at v3.2 56 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/prio_tree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/bit_spinlock.h> 19#include <linux/shrinker.h> 20 21struct mempolicy; 22struct anon_vma; 23struct file_ra_state; 24struct user_struct; 25struct writeback_control; 26 27#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 28extern unsigned long max_mapnr; 29#endif 30 31extern unsigned long num_physpages; 32extern unsigned long totalram_pages; 33extern void * high_memory; 34extern int page_cluster; 35 36#ifdef CONFIG_SYSCTL 37extern int sysctl_legacy_va_layout; 38#else 39#define sysctl_legacy_va_layout 0 40#endif 41 42#include <asm/page.h> 43#include <asm/pgtable.h> 44#include <asm/processor.h> 45 46#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 47 48/* to align the pointer to the (next) page boundary */ 49#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 50 51/* 52 * Linux kernel virtual memory manager primitives. 53 * The idea being to have a "virtual" mm in the same way 54 * we have a virtual fs - giving a cleaner interface to the 55 * mm details, and allowing different kinds of memory mappings 56 * (from shared memory to executable loading to arbitrary 57 * mmap() functions). 58 */ 59 60extern struct kmem_cache *vm_area_cachep; 61 62#ifndef CONFIG_MMU 63extern struct rb_root nommu_region_tree; 64extern struct rw_semaphore nommu_region_sem; 65 66extern unsigned int kobjsize(const void *objp); 67#endif 68 69/* 70 * vm_flags in vm_area_struct, see mm_types.h. 71 */ 72#define VM_READ 0x00000001 /* currently active flags */ 73#define VM_WRITE 0x00000002 74#define VM_EXEC 0x00000004 75#define VM_SHARED 0x00000008 76 77/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 78#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 79#define VM_MAYWRITE 0x00000020 80#define VM_MAYEXEC 0x00000040 81#define VM_MAYSHARE 0x00000080 82 83#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 84#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 85#define VM_GROWSUP 0x00000200 86#else 87#define VM_GROWSUP 0x00000000 88#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 89#endif 90#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 91#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 92 93#define VM_EXECUTABLE 0x00001000 94#define VM_LOCKED 0x00002000 95#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 96 97 /* Used by sys_madvise() */ 98#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 99#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 100 101#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 102#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 103#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 104#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 105#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 106#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 107#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 108#ifndef CONFIG_TRANSPARENT_HUGEPAGE 109#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 110#else 111#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 112#endif 113#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 114#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 115 116#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 117#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 118#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 119#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 120#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 121 122/* Bits set in the VMA until the stack is in its final location */ 123#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 124 125#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 126#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 127#endif 128 129#ifdef CONFIG_STACK_GROWSUP 130#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 131#else 132#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 133#endif 134 135#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 136#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 137#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 138#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 139#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 140 141/* 142 * Special vmas that are non-mergable, non-mlock()able. 143 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 144 */ 145#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 146 147/* 148 * mapping from the currently active vm_flags protection bits (the 149 * low four bits) to a page protection mask.. 150 */ 151extern pgprot_t protection_map[16]; 152 153#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 154#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 155#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 156#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 157#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 158#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 159 160/* 161 * This interface is used by x86 PAT code to identify a pfn mapping that is 162 * linear over entire vma. This is to optimize PAT code that deals with 163 * marking the physical region with a particular prot. This is not for generic 164 * mm use. Note also that this check will not work if the pfn mapping is 165 * linear for a vma starting at physical address 0. In which case PAT code 166 * falls back to slow path of reserving physical range page by page. 167 */ 168static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 169{ 170 return !!(vma->vm_flags & VM_PFN_AT_MMAP); 171} 172 173static inline int is_pfn_mapping(struct vm_area_struct *vma) 174{ 175 return !!(vma->vm_flags & VM_PFNMAP); 176} 177 178/* 179 * vm_fault is filled by the the pagefault handler and passed to the vma's 180 * ->fault function. The vma's ->fault is responsible for returning a bitmask 181 * of VM_FAULT_xxx flags that give details about how the fault was handled. 182 * 183 * pgoff should be used in favour of virtual_address, if possible. If pgoff 184 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 185 * mapping support. 186 */ 187struct vm_fault { 188 unsigned int flags; /* FAULT_FLAG_xxx flags */ 189 pgoff_t pgoff; /* Logical page offset based on vma */ 190 void __user *virtual_address; /* Faulting virtual address */ 191 192 struct page *page; /* ->fault handlers should return a 193 * page here, unless VM_FAULT_NOPAGE 194 * is set (which is also implied by 195 * VM_FAULT_ERROR). 196 */ 197}; 198 199/* 200 * These are the virtual MM functions - opening of an area, closing and 201 * unmapping it (needed to keep files on disk up-to-date etc), pointer 202 * to the functions called when a no-page or a wp-page exception occurs. 