at v3.2 2780 lines 68 kB view raw
1/* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11#include <linux/syscalls.h> 12#include <linux/slab.h> 13#include <linux/sched.h> 14#include <linux/spinlock.h> 15#include <linux/percpu.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/acct.h> 19#include <linux/capability.h> 20#include <linux/cpumask.h> 21#include <linux/module.h> 22#include <linux/sysfs.h> 23#include <linux/seq_file.h> 24#include <linux/mnt_namespace.h> 25#include <linux/namei.h> 26#include <linux/nsproxy.h> 27#include <linux/security.h> 28#include <linux/mount.h> 29#include <linux/ramfs.h> 30#include <linux/log2.h> 31#include <linux/idr.h> 32#include <linux/fs_struct.h> 33#include <linux/fsnotify.h> 34#include <asm/uaccess.h> 35#include <asm/unistd.h> 36#include "pnode.h" 37#include "internal.h" 38 39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 40#define HASH_SIZE (1UL << HASH_SHIFT) 41 42static int event; 43static DEFINE_IDA(mnt_id_ida); 44static DEFINE_IDA(mnt_group_ida); 45static DEFINE_SPINLOCK(mnt_id_lock); 46static int mnt_id_start = 0; 47static int mnt_group_start = 1; 48 49static struct list_head *mount_hashtable __read_mostly; 50static struct kmem_cache *mnt_cache __read_mostly; 51static struct rw_semaphore namespace_sem; 52 53/* /sys/fs */ 54struct kobject *fs_kobj; 55EXPORT_SYMBOL_GPL(fs_kobj); 56 57/* 58 * vfsmount lock may be taken for read to prevent changes to the 59 * vfsmount hash, ie. during mountpoint lookups or walking back 60 * up the tree. 61 * 62 * It should be taken for write in all cases where the vfsmount 63 * tree or hash is modified or when a vfsmount structure is modified. 64 */ 65DEFINE_BRLOCK(vfsmount_lock); 66 67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 68{ 69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 71 tmp = tmp + (tmp >> HASH_SHIFT); 72 return tmp & (HASH_SIZE - 1); 73} 74 75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 76 77/* 78 * allocation is serialized by namespace_sem, but we need the spinlock to 79 * serialize with freeing. 80 */ 81static int mnt_alloc_id(struct vfsmount *mnt) 82{ 83 int res; 84 85retry: 86 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 87 spin_lock(&mnt_id_lock); 88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 89 if (!res) 90 mnt_id_start = mnt->mnt_id + 1; 91 spin_unlock(&mnt_id_lock); 92 if (res == -EAGAIN) 93 goto retry; 94 95 return res; 96} 97 98static void mnt_free_id(struct vfsmount *mnt) 99{ 100 int id = mnt->mnt_id; 101 spin_lock(&mnt_id_lock); 102 ida_remove(&mnt_id_ida, id); 103 if (mnt_id_start > id) 104 mnt_id_start = id; 105 spin_unlock(&mnt_id_lock); 106} 107 108/* 109 * Allocate a new peer group ID 110 * 111 * mnt_group_ida is protected by namespace_sem 112 */ 113static int mnt_alloc_group_id(struct vfsmount *mnt) 114{ 115 int res; 116 117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 118 return -ENOMEM; 119 120 res = ida_get_new_above(&mnt_group_ida, 121 mnt_group_start, 122 &mnt->mnt_group_id); 123 if (!res) 124 mnt_group_start = mnt->mnt_group_id + 1; 125 126 return res; 127} 128 129/* 130 * Release a peer group ID 131 */ 132void mnt_release_group_id(struct vfsmount *mnt) 133{ 134 int id = mnt->mnt_group_id; 135 ida_remove(&mnt_group_ida, id); 136 if (mnt_group_start > id) 137 mnt_group_start = id; 138 mnt->mnt_group_id = 0; 139} 140 141/* 142 * vfsmount lock must be held for read 143 */ 144static inline void mnt_add_count(struct vfsmount *mnt, int n) 145{ 146#ifdef CONFIG_SMP 147 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 148#else 149 preempt_disable(); 150 mnt->mnt_count += n; 151 preempt_enable(); 152#endif 153} 154 155static inline void mnt_set_count(struct vfsmount *mnt, int n) 156{ 157#ifdef CONFIG_SMP 158 this_cpu_write(mnt->mnt_pcp->mnt_count, n); 159#else 160 mnt->mnt_count = n; 161#endif 162} 163 164/* 165 * vfsmount lock must be held for read 166 */ 167static inline void mnt_inc_count(struct vfsmount *mnt) 168{ 169 mnt_add_count(mnt, 1); 170} 171 172/* 173 * vfsmount lock must be held for read 174 */ 175static inline void mnt_dec_count(struct vfsmount *mnt) 176{ 177 mnt_add_count(mnt, -1); 178} 179 180/* 181 * vfsmount lock must be held for write 182 */ 183unsigned int mnt_get_count(struct vfsmount *mnt) 184{ 185#ifdef CONFIG_SMP 186 unsigned int count = 0; 187 int cpu; 188 189 for_each_possible_cpu(cpu) { 190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 191 } 192 193 return count; 194#else 195 return mnt->mnt_count; 196#endif 197} 198 199static struct vfsmount *alloc_vfsmnt(const char *name) 200{ 201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 202 if (mnt) { 203 int err; 204 205 err = mnt_alloc_id(mnt); 206 if (err) 207 goto out_free_cache; 208 209 if (name) { 210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 211 if (!mnt->mnt_devname) 212 goto out_free_id; 213 } 214 215#ifdef CONFIG_SMP 216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 217 if (!mnt->mnt_pcp) 218 goto out_free_devname; 219 220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 221#else 222 mnt->mnt_count = 1; 223 mnt->mnt_writers = 0; 224#endif 225 226 INIT_LIST_HEAD(&mnt->mnt_hash); 227 INIT_LIST_HEAD(&mnt->mnt_child); 228 INIT_LIST_HEAD(&mnt->mnt_mounts); 229 INIT_LIST_HEAD(&mnt->mnt_list); 230 INIT_LIST_HEAD(&mnt->mnt_expire); 231 INIT_LIST_HEAD(&mnt->mnt_share); 232 INIT_LIST_HEAD(&mnt->mnt_slave_list); 233 INIT_LIST_HEAD(&mnt->mnt_slave); 234#ifdef CONFIG_FSNOTIFY 235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 236#endif 237 } 238 return mnt; 239 240#ifdef CONFIG_SMP 241out_free_devname: 242 kfree(mnt->mnt_devname); 243#endif 244out_free_id: 245 mnt_free_id(mnt); 246out_free_cache: 247 kmem_cache_free(mnt_cache, mnt); 248 return NULL; 249} 250 251/* 252 * Most r/o checks on a fs are for operations that take 253 * discrete amounts of time, like a write() or unlink(). 254 * We must keep track of when those operations start 255 * (for permission checks) and when they end, so that 256 * we can determine when writes are able to occur to 257 * a filesystem. 258 */ 259/* 260 * __mnt_is_readonly: check whether a mount is read-only 261 * @mnt: the mount to check for its write status 262 * 263 * This shouldn't be used directly ouside of the VFS. 264 * It does not guarantee that the filesystem will stay 265 * r/w, just that it is right *now*. This can not and 266 * should not be used in place of IS_RDONLY(inode). 267 * mnt_want/drop_write() will _keep_ the filesystem 268 * r/w. 269 */ 270int __mnt_is_readonly(struct vfsmount *mnt) 271{ 272 if (mnt->mnt_flags & MNT_READONLY) 273 return 1; 274 if (mnt->mnt_sb->s_flags & MS_RDONLY) 275 return 1; 276 return 0; 277} 278EXPORT_SYMBOL_GPL(__mnt_is_readonly); 279 280static inline void mnt_inc_writers(struct vfsmount *mnt) 281{ 282#ifdef CONFIG_SMP 283 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 284#else 285 mnt->mnt_writers++; 286#endif 287} 288 289static inline void mnt_dec_writers(struct vfsmount *mnt) 290{ 291#ifdef CONFIG_SMP 292 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 293#else 294 mnt->mnt_writers--; 295#endif 296} 297 298static unsigned int mnt_get_writers(struct vfsmount *mnt) 299{ 300#ifdef CONFIG_SMP 301 unsigned int count = 0; 302 int cpu; 303 304 for_each_possible_cpu(cpu) { 305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 306 } 307 308 return count; 309#else 310 return mnt->mnt_writers; 311#endif 312} 313 314/* 315 * Most r/o checks on a fs are for operations that take 316 * discrete amounts of time, like a write() or unlink(). 317 * We must keep track of when those operations start 318 * (for permission checks) and when they end, so that 319 * we can determine when writes are able to occur to 320 * a filesystem. 321 */ 322/** 323 * mnt_want_write - get write access to a mount 324 * @mnt: the mount on which to take a write 325 * 326 * This tells the low-level filesystem that a write is 327 * about to be performed to it, and makes sure that 328 * writes are allowed before returning success. When 329 * the write operation is finished, mnt_drop_write() 330 * must be called. This is effectively a refcount. 331 */ 332int mnt_want_write(struct vfsmount *mnt) 333{ 334 int ret = 0; 335 336 preempt_disable(); 337 mnt_inc_writers(mnt); 338 /* 339 * The store to mnt_inc_writers must be visible before we pass 340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 341 * incremented count after it has set MNT_WRITE_HOLD. 342 */ 343 smp_mb(); 344 while (mnt->mnt_flags & MNT_WRITE_HOLD) 345 cpu_relax(); 346 /* 347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 348 * be set to match its requirements. So we must not load that until 349 * MNT_WRITE_HOLD is cleared. 350 */ 351 smp_rmb(); 352 if (__mnt_is_readonly(mnt)) { 353 mnt_dec_writers(mnt); 354 ret = -EROFS; 355 goto out; 356 } 357out: 358 preempt_enable(); 359 return ret; 360} 361EXPORT_SYMBOL_GPL(mnt_want_write); 362 363/** 364 * mnt_clone_write - get write access to a mount 365 * @mnt: the mount on which to take a write 366 * 367 * This is effectively like mnt_want_write, except 368 * it must only be used to take an extra write reference 369 * on a mountpoint that we already know has a write reference 370 * on it. This allows some optimisation. 371 * 372 * After finished, mnt_drop_write must be called as usual to 373 * drop the reference. 