at v3.2 38 kB view raw
1/* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16#include <linux/kernel.h> 17#include <linux/module.h> 18#include <linux/spinlock.h> 19#include <linux/slab.h> 20#include <linux/sched.h> 21#include <linux/fs.h> 22#include <linux/mm.h> 23#include <linux/kthread.h> 24#include <linux/freezer.h> 25#include <linux/writeback.h> 26#include <linux/blkdev.h> 27#include <linux/backing-dev.h> 28#include <linux/buffer_head.h> 29#include <linux/tracepoint.h> 30#include "internal.h" 31 32/* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 unsigned long *older_than_this; 39 enum writeback_sync_modes sync_mode; 40 unsigned int tagged_writepages:1; 41 unsigned int for_kupdate:1; 42 unsigned int range_cyclic:1; 43 unsigned int for_background:1; 44 enum wb_reason reason; /* why was writeback initiated? */ 45 46 struct list_head list; /* pending work list */ 47 struct completion *done; /* set if the caller waits */ 48}; 49 50/* 51 * Include the creation of the trace points after defining the 52 * wb_writeback_work structure so that the definition remains local to this 53 * file. 54 */ 55#define CREATE_TRACE_POINTS 56#include <trace/events/writeback.h> 57 58/* 59 * We don't actually have pdflush, but this one is exported though /proc... 60 */ 61int nr_pdflush_threads; 62 63/** 64 * writeback_in_progress - determine whether there is writeback in progress 65 * @bdi: the device's backing_dev_info structure. 66 * 67 * Determine whether there is writeback waiting to be handled against a 68 * backing device. 69 */ 70int writeback_in_progress(struct backing_dev_info *bdi) 71{ 72 return test_bit(BDI_writeback_running, &bdi->state); 73} 74 75static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 76{ 77 struct super_block *sb = inode->i_sb; 78 79 if (strcmp(sb->s_type->name, "bdev") == 0) 80 return inode->i_mapping->backing_dev_info; 81 82 return sb->s_bdi; 83} 84 85static inline struct inode *wb_inode(struct list_head *head) 86{ 87 return list_entry(head, struct inode, i_wb_list); 88} 89 90/* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 91static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 92{ 93 if (bdi->wb.task) { 94 wake_up_process(bdi->wb.task); 95 } else { 96 /* 97 * The bdi thread isn't there, wake up the forker thread which 98 * will create and run it. 99 */ 100 wake_up_process(default_backing_dev_info.wb.task); 101 } 102} 103 104static void bdi_queue_work(struct backing_dev_info *bdi, 105 struct wb_writeback_work *work) 106{ 107 trace_writeback_queue(bdi, work); 108 109 spin_lock_bh(&bdi->wb_lock); 110 list_add_tail(&work->list, &bdi->work_list); 111 if (!bdi->wb.task) 112 trace_writeback_nothread(bdi, work); 113 bdi_wakeup_flusher(bdi); 114 spin_unlock_bh(&bdi->wb_lock); 115} 116 117static void 118__bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 119 bool range_cyclic, enum wb_reason reason) 120{ 121 struct wb_writeback_work *work; 122 123 /* 124 * This is WB_SYNC_NONE writeback, so if allocation fails just 125 * wakeup the thread for old dirty data writeback 126 */ 127 work = kzalloc(sizeof(*work), GFP_ATOMIC); 128 if (!work) { 129 if (bdi->wb.task) { 130 trace_writeback_nowork(bdi); 131 wake_up_process(bdi->wb.task); 132 } 133 return; 134 } 135 136 work->sync_mode = WB_SYNC_NONE; 137 work->nr_pages = nr_pages; 138 work->range_cyclic = range_cyclic; 139 work->reason = reason; 140 141 bdi_queue_work(bdi, work); 142} 143 144/** 145 * bdi_start_writeback - start writeback 146 * @bdi: the backing device to write from 147 * @nr_pages: the number of pages to write 148 * @reason: reason why some writeback work was initiated 149 * 150 * Description: 151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 152 * started when this function returns, we make no guarantees on 153 * completion. Caller need not hold sb s_umount semaphore. 154 * 155 */ 156void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 157 enum wb_reason reason) 158{ 159 __bdi_start_writeback(bdi, nr_pages, true, reason); 160} 161 162/** 163 * bdi_start_background_writeback - start background writeback 164 * @bdi: the backing device to write from 165 * 166 * Description: 167 * This makes sure WB_SYNC_NONE background writeback happens. When 168 * this function returns, it is only guaranteed that for given BDI 169 * some IO is happening if we are over background dirty threshold. 