203 */ 204struct vm_operations_struct { 205 void (*open)(struct vm_area_struct * area); 206 void (*close)(struct vm_area_struct * area); 207 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 208 209 /* notification that a previously read-only page is about to become 210 * writable, if an error is returned it will cause a SIGBUS */ 211 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 212 213 /* called by access_process_vm when get_user_pages() fails, typically 214 * for use by special VMAs that can switch between memory and hardware 215 */ 216 int (*access)(struct vm_area_struct *vma, unsigned long addr, 217 void *buf, int len, int write); 218#ifdef CONFIG_NUMA 219 /* 220 * set_policy() op must add a reference to any non-NULL @new mempolicy 221 * to hold the policy upon return. Caller should pass NULL @new to 222 * remove a policy and fall back to surrounding context--i.e. do not 223 * install a MPOL_DEFAULT policy, nor the task or system default 224 * mempolicy. 225 */ 226 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 227 228 /* 229 * get_policy() op must add reference [mpol_get()] to any policy at 230 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 231 * in mm/mempolicy.c will do this automatically. 232 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 233 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 234 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 235 * must return NULL--i.e., do not "fallback" to task or system default 236 * policy. 237 */ 238 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 239 unsigned long addr); 240 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 241 const nodemask_t *to, unsigned long flags); 242#endif 243}; 244 245struct mmu_gather; 246struct inode; 247 248#define page_private(page) ((page)->private) 249#define set_page_private(page, v) ((page)->private = (v)) 250 251/* 252 * FIXME: take this include out, include page-flags.h in 253 * files which need it (119 of them) 254 */ 255#include <linux/page-flags.h> 256#include <linux/huge_mm.h> 257 258/* 259 * Methods to modify the page usage count. 260 * 261 * What counts for a page usage: 262 * - cache mapping (page->mapping) 263 * - private data (page->private) 264 * - page mapped in a task's page tables, each mapping 265 * is counted separately 266 * 267 * Also, many kernel routines increase the page count before a critical 268 * routine so they can be sure the page doesn't go away from under them. 269 */ 270 271/* 272 * Drop a ref, return true if the refcount fell to zero (the page has no users) 273 */ 274static inline int put_page_testzero(struct page *page) 275{ 276 VM_BUG_ON(atomic_read(&page->_count) == 0); 277 return atomic_dec_and_test(&page->_count); 278} 279 280/* 281 * Try to grab a ref unless the page has a refcount of zero, return false if 282 * that is the case. 283 */ 284static inline int get_page_unless_zero(struct page *page) 285{ 286 return atomic_inc_not_zero(&page->_count); 287} 288 289extern int page_is_ram(unsigned long pfn); 290 291/* Support for virtually mapped pages */ 292struct page *vmalloc_to_page(const void *addr); 293unsigned long vmalloc_to_pfn(const void *addr); 294 295/* 296 * Determine if an address is within the vmalloc range 297 * 298 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 299 * is no special casing required. 300 */ 301static inline int is_vmalloc_addr(const void *x) 302{ 303#ifdef CONFIG_MMU 304 unsigned long addr = (unsigned long)x; 305 306 return addr >= VMALLOC_START && addr < VMALLOC_END; 307#else 308 return 0; 309#endif 310} 311#ifdef CONFIG_MMU 312extern int is_vmalloc_or_module_addr(const void *x); 313#else 314static inline int is_vmalloc_or_module_addr(const void *x) 315{ 316 return 0; 317} 318#endif 319 320static inline void compound_lock(struct page *page) 321{ 322#ifdef CONFIG_TRANSPARENT_HUGEPAGE 323 bit_spin_lock(PG_compound_lock, &page->flags); 324#endif 325} 326 327static inline void compound_unlock(struct page *page) 328{ 329#ifdef CONFIG_TRANSPARENT_HUGEPAGE 330 bit_spin_unlock(PG_compound_lock, &page->flags); 331#endif 332} 333 334static inline unsigned long compound_lock_irqsave(struct page *page) 335{ 336 unsigned long uninitialized_var(flags); 337#ifdef CONFIG_TRANSPARENT_HUGEPAGE 338 local_irq_save(flags); 339 compound_lock(page); 340#endif 341 return flags; 342} 343 344static inline void compound_unlock_irqrestore(struct page *page, 345 unsigned long flags) 346{ 347#ifdef CONFIG_TRANSPARENT_HUGEPAGE 348 compound_unlock(page); 349 local_irq_restore(flags); 350#endif 351} 352 353static inline struct page *compound_head(struct page *page) 354{ 355 if (unlikely(PageTail(page))) 356 return page->first_page; 357 return page; 358} 359 360/* 361 * The atomic page->_mapcount, starts from -1: so that transitions 362 * both from it and to it can be tracked, using atomic_inc_and_test 363 * and atomic_add_negative(-1). 364 */ 365static inline void reset_page_mapcount(struct page *page) 366{ 367 atomic_set(&(page)->_mapcount, -1); 368} 369 370static inline int page_mapcount(struct page *page) 371{ 372 return atomic_read(&(page)->_mapcount) + 1; 373} 374 375static inline int page_count(struct page *page) 376{ 377 return atomic_read(&compound_head(page)->_count); 378} 379 380static inline void get_huge_page_tail(struct page *page) 381{ 382 /* 383 * __split_huge_page_refcount() cannot run 384 * from under us. 385 */ 386 VM_BUG_ON(page_mapcount(page) < 0); 387 VM_BUG_ON(atomic_read(&page->_count) != 0); 388 atomic_inc(&page->_mapcount); 389} 390 391extern bool __get_page_tail(struct page *page); 392 393static inline void get_page(struct page *page) 394{ 395 if (unlikely(PageTail(page))) 396 if (likely(__get_page_tail(page))) 397 return; 398 /* 399 * Getting a normal page or the head of a compound page 400 * requires to already have an elevated page->_count. 401 */ 402 VM_BUG_ON(atomic_read(&page->_count) <= 0); 403 atomic_inc(&page->_count); 404} 405 406static inline struct page *virt_to_head_page(const void *x) 407{ 408 struct page *page = virt_to_page(x); 409 return compound_head(page); 410} 411 412/* 413 * Setup the page count before being freed into the page allocator for 414 * the first time (boot or memory hotplug) 415 */ 416static inline void init_page_count(struct page *page) 417{ 418 atomic_set(&page->_count, 1); 419} 420 421/* 422 * PageBuddy() indicate that the page is free and in the buddy system 423 * (see mm/page_alloc.c). 424 * 425 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 426 * -2 so that an underflow of the page_mapcount() won't be mistaken 427 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 428 * efficiently by most CPU architectures. 429 */ 430#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 431 432static inline int PageBuddy(struct page *page) 433{ 434 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 435} 436 437static inline void __SetPageBuddy(struct page *page) 438{ 439 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 440 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 441} 442 443static inline void __ClearPageBuddy(struct page *page) 444{ 445 VM_BUG_ON(!PageBuddy(page)); 446 atomic_set(&page->_mapcount, -1); 447} 448 449void put_page(struct page *page); 450void put_pages_list(struct list_head *pages); 451 452void split_page(struct page *page, unsigned int order); 453int split_free_page(struct page *page); 454 455/* 456 * Compound pages have a destructor function. Provide a 457 * prototype for that function and accessor functions. 