374 */ 375int mnt_clone_write(struct vfsmount *mnt) 376{ 377 /* superblock may be r/o */ 378 if (__mnt_is_readonly(mnt)) 379 return -EROFS; 380 preempt_disable(); 381 mnt_inc_writers(mnt); 382 preempt_enable(); 383 return 0; 384} 385EXPORT_SYMBOL_GPL(mnt_clone_write); 386 387/** 388 * mnt_want_write_file - get write access to a file's mount 389 * @file: the file who's mount on which to take a write 390 * 391 * This is like mnt_want_write, but it takes a file and can 392 * do some optimisations if the file is open for write already 393 */ 394int mnt_want_write_file(struct file *file) 395{ 396 struct inode *inode = file->f_dentry->d_inode; 397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 398 return mnt_want_write(file->f_path.mnt); 399 else 400 return mnt_clone_write(file->f_path.mnt); 401} 402EXPORT_SYMBOL_GPL(mnt_want_write_file); 403 404/** 405 * mnt_drop_write - give up write access to a mount 406 * @mnt: the mount on which to give up write access 407 * 408 * Tells the low-level filesystem that we are done 409 * performing writes to it. Must be matched with 410 * mnt_want_write() call above. 411 */ 412void mnt_drop_write(struct vfsmount *mnt) 413{ 414 preempt_disable(); 415 mnt_dec_writers(mnt); 416 preempt_enable(); 417} 418EXPORT_SYMBOL_GPL(mnt_drop_write); 419 420static int mnt_make_readonly(struct vfsmount *mnt) 421{ 422 int ret = 0; 423 424 br_write_lock(vfsmount_lock); 425 mnt->mnt_flags |= MNT_WRITE_HOLD; 426 /* 427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 428 * should be visible before we do. 429 */ 430 smp_mb(); 431 432 /* 433 * With writers on hold, if this value is zero, then there are 434 * definitely no active writers (although held writers may subsequently 435 * increment the count, they'll have to wait, and decrement it after 436 * seeing MNT_READONLY). 437 * 438 * It is OK to have counter incremented on one CPU and decremented on 439 * another: the sum will add up correctly. The danger would be when we 440 * sum up each counter, if we read a counter before it is incremented, 441 * but then read another CPU's count which it has been subsequently 442 * decremented from -- we would see more decrements than we should. 443 * MNT_WRITE_HOLD protects against this scenario, because 444 * mnt_want_write first increments count, then smp_mb, then spins on 445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 446 * we're counting up here. 447 */ 448 if (mnt_get_writers(mnt) > 0) 449 ret = -EBUSY; 450 else 451 mnt->mnt_flags |= MNT_READONLY; 452 /* 453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 454 * that become unheld will see MNT_READONLY. 455 */ 456 smp_wmb(); 457 mnt->mnt_flags &= ~MNT_WRITE_HOLD; 458 br_write_unlock(vfsmount_lock); 459 return ret; 460} 461 462static void __mnt_unmake_readonly(struct vfsmount *mnt) 463{ 464 br_write_lock(vfsmount_lock); 465 mnt->mnt_flags &= ~MNT_READONLY; 466 br_write_unlock(vfsmount_lock); 467} 468 469static void free_vfsmnt(struct vfsmount *mnt) 470{ 471 kfree(mnt->mnt_devname); 472 mnt_free_id(mnt); 473#ifdef CONFIG_SMP 474 free_percpu(mnt->mnt_pcp); 475#endif 476 kmem_cache_free(mnt_cache, mnt); 477} 478 479/* 480 * find the first or last mount at @dentry on vfsmount @mnt depending on 481 * @dir. If @dir is set return the first mount else return the last mount. 482 * vfsmount_lock must be held for read or write. 483 */ 484struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 485 int dir) 486{ 487 struct list_head *head = mount_hashtable + hash(mnt, dentry); 488 struct list_head *tmp = head; 489 struct vfsmount *p, *found = NULL; 490 491 for (;;) { 492 tmp = dir ? tmp->next : tmp->prev; 493 p = NULL; 494 if (tmp == head) 495 break; 496 p = list_entry(tmp, struct vfsmount, mnt_hash); 497 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 498 found = p; 499 break; 500 } 501 } 502 return found; 503} 504 505/* 506 * lookup_mnt increments the ref count before returning 507 * the vfsmount struct. 508 */ 509struct vfsmount *lookup_mnt(struct path *path) 510{ 511 struct vfsmount *child_mnt; 512 513 br_read_lock(vfsmount_lock); 514 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1))) 515 mntget(child_mnt); 516 br_read_unlock(vfsmount_lock); 517 return child_mnt; 518} 519 520static inline int check_mnt(struct vfsmount *mnt) 521{ 522 return mnt->mnt_ns == current->nsproxy->mnt_ns; 523} 524 525/* 526 * vfsmount lock must be held for write 527 */ 528static void touch_mnt_namespace(struct mnt_namespace *ns) 529{ 530 if (ns) { 531 ns->event = ++event; 532 wake_up_interruptible(&ns->poll); 533 } 534} 535 536/* 537 * vfsmount lock must be held for write 538 */ 539static void __touch_mnt_namespace(struct mnt_namespace *ns) 540{ 541 if (ns && ns->event != event) { 542 ns->event = event; 543 wake_up_interruptible(&ns->poll); 544 } 545} 546 547/* 548 * Clear dentry's mounted state if it has no remaining mounts. 549 * vfsmount_lock must be held for write. 550 */ 551static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry) 552{ 553 unsigned u; 554 555 for (u = 0; u < HASH_SIZE; u++) { 556 struct vfsmount *p; 557 558 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) { 559 if (p->mnt_mountpoint == dentry) 560 return; 561 } 562 } 563 spin_lock(&dentry->d_lock); 564 dentry->d_flags &= ~DCACHE_MOUNTED; 565 spin_unlock(&dentry->d_lock); 566} 567 568/* 569 * vfsmount lock must be held for write 570 */ 571static void detach_mnt(struct vfsmount *mnt, struct path *old_path) 572{ 573 old_path->dentry = mnt->mnt_mountpoint; 574 old_path->mnt = mnt->mnt_parent; 575 mnt->mnt_parent = mnt; 576 mnt->mnt_mountpoint = mnt->mnt_root; 577 list_del_init(&mnt->mnt_child); 578 list_del_init(&mnt->mnt_hash); 579 dentry_reset_mounted(old_path->mnt, old_path->dentry); 580} 581 582/* 583 * vfsmount lock must be held for write 584 */ 585void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 586 struct vfsmount *child_mnt) 587{ 588 child_mnt->mnt_parent = mntget(mnt); 589 child_mnt->mnt_mountpoint = dget(dentry); 590 spin_lock(&dentry->d_lock); 591 dentry->d_flags |= DCACHE_MOUNTED; 592 spin_unlock(&dentry->d_lock); 593} 594 595/* 596 * vfsmount lock must be held for write 597 */ 598static void attach_mnt(struct vfsmount *mnt, struct path *path) 599{ 600 mnt_set_mountpoint(path->mnt, path->dentry, mnt); 601 list_add_tail(&mnt->mnt_hash, mount_hashtable + 602 hash(path->mnt, path->dentry)); 603 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); 604} 605 606static inline void __mnt_make_longterm(struct vfsmount *mnt) 607{ 608#ifdef CONFIG_SMP 609 atomic_inc(&mnt->mnt_longterm); 610#endif 611} 612 613/* needs vfsmount lock for write */ 614static inline void __mnt_make_shortterm(struct vfsmount *mnt) 615{ 616#ifdef CONFIG_SMP 617 atomic_dec(&mnt->mnt_longterm); 618#endif 619} 620 621/* 622 * vfsmount lock must be held for write 623 */ 624static void commit_tree(struct vfsmount *mnt) 625{ 626 struct vfsmount *parent = mnt->mnt_parent; 627 struct vfsmount *m; 628 LIST_HEAD(head); 629 struct mnt_namespace *n = parent->mnt_ns; 630 631 BUG_ON(parent == mnt); 632 633 list_add_tail(&head, &mnt->mnt_list); 634 list_for_each_entry(m, &head, mnt_list) { 635 m->mnt_ns = n; 636 __mnt_make_longterm(m); 637 } 638 639 list_splice(&head, n->list.prev); 640 641 list_add_tail(&mnt->mnt_hash, mount_hashtable + 642 hash(parent, mnt->mnt_mountpoint)); 643 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 644 touch_mnt_namespace(n); 645} 646 647static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 648{ 649 struct list_head *next = p->mnt_mounts.next; 650 if (next == &p->mnt_mounts) { 651 while (1) { 652 if (p == root) 653 return NULL; 654 next = p->mnt_child.next; 655 if (next != &p->mnt_parent->mnt_mounts) 656 break; 657 p = p->mnt_parent; 658 } 659 } 660 return list_entry(next, struct vfsmount, mnt_child); 661} 662 663static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 664{ 665 struct list_head *prev = p->mnt_mounts.prev; 666 while (prev != &p->mnt_mounts) { 667 p = list_entry(prev, struct vfsmount, mnt_child); 668 prev = p->mnt_mounts.prev; 669 } 670 return p; 671} 672 673struct vfsmount * 674vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 675{ 676 struct vfsmount *mnt; 677 struct dentry *root; 678 679 if (!type) 680 return ERR_PTR(-ENODEV); 681 682 mnt = alloc_vfsmnt(name); 683 if (!mnt) 684 return ERR_PTR(-ENOMEM); 685 686 if (flags & MS_KERNMOUNT) 687 mnt->mnt_flags = MNT_INTERNAL; 688 689 root = mount_fs(type, flags, name, data); 690 if (IS_ERR(root)) { 691 free_vfsmnt(mnt); 692 return ERR_CAST(root); 693 } 694 695 mnt->mnt_root = root; 696 mnt->mnt_sb = root->d_sb; 697 mnt->mnt_mountpoint = mnt->mnt_root; 698 mnt->mnt_parent = mnt; 699 return mnt; 700} 701EXPORT_SYMBOL_GPL(vfs_kern_mount); 702 703static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 704 int flag) 705{ 706 struct super_block *sb = old->mnt_sb; 707 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 708 709 if (mnt) { 710 if (flag & (CL_SLAVE | CL_PRIVATE)) 711 mnt->mnt_group_id = 0; /* not a peer of original */ 712 else 713 mnt->mnt_group_id = old->mnt_group_id; 714 715 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 716 int err = mnt_alloc_group_id(mnt); 717 if (err) 718 goto out_free; 719 } 720 721 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD; 722 atomic_inc(&sb->s_active); 723 mnt->mnt_sb = sb; 724 mnt->mnt_root = dget(root); 725 mnt->mnt_mountpoint = mnt->mnt_root; 726 mnt->mnt_parent = mnt; 727 728 if (flag & CL_SLAVE) { 729 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 730 mnt->mnt_master = old; 731 CLEAR_MNT_SHARED(mnt); 732 } else if (!