170 * Caller need not hold sb s_umount semaphore. 171 */ 172void bdi_start_background_writeback(struct backing_dev_info *bdi) 173{ 174 /* 175 * We just wake up the flusher thread. It will perform background 176 * writeback as soon as there is no other work to do. 177 */ 178 trace_writeback_wake_background(bdi); 179 spin_lock_bh(&bdi->wb_lock); 180 bdi_wakeup_flusher(bdi); 181 spin_unlock_bh(&bdi->wb_lock); 182} 183 184/* 185 * Remove the inode from the writeback list it is on. 186 */ 187void inode_wb_list_del(struct inode *inode) 188{ 189 struct backing_dev_info *bdi = inode_to_bdi(inode); 190 191 spin_lock(&bdi->wb.list_lock); 192 list_del_init(&inode->i_wb_list); 193 spin_unlock(&bdi->wb.list_lock); 194} 195 196/* 197 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 198 * furthest end of its superblock's dirty-inode list. 199 * 200 * Before stamping the inode's ->dirtied_when, we check to see whether it is 201 * already the most-recently-dirtied inode on the b_dirty list. If that is 202 * the case then the inode must have been redirtied while it was being written 203 * out and we don't reset its dirtied_when. 204 */ 205static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 206{ 207 assert_spin_locked(&wb->list_lock); 208 if (!list_empty(&wb->b_dirty)) { 209 struct inode *tail; 210 211 tail = wb_inode(wb->b_dirty.next); 212 if (time_before(inode->dirtied_when, tail->dirtied_when)) 213 inode->dirtied_when = jiffies; 214 } 215 list_move(&inode->i_wb_list, &wb->b_dirty); 216} 217 218/* 219 * requeue inode for re-scanning after bdi->b_io list is exhausted. 220 */ 221static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 222{ 223 assert_spin_locked(&wb->list_lock); 224 list_move(&inode->i_wb_list, &wb->b_more_io); 225} 226 227static void inode_sync_complete(struct inode *inode) 228{ 229 /* 230 * Prevent speculative execution through 231 * spin_unlock(&wb->list_lock); 232 */ 233 234 smp_mb(); 235 wake_up_bit(&inode->i_state, __I_SYNC); 236} 237 238static bool inode_dirtied_after(struct inode *inode, unsigned long t) 239{ 240 bool ret = time_after(inode->dirtied_when, t); 241#ifndef CONFIG_64BIT 242 /* 243 * For inodes being constantly redirtied, dirtied_when can get stuck. 244 * It _appears_ to be in the future, but is actually in distant past. 245 * This test is necessary to prevent such wrapped-around relative times 246 * from permanently stopping the whole bdi writeback. 247 */ 248 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 249#endif 250 return ret; 251} 252 253/* 254 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 255 */ 256static int move_expired_inodes(struct list_head *delaying_queue, 257 struct list_head *dispatch_queue, 258 struct wb_writeback_work *work) 259{ 260 LIST_HEAD(tmp); 261 struct list_head *pos, *node; 262 struct super_block *sb = NULL; 263 struct inode *inode; 264 int do_sb_sort = 0; 265 int moved = 0; 266 267 while (!list_empty(delaying_queue)) { 268 inode = wb_inode(delaying_queue->prev); 269 if (work->older_than_this && 270 inode_dirtied_after(inode, *work->older_than_this)) 271 break; 272 if (sb && sb != inode->i_sb) 273 do_sb_sort = 1; 274 sb = inode->i_sb; 275 list_move(&inode->i_wb_list, &tmp); 276 moved++; 277 } 278 279 /* just one sb in list, splice to dispatch_queue and we're done */ 280 if (!do_sb_sort) { 281 list_splice(&tmp, dispatch_queue); 282 goto out; 283 } 284 285 /* Move inodes from one superblock together */ 286 while (!list_empty(&tmp)) { 287 sb = wb_inode(tmp.prev)->i_sb; 288 list_for_each_prev_safe(pos, node, &tmp) { 289 inode = wb_inode(pos); 290 if (inode->i_sb == sb) 291 list_move(&inode->i_wb_list, dispatch_queue); 292 } 293 } 294out: 295 return moved; 296} 297 298/* 299 * Queue all expired dirty inodes for io, eldest first. 