458 * These are _only_ valid on the head of a PG_compound page. 459 */ 460typedef void compound_page_dtor(struct page *); 461 462static inline void set_compound_page_dtor(struct page *page, 463 compound_page_dtor *dtor) 464{ 465 page[1].lru.next = (void *)dtor; 466} 467 468static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 469{ 470 return (compound_page_dtor *)page[1].lru.next; 471} 472 473static inline int compound_order(struct page *page) 474{ 475 if (!PageHead(page)) 476 return 0; 477 return (unsigned long)page[1].lru.prev; 478} 479 480static inline int compound_trans_order(struct page *page) 481{ 482 int order; 483 unsigned long flags; 484 485 if (!PageHead(page)) 486 return 0; 487 488 flags = compound_lock_irqsave(page); 489 order = compound_order(page); 490 compound_unlock_irqrestore(page, flags); 491 return order; 492} 493 494static inline void set_compound_order(struct page *page, unsigned long order) 495{ 496 page[1].lru.prev = (void *)order; 497} 498 499#ifdef CONFIG_MMU 500/* 501 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 502 * servicing faults for write access. In the normal case, do always want 503 * pte_mkwrite. But get_user_pages can cause write faults for mappings 504 * that do not have writing enabled, when used by access_process_vm. 505 */ 506static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 507{ 508 if (likely(vma->vm_flags & VM_WRITE)) 509 pte = pte_mkwrite(pte); 510 return pte; 511} 512#endif 513 514/* 515 * Multiple processes may "see" the same page. E.g. for untouched 516 * mappings of /dev/null, all processes see the same page full of 517 * zeroes, and text pages of executables and shared libraries have 518 * only one copy in memory, at most, normally. 519 * 520 * For the non-reserved pages, page_count(page) denotes a reference count. 521 * page_count() == 0 means the page is free. page->lru is then used for 522 * freelist management in the buddy allocator. 523 * page_count() > 0 means the page has been allocated. 524 * 525 * Pages are allocated by the slab allocator in order to provide memory 526 * to kmalloc and kmem_cache_alloc. In this case, the management of the 527 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 528 * unless a particular usage is carefully commented. (the responsibility of 529 * freeing the kmalloc memory is the caller's, of course). 530 * 531 * A page may be used by anyone else who does a __get_free_page(). 532 * In this case, page_count still tracks the references, and should only 533 * be used through the normal accessor functions. The top bits of page->flags 534 * and page->virtual store page management information, but all other fields 535 * are unused and could be used privately, carefully. The management of this 536 * page is the responsibility of the one who allocated it, and those who have 537 * subsequently been given references to it. 538 * 539 * The other pages (we may call them "pagecache pages") are completely 540 * managed by the Linux memory manager: I/O, buffers, swapping etc. 541 * The following discussion applies only to them. 542 * 543 * A pagecache page contains an opaque `private' member, which belongs to the 544 * page's address_space. Usually, this is the address of a circular list of 545 * the page's disk buffers. PG_private must be set to tell the VM to call 546 * into the filesystem to release these pages. 547 * 548 * A page may belong to an inode's memory mapping. In this case, page->mapping 549 * is the pointer to the inode, and page->index is the file offset of the page, 550 * in units of PAGE_CACHE_SIZE. 551 * 552 * If pagecache pages are not associated with an inode, they are said to be 553 * anonymous pages. These may become associated with the swapcache, and in that 554 * case PG_swapcache is set, and page->private is an offset into the swapcache. 555 * 556 * In either case (swapcache or inode backed), the pagecache itself holds one 557 * reference to the page. Setting PG_private should also increment the 558 * refcount. The each user mapping also has a reference to the page. 559 * 560 * The pagecache pages are stored in a per-mapping radix tree, which is 561 * rooted at mapping->page_tree, and indexed by offset. 562 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 563 * lists, we instead now tag pages as dirty/writeback in the radix tree. 564 * 565 * All pagecache pages may be subject to I/O: 566 * - inode pages may need to be read from disk, 567 * - inode pages which have been modified and are MAP_SHARED may need 568 * to be written back to the inode on disk, 569 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 570 * modified may need to be swapped out to swap space and (later) to be read 571 * back into memory. 572 */ 573 574/* 575 * The zone field is never updated after free_area_init_core() 576 * sets it, so none of the operations on it need to be atomic. 577 */ 578 579 580/* 581 * page->flags layout: 582 * 583 * There are three possibilities for how page->flags get 584 * laid out. The first is for the normal case, without 585 * sparsemem. The second is for sparsemem when there is 586 * plenty of space for node and section. The last is when 587 * we have run out of space and have to fall back to an 588 * alternate (slower) way of determining the node. 589 * 590 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 591 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 592 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 593 */ 594#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 595#define SECTIONS_WIDTH SECTIONS_SHIFT 596#else 597#define SECTIONS_WIDTH 0 598#endif 599 600#define ZONES_WIDTH ZONES_SHIFT 601 602#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 603#define NODES_WIDTH NODES_SHIFT 604#else 605#ifdef CONFIG_SPARSEMEM_VMEMMAP 606#error "Vmemmap: No space for nodes field in page flags" 607#endif 608#define NODES_WIDTH 0 609#endif 610 611/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 612#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 613#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 614#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 615 616/* 617 * We are going to use the flags for the page to node mapping if its in 618 * there. This includes the case where there is no node, so it is implicit. 619 */ 620#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 621#define NODE_NOT_IN_PAGE_FLAGS 622#endif 623 624/* 625 * Define the bit shifts to access each section. For non-existent 626 * sections we define the shift as 0; that plus a 0 mask ensures 627 * the compiler will optimise away reference to them. 628 */ 629#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 630#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 631#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 632 633/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 634#ifdef NODE_NOT_IN_PAGE_FLAGS 635#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 636#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 637 SECTIONS_PGOFF : ZONES_PGOFF) 638#else 639#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 640#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 641 NODES_PGOFF : ZONES_PGOFF) 642#endif 643 644#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 645 646#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 647#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 648#endif 649 650#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 651#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 652#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 653#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 654 655static inline enum zone_type page_zonenum(const struct page *page) 656{ 657 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 658} 659 660/* 661 * The identification function is only used by the buddy allocator for 662 * determining if two pages could be buddies. We are not really 663 * identifying a zone since we could be using a the section number 664 * id if we have not node id available in page flags. 