(flag & CL_PRIVATE)) { 733 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 734 list_add(&mnt->mnt_share, &old->mnt_share); 735 if (IS_MNT_SLAVE(old)) 736 list_add(&mnt->mnt_slave, &old->mnt_slave); 737 mnt->mnt_master = old->mnt_master; 738 } 739 if (flag & CL_MAKE_SHARED) 740 set_mnt_shared(mnt); 741 742 /* stick the duplicate mount on the same expiry list 743 * as the original if that was on one */ 744 if (flag & CL_EXPIRE) { 745 if (!list_empty(&old->mnt_expire)) 746 list_add(&mnt->mnt_expire, &old->mnt_expire); 747 } 748 } 749 return mnt; 750 751 out_free: 752 free_vfsmnt(mnt); 753 return NULL; 754} 755 756static inline void mntfree(struct vfsmount *mnt) 757{ 758 struct super_block *sb = mnt->mnt_sb; 759 760 /* 761 * This probably indicates that somebody messed 762 * up a mnt_want/drop_write() pair. If this 763 * happens, the filesystem was probably unable 764 * to make r/w->r/o transitions. 765 */ 766 /* 767 * The locking used to deal with mnt_count decrement provides barriers, 768 * so mnt_get_writers() below is safe. 769 */ 770 WARN_ON(mnt_get_writers(mnt)); 771 fsnotify_vfsmount_delete(mnt); 772 dput(mnt->mnt_root); 773 free_vfsmnt(mnt); 774 deactivate_super(sb); 775} 776 777static void mntput_no_expire(struct vfsmount *mnt) 778{ 779put_again: 780#ifdef CONFIG_SMP 781 br_read_lock(vfsmount_lock); 782 if (likely(atomic_read(&mnt->mnt_longterm))) { 783 mnt_dec_count(mnt); 784 br_read_unlock(vfsmount_lock); 785 return; 786 } 787 br_read_unlock(vfsmount_lock); 788 789 br_write_lock(vfsmount_lock); 790 mnt_dec_count(mnt); 791 if (mnt_get_count(mnt)) { 792 br_write_unlock(vfsmount_lock); 793 return; 794 } 795#else 796 mnt_dec_count(mnt); 797 if (likely(mnt_get_count(mnt))) 798 return; 799 br_write_lock(vfsmount_lock); 800#endif 801 if (unlikely(mnt->mnt_pinned)) { 802 mnt_add_count(mnt, mnt->mnt_pinned + 1); 803 mnt->mnt_pinned = 0; 804 br_write_unlock(vfsmount_lock); 805 acct_auto_close_mnt(mnt); 806 goto put_again; 807 } 808 br_write_unlock(vfsmount_lock); 809 mntfree(mnt); 810} 811 812void mntput(struct vfsmount *mnt) 813{ 814 if (mnt) { 815 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 816 if (unlikely(mnt->mnt_expiry_mark)) 817 mnt->mnt_expiry_mark = 0; 818 mntput_no_expire(mnt); 819 } 820} 821EXPORT_SYMBOL(mntput); 822 823struct vfsmount *mntget(struct vfsmount *mnt) 824{ 825 if (mnt) 826 mnt_inc_count(mnt); 827 return mnt; 828} 829EXPORT_SYMBOL(mntget); 830 831void mnt_pin(struct vfsmount *mnt) 832{ 833 br_write_lock(vfsmount_lock); 834 mnt->mnt_pinned++; 835 br_write_unlock(vfsmount_lock); 836} 837EXPORT_SYMBOL(mnt_pin); 838 839void mnt_unpin(struct vfsmount *mnt) 840{ 841 br_write_lock(vfsmount_lock); 842 if (mnt->mnt_pinned) { 843 mnt_inc_count(mnt); 844 mnt->mnt_pinned--; 845 } 846 br_write_unlock(vfsmount_lock); 847} 848EXPORT_SYMBOL(mnt_unpin); 849 850static inline void mangle(struct seq_file *m, const char *s) 851{ 852 seq_escape(m, s, " \t\n\\"); 853} 854 855/* 856 * Simple .show_options callback for filesystems which don't want to 857 * implement more complex mount option showing. 858 * 859 * See also save_mount_options(). 860 */ 861int generic_show_options(struct seq_file *m, struct vfsmount *mnt) 862{ 863 const char *options; 864 865 rcu_read_lock(); 866 options = rcu_dereference(mnt->mnt_sb->s_options); 867 868 if (options != NULL && options[0]) { 869 seq_putc(m, ','); 870 mangle(m, options); 871 } 872 rcu_read_unlock(); 873 874 return 0; 875} 876EXPORT_SYMBOL(generic_show_options); 877 878/* 879 * If filesystem uses generic_show_options(), this function should be 880 * called from the fill_super() callback. 881 * 882 * The .remount_fs callback usually needs to be handled in a special 883 * way, to make sure, that previous options are not overwritten if the 884 * remount fails. 885 * 886 * Also note, that if the filesystem's .remount_fs function doesn't 887 * reset all options to their default value, but changes only newly 888 * given options, then the displayed options will not reflect reality 889 * any more. 890 */ 891void save_mount_options(struct super_block *sb, char *options) 892{ 893 BUG_ON(sb->s_options); 894 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 895} 896EXPORT_SYMBOL(save_mount_options); 897 898void replace_mount_options(struct super_block *sb, char *options) 899{ 900 char *old = sb->s_options; 901 rcu_assign_pointer(sb->s_options, options); 902 if (old) { 903 synchronize_rcu(); 904 kfree(old); 905 } 906} 907EXPORT_SYMBOL(replace_mount_options); 908 909#ifdef CONFIG_PROC_FS 910/* iterator */ 911static void *m_start(struct seq_file *m, loff_t *pos) 912{ 913 struct proc_mounts *p = m->private; 914 915 down_read(&namespace_sem); 916 return seq_list_start(&p->ns->list, *pos); 917} 918 919static void *m_next(struct seq_file *m, void *v, loff_t *pos) 920{ 921 struct proc_mounts *p = m->private; 922 923 return seq_list_next(v, &p->ns->list, pos); 924} 925 926static void m_stop(struct seq_file *m, void *v) 927{ 928 up_read(&namespace_sem); 929} 930 931int mnt_had_events(struct proc_mounts *p) 932{ 933 struct mnt_namespace *ns = p->ns; 934 int res = 0; 935 936 br_read_lock(vfsmount_lock); 937 if (p->m.poll_event != ns->event) { 938 p->m.poll_event = ns->event; 939 res = 1; 940 } 941 br_read_unlock(vfsmount_lock); 942 943 return res; 944} 945 946struct proc_fs_info { 947 int flag; 948 const char *str; 949}; 950 951static int show_sb_opts(struct seq_file *m, struct super_block *sb) 952{ 953 static const struct proc_fs_info fs_info[] = { 954 { MS_SYNCHRONOUS, ",sync" }, 955 { MS_DIRSYNC, ",dirsync" }, 956 { MS_MANDLOCK, ",mand" }, 957 { 0, NULL } 958 }; 959 const struct proc_fs_info *fs_infop; 960 961 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 962 if (sb->s_flags & fs_infop->flag) 963 seq_puts(m, fs_infop->str); 964 } 965 966 return security_sb_show_options(m, sb); 967} 968 969static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) 970{ 971 static const struct proc_fs_info mnt_info[] = { 972 { MNT_NOSUID, ",nosuid" }, 973 { MNT_NODEV, ",nodev" }, 974 { MNT_NOEXEC, ",noexec" }, 975 { MNT_NOATIME, ",noatime" }, 976 { MNT_NODIRATIME, ",nodiratime" }, 977 { MNT_RELATIME, ",relatime" }, 978 { 0, NULL } 979 }; 980 const struct proc_fs_info *fs_infop; 981 982 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 983 if (mnt->mnt_flags & fs_infop->flag) 984 seq_puts(m, fs_infop->str); 985 } 986} 987 988static void show_type(struct seq_file *m, struct super_block *sb) 989{ 990 mangle(m, sb->s_type->name); 991 if (sb->s_subtype && sb->s_subtype[0]) { 992 seq_putc(m, '.'); 993 mangle(m, sb->s_subtype); 994 } 995} 996 997static int show_vfsmnt(struct seq_file *m, void *v) 998{ 999 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1000 int err = 0; 1001 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1002 1003 if (mnt->mnt_sb->s_op->show_devname) { 1004 err = mnt->mnt_sb->s_op->show_devname(m, mnt); 1005 if (err) 1006 goto out; 1007 } else { 1008 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 1009 } 1010 seq_putc(m, ' '); 1011 seq_path(m, &mnt_path, " \t\n\\"); 1012 seq_putc(m, ' '); 1013 show_type(m, mnt->mnt_sb); 1014 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); 1015 err = show_sb_opts(m, mnt->mnt_sb); 1016 if (err) 1017 goto out; 1018 show_mnt_opts(m, mnt); 1019 if (mnt->mnt_sb->s_op->show_options) 1020 err = mnt->mnt_sb->s_op->show_options(m, mnt); 1021 seq_puts(m, " 0 0\n"); 1022out: 1023 return err; 1024} 1025 1026const struct seq_operations mounts_op = { 1027 .start = m_start, 1028 .next = m_next, 1029 .stop = m_stop, 1030 .show = show_vfsmnt 1031}; 1032 1033static int show_mountinfo(struct seq_file *m, void *v) 1034{ 1035 struct proc_mounts *p = m->private; 1036 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1037 struct super_block *sb = mnt->mnt_sb; 1038 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1039 struct path root = p->root; 1040 int err = 0; 1041 1042 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, 1043 MAJOR(sb->s_dev), MINOR(sb->s_dev)); 1044 if (sb->s_op->show_path) 1045 err = sb->s_op->show_path(m, mnt); 1046 else 1047 seq_dentry(m, mnt->mnt_root, " \t\n\\"); 1048 if (err) 1049 goto out; 1050 seq_putc(m, ' '); 1051 1052 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */ 1053 err = seq_path_root(m, &mnt_path, &root, " \t\n\\"); 1054 if (err) 1055 goto out; 1056 1057 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); 1058 show_mnt_opts(m, mnt); 1059 1060 /* Tagged fields ("foo:X" or "bar") */ 1061 if (IS_MNT_SHARED(mnt)) 1062 seq_printf(m, " shared:%i", mnt->mnt_group_id); 1063 if (IS_MNT_SLAVE(mnt)) { 1064 int master = mnt->mnt_master->mnt_group_id; 1065 int dom = get_dominating_id(mnt, &p->root); 1066 seq_printf(m, " master:%i", master); 1067 if (dom && dom != master) 1068 seq_printf(m, " propagate_from:%i", dom); 1069 } 1070 if (IS_MNT_UNBINDABLE(mnt)) 1071 seq_puts(m, " unbindable"); 1072 1073 /* Filesystem specific data */ 1074 seq_puts(m, " - "); 1075 show_type(m, sb); 1076 seq_putc(m, ' '); 1077 if (sb->s_op->show_devname) 1078 err = sb->s_op->show_devname(m, mnt); 1079 else 1080 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 