; 737#endif 738} 739 740static inline int is_normal_idx(enum zone_type idx) 741{ 742 return (idx == ZONE_NORMAL); 743} 744 745/** 746 * is_highmem - helper function to quickly check if a struct zone is a 747 * highmem zone or not. This is an attempt to keep references 748 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 749 * @zone - pointer to struct zone variable 750 */ 751static inline int is_highmem(struct zone *zone) 752{ 753#ifdef CONFIG_HIGHMEM 754 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 755 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 756 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 757 zone_movable_is_highmem()); 758#else 759 return 0; 760#endif 761} 762 763static inline int is_normal(struct zone *zone) 764{ 765 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 766} 767 768static inline int is_dma32(struct zone *zone) 769{ 770#ifdef CONFIG_ZONE_DMA32 771 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 772#else 773 return 0; 774#endif 775} 776 777static inline int is_dma(struct zone *zone) 778{ 779#ifdef CONFIG_ZONE_DMA 780 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 781#else 782 return 0; 783#endif 784} 785 786/* These two functions are used to setup the per zone pages min values */ 787struct ctl_table; 788int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 789 void __user *, size_t *, loff_t *); 790extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 791int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 792 void __user *, size_t *, loff_t *); 793int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 794 void __user *, size_t *, loff_t *); 795int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 796 void __user *, size_t *, loff_t *); 797int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 798 void __user *, size_t *, loff_t *); 799 800extern int numa_zonelist_order_handler(struct ctl_table *, int, 801 void __user *, size_t *, loff_t *); 802extern char numa_zonelist_order[]; 803#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 804 805#ifndef CONFIG_NEED_MULTIPLE_NODES 806 807extern struct pglist_data contig_page_data; 808#define NODE_DATA(nid) (&contig_page_data) 809#define NODE_MEM_MAP(nid) mem_map 810 811#else /* CONFIG_NEED_MULTIPLE_NODES */ 812 813#include <asm/mmzone.h> 814 815#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 816 817extern struct pglist_data *first_online_pgdat(void); 818extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 819extern struct zone *next_zone(struct zone *zone); 820 821/** 822 * for_each_online_pgdat - helper macro to iterate over all online nodes 823 * @pgdat - pointer to a pg_data_t variable 824 */ 825#define for_each_online_pgdat(pgdat) \ 826 for (pgdat = first_online_pgdat(); \ 827 pgdat; \ 828 pgdat = next_online_pgdat(pgdat)) 829/** 830 * for_each_zone - helper macro to iterate over all memory zones 831 * @zone - pointer to struct zone variable 832 * 833 * The user only needs to declare the zone variable, for_each_zone 834 * fills it in. 835 */ 836#define for_each_zone(zone) \ 837 for (zone = (first_online_pgdat())->node_zones; \ 838 zone; \ 839 zone = next_zone(zone)) 840 841#define for_each_populated_zone(zone) \ 842 for (zone = (first_online_pgdat())->node_zones; \ 843 zone; \ 844 zone = next_zone(zone)) \ 845 if (!populated_zone(zone)) \ 846 ; /* do nothing */ \ 847 else 848 849static inline struct zone *zonelist_zone(struct zoneref *zoneref) 850{ 851 return zoneref->zone; 852} 853 854static inline int zonelist_zone_idx(struct zoneref *zoneref) 855{ 856 return zoneref->zone_idx; 857} 858 859static inline int zonelist_node_idx(struct zoneref *zoneref) 860{ 861#ifdef CONFIG_NUMA 862 /* zone_to_nid not available in this context */ 863 return zoneref->zone->node; 864#else 865 return 0; 866#endif /* CONFIG_NUMA */ 867} 868 869/** 870 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 871 * @z - The cursor used as a starting point for the search 872 * @highest_zoneidx - The zone index of the highest zone to return 873 * @nodes - An optional nodemask to filter the zonelist with 874 * @zone - The first suitable zone found is returned via this parameter 875 * 876 * This function returns the next zone at or below a given zone index that is 877 * within the allowed nodemask using a cursor as the starting point for the 878 * search. The zoneref returned is a cursor that represents the current zone 879 * being examined. It should be advanced by one before calling 880 * next_zones_zonelist again. 