665 * We guarantee only that it will return the same value for two 666 * combinable pages in a zone. 667 */ 668static inline int page_zone_id(struct page *page) 669{ 670 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 671} 672 673static inline int zone_to_nid(struct zone *zone) 674{ 675#ifdef CONFIG_NUMA 676 return zone->node; 677#else 678 return 0; 679#endif 680} 681 682#ifdef NODE_NOT_IN_PAGE_FLAGS 683extern int page_to_nid(const struct page *page); 684#else 685static inline int page_to_nid(const struct page *page) 686{ 687 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 688} 689#endif 690 691static inline struct zone *page_zone(const struct page *page) 692{ 693 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 694} 695 696#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 697static inline void set_page_section(struct page *page, unsigned long section) 698{ 699 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 700 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 701} 702 703static inline unsigned long page_to_section(const struct page *page) 704{ 705 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 706} 707#endif 708 709static inline void set_page_zone(struct page *page, enum zone_type zone) 710{ 711 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 712 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 713} 714 715static inline void set_page_node(struct page *page, unsigned long node) 716{ 717 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 718 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 719} 720 721static inline void set_page_links(struct page *page, enum zone_type zone, 722 unsigned long node, unsigned long pfn) 723{ 724 set_page_zone(page, zone); 725 set_page_node(page, node); 726#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 727 set_page_section(page, pfn_to_section_nr(pfn)); 728#endif 729} 730 731/* 732 * Some inline functions in vmstat.h depend on page_zone() 733 */ 734#include <linux/vmstat.h> 735 736static __always_inline void *lowmem_page_address(const struct page *page) 737{ 738 return __va(PFN_PHYS(page_to_pfn(page))); 739} 740 741#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 742#define HASHED_PAGE_VIRTUAL 743#endif 744 745#if defined(WANT_PAGE_VIRTUAL) 746#define page_address(page) ((page)->virtual) 747#define set_page_address(page, address) \ 748 do { \ 749 (page)->virtual = (address); \ 750 } while(0) 751#define page_address_init() do { } while(0) 752#endif 753 754#if defined(HASHED_PAGE_VIRTUAL) 755void *page_address(const struct page *page); 756void set_page_address(struct page *page, void *virtual); 757void page_address_init(void); 758#endif 759 760#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 761#define page_address(page) lowmem_page_address(page) 762#define set_page_address(page, address) do { } while(0) 763#define page_address_init() do { } while(0) 764#endif 765 766/* 767 * On an anonymous page mapped into a user virtual memory area, 768 * page->mapping points to its anon_vma, not to a struct address_space; 769 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 770 * 771 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 772 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 773 * and then page->mapping points, not to an anon_vma, but to a private 774 * structure which KSM associates with that merged page. See ksm.h. 775 * 776 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 777 * 778 * Please note that, confusingly, "page_mapping" refers to the inode 779 * address_space which maps the page from disk; whereas "page_mapped" 780 * refers to user virtual address space into which the page is mapped. 781 */ 782#define PAGE_MAPPING_ANON 1 783#define PAGE_MAPPING_KSM 2 784#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 785 786extern struct address_space swapper_space; 787static inline struct address_space *page_mapping(struct page *page) 788{ 789 struct address_space *mapping = page->mapping; 790 791 VM_BUG_ON(PageSlab(page)); 792 if (unlikely(PageSwapCache(page))) 793 mapping = &swapper_space; 794 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 795 mapping = NULL; 796 return mapping; 797} 798 799/* Neutral page->mapping pointer to address_space or anon_vma or other */ 800static inline void *page_rmapping(struct page *page) 801{ 802 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 803} 804 805static inline int PageAnon(struct page *page) 806{ 807 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 808} 809 810/* 811 * Return the pagecache index of the passed page. Regular pagecache pages 812 * use ->index whereas swapcache pages use ->private 813 */ 814static inline pgoff_t page_index(struct page *page) 815{ 816 if (unlikely(PageSwapCache(page))) 817 return page_private(page); 818 return page->index; 819} 820 821/* 822 * Return true if this page is mapped into pagetables. 823 */ 824static inline int page_mapped(struct page *page) 825{ 826 return atomic_read(&(page)->_mapcount) >= 0; 827} 828 829/* 830 * Different kinds of faults, as returned by handle_mm_fault(). 831 * Used to decide whether a process gets delivered SIGBUS or 832 * just gets major/minor fault counters bumped up. 833 */ 834 835#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 836 837#define VM_FAULT_OOM 0x0001 838#define VM_FAULT_SIGBUS 0x0002 839#define VM_FAULT_MAJOR 0x0004 840#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 841#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 842#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 843 844#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 845#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 846#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 847 848#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 849 850#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 851 VM_FAULT_HWPOISON_LARGE) 852 853/* Encode hstate index for a hwpoisoned large page */ 854#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 855#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 856 857/* 858 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 859 */ 860extern void pagefault_out_of_memory(void); 861 862#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 863 864/* 865 * Flags passed to show_mem() and show_free_areas() to suppress output in 866 * various contexts. 