1081 if (err) 1082 goto out; 1083 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); 1084 err = show_sb_opts(m, sb); 1085 if (err) 1086 goto out; 1087 if (sb->s_op->show_options) 1088 err = sb->s_op->show_options(m, mnt); 1089 seq_putc(m, '\n'); 1090out: 1091 return err; 1092} 1093 1094const struct seq_operations mountinfo_op = { 1095 .start = m_start, 1096 .next = m_next, 1097 .stop = m_stop, 1098 .show = show_mountinfo, 1099}; 1100 1101static int show_vfsstat(struct seq_file *m, void *v) 1102{ 1103 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1104 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1105 int err = 0; 1106 1107 /* device */ 1108 if (mnt->mnt_sb->s_op->show_devname) { 1109 seq_puts(m, "device "); 1110 err = mnt->mnt_sb->s_op->show_devname(m, mnt); 1111 } else { 1112 if (mnt->mnt_devname) { 1113 seq_puts(m, "device "); 1114 mangle(m, mnt->mnt_devname); 1115 } else 1116 seq_puts(m, "no device"); 1117 } 1118 1119 /* mount point */ 1120 seq_puts(m, " mounted on "); 1121 seq_path(m, &mnt_path, " \t\n\\"); 1122 seq_putc(m, ' '); 1123 1124 /* file system type */ 1125 seq_puts(m, "with fstype "); 1126 show_type(m, mnt->mnt_sb); 1127 1128 /* optional statistics */ 1129 if (mnt->mnt_sb->s_op->show_stats) { 1130 seq_putc(m, ' '); 1131 if (!err) 1132 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 1133 } 1134 1135 seq_putc(m, '\n'); 1136 return err; 1137} 1138 1139const struct seq_operations mountstats_op = { 1140 .start = m_start, 1141 .next = m_next, 1142 .stop = m_stop, 1143 .show = show_vfsstat, 1144}; 1145#endif /* CONFIG_PROC_FS */ 1146 1147/** 1148 * may_umount_tree - check if a mount tree is busy 1149 * @mnt: root of mount tree 1150 * 1151 * This is called to check if a tree of mounts has any 1152 * open files, pwds, chroots or sub mounts that are 1153 * busy. 1154 */ 1155int may_umount_tree(struct vfsmount *mnt) 1156{ 1157 int actual_refs = 0; 1158 int minimum_refs = 0; 1159 struct vfsmount *p; 1160 1161 /* write lock needed for mnt_get_count */ 1162 br_write_lock(vfsmount_lock); 1163 for (p = mnt; p; p = next_mnt(p, mnt)) { 1164 actual_refs += mnt_get_count(p); 1165 minimum_refs += 2; 1166 } 1167 br_write_unlock(vfsmount_lock); 1168 1169 if (actual_refs > minimum_refs) 1170 return 0; 1171 1172 return 1; 1173} 1174 1175EXPORT_SYMBOL(may_umount_tree); 1176 1177/** 1178 * may_umount - check if a mount point is busy 1179 * @mnt: root of mount 1180 * 1181 * This is called to check if a mount point has any 1182 * open files, pwds, chroots or sub mounts. If the 1183 * mount has sub mounts this will return busy 1184 * regardless of whether the sub mounts are busy. 1185 * 1186 * Doesn't take quota and stuff into account. IOW, in some cases it will 1187 * give false negatives. The main reason why it's here is that we need 1188 * a non-destructive way to look for easily umountable filesystems. 1189 */ 1190int may_umount(struct vfsmount *mnt) 1191{ 1192 int ret = 1; 1193 down_read(&namespace_sem); 1194 br_write_lock(vfsmount_lock); 1195 if (propagate_mount_busy(mnt, 2)) 1196 ret = 0; 1197 br_write_unlock(vfsmount_lock); 1198 up_read(&namespace_sem); 1199 return ret; 1200} 1201 1202EXPORT_SYMBOL(may_umount); 1203 1204void release_mounts(struct list_head *head) 1205{ 1206 struct vfsmount *mnt; 1207 while (!list_empty(head)) { 1208 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 1209 list_del_init(&mnt->mnt_hash); 1210 if (mnt->mnt_parent != mnt) { 1211 struct dentry *dentry; 1212 struct vfsmount *m; 1213 1214 br_write_lock(vfsmount_lock); 1215 dentry = mnt->mnt_mountpoint; 1216 m = mnt->mnt_parent; 1217 mnt->mnt_mountpoint = mnt->mnt_root; 1218 mnt->mnt_parent = mnt; 1219 m->mnt_ghosts--; 1220 br_write_unlock(vfsmount_lock); 1221 dput(dentry); 1222 mntput(m); 1223 } 1224 mntput(mnt); 1225 } 1226} 1227 1228/* 1229 * vfsmount lock must be held for write 1230 * namespace_sem must be held for write 1231 */ 1232void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 1233{ 1234 LIST_HEAD(tmp_list); 1235 struct vfsmount *p; 1236 1237 for (p = mnt; p; p = next_mnt(p, mnt)) 1238 list_move(&p->mnt_hash, &tmp_list); 1239 1240 if (propagate) 1241 propagate_umount(&tmp_list); 1242 1243 list_for_each_entry(p, &tmp_list, mnt_hash) { 1244 list_del_init(&p->mnt_expire); 1245 list_del_init(&p->mnt_list); 1246 __touch_mnt_namespace(p->mnt_ns); 1247 p->mnt_ns = NULL; 1248 __mnt_make_shortterm(p); 1249 list_del_init(&p->mnt_child); 1250 if (p->mnt_parent != p) { 1251 p->mnt_parent->mnt_ghosts++; 1252 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint); 1253 } 1254 change_mnt_propagation(p, MS_PRIVATE); 1255 } 1256 list_splice(&tmp_list, kill); 1257} 1258 1259static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); 1260 1261static int do_umount(struct vfsmount *mnt, int flags) 1262{ 1263 struct super_block *sb = mnt->mnt_sb; 1264 int retval; 1265 LIST_HEAD(umount_list); 1266 1267 retval = security_sb_umount(mnt, flags); 1268 if (retval) 1269 return retval; 1270 1271 /* 1272 * Allow userspace to request a mountpoint be expired rather than 1273 * unmounting unconditionally. Unmount only happens if: 1274 * (1) the mark is already set (the mark is cleared by mntput()) 1275 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1276 */ 1277 if (flags & MNT_EXPIRE) { 1278 if (mnt == current->fs->root.mnt || 1279 flags & (MNT_FORCE | MNT_DETACH)) 1280 return -EINVAL; 1281 1282 /* 1283 * probably don't strictly need the lock here if we examined 1284 * all race cases, but it's a slowpath. 1285 */ 1286 br_write_lock(vfsmount_lock); 1287 if (mnt_get_count(mnt) != 2) { 1288 br_write_unlock(vfsmount_lock); 1289 return -EBUSY; 1290 } 1291 br_write_unlock(vfsmount_lock); 1292 1293 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1294 return -EAGAIN; 1295 } 1296 1297 /* 1298 * If we may have to abort operations to get out of this 1299 * mount, and they will themselves hold resources we must 1300 * allow the fs to do things. In the Unix tradition of 1301 * 'Gee thats tricky lets do it in userspace' the umount_begin 1302 * might fail to complete on the first run through as other tasks 1303 * must return, and the like. Thats for the mount program to worry 1304 * about for the moment. 1305 */ 1306 1307 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1308 sb->s_op->umount_begin(sb); 1309 } 1310 1311 /* 1312 * No sense to grab the lock for this test, but test itself looks 1313 * somewhat bogus. Suggestions for better replacement? 1314 * Ho-hum... In principle, we might treat that as umount + switch 1315 * to rootfs. GC would eventually take care of the old vfsmount. 1316 * Actually it makes sense, especially if rootfs would contain a 1317 * /reboot - static binary that would close all descriptors and 1318 * call reboot(9). Then init(8) could umount root and exec /reboot. 1319 */ 1320 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1321 /* 1322 * Special case for "unmounting" root ... 1323 * we just try to remount it readonly. 1324 */ 1325 down_write(&sb->s_umount); 1326 if (!(sb->s_flags & MS_RDONLY)) 1327 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1328 up_write(&sb->s_umount); 1329 return retval; 1330 } 1331 1332 down_write(&namespace_sem); 1333 br_write_lock(vfsmount_lock); 1334 event++; 1335 1336 if (!(flags & MNT_DETACH)) 1337 shrink_submounts(mnt, &umount_list); 1338 1339 retval = -EBUSY; 1340 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1341 if (!list_empty(&mnt->mnt_list)) 1342 umount_tree(mnt, 1, &umount_list); 1343 retval = 0; 1344 } 1345 br_write_unlock(vfsmount_lock); 1346 up_write(&namespace_sem); 1347 release_mounts(&umount_list); 1348 return retval; 1349} 1350 1351/* 1352 * Now umount can handle mount points as well as block devices. 1353 * This is important for filesystems which use unnamed block devices. 1354 * 1355 * We now support a flag for forced unmount like the other 'big iron' 1356 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1357 */ 1358 1359SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1360{ 1361 struct path path; 1362 int retval; 1363 int lookup_flags = 0; 1364 1365 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1366 return -EINVAL; 1367 1368 if (!(flags & UMOUNT_NOFOLLOW)) 1369 lookup_flags |= LOOKUP_FOLLOW; 1370 1371 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1372 if (retval) 1373 goto out; 1374 retval = -EINVAL; 1375 if (path.dentry != path.mnt->mnt_root) 1376 goto dput_and_out; 1377 if (!check_mnt(path.mnt)) 1378 goto dput_and_out; 1379 1380 retval = -EPERM; 1381 if (!capable(CAP_SYS_ADMIN)) 1382 goto dput_and_out; 1383 1384 retval = do_umount(path.mnt, flags); 1385dput_and_out: 1386 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1387 dput(path.dentry); 1388 mntput_no_expire(path.mnt); 1389out: 1390 return retval; 1391} 1392 1393#ifdef __ARCH_WANT_SYS_OLDUMOUNT 1394 1395/* 1396 * The 2.0 compatible umount. No flags. 