300 * Before 301 * newly dirtied b_dirty b_io b_more_io 302 * =============> gf edc BA 303 * After 304 * newly dirtied b_dirty b_io b_more_io 305 * =============> g fBAedc 306 * | 307 * +--> dequeue for IO 308 */ 309static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 310{ 311 int moved; 312 assert_spin_locked(&wb->list_lock); 313 list_splice_init(&wb->b_more_io, &wb->b_io); 314 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 315 trace_writeback_queue_io(wb, work, moved); 316} 317 318static int write_inode(struct inode *inode, struct writeback_control *wbc) 319{ 320 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 321 return inode->i_sb->s_op->write_inode(inode, wbc); 322 return 0; 323} 324 325/* 326 * Wait for writeback on an inode to complete. 327 */ 328static void inode_wait_for_writeback(struct inode *inode, 329 struct bdi_writeback *wb) 330{ 331 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 332 wait_queue_head_t *wqh; 333 334 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 335 while (inode->i_state & I_SYNC) { 336 spin_unlock(&inode->i_lock); 337 spin_unlock(&wb->list_lock); 338 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 339 spin_lock(&wb->list_lock); 340 spin_lock(&inode->i_lock); 341 } 342} 343 344/* 345 * Write out an inode's dirty pages. Called under wb->list_lock and 346 * inode->i_lock. Either the caller has an active reference on the inode or 347 * the inode has I_WILL_FREE set. 348 * 349 * If `wait' is set, wait on the writeout. 350 * 351 * The whole writeout design is quite complex and fragile. We want to avoid 352 * starvation of particular inodes when others are being redirtied, prevent 353 * livelocks, etc. 354 */ 355static int 356writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 357 struct writeback_control *wbc) 358{ 359 struct address_space *mapping = inode->i_mapping; 360 long nr_to_write = wbc->nr_to_write; 361 unsigned dirty; 362 int ret; 363 364 assert_spin_locked(&wb->list_lock); 365 assert_spin_locked(&inode->i_lock); 366 367 if (!atomic_read(&inode->i_count)) 368 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 369 else 370 WARN_ON(inode->i_state & I_WILL_FREE); 371 372 if (inode->i_state & I_SYNC) { 373 /* 374 * If this inode is locked for writeback and we are not doing 375 * writeback-for-data-integrity, move it to b_more_io so that 376 * writeback can proceed with the other inodes on s_io. 377 * 378 * We'll have another go at writing back this inode when we 379 * completed a full scan of b_io. 380 */ 381 if (wbc->sync_mode != WB_SYNC_ALL) { 382 requeue_io(inode, wb); 383 trace_writeback_single_inode_requeue(inode, wbc, 384 nr_to_write); 385 return 0; 386 } 387 388 /* 389 * It's a data-integrity sync. We must wait. 390 */ 391 inode_wait_for_writeback(inode, wb); 392 } 393 394 BUG_ON(inode->i_state & I_SYNC); 395 396 /* Set I_SYNC, reset I_DIRTY_PAGES */ 397 inode->i_state |= I_SYNC; 398 inode->i_state &= ~I_DIRTY_PAGES; 399 spin_unlock(&inode->i_lock); 400 spin_unlock(&wb->list_lock); 401 402 ret = do_writepages(mapping, wbc); 403 404 /* 405 * Make sure to wait on the data before writing out the metadata. 406 * This is important for filesystems that modify metadata on data 407 * I/O completion. 408 */ 409 if (wbc->sync_mode == WB_SYNC_ALL) { 410 int err = filemap_fdatawait(mapping); 411 if (ret == 0) 412 ret = err; 413 } 414 415 /* 416 * Some filesystems may redirty the inode during the writeback 417 * due to delalloc, clear dirty metadata flags right before 418 * write_inode() 419 */ 420 spin_lock(&inode->i_lock); 421 dirty = inode->i_state & I_DIRTY; 422 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 423 spin_unlock(&inode->i_lock); 424 /* Don't write the inode if only I_DIRTY_PAGES was set */ 425 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 426 int err = write_inode(inode, wbc); 427 if (ret == 0) 428 ret = err; 429 } 430 431 spin_lock(&wb->list_lock); 432 spin_lock(&inode->i_lock); 433 inode->i_state &= ~I_SYNC; 434 if (!(inode->i_state & I_FREEING)) { 435 /* 436 * Sync livelock prevention. Each inode is tagged and synced in 437 * one shot. If still dirty, it will be redirty_tail()'ed below. 438 * Update the dirty time to prevent enqueue and sync it again. 439 */ 440 if ((inode->i_state & I_DIRTY) && 441 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 442 inode->dirtied_when = jiffies; 443 444 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 445 /* 446 * We didn't write back all the pages. nfs_writepages() 447 * sometimes bales out without doing anything. 