867 */ 868#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 869 870extern void show_free_areas(unsigned int flags); 871extern bool skip_free_areas_node(unsigned int flags, int nid); 872 873int shmem_lock(struct file *file, int lock, struct user_struct *user); 874struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 875int shmem_zero_setup(struct vm_area_struct *); 876 877extern int can_do_mlock(void); 878extern int user_shm_lock(size_t, struct user_struct *); 879extern void user_shm_unlock(size_t, struct user_struct *); 880 881/* 882 * Parameter block passed down to zap_pte_range in exceptional cases. 883 */ 884struct zap_details { 885 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 886 struct address_space *check_mapping; /* Check page->mapping if set */ 887 pgoff_t first_index; /* Lowest page->index to unmap */ 888 pgoff_t last_index; /* Highest page->index to unmap */ 889}; 890 891struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 892 pte_t pte); 893 894int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 895 unsigned long size); 896unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 897 unsigned long size, struct zap_details *); 898unsigned long unmap_vmas(struct mmu_gather *tlb, 899 struct vm_area_struct *start_vma, unsigned long start_addr, 900 unsigned long end_addr, unsigned long *nr_accounted, 901 struct zap_details *); 902 903/** 904 * mm_walk - callbacks for walk_page_range 905 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 906 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 907 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 908 * this handler is required to be able to handle 909 * pmd_trans_huge() pmds. They may simply choose to 910 * split_huge_page() instead of handling it explicitly. 911 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 912 * @pte_hole: if set, called for each hole at all levels 913 * @hugetlb_entry: if set, called for each hugetlb entry 914 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 915 * is used. 916 * 917 * (see walk_page_range for more details) 918 */ 919struct mm_walk { 920 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 921 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 922 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 923 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 924 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 925 int (*hugetlb_entry)(pte_t *, unsigned long, 926 unsigned long, unsigned long, struct mm_walk *); 927 struct mm_struct *mm; 928 void *private; 929}; 930 931int walk_page_range(unsigned long addr, unsigned long end, 932 struct mm_walk *walk); 933void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 934 unsigned long end, unsigned long floor, unsigned long ceiling); 935int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 936 struct vm_area_struct *vma); 937void unmap_mapping_range(struct address_space *mapping, 938 loff_t const holebegin, loff_t const holelen, int even_cows); 939int follow_pfn(struct vm_area_struct *vma, unsigned long address, 940 unsigned long *pfn); 941int follow_phys(struct vm_area_struct *vma, unsigned long address, 942 unsigned int flags, unsigned long *prot, resource_size_t *phys); 943int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 944 void *buf, int len, int write); 945 946static inline void unmap_shared_mapping_range(struct address_space *mapping, 947 loff_t const holebegin, loff_t const holelen) 948{ 949 unmap_mapping_range(mapping, holebegin, holelen, 0); 950} 951 952extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 953extern void truncate_setsize(struct inode *inode, loff_t newsize); 954extern int vmtruncate(struct inode *inode, loff_t offset); 955extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 956 957int truncate_inode_page(struct address_space *mapping, struct page *page); 958int generic_error_remove_page(struct address_space *mapping, struct page *page); 959 960int invalidate_inode_page(struct page *page); 961 962#ifdef CONFIG_MMU 963extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 964 unsigned long address, unsigned int flags); 965extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 966 unsigned long address, unsigned int fault_flags); 967#else 968static inline int handle_mm_fault(struct mm_struct *mm, 969 struct vm_area_struct *vma, unsigned long address, 970 unsigned int flags) 971{ 972 /* should never happen if there's no MMU */ 973 BUG(); 974 return VM_FAULT_SIGBUS; 975} 976static inline int fixup_user_fault(struct task_struct *tsk, 977 struct mm_struct *mm, unsigned long address, 978 unsigned int fault_flags) 979{ 980 /* should never happen if there's no MMU */ 981 BUG(); 982 return -EFAULT; 983} 984#endif 985 986extern int make_pages_present(unsigned long addr, unsigned long end); 987extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 988extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 989 void *buf, int len, int write); 990 991int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 992 unsigned long start, int len, unsigned int foll_flags, 993 struct page **pages, struct vm_area_struct **vmas, 994 int *nonblocking); 995int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 996 unsigned long start, int nr_pages, int write, int force, 997 struct page **pages, struct vm_area_struct **vmas); 998int get_user_pages_fast(unsigned long start, int nr_pages, int write, 999 struct page **pages); 1000struct page *get_dump_page(unsigned long addr); 1001 1002extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1003extern void do_invalidatepage(struct page *page, unsigned long offset); 1004 1005int __set_page_dirty_nobuffers(struct page *page); 1006int __set_page_dirty_no_writeback(struct page *page); 1007int redirty_page_for_writepage(struct writeback_control *wbc, 1008 struct page *page); 1009void account_page_dirtied(struct page *page, struct address_space *mapping); 1010void account_page_writeback(struct page *page); 1011int set_page_dirty(struct page *page); 1012int set_page_dirty_lock(struct page *page); 1013int clear_page_dirty_for_io(struct page *page); 1014 1015/* Is the vma a continuation of the stack vma above it? */ 1016static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1017{ 1018 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1019} 1020 1021static inline int stack_guard_page_start(struct vm_area_struct *vma, 1022 unsigned long addr) 1023{ 1024 return (vma->vm_flags & VM_GROWSDOWN) && 1025 (vma->vm_start == addr) && 1026 !vma_growsdown(vma->vm_prev, addr); 1027} 1028 1029/* Is the vma a continuation of the stack vma below it? */ 1030static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1031{ 1032 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1033} 1034 1035static inline int stack_guard_page_end(struct vm_area_struct *vma, 1036 unsigned long addr) 1037{ 1038 return (vma->vm_flags & VM_GROWSUP) && 1039 (vma->vm_end == addr) && 1040 !vma_growsup(vma->vm_next, addr); 1041} 1042 1043extern unsigned long move_page_tables(struct vm_area_struct *vma, 1044 unsigned long old_addr, struct vm_area_struct *new_vma, 1045 unsigned long new_addr, unsigned long len); 1046extern unsigned long do_mremap(unsigned long addr, 1047 unsigned long old_len, unsigned long new_len, 1048 unsigned long flags, unsigned long new_addr); 1049extern int mprotect_fixup(struct vm_area_struct *vma, 1050 struct vm_area_struct **pprev, unsigned long start, 1051 unsigned long end, unsigned long newflags); 1052 1053/* 1054 * doesn't attempt to fault and will return short. 