1397 */ 1398SYSCALL_DEFINE1(oldumount, char __user *, name) 1399{ 1400 return sys_umount(name, 0); 1401} 1402 1403#endif 1404 1405static int mount_is_safe(struct path *path) 1406{ 1407 if (capable(CAP_SYS_ADMIN)) 1408 return 0; 1409 return -EPERM; 1410#ifdef notyet 1411 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1412 return -EPERM; 1413 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1414 if (current_uid() != path->dentry->d_inode->i_uid) 1415 return -EPERM; 1416 } 1417 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1418 return -EPERM; 1419 return 0; 1420#endif 1421} 1422 1423struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 1424 int flag) 1425{ 1426 struct vfsmount *res, *p, *q, *r, *s; 1427 struct path path; 1428 1429 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1430 return NULL; 1431 1432 res = q = clone_mnt(mnt, dentry, flag); 1433 if (!q) 1434 goto Enomem; 1435 q->mnt_mountpoint = mnt->mnt_mountpoint; 1436 1437 p = mnt; 1438 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1439 if (!is_subdir(r->mnt_mountpoint, dentry)) 1440 continue; 1441 1442 for (s = r; s; s = next_mnt(s, r)) { 1443 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1444 s = skip_mnt_tree(s); 1445 continue; 1446 } 1447 while (p != s->mnt_parent) { 1448 p = p->mnt_parent; 1449 q = q->mnt_parent; 1450 } 1451 p = s; 1452 path.mnt = q; 1453 path.dentry = p->mnt_mountpoint; 1454 q = clone_mnt(p, p->mnt_root, flag); 1455 if (!q) 1456 goto Enomem; 1457 br_write_lock(vfsmount_lock); 1458 list_add_tail(&q->mnt_list, &res->mnt_list); 1459 attach_mnt(q, &path); 1460 br_write_unlock(vfsmount_lock); 1461 } 1462 } 1463 return res; 1464Enomem: 1465 if (res) { 1466 LIST_HEAD(umount_list); 1467 br_write_lock(vfsmount_lock); 1468 umount_tree(res, 0, &umount_list); 1469 br_write_unlock(vfsmount_lock); 1470 release_mounts(&umount_list); 1471 } 1472 return NULL; 1473} 1474 1475struct vfsmount *collect_mounts(struct path *path) 1476{ 1477 struct vfsmount *tree; 1478 down_write(&namespace_sem); 1479 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE); 1480 up_write(&namespace_sem); 1481 return tree; 1482} 1483 1484void drop_collected_mounts(struct vfsmount *mnt) 1485{ 1486 LIST_HEAD(umount_list); 1487 down_write(&namespace_sem); 1488 br_write_lock(vfsmount_lock); 1489 umount_tree(mnt, 0, &umount_list); 1490 br_write_unlock(vfsmount_lock); 1491 up_write(&namespace_sem); 1492 release_mounts(&umount_list); 1493} 1494 1495int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1496 struct vfsmount *root) 1497{ 1498 struct vfsmount *mnt; 1499 int res = f(root, arg); 1500 if (res) 1501 return res; 1502 list_for_each_entry(mnt, &root->mnt_list, mnt_list) { 1503 res = f(mnt, arg); 1504 if (res) 1505 return res; 1506 } 1507 return 0; 1508} 1509 1510static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) 1511{ 1512 struct vfsmount *p; 1513 1514 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1515 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1516 mnt_release_group_id(p); 1517 } 1518} 1519 1520static int invent_group_ids(struct vfsmount *mnt, bool recurse) 1521{ 1522 struct vfsmount *p; 1523 1524 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1525 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1526 int err = mnt_alloc_group_id(p); 1527 if (err) { 1528 cleanup_group_ids(mnt, p); 1529 return err; 1530 } 1531 } 1532 } 1533 1534 return 0; 1535} 1536 1537/* 1538 * @source_mnt : mount tree to be attached 1539 * @nd : place the mount tree @source_mnt is attached 1540 * @parent_nd : if non-null, detach the source_mnt from its parent and 1541 * store the parent mount and mountpoint dentry. 1542 * (done when source_mnt is moved) 1543 * 1544 * NOTE: in the table below explains the semantics when a source mount 1545 * of a given type is attached to a destination mount of a given type. 1546 * --------------------------------------------------------------------------- 1547 * | BIND MOUNT OPERATION | 1548 * |************************************************************************** 1549 * | source-->| shared | private | slave | unbindable | 1550 * | dest | | | | | 1551 * | | | | | | | 1552 * | v | | | | | 1553 * |************************************************************************** 1554 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1555 * | | | | | | 1556 * |non-shared| shared (+) | private | slave (*) | invalid | 1557 * *************************************************************************** 1558 * A bind operation clones the source mount and mounts the clone on the 1559 * destination mount. 1560 * 1561 * (++) the cloned mount is propagated to all the mounts in the propagation 1562 * tree of the destination mount and the cloned mount is added to 1563 * the peer group of the source mount. 1564 * (+) the cloned mount is created under the destination mount and is marked 1565 * as shared. The cloned mount is added to the peer group of the source 1566 * mount. 1567 * (+++) the mount is propagated to all the mounts in the propagation tree 1568 * of the destination mount and the cloned mount is made slave 1569 * of the same master as that of the source mount. The cloned mount 1570 * is marked as 'shared and slave'. 1571 * (*) the cloned mount is made a slave of the same master as that of the 1572 * source mount. 1573 * 1574 * --------------------------------------------------------------------------- 1575 * | MOVE MOUNT OPERATION | 1576 * |************************************************************************** 1577 * | source-->| shared | private | slave | unbindable | 1578 * | dest | | | | | 1579 * | | | | | | | 1580 * | v | | | | | 1581 * |************************************************************************** 1582 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1583 * | | | | | | 1584 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1585 * *************************************************************************** 1586 * 1587 * (+) the mount is moved to the destination. And is then propagated to 1588 * all the mounts in the propagation tree of the destination mount. 1589 * (+*) the mount is moved to the destination. 1590 * (+++) the mount is moved to the destination and is then propagated to 1591 * all the mounts belonging to the destination mount's propagation tree. 1592 * the mount is marked as 'shared and slave'. 1593 * (*) the mount continues to be a slave at the new location. 1594 * 1595 * if the source mount is a tree, the operations explained above is 1596 * applied to each mount in the tree. 1597 * Must be called without spinlocks held, since this function can sleep 1598 * in allocations. 1599 */ 1600static int attach_recursive_mnt(struct vfsmount *source_mnt, 1601 struct path *path, struct path *parent_path) 1602{ 1603 LIST_HEAD(tree_list); 1604 struct vfsmount *dest_mnt = path->mnt; 1605 struct dentry *dest_dentry = path->dentry; 1606 struct vfsmount *child, *p; 1607 int err; 1608 1609 if (IS_MNT_SHARED(dest_mnt)) { 1610 err = invent_group_ids(source_mnt, true); 1611 if (err) 1612 goto out; 1613 } 1614 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1615 if (err) 1616 goto out_cleanup_ids; 1617 1618 br_write_lock(vfsmount_lock); 1619 1620 if (IS_MNT_SHARED(dest_mnt)) { 1621 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1622 set_mnt_shared(p); 1623 } 1624 if (parent_path) { 1625 detach_mnt(source_mnt, parent_path); 1626 attach_mnt(source_mnt, path); 1627 touch_mnt_namespace(parent_path->mnt->mnt_ns); 1628 } else { 1629 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1630 commit_tree(source_mnt); 1631 } 1632 1633 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1634 list_del_init(&child->mnt_hash); 1635 commit_tree(child); 1636 } 1637 br_write_unlock(vfsmount_lock); 1638 1639 return 0; 1640 1641 out_cleanup_ids: 1642 if (IS_MNT_SHARED(dest_mnt)) 1643 cleanup_group_ids(source_mnt, NULL); 1644 out: 1645 return err; 1646} 1647 1648static int lock_mount(struct path *path) 1649{ 1650 struct vfsmount *mnt; 1651retry: 1652 mutex_lock(&path->dentry->d_inode->i_mutex); 1653 if (unlikely(cant_mount(path->dentry))) { 1654 mutex_unlock(&path->dentry->d_inode->i_mutex); 1655 return -ENOENT; 1656 } 1657 down_write(&namespace_sem); 1658 mnt = lookup_mnt(path); 1659 if (likely(!mnt)) 1660 return 0; 1661 up_write(&namespace_sem); 1662 mutex_unlock(&path->dentry->d_inode->i_mutex); 1663 path_put(path); 1664 path->mnt = mnt; 1665 path->dentry = dget(mnt->mnt_root); 1666 goto retry; 1667} 1668 1669static void unlock_mount(struct path *path) 1670{ 1671 up_write(&namespace_sem); 1672 mutex_unlock(&path->dentry->d_inode->i_mutex); 1673} 1674 1675static int graft_tree(struct vfsmount *mnt, struct path *path) 1676{ 1677 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1678 return -EINVAL; 1679 1680 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1681 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1682 return -ENOTDIR; 1683 1684 if (d_unlinked(path->dentry)) 1685 return -ENOENT; 1686 1687 return attach_recursive_mnt(mnt, path, NULL); 1688} 1689 1690/* 1691 * Sanity check the flags to change_mnt_propagation. 1692 */ 1693 1694static int flags_to_propagation_type(int flags) 1695{ 1696 int type = flags & ~(MS_REC | MS_SILENT); 1697 1698 /* Fail if any non-propagation flags are set */ 1699 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1700 return 0; 1701 /* Only one propagation flag should be set */ 1702 if (!is_power_of_2(type)) 1703 return 0; 1704 return type; 1705} 1706 1707/* 1708 * recursively change the type of the mountpoint. 