881 */ 882struct zoneref *next_zones_zonelist(struct zoneref *z, 883 enum zone_type highest_zoneidx, 884 nodemask_t *nodes, 885 struct zone **zone); 886 887/** 888 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 889 * @zonelist - The zonelist to search for a suitable zone 890 * @highest_zoneidx - The zone index of the highest zone to return 891 * @nodes - An optional nodemask to filter the zonelist with 892 * @zone - The first suitable zone found is returned via this parameter 893 * 894 * This function returns the first zone at or below a given zone index that is 895 * within the allowed nodemask. The zoneref returned is a cursor that can be 896 * used to iterate the zonelist with next_zones_zonelist by advancing it by 897 * one before calling. 898 */ 899static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 900 enum zone_type highest_zoneidx, 901 nodemask_t *nodes, 902 struct zone **zone) 903{ 904 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 905 zone); 906} 907 908/** 909 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 910 * @zone - The current zone in the iterator 911 * @z - The current pointer within zonelist->zones being iterated 912 * @zlist - The zonelist being iterated 913 * @highidx - The zone index of the highest zone to return 914 * @nodemask - Nodemask allowed by the allocator 915 * 916 * This iterator iterates though all zones at or below a given zone index and 917 * within a given nodemask 918 */ 919#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 920 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 921 zone; \ 922 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 923 924/** 925 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 926 * @zone - The current zone in the iterator 927 * @z - The current pointer within zonelist->zones being iterated 928 * @zlist - The zonelist being iterated 929 * @highidx - The zone index of the highest zone to return 930 * 931 * This iterator iterates though all zones at or below a given zone index. 932 */ 933#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 934 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 935 936#ifdef CONFIG_SPARSEMEM 937#include <asm/sparsemem.h> 938#endif 939 940#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 941 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 942static inline unsigned long early_pfn_to_nid(unsigned long pfn) 943{ 944 return 0; 945} 946#endif 947 948#ifdef CONFIG_FLATMEM 949#define pfn_to_nid(pfn) (0) 950#endif 951 952#ifdef CONFIG_SPARSEMEM 953 954/* 955 * SECTION_SHIFT #bits space required to store a section # 956 * 957 * PA_SECTION_SHIFT physical address to/from section number 958 * PFN_SECTION_SHIFT pfn to/from section number 959 */ 960#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 961 962#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 963#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 964 965#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 966 967#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 968#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 969 970#define SECTION_BLOCKFLAGS_BITS \ 971 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 972 973#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 974#error Allocator MAX_ORDER exceeds SECTION_SIZE 975#endif 976 977#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 978#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 979 980#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 981#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 982 983struct page; 984struct page_cgroup; 985struct mem_section { 986 /* 987 * This is, logically, a pointer to an array of struct 988 * pages. However, it is stored with some other magic. 989 * (see sparse.c::sparse_init_one_section()) 990 * 991 * Additionally during early boot we encode node id of 992 * the location of the section here to guide allocation. 993 * (see sparse.c::memory_present()) 994 * 995 * Making it a UL at least makes someone do a cast 996 * before using it wrong. 997 */ 998 unsigned long section_mem_map; 999 1000 /* See declaration of similar field in struct zone */ 1001 unsigned long *pageblock_flags; 1002#ifdef CONFIG_CGROUP_MEM_RES_CTLR 1003 /* 1004 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1005 * section. (see memcontrol.h/page_cgroup.h about this.) 1006 */ 1007 struct page_cgroup *page_cgroup; 1008 unsigned long pad; 1009#endif 1010}; 1011 1012#ifdef CONFIG_SPARSEMEM_EXTREME 1013#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1014#else 1015#define SECTIONS_PER_ROOT 1 1016#endif 1017 1018#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1019#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1020#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1021 1022#ifdef CONFIG_SPARSEMEM_EXTREME 1023extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1024#else 1025extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1026#endif 1027 1028static inline struct mem_section *__nr_to_section(unsigned long nr) 1029{ 1030 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1031 return NULL; 1032 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1033} 1034extern int __section_nr(struct mem_section* ms); 1035extern unsigned long usemap_size(void); 1036 1037/* 1038 * We use the lower bits of the mem_map pointer to store 1039 * a little bit of information. There should be at least 1040 * 3 bits here due to 32-bit alignment. 