1055 */ 1056int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1057 struct page **pages); 1058/* 1059 * per-process(per-mm_struct) statistics. 1060 */ 1061static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1062{ 1063 atomic_long_set(&mm->rss_stat.count[member], value); 1064} 1065 1066#if defined(SPLIT_RSS_COUNTING) 1067unsigned long get_mm_counter(struct mm_struct *mm, int member); 1068#else 1069static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1070{ 1071 return atomic_long_read(&mm->rss_stat.count[member]); 1072} 1073#endif 1074 1075static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1076{ 1077 atomic_long_add(value, &mm->rss_stat.count[member]); 1078} 1079 1080static inline void inc_mm_counter(struct mm_struct *mm, int member) 1081{ 1082 atomic_long_inc(&mm->rss_stat.count[member]); 1083} 1084 1085static inline void dec_mm_counter(struct mm_struct *mm, int member) 1086{ 1087 atomic_long_dec(&mm->rss_stat.count[member]); 1088} 1089 1090static inline unsigned long get_mm_rss(struct mm_struct *mm) 1091{ 1092 return get_mm_counter(mm, MM_FILEPAGES) + 1093 get_mm_counter(mm, MM_ANONPAGES); 1094} 1095 1096static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1097{ 1098 return max(mm->hiwater_rss, get_mm_rss(mm)); 1099} 1100 1101static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1102{ 1103 return max(mm->hiwater_vm, mm->total_vm); 1104} 1105 1106static inline void update_hiwater_rss(struct mm_struct *mm) 1107{ 1108 unsigned long _rss = get_mm_rss(mm); 1109 1110 if ((mm)->hiwater_rss < _rss) 1111 (mm)->hiwater_rss = _rss; 1112} 1113 1114static inline void update_hiwater_vm(struct mm_struct *mm) 1115{ 1116 if (mm->hiwater_vm < mm->total_vm) 1117 mm->hiwater_vm = mm->total_vm; 1118} 1119 1120static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1121 struct mm_struct *mm) 1122{ 1123 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1124 1125 if (*maxrss < hiwater_rss) 1126 *maxrss = hiwater_rss; 1127} 1128 1129#if defined(SPLIT_RSS_COUNTING) 1130void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); 1131#else 1132static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 1133{ 1134} 1135#endif 1136 1137int vma_wants_writenotify(struct vm_area_struct *vma); 1138 1139extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1140 spinlock_t **ptl); 1141static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1142 spinlock_t **ptl) 1143{ 1144 pte_t *ptep; 1145 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1146 return ptep; 1147} 1148 1149#ifdef __PAGETABLE_PUD_FOLDED 1150static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1151 unsigned long address) 1152{ 1153 return 0; 1154} 1155#else 1156int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1157#endif 1158 1159#ifdef __PAGETABLE_PMD_FOLDED 1160static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1161 unsigned long address) 1162{ 1163 return 0; 1164} 1165#else 1166int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1167#endif 1168 1169int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1170 pmd_t *pmd, unsigned long address); 1171int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1172 1173/* 1174 * The following ifdef needed to get the 4level-fixup.h header to work. 1175 * Remove it when 4level-fixup.h has been removed. 1176 */ 1177#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1178static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1179{ 1180 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1181 NULL: pud_offset(pgd, address); 1182} 1183 1184static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1185{ 1186 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1187 NULL: pmd_offset(pud, address); 1188} 1189#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1190 1191#if USE_SPLIT_PTLOCKS 1192/* 1193 * We tuck a spinlock to guard each pagetable page into its struct page, 1194 * at page->private, with BUILD_BUG_ON to make sure that this will not 1195 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1196 * When freeing, reset page->mapping so free_pages_check won't complain. 1197 */ 1198#define __pte_lockptr(page) &((page)->ptl) 1199#define pte_lock_init(_page) do { \ 1200 spin_lock_init(__pte_lockptr(_page)); \ 1201} while (0) 1202#define pte_lock_deinit(page) ((page)->mapping = NULL) 1203#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1204#else /* !USE_SPLIT_PTLOCKS */ 1205/* 1206 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1207 */ 1208#define pte_lock_init(page) do {} while (0) 1209#define pte_lock_deinit(page) do {} while (0) 1210#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1211#endif /* USE_SPLIT_PTLOCKS */ 1212 1213static inline void pgtable_page_ctor(struct page *page) 1214{ 1215 pte_lock_init(page); 1216 inc_zone_page_state(page, NR_PAGETABLE); 1217} 1218 1219static inline void pgtable_page_dtor(struct page *page) 1220{ 1221 pte_lock_deinit(page); 1222 dec_zone_page_state(page, NR_PAGETABLE); 1223} 1224 1225#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1226({ \ 1227 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1228 pte_t *__pte = pte_offset_map(pmd, address); \ 1229 *(ptlp) = __ptl; \ 1230 spin_lock(__ptl); \ 1231 __pte; \ 1232}) 1233 1234#define pte_unmap_unlock(pte, ptl) do { \ 1235 spin_unlock(ptl); \ 1236 pte_unmap(pte); \ 1237} while (0) 1238 1239#define pte_alloc_map(mm, vma, pmd, address) \ 1240 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1241 pmd, address))? \ 1242 NULL: pte_offset_map(pmd, address)) 1243 1244#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1245 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1246 pmd, address))? \ 1247 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1248 1249#define pte_alloc_kernel(pmd, address) \ 1250 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1251 NULL: pte_offset_kernel(pmd, address)) 1252 1253extern void free_area_init(unsigned long * zones_size); 1254extern void free_area_init_node(int nid, unsigned long * zones_size, 1255 unsigned long zone_start_pfn, unsigned long *zholes_size); 1256#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1257/* 1258 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1259 * zones, allocate the backing mem_map and account for memory holes in a more 1260 * architecture independent manner. This is a substitute for creating the 1261 * zone_sizes[] and zholes_size[] arrays and passing them to 1262 * free_area_init_node() 1263 * 1264 * An architecture is expected to register range of page frames backed by 1265 * physical memory with add_active_range() before calling 1266 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1267 * usage, an architecture is expected to do something like 1268 * 1269 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1270 * max_highmem_pfn}; 1271 * for_each_valid_physical_page_range() 1272 * add_active_range(node_id, start_pfn, end_pfn) 1273 * free_area_init_nodes(max_zone_pfns); 1274 * 1275 * If the architecture guarantees that there are no holes in the ranges 1276 * registered with add_active_range(), free_bootmem_active_regions() 1277 * will call free_bootmem_node() for each registered physical page range. 