1709 */ 1710static int do_change_type(struct path *path, int flag) 1711{ 1712 struct vfsmount *m, *mnt = path->mnt; 1713 int recurse = flag & MS_REC; 1714 int type; 1715 int err = 0; 1716 1717 if (!capable(CAP_SYS_ADMIN)) 1718 return -EPERM; 1719 1720 if (path->dentry != path->mnt->mnt_root) 1721 return -EINVAL; 1722 1723 type = flags_to_propagation_type(flag); 1724 if (!type) 1725 return -EINVAL; 1726 1727 down_write(&namespace_sem); 1728 if (type == MS_SHARED) { 1729 err = invent_group_ids(mnt, recurse); 1730 if (err) 1731 goto out_unlock; 1732 } 1733 1734 br_write_lock(vfsmount_lock); 1735 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1736 change_mnt_propagation(m, type); 1737 br_write_unlock(vfsmount_lock); 1738 1739 out_unlock: 1740 up_write(&namespace_sem); 1741 return err; 1742} 1743 1744/* 1745 * do loopback mount. 1746 */ 1747static int do_loopback(struct path *path, char *old_name, 1748 int recurse) 1749{ 1750 LIST_HEAD(umount_list); 1751 struct path old_path; 1752 struct vfsmount *mnt = NULL; 1753 int err = mount_is_safe(path); 1754 if (err) 1755 return err; 1756 if (!old_name || !*old_name) 1757 return -EINVAL; 1758 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1759 if (err) 1760 return err; 1761 1762 err = lock_mount(path); 1763 if (err) 1764 goto out; 1765 1766 err = -EINVAL; 1767 if (IS_MNT_UNBINDABLE(old_path.mnt)) 1768 goto out2; 1769 1770 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1771 goto out2; 1772 1773 err = -ENOMEM; 1774 if (recurse) 1775 mnt = copy_tree(old_path.mnt, old_path.dentry, 0); 1776 else 1777 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0); 1778 1779 if (!mnt) 1780 goto out2; 1781 1782 err = graft_tree(mnt, path); 1783 if (err) { 1784 br_write_lock(vfsmount_lock); 1785 umount_tree(mnt, 0, &umount_list); 1786 br_write_unlock(vfsmount_lock); 1787 } 1788out2: 1789 unlock_mount(path); 1790 release_mounts(&umount_list); 1791out: 1792 path_put(&old_path); 1793 return err; 1794} 1795 1796static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1797{ 1798 int error = 0; 1799 int readonly_request = 0; 1800 1801 if (ms_flags & MS_RDONLY) 1802 readonly_request = 1; 1803 if (readonly_request == __mnt_is_readonly(mnt)) 1804 return 0; 1805 1806 if (readonly_request) 1807 error = mnt_make_readonly(mnt); 1808 else 1809 __mnt_unmake_readonly(mnt); 1810 return error; 1811} 1812 1813/* 1814 * change filesystem flags. dir should be a physical root of filesystem. 1815 * If you've mounted a non-root directory somewhere and want to do remount 1816 * on it - tough luck. 1817 */ 1818static int do_remount(struct path *path, int flags, int mnt_flags, 1819 void *data) 1820{ 1821 int err; 1822 struct super_block *sb = path->mnt->mnt_sb; 1823 1824 if (!capable(CAP_SYS_ADMIN)) 1825 return -EPERM; 1826 1827 if (!check_mnt(path->mnt)) 1828 return -EINVAL; 1829 1830 if (path->dentry != path->mnt->mnt_root) 1831 return -EINVAL; 1832 1833 err = security_sb_remount(sb, data); 1834 if (err) 1835 return err; 1836 1837 down_write(&sb->s_umount); 1838 if (flags & MS_BIND) 1839 err = change_mount_flags(path->mnt, flags); 1840 else 1841 err = do_remount_sb(sb, flags, data, 0); 1842 if (!err) { 1843 br_write_lock(vfsmount_lock); 1844 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK; 1845 path->mnt->mnt_flags = mnt_flags; 1846 br_write_unlock(vfsmount_lock); 1847 } 1848 up_write(&sb->s_umount); 1849 if (!err) { 1850 br_write_lock(vfsmount_lock); 1851 touch_mnt_namespace(path->mnt->mnt_ns); 1852 br_write_unlock(vfsmount_lock); 1853 } 1854 return err; 1855} 1856 1857static inline int tree_contains_unbindable(struct vfsmount *mnt) 1858{ 1859 struct vfsmount *p; 1860 for (p = mnt; p; p = next_mnt(p, mnt)) { 1861 if (IS_MNT_UNBINDABLE(p)) 1862 return 1; 1863 } 1864 return 0; 1865} 1866 1867static int do_move_mount(struct path *path, char *old_name) 1868{ 1869 struct path old_path, parent_path; 1870 struct vfsmount *p; 1871 int err = 0; 1872 if (!capable(CAP_SYS_ADMIN)) 1873 return -EPERM; 1874 if (!old_name || !*old_name) 1875 return -EINVAL; 1876 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1877 if (err) 1878 return err; 1879 1880 err = lock_mount(path); 1881 if (err < 0) 1882 goto out; 1883 1884 err = -EINVAL; 1885 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1886 goto out1; 1887 1888 if (d_unlinked(path->dentry)) 1889 goto out1; 1890 1891 err = -EINVAL; 1892 if (old_path.dentry != old_path.mnt->mnt_root) 1893 goto out1; 1894 1895 if (old_path.mnt == old_path.mnt->mnt_parent) 1896 goto out1; 1897 1898 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1899 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1900 goto out1; 1901 /* 1902 * Don't move a mount residing in a shared parent. 1903 */ 1904 if (old_path.mnt->mnt_parent && 1905 IS_MNT_SHARED(old_path.mnt->mnt_parent)) 1906 goto out1; 1907 /* 1908 * Don't move a mount tree containing unbindable mounts to a destination 1909 * mount which is shared. 1910 */ 1911 if (IS_MNT_SHARED(path->mnt) && 1912 tree_contains_unbindable(old_path.mnt)) 1913 goto out1; 1914 err = -ELOOP; 1915 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent) 1916 if (p == old_path.mnt) 1917 goto out1; 1918 1919 err = attach_recursive_mnt(old_path.mnt, path, &parent_path); 1920 if (err) 1921 goto out1; 1922 1923 /* if the mount is moved, it should no longer be expire 1924 * automatically */ 1925 list_del_init(&old_path.mnt->mnt_expire); 1926out1: 1927 unlock_mount(path); 1928out: 1929 if (!err) 1930 path_put(&parent_path); 1931 path_put(&old_path); 1932 return err; 1933} 1934 1935static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1936{ 1937 int err; 1938 const char *subtype = strchr(fstype, '.'); 1939 if (subtype) { 1940 subtype++; 1941 err = -EINVAL; 1942 if (!subtype[0]) 1943 goto err; 1944 } else 1945 subtype = ""; 1946 1947 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1948 err = -ENOMEM; 1949 if (!mnt->mnt_sb->s_subtype) 1950 goto err; 1951 return mnt; 1952 1953 err: 1954 mntput(mnt); 1955 return ERR_PTR(err); 1956} 1957 1958struct vfsmount * 1959do_kern_mount(const char *fstype, int flags, const char *name, void *data) 1960{ 1961 struct file_system_type *type = get_fs_type(fstype); 1962 struct vfsmount *mnt; 1963 if (!type) 1964 return ERR_PTR(-ENODEV); 1965 mnt = vfs_kern_mount(type, flags, name, data); 1966 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1967 !mnt->mnt_sb->s_subtype) 1968 mnt = fs_set_subtype(mnt, fstype); 1969 put_filesystem(type); 1970 return mnt; 1971} 1972EXPORT_SYMBOL_GPL(do_kern_mount); 1973 1974/* 1975 * add a mount into a namespace's mount tree 1976 */ 1977static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags) 1978{ 1979 int err; 1980 1981 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1982 1983 err = lock_mount(path); 1984 if (err) 1985 return err; 1986 1987 err = -EINVAL; 1988 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt)) 1989 goto unlock; 1990 1991 /* Refuse the same filesystem on the same mount point */ 1992 err = -EBUSY; 1993 if (path->mnt->mnt_sb == newmnt->mnt_sb && 1994 path->mnt->mnt_root == path->dentry) 1995 goto unlock; 1996 1997 err = -EINVAL; 1998 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1999 goto unlock; 2000 2001 newmnt->mnt_flags = mnt_flags; 2002 err = graft_tree(newmnt, path); 2003 2004unlock: 2005 unlock_mount(path); 2006 return err; 2007} 2008 2009/* 2010 * create a new mount for userspace and request it to be added into the 2011 * namespace's tree 2012 */ 2013static int do_new_mount(struct path *path, char *type, int flags, 2014 int mnt_flags, char *name, void *data) 2015{ 2016 struct vfsmount *mnt; 2017 int err; 2018 2019 if (!type) 2020 return -EINVAL; 2021 2022 /* we need capabilities... */ 2023 if (!capable(CAP_SYS_ADMIN)) 2024 return -EPERM; 2025 2026 mnt = do_kern_mount(type, flags, name, data); 2027 if (IS_ERR(mnt)) 2028 return PTR_ERR(mnt); 2029 2030 err = do_add_mount(mnt, path, mnt_flags); 2031 if (err) 2032 mntput(mnt); 2033 return err; 2034} 2035 2036int finish_automount(struct vfsmount *m, struct path *path) 2037{ 2038 int err; 2039 /* The new mount record should have at least 2 refs to prevent it being 2040 * expired before we get a chance to add it 2041 */ 2042 BUG_ON(mnt_get_count(m) < 2); 2043 2044 if (m->mnt_sb == path->mnt->mnt_sb && 2045 m->mnt_root == path->dentry) { 2046 err = -ELOOP; 2047 goto fail; 2048 } 2049 2050 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2051 if (!err) 2052 return 0; 2053fail: 2054 /* remove m from any expiration list it may be on */ 2055 if (!list_empty(&m->mnt_expire)) { 2056 down_write(&namespace_sem); 2057 br_write_lock(vfsmount_lock); 2058 list_del_init(&m->mnt_expire); 2059 br_write_unlock(vfsmount_lock); 2060 up_write(&namespace_sem); 2061 } 2062 mntput(m); 2063 mntput(m); 2064 return err; 2065} 2066 2067/** 2068 * mnt_set_expiry - Put a mount on an expiration list 2069 * @mnt: The mount to list. 2070 * @expiry_list: The list to add the mount to. 2071 */ 2072void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2073{ 2074 down_write(&namespace_sem); 2075 br_write_lock(vfsmount_lock); 2076 2077 list_add_tail(&mnt->mnt_expire, expiry_list); 2078 2079 br_write_unlock(vfsmount_lock); 2080 up_write(&namespace_sem); 2081} 2082EXPORT_SYMBOL(mnt_set_expiry); 2083 2084/* 2085 * process a list of expirable mountpoints with the intent of discarding any 2086 * mountpoints that aren't in use and haven't been touched since last we came 2087 * here 2088 */ 2089void mark_mounts_for_expiry(struct list_head *mounts) 2090{ 2091 struct vfsmount *mnt, *next; 2092 LIST_HEAD(graveyard); 2093 LIST_HEAD(umounts); 