1041 */ 1042#define SECTION_MARKED_PRESENT (1UL<<0) 1043#define SECTION_HAS_MEM_MAP (1UL<<1) 1044#define SECTION_MAP_LAST_BIT (1UL<<2) 1045#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1046#define SECTION_NID_SHIFT 2 1047 1048static inline struct page *__section_mem_map_addr(struct mem_section *section) 1049{ 1050 unsigned long map = section->section_mem_map; 1051 map &= SECTION_MAP_MASK; 1052 return (struct page *)map; 1053} 1054 1055static inline int present_section(struct mem_section *section) 1056{ 1057 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1058} 1059 1060static inline int present_section_nr(unsigned long nr) 1061{ 1062 return present_section(__nr_to_section(nr)); 1063} 1064 1065static inline int valid_section(struct mem_section *section) 1066{ 1067 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1068} 1069 1070static inline int valid_section_nr(unsigned long nr) 1071{ 1072 return valid_section(__nr_to_section(nr)); 1073} 1074 1075static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1076{ 1077 return __nr_to_section(pfn_to_section_nr(pfn)); 1078} 1079 1080#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1081static inline int pfn_valid(unsigned long pfn) 1082{ 1083 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1084 return 0; 1085 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1086} 1087#endif 1088 1089static inline int pfn_present(unsigned long pfn) 1090{ 1091 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1092 return 0; 1093 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1094} 1095 1096/* 1097 * These are _only_ used during initialisation, therefore they 1098 * can use __initdata ... They could have names to indicate 1099 * this restriction. 1100 */ 1101#ifdef CONFIG_NUMA 1102#define pfn_to_nid(pfn) \ 1103({ \ 1104 unsigned long __pfn_to_nid_pfn = (pfn); \ 1105 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1106}) 1107#else 1108#define pfn_to_nid(pfn) (0) 1109#endif 1110 1111#define early_pfn_valid(pfn) pfn_valid(pfn) 1112void sparse_init(void); 1113#else 1114#define sparse_init() do {} while (0) 1115#define sparse_index_init(_sec, _nid) do {} while (0) 1116#endif /* CONFIG_SPARSEMEM */ 1117 1118#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1119bool early_pfn_in_nid(unsigned long pfn, int nid); 1120#else 1121#define early_pfn_in_nid(pfn, nid) (1) 1122#endif 1123 1124#ifndef early_pfn_valid 1125#define early_pfn_valid(pfn) (1) 1126#endif 1127 1128void memory_present(int nid, unsigned long start, unsigned long end); 1129unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1130 1131/* 1132 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1133 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1134 * pfn_valid_within() should be used in this case; we optimise this away 1135 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1136 */ 1137#ifdef CONFIG_HOLES_IN_ZONE 1138#define pfn_valid_within(pfn) pfn_valid(pfn) 1139#else 1140#define pfn_valid_within(pfn) (1) 1141#endif 1142 1143#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1144/* 1145 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1146 * associated with it or not. In FLATMEM, it is expected that holes always 1147 * have valid memmap as long as there is valid PFNs either side of the hole. 1148 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1149 * entire section. 1150 * 1151 * However, an ARM, and maybe other embedded architectures in the future 1152 * free memmap backing holes to save memory on the assumption the memmap is 1153 * never used. The page_zone linkages are then broken even though pfn_valid() 1154 * returns true. A walker of the full memmap must then do this additional 1155 * check to ensure the memmap they are looking at is sane by making sure 1156 * the zone and PFN linkages are still valid. This is expensive, but walkers 1157 * of the full memmap are extremely rare. 1158 */ 1159int memmap_valid_within(unsigned long pfn, 1160 struct page *page, struct zone *zone); 1161#else 1162static inline int memmap_valid_within(unsigned long pfn, 1163 struct page *page, struct zone *zone) 1164{ 1165 return 1; 1166} 1167#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1168 1169#endif /* !__GENERATING_BOUNDS.H */ 1170#endif /* !__ASSEMBLY__ */ 1171#endif /* _LINUX_MMZONE_H */