1278 * Similarly sparse_memory_present_with_active_regions() calls 1279 * memory_present() for each range when SPARSEMEM is enabled. 1280 * 1281 * See mm/page_alloc.c for more information on each function exposed by 1282 * CONFIG_ARCH_POPULATES_NODE_MAP 1283 */ 1284extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1285extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1286 unsigned long end_pfn); 1287extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1288 unsigned long end_pfn); 1289extern void remove_all_active_ranges(void); 1290void sort_node_map(void); 1291unsigned long node_map_pfn_alignment(void); 1292unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1293 unsigned long end_pfn); 1294extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1295 unsigned long end_pfn); 1296extern void get_pfn_range_for_nid(unsigned int nid, 1297 unsigned long *start_pfn, unsigned long *end_pfn); 1298extern unsigned long find_min_pfn_with_active_regions(void); 1299extern void free_bootmem_with_active_regions(int nid, 1300 unsigned long max_low_pfn); 1301int add_from_early_node_map(struct range *range, int az, 1302 int nr_range, int nid); 1303u64 __init find_memory_core_early(int nid, u64 size, u64 align, 1304 u64 goal, u64 limit); 1305typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1306extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1307extern void sparse_memory_present_with_active_regions(int nid); 1308#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1309 1310#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1311 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1312static inline int __early_pfn_to_nid(unsigned long pfn) 1313{ 1314 return 0; 1315} 1316#else 1317/* please see mm/page_alloc.c */ 1318extern int __meminit early_pfn_to_nid(unsigned long pfn); 1319#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1320/* there is a per-arch backend function. */ 1321extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1322#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1323#endif 1324 1325extern void set_dma_reserve(unsigned long new_dma_reserve); 1326extern void memmap_init_zone(unsigned long, int, unsigned long, 1327 unsigned long, enum memmap_context); 1328extern void setup_per_zone_wmarks(void); 1329extern int __meminit init_per_zone_wmark_min(void); 1330extern void mem_init(void); 1331extern void __init mmap_init(void); 1332extern void show_mem(unsigned int flags); 1333extern void si_meminfo(struct sysinfo * val); 1334extern void si_meminfo_node(struct sysinfo *val, int nid); 1335extern int after_bootmem; 1336 1337extern __printf(3, 4) 1338void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1339 1340extern void setup_per_cpu_pageset(void); 1341 1342extern void zone_pcp_update(struct zone *zone); 1343 1344/* nommu.c */ 1345extern atomic_long_t mmap_pages_allocated; 1346extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1347 1348/* prio_tree.c */ 1349void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1350void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1351void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1352struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1353 struct prio_tree_iter *iter); 1354 1355#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1356 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1357 (vma = vma_prio_tree_next(vma, iter)); ) 1358 1359static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1360 struct list_head *list) 1361{ 1362 vma->shared.vm_set.parent = NULL; 1363 list_add_tail(&vma->shared.vm_set.list, list); 1364} 1365 1366/* mmap.c */ 1367extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1368extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1369 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1370extern struct vm_area_struct *vma_merge(struct mm_struct *, 1371 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1372 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1373 struct mempolicy *); 1374extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1375extern int split_vma(struct mm_struct *, 1376 struct vm_area_struct *, unsigned long addr, int new_below); 1377extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1378extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1379 struct rb_node **, struct rb_node *); 1380extern void unlink_file_vma(struct vm_area_struct *); 1381extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1382 unsigned long addr, unsigned long len, pgoff_t pgoff); 1383extern void exit_mmap(struct mm_struct *); 1384 1385extern int mm_take_all_locks(struct mm_struct *mm); 1386extern void mm_drop_all_locks(struct mm_struct *mm); 1387 1388/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1389extern void added_exe_file_vma(struct mm_struct *mm); 1390extern void removed_exe_file_vma(struct mm_struct *mm); 1391extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1392extern struct file *get_mm_exe_file(struct mm_struct *mm); 1393 1394extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1395extern int install_special_mapping(struct mm_struct *mm, 1396 unsigned long addr, unsigned long len, 1397 unsigned long flags, struct page **pages); 1398 1399extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1400 1401extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1402 unsigned long len, unsigned long prot, 1403 unsigned long flag, unsigned long pgoff); 1404extern unsigned long mmap_region(struct file *file, unsigned long addr, 1405 unsigned long len, unsigned long flags, 1406 vm_flags_t vm_flags, unsigned long pgoff); 1407 1408static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1409 unsigned long len, unsigned long prot, 1410 unsigned long flag, unsigned long offset) 1411{ 1412 unsigned long ret = -EINVAL; 1413 if ((offset + PAGE_ALIGN(len)) < offset) 1414 goto out; 1415 if (!