2094 2095 if (list_empty(mounts)) 2096 return; 2097 2098 down_write(&namespace_sem); 2099 br_write_lock(vfsmount_lock); 2100 2101 /* extract from the expiration list every vfsmount that matches the 2102 * following criteria: 2103 * - only referenced by its parent vfsmount 2104 * - still marked for expiry (marked on the last call here; marks are 2105 * cleared by mntput()) 2106 */ 2107 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2108 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2109 propagate_mount_busy(mnt, 1)) 2110 continue; 2111 list_move(&mnt->mnt_expire, &graveyard); 2112 } 2113 while (!list_empty(&graveyard)) { 2114 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); 2115 touch_mnt_namespace(mnt->mnt_ns); 2116 umount_tree(mnt, 1, &umounts); 2117 } 2118 br_write_unlock(vfsmount_lock); 2119 up_write(&namespace_sem); 2120 2121 release_mounts(&umounts); 2122} 2123 2124EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2125 2126/* 2127 * Ripoff of 'select_parent()' 2128 * 2129 * search the list of submounts for a given mountpoint, and move any 2130 * shrinkable submounts to the 'graveyard' list. 2131 */ 2132static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 2133{ 2134 struct vfsmount *this_parent = parent; 2135 struct list_head *next; 2136 int found = 0; 2137 2138repeat: 2139 next = this_parent->mnt_mounts.next; 2140resume: 2141 while (next != &this_parent->mnt_mounts) { 2142 struct list_head *tmp = next; 2143 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 2144 2145 next = tmp->next; 2146 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 2147 continue; 2148 /* 2149 * Descend a level if the d_mounts list is non-empty. 2150 */ 2151 if (!list_empty(&mnt->mnt_mounts)) { 2152 this_parent = mnt; 2153 goto repeat; 2154 } 2155 2156 if (!propagate_mount_busy(mnt, 1)) { 2157 list_move_tail(&mnt->mnt_expire, graveyard); 2158 found++; 2159 } 2160 } 2161 /* 2162 * All done at this level ... ascend and resume the search 2163 */ 2164 if (this_parent != parent) { 2165 next = this_parent->mnt_child.next; 2166 this_parent = this_parent->mnt_parent; 2167 goto resume; 2168 } 2169 return found; 2170} 2171 2172/* 2173 * process a list of expirable mountpoints with the intent of discarding any 2174 * submounts of a specific parent mountpoint 2175 * 2176 * vfsmount_lock must be held for write 2177 */ 2178static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) 2179{ 2180 LIST_HEAD(graveyard); 2181 struct vfsmount *m; 2182 2183 /* extract submounts of 'mountpoint' from the expiration list */ 2184 while (select_submounts(mnt, &graveyard)) { 2185 while (!list_empty(&graveyard)) { 2186 m = list_first_entry(&graveyard, struct vfsmount, 2187 mnt_expire); 2188 touch_mnt_namespace(m->mnt_ns); 2189 umount_tree(m, 1, umounts); 2190 } 2191 } 2192} 2193 2194/* 2195 * Some copy_from_user() implementations do not return the exact number of 2196 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2197 * Note that this function differs from copy_from_user() in that it will oops 2198 * on bad values of `to', rather than returning a short copy. 2199 */ 2200static long exact_copy_from_user(void *to, const void __user * from, 2201 unsigned long n) 2202{ 2203 char *t = to; 2204 const char __user *f = from; 2205 char c; 2206 2207 if (!access_ok(VERIFY_READ, from, n)) 2208 return n; 2209 2210 while (n) { 2211 if (__get_user(c, f)) { 2212 memset(t, 0, n); 2213 break; 2214 } 2215 *t++ = c; 2216 f++; 2217 n--; 2218 } 2219 return n; 2220} 2221 2222int copy_mount_options(const void __user * data, unsigned long *where) 2223{ 2224 int i; 2225 unsigned long page; 2226 unsigned long size; 2227 2228 *where = 0; 2229 if (!data) 2230 return 0; 2231 2232 if (!(page = __get_free_page(GFP_KERNEL))) 2233 return -ENOMEM; 2234 2235 /* We only care that *some* data at the address the user 2236 * gave us is valid. Just in case, we'll zero 2237 * the remainder of the page. 2238 */ 2239 /* copy_from_user cannot cross TASK_SIZE ! */ 2240 size = TASK_SIZE - (unsigned long)data; 2241 if (size > PAGE_SIZE) 2242 size = PAGE_SIZE; 2243 2244 i = size - exact_copy_from_user((void *)page, data, size); 2245 if (!i) { 2246 free_page(page); 2247 return -EFAULT; 2248 } 2249 if (i != PAGE_SIZE) 2250 memset((char *)page + i, 0, PAGE_SIZE - i); 2251 *where = page; 2252 return 0; 2253} 2254 2255int copy_mount_string(const void __user *data, char **where) 2256{ 2257 char *tmp; 2258 2259 if (!data) { 2260 *where = NULL; 2261 return 0; 2262 } 2263 2264 tmp = strndup_user(data, PAGE_SIZE); 2265 if (IS_ERR(tmp)) 2266 return PTR_ERR(tmp); 2267 2268 *where = tmp; 2269 return 0; 2270} 2271 2272/* 2273 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2274 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2275 * 2276 * data is a (void *) that can point to any structure up to 2277 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2278 * information (or be NULL). 2279 * 2280 * Pre-0.97 versions of mount() didn't have a flags word. 2281 * When the flags word was introduced its top half was required 2282 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2283 * Therefore, if this magic number is present, it carries no information 2284 * and must be discarded. 2285 */ 2286long do_mount(char *dev_name, char *dir_name, char *type_page, 2287 unsigned long flags, void *data_page) 2288{ 2289 struct path path; 2290 int retval = 0; 2291 int mnt_flags = 0; 2292 2293 /* Discard magic */ 2294 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2295 flags &= ~MS_MGC_MSK; 2296 2297 /* Basic sanity checks */ 2298 2299 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2300 return -EINVAL; 2301 2302 if (data_page) 2303 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2304 2305 /* ... and get the mountpoint */ 2306 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2307 if (retval) 2308 return retval; 2309 2310 retval = security_sb_mount(dev_name, &path, 2311 type_page, flags, data_page); 2312 if (retval) 2313 goto dput_out; 2314 2315 /* Default to relatime unless overriden */ 2316 if (!(flags & MS_NOATIME)) 2317 mnt_flags |= MNT_RELATIME; 2318 2319 /* Separate the per-mountpoint flags */ 2320 if (flags & MS_NOSUID) 2321 mnt_flags |= MNT_NOSUID; 2322 if (flags & MS_NODEV) 2323 mnt_flags |= MNT_NODEV; 2324 if (flags & MS_NOEXEC) 2325 mnt_flags |= MNT_NOEXEC; 2326 if (flags & MS_NOATIME) 2327 mnt_flags |= MNT_NOATIME; 2328 if (flags & MS_NODIRATIME) 2329 mnt_flags |= MNT_NODIRATIME; 2330 if (flags & MS_STRICTATIME) 2331 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2332 if (flags & MS_RDONLY) 2333 mnt_flags |= MNT_READONLY; 2334 2335 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2336 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2337 MS_STRICTATIME); 2338 2339 if (flags & MS_REMOUNT) 2340 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2341 data_page); 2342 else if (flags & MS_BIND) 2343 retval = do_loopback(&path, dev_name, flags & MS_REC); 2344 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2345 retval = do_change_type(&path, flags); 2346 else if (flags & MS_MOVE) 2347 retval = do_move_mount(&path, dev_name); 2348 else 2349 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2350 dev_name, data_page); 2351dput_out: 2352 path_put(&path); 2353 return retval; 2354} 2355 2356static struct mnt_namespace *alloc_mnt_ns(void) 2357{ 2358 struct mnt_namespace *new_ns; 2359 2360 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2361 if (!new_ns) 2362 return ERR_PTR(-ENOMEM); 2363 atomic_set(&new_ns->count, 1); 2364 new_ns->root = NULL; 2365 INIT_LIST_HEAD(&new_ns->list); 2366 init_waitqueue_head(&new_ns->poll); 2367 new_ns->event = 0; 2368 return new_ns; 2369} 2370 2371void mnt_make_longterm(struct vfsmount *mnt) 2372{ 2373 __mnt_make_longterm(mnt); 2374} 2375 2376void mnt_make_shortterm(struct vfsmount *mnt) 2377{ 2378#ifdef CONFIG_SMP 2379 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1)) 2380 return; 2381 br_write_lock(vfsmount_lock); 2382 atomic_dec(&mnt->mnt_longterm); 2383 br_write_unlock(vfsmount_lock); 2384#endif 2385} 2386 2387/* 2388 * Allocate a new namespace structure and populate it with contents 2389 * copied from the namespace of the passed in task structure. 2390 */ 2391static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2392 struct fs_struct *fs) 2393{ 2394 struct mnt_namespace *new_ns; 2395 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2396 struct vfsmount *p, *q; 2397 2398 new_ns = alloc_mnt_ns(); 2399 if (IS_ERR(new_ns)) 2400 return new_ns; 2401 2402 down_write(&namespace_sem); 2403 /* First pass: copy the tree topology */ 2404 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 2405 CL_COPY_ALL | CL_EXPIRE); 2406 if (!new_ns->root) { 2407 up_write(&namespace_sem); 2408 kfree(new_ns); 2409 return ERR_PTR(-ENOMEM); 2410 } 2411 br_write_lock(vfsmount_lock); 2412 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 2413 br_write_unlock(vfsmount_lock); 2414 2415 /* 2416 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2417 * as belonging to new namespace. We have already acquired a private 2418 * fs_struct, so tsk->fs->lock is not needed. 2419 */ 2420 p = mnt_ns->root; 2421 q = new_ns->root; 2422 while (p) { 2423 q->mnt_ns = new_ns; 2424 __mnt_make_longterm(q); 2425 if (fs) { 2426 if (p == fs->root.mnt) { 2427 fs->root.mnt = mntget(q); 2428 __mnt_make_longterm(q); 2429 mnt_make_shortterm(p); 2430 rootmnt = p; 2431 } 2432 if (p == fs->pwd.mnt) { 2433 fs->pwd.mnt = mntget(q); 2434 __mnt_make_longterm(q); 2435 mnt_make_shortterm(p); 2436 pwdmnt = p; 2437 } 2438 } 2439 p = next_mnt(p, mnt_ns->root); 2440 q = next_mnt(q, new_ns->root); 2441 } 2442 up_write(&namespace_sem); 2443 2444 if (rootmnt) 2445 mntput(rootmnt); 2446 if (pwdmnt) 2447 mntput(pwdmnt); 2448 2449 return new_ns; 2450} 2451 2452struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2453 struct fs_struct *new_fs) 2454{ 2455 struct mnt_namespace *new_ns; 2456 2457 BUG_ON(!ns); 2458 get_mnt_ns(ns); 2459 2460 if (!(flags & CLONE_NEWNS)) 2461 return ns; 2462 2463 new_ns = dup_mnt_ns(ns, new_fs); 2464 2465 put_mnt_ns(ns); 2466 return new_ns; 2467} 2468 2469/** 2470 * create_mnt_ns - creates a private namespace and adds a root filesystem 2471 * @mnt: pointer to the new root filesystem mountpoint 2472 */ 2473struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt) 2474{ 2475 struct mnt_namespace *new_ns; 2476 2477 new_ns = alloc_mnt_ns(); 2478 if (!IS_ERR(new_ns)) { 2479 mnt->mnt_ns = new_ns; 2480 __mnt_make_longterm(mnt); 2481 new_ns->root = mnt; 2482 list_add(&new_ns->list, &new_ns->root->mnt_list); 2483 } else { 2484 mntput(mnt); 2485 } 2486 return new_ns; 2487} 2488EXPORT_SYMBOL(create_mnt_ns); 2489 2490struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2491{ 2492 struct mnt_namespace *ns; 2493 struct super_block *s; 2494 struct path path; 2495 int err; 2496 2497 ns = create_mnt_ns(mnt); 2498 if (IS_ERR(ns)) 2499 return ERR_CAST(ns); 2500 2501 err = vfs_path_lookup(mnt->mnt_root, mnt, 2502 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2503 2504 put_mnt_ns(ns); 2505 2506 if (err) 2507 return ERR_PTR(err); 2508 2509 /* trade a vfsmount reference for active sb one */ 2510 s = path.mnt->mnt_sb; 2511 atomic_inc(&s->s_active); 2512 mntput(path.mnt); 2513 /* lock the sucker */ 2514 down_write(&s->s_umount); 2515 /* ... and return the root of (sub)tree on it */ 2516 return path.dentry; 2517} 2518EXPORT_SYMBOL(mount_subtree); 2519 2520SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2521 char __user *, type, unsigned long, flags, void __user *, data) 2522{ 2523 int ret; 2524 char *kernel_type; 2525 char *kernel_dir; 2526 char *kernel_dev; 2527 unsigned long data_page; 2528 2529 ret = copy_mount_string(type, &kernel_type); 2530 if (ret < 0) 2531 goto out_type; 2532 2533 kernel_dir = getname(dir_name); 2534 if (IS_ERR(kernel_dir)) { 2535 ret = PTR_ERR(kernel_dir); 2536 goto out_dir; 2537 } 2538 2539 ret = copy_mount_string(dev_name, &kernel_dev); 2540 if (ret < 0) 2541 goto out_dev; 2542 2543 ret = copy_mount_options(data, &data_page); 2544 if (ret < 0) 2545 goto out_data; 2546 2547 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags, 2548 (void *) data_page); 2549 2550 free_page(data_page); 2551out_data: 2552 kfree(kernel_dev); 2553out_dev: 2554 putname(kernel_dir); 2555out_dir: 2556 kfree(kernel_type); 2557out_type: 2558 return ret; 2559} 2560 2561/* 2562 * pivot_root Semantics: 2563 * Moves the root file system of the current process to the directory put_old, 2564 * makes new_root as the new root file system of the current process, and sets 2565 * root/cwd of all processes which had them on the current root to new_root. 2566 * 2567 * Restrictions: 2568 * The new_root and put_old must be directories, and must not be on the 2569 * same file system as the current process root. The put_old must be 2570 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2571 * pointed to by put_old must yield the same directory as new_root. No other 2572 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2573 * 2574 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2575 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2576 * in this situation. 2577 * 2578 * Notes: 2579 * - we don't move root/cwd if they are not at the root (reason: if something 2580 * cared enough to change them, it's probably wrong to force them elsewhere) 2581 * - it's okay to pick a root that isn't the root of a file system, e.g. 2582 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2583 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2584 * first. 2585 */ 2586SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2587 const char __user *, put_old) 2588{ 2589 struct vfsmount *tmp; 2590 struct path new, old, parent_path, root_parent, root; 2591 int error; 2592 2593 if (!capable(CAP_SYS_ADMIN)) 2594 return -EPERM; 2595 2596 error = user_path_dir(new_root, &new); 2597 if (error) 2598 goto out0; 2599 2600 error = user_path_dir(put_old, &old); 2601 if (error) 2602 goto out1; 2603 2604 error = security_sb_pivotroot(&old, &new); 2605 if (error) 2606 goto out2; 2607 2608 get_fs_root(current->fs, &root); 2609 error = lock_mount(&old); 2610 if (error) 2611 goto out3; 2612 2613 error = -EINVAL; 2614 if (IS_MNT_SHARED(old.mnt) || 2615 IS_MNT_SHARED(new.mnt->mnt_parent) || 2616 IS_MNT_SHARED(root.mnt->mnt_parent)) 2617 goto out4; 2618 if (!check_mnt(root.mnt) || !check_mnt(new.mnt)) 2619 goto out4; 2620 error = -ENOENT; 2621 if (d_unlinked(new.dentry)) 2622 goto out4; 2623 if (d_unlinked(old.dentry)) 2624 goto out4; 2625 error = -EBUSY; 2626 if (new.mnt == root.mnt || 2627 old.mnt == root.mnt) 2628 goto out4; /* loop, on the same file system */ 2629 error = -EINVAL; 2630 if (root.mnt->mnt_root != root.dentry) 2631 goto out4; /* not a mountpoint */ 2632 if (root.mnt->mnt_parent == root.mnt) 2633 goto out4; /* not attached */ 2634 if (new.mnt->mnt_root != new.dentry) 2635 goto out4; /* not a mountpoint */ 2636 if (new.mnt->mnt_parent == new.mnt) 2637 goto out4; /* not attached */ 2638 /* make sure we can reach put_old from new_root */ 2639 tmp = old.mnt; 2640 if (tmp != new.mnt) { 2641 for (;;) { 2642 if (tmp->mnt_parent == tmp) 2643 goto out4; /* already mounted on put_old */ 2644 if (tmp->mnt_parent == new.mnt) 2645 break; 2646 tmp = tmp->mnt_parent; 2647 } 2648 if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) 2649 goto out4; 2650 } else if (!is_subdir(old.dentry, new.dentry)) 2651 goto out4; 2652 br_write_lock(vfsmount_lock); 2653 detach_mnt(new.mnt, &parent_path); 2654 detach_mnt(root.mnt, &root_parent); 2655 /* mount old root on put_old */ 2656 attach_mnt(root.mnt, &old); 2657 /* mount new_root on / */ 2658 attach_mnt(new.mnt, &root_parent); 2659 touch_mnt_namespace(current->nsproxy->mnt_ns); 2660 br_write_unlock(vfsmount_lock); 2661 chroot_fs_refs(&root, &new); 2662 error = 0; 2663out4: 2664 unlock_mount(&old); 2665 if (!error) { 2666 path_put(&root_parent); 2667 path_put(&parent_path); 2668 } 2669out3: 2670 path_put(&root); 2671out2: 2672 path_put(&old); 2673out1: 2674 path_put(&new); 2675out0: 2676 return error; 2677} 2678 2679static void __init init_mount_tree(void) 2680{ 2681 struct vfsmount *mnt; 2682 struct mnt_namespace *ns; 2683 struct path root; 2684 2685 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2686 if (IS_ERR(mnt)) 2687 panic("Can't create rootfs"); 2688 2689 ns = create_mnt_ns(mnt); 2690 if (IS_ERR(ns)) 2691 panic("Can't allocate initial namespace"); 2692 2693 init_task.nsproxy->mnt_ns = ns; 2694 get_mnt_ns(ns); 2695 2696 root.mnt = ns->root; 2697 root.dentry = ns->root->mnt_root; 2698 2699 set_fs_pwd(current->fs, &root); 2700 set_fs_root(current->fs, &root); 2701} 2702 2703void __init mnt_init(void) 2704{ 2705 unsigned u; 2706 int err; 2707 2708 init_rwsem(&namespace_sem); 2709 2710 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 2711 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2712 2713 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2714 2715 if (!mount_hashtable) 2716 panic("Failed to allocate mount hash table\n"); 2717 2718 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2719 2720 for (u = 0; u < HASH_SIZE; u++) 2721 INIT_LIST_HEAD(&mount_hashtable[u]); 2722 2723 br_lock_init(vfsmount_lock); 2724 2725 err = sysfs_init(); 2726 if (err) 2727 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2728 __func__, err); 2729 fs_kobj = kobject_create_and_add("fs", NULL); 2730 if (!fs_kobj) 2731 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2732 init_rootfs(); 2733 init_mount_tree(); 2734} 2735 2736void put_mnt_ns(struct mnt_namespace *ns) 2737{ 2738 LIST_HEAD(umount_list); 2739 2740 if (!atomic_dec_and_test(&ns->count)) 2741 return; 2742 down_write(&namespace_sem); 2743 br_write_lock(vfsmount_lock); 2744 umount_tree(ns->root, 0, &umount_list); 2745 br_write_unlock(vfsmount_lock); 2746 up_write(&namespace_sem); 2747 release_mounts(&umount_list); 2748 kfree(ns); 2749} 2750EXPORT_SYMBOL(put_mnt_ns); 2751 2752struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2753{ 2754 struct vfsmount *mnt; 2755 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2756 if (!IS_ERR(mnt)) { 2757 /* 2758 * it is a longterm mount, don't release mnt until 2759 * we unmount before file sys is unregistered 2760 */ 2761 mnt_make_longterm(mnt); 2762 } 2763 return mnt; 2764} 2765EXPORT_SYMBOL_GPL(kern_mount_data); 2766 2767void kern_unmount(struct vfsmount *mnt) 2768{ 2769 /* release long term mount so mount point can be released */ 2770 if (!IS_ERR_OR_NULL(mnt)) { 2771 mnt_make_shortterm(mnt); 2772 mntput(mnt); 2773 } 2774} 2775EXPORT_SYMBOL(kern_unmount); 2776 2777bool our_mnt(struct vfsmount *mnt) 2778{ 2779 return check_mnt(mnt); 2780}