(offset & ~PAGE_MASK)) 1416 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1417out: 1418 return ret; 1419} 1420 1421extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1422 1423extern unsigned long do_brk(unsigned long, unsigned long); 1424 1425/* truncate.c */ 1426extern void truncate_inode_pages(struct address_space *, loff_t); 1427extern void truncate_inode_pages_range(struct address_space *, 1428 loff_t lstart, loff_t lend); 1429 1430/* generic vm_area_ops exported for stackable file systems */ 1431extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1432 1433/* mm/page-writeback.c */ 1434int write_one_page(struct page *page, int wait); 1435void task_dirty_inc(struct task_struct *tsk); 1436 1437/* readahead.c */ 1438#define VM_MAX_READAHEAD 128 /* kbytes */ 1439#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1440 1441int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1442 pgoff_t offset, unsigned long nr_to_read); 1443 1444void page_cache_sync_readahead(struct address_space *mapping, 1445 struct file_ra_state *ra, 1446 struct file *filp, 1447 pgoff_t offset, 1448 unsigned long size); 1449 1450void page_cache_async_readahead(struct address_space *mapping, 1451 struct file_ra_state *ra, 1452 struct file *filp, 1453 struct page *pg, 1454 pgoff_t offset, 1455 unsigned long size); 1456 1457unsigned long max_sane_readahead(unsigned long nr); 1458unsigned long ra_submit(struct file_ra_state *ra, 1459 struct address_space *mapping, 1460 struct file *filp); 1461 1462/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1463extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1464 1465/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1466extern int expand_downwards(struct vm_area_struct *vma, 1467 unsigned long address); 1468#if VM_GROWSUP 1469extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1470#else 1471 #define expand_upwards(vma, address) do { } while (0) 1472#endif 1473 1474/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1475extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1476extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1477 struct vm_area_struct **pprev); 1478 1479/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1480 NULL if none. Assume start_addr < end_addr. */ 1481static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1482{ 1483 struct vm_area_struct * vma = find_vma(mm,start_addr); 1484 1485 if (vma && end_addr <= vma->vm_start) 1486 vma = NULL; 1487 return vma; 1488} 1489 1490static inline unsigned long vma_pages(struct vm_area_struct *vma) 1491{ 1492 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1493} 1494 1495#ifdef CONFIG_MMU 1496pgprot_t vm_get_page_prot(unsigned long vm_flags); 1497#else 1498static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1499{ 1500 return __pgprot(0); 1501} 1502#endif 1503 1504struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1505int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1506 unsigned long pfn, unsigned long size, pgprot_t); 1507int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1508int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1509 unsigned long pfn); 1510int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1511 unsigned long pfn); 1512 1513struct page *follow_page(struct vm_area_struct *, unsigned long address, 1514 unsigned int foll_flags); 1515#define FOLL_WRITE 0x01 /* check pte is writable */ 1516#define FOLL_TOUCH 0x02 /* mark page accessed */ 1517#define FOLL_GET 0x04 /* do get_page on page */ 1518#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1519#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1520#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1521 * and return without waiting upon it */ 1522#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1523#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1524#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1525 1526typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1527 void *data); 1528extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1529 unsigned long size, pte_fn_t fn, void *data); 1530 1531#ifdef CONFIG_PROC_FS 1532void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1533#else 1534static inline void vm_stat_account(struct mm_struct *mm, 1535 unsigned long flags, struct file *file, long pages) 1536{ 1537} 1538#endif /* CONFIG_PROC_FS */ 1539 1540#ifdef CONFIG_DEBUG_PAGEALLOC 1541extern int debug_pagealloc_enabled; 1542 1543extern void kernel_map_pages(struct page *page, int numpages, int enable); 1544 1545static inline void enable_debug_pagealloc(void) 1546{ 1547 debug_pagealloc_enabled = 1; 1548} 1549#ifdef CONFIG_HIBERNATION 1550extern bool kernel_page_present(struct page *page); 1551#endif /* CONFIG_HIBERNATION */ 1552#else 1553static inline void 1554kernel_map_pages(struct page *page, int numpages, int enable) {} 1555static inline void enable_debug_pagealloc(void) 1556{ 1557} 1558#ifdef CONFIG_HIBERNATION 1559static inline bool kernel_page_present(struct page *page) { return true; } 1560#endif /* CONFIG_HIBERNATION */ 1561#endif 1562 1563extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1564#ifdef __HAVE_ARCH_GATE_AREA 1565int in_gate_area_no_mm(unsigned long addr); 1566int in_gate_area(struct mm_struct *mm, unsigned long addr); 1567#else 1568int in_gate_area_no_mm(unsigned long addr); 1569#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1570#endif /* __HAVE_ARCH_GATE_AREA */ 1571 1572int drop_caches_sysctl_handler(struct ctl_table *, int, 1573 void __user *, size_t *, loff_t *); 1574unsigned long shrink_slab(struct shrink_control *shrink, 1575 unsigned long nr_pages_scanned, 1576 unsigned long lru_pages); 1577 1578#ifndef CONFIG_MMU 1579#define randomize_va_space 0 1580#else 1581extern int randomize_va_space; 1582#endif 1583 1584const char * arch_vma_name(struct vm_area_struct *vma); 1585void print_vma_addr(char *prefix, unsigned long rip); 1586 1587void sparse_mem_maps_populate_node(struct page **map_map, 1588 unsigned long pnum_begin, 1589 unsigned long pnum_end, 1590 unsigned long map_count, 1591 int nodeid); 1592 1593struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1594pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1595pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1596pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1597pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1598void *vmemmap_alloc_block(unsigned long size, int node); 1599void *vmemmap_alloc_block_buf(unsigned long size, int node); 1600void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1601int vmemmap_populate_basepages(struct page *start_page, 1602 unsigned long pages, int node); 1603int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1604void vmemmap_populate_print_last(void); 1605 1606 1607enum mf_flags { 1608 MF_COUNT_INCREASED = 1 << 0, 1609}; 1610extern void memory_failure(unsigned long pfn, int trapno); 1611extern int __memory_failure(unsigned long pfn, int trapno, int flags); 1612extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1613extern int unpoison_memory(unsigned long pfn); 1614extern int sysctl_memory_failure_early_kill; 1615extern int sysctl_memory_failure_recovery; 1616extern void shake_page(struct page *p, int access); 1617extern atomic_long_t mce_bad_pages; 1618extern int soft_offline_page(struct page *page, int flags); 1619 1620extern void dump_page(struct page *page); 1621 1622#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1623extern void clear_huge_page(struct page *page, 1624 unsigned long addr, 1625 unsigned int pages_per_huge_page); 1626extern void copy_user_huge_page(struct page *dst, struct page *src, 1627 unsigned long addr, struct vm_area_struct *vma, 1628 unsigned int pages_per_huge_page); 1629#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1630 1631#endif /* __KERNEL__ */ 1632#endif /* _LINUX_MM_H */