448 */ 449 inode->i_state |= I_DIRTY_PAGES; 450 if (wbc->nr_to_write <= 0) { 451 /* 452 * slice used up: queue for next turn 453 */ 454 requeue_io(inode, wb); 455 } else { 456 /* 457 * Writeback blocked by something other than 458 * congestion. Delay the inode for some time to 459 * avoid spinning on the CPU (100% iowait) 460 * retrying writeback of the dirty page/inode 461 * that cannot be performed immediately. 462 */ 463 redirty_tail(inode, wb); 464 } 465 } else if (inode->i_state & I_DIRTY) { 466 /* 467 * Filesystems can dirty the inode during writeback 468 * operations, such as delayed allocation during 469 * submission or metadata updates after data IO 470 * completion. 471 */ 472 redirty_tail(inode, wb); 473 } else { 474 /* 475 * The inode is clean. At this point we either have 476 * a reference to the inode or it's on it's way out. 477 * No need to add it back to the LRU. 478 */ 479 list_del_init(&inode->i_wb_list); 480 } 481 } 482 inode_sync_complete(inode); 483 trace_writeback_single_inode(inode, wbc, nr_to_write); 484 return ret; 485} 486 487static long writeback_chunk_size(struct backing_dev_info *bdi, 488 struct wb_writeback_work *work) 489{ 490 long pages; 491 492 /* 493 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 494 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 495 * here avoids calling into writeback_inodes_wb() more than once. 496 * 497 * The intended call sequence for WB_SYNC_ALL writeback is: 498 * 499 * wb_writeback() 500 * writeback_sb_inodes() <== called only once 501 * write_cache_pages() <== called once for each inode 502 * (quickly) tag currently dirty pages 503 * (maybe slowly) sync all tagged pages 504 */ 505 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 506 pages = LONG_MAX; 507 else { 508 pages = min(bdi->avg_write_bandwidth / 2, 509 global_dirty_limit / DIRTY_SCOPE); 510 pages = min(pages, work->nr_pages); 511 pages = round_down(pages + MIN_WRITEBACK_PAGES, 512 MIN_WRITEBACK_PAGES); 513 } 514 515 return pages; 516} 517 518/* 519 * Write a portion of b_io inodes which belong to @sb. 520 * 521 * If @only_this_sb is true, then find and write all such 522 * inodes. Otherwise write only ones which go sequentially 523 * in reverse order. 524 * 525 * Return the number of pages and/or inodes written. 526 */ 527static long writeback_sb_inodes(struct super_block *sb, 528 struct bdi_writeback *wb, 529 struct wb_writeback_work *work) 530{ 531 struct writeback_control wbc = { 532 .sync_mode = work->sync_mode, 533 .tagged_writepages = work->tagged_writepages, 534 .for_kupdate = work->for_kupdate, 535 .for_background = work->for_background, 536 .range_cyclic = work->range_cyclic, 537 .range_start = 0, 538 .range_end = LLONG_MAX, 539 }; 540 unsigned long start_time = jiffies; 541 long write_chunk; 542 long wrote = 0; /* count both pages and inodes */ 543 544 while (!list_empty(&wb->b_io)) { 545 struct inode *inode = wb_inode(wb->b_io.prev); 546 547 if (inode->i_sb != sb) { 548 if (work->sb) { 549 /* 550 * We only want to write back data for this 551 * superblock, move all inodes not belonging 552 * to it back onto the dirty list. 553 */ 554 redirty_tail(inode, wb); 555 continue; 556 } 557 558 /* 559 * The inode belongs to a different superblock. 560 * Bounce back to the caller to unpin this and 561 * pin the next superblock. 562 */ 563 break; 564 } 565 566 /* 567 * Don't bother with new inodes or inodes beeing freed, first 568 * kind does not need peridic writeout yet, and for the latter 569 * kind writeout is handled by the freer. 570 */ 571 spin_lock(&inode->i_lock); 572 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 573 spin_unlock(&inode->i_lock); 574 redirty_tail(inode, wb); 575 continue; 576 } 577 __iget(inode); 578 write_chunk = writeback_chunk_size(wb->bdi, work); 579 wbc.nr_to_write = write_chunk; 580 wbc.pages_skipped = 0; 581 582 writeback_single_inode(inode, wb, &wbc); 583 584 work->nr_pages -= write_chunk - wbc.nr_to_write; 585 wrote += write_chunk - wbc.nr_to_write; 586 if (!(inode->i_state & I_DIRTY)) 587 wrote++; 588 if (wbc.pages_skipped) { 589 /* 590 * writeback is not making progress due to locked 591 * buffers. Skip this inode for now. 592 */ 593 redirty_tail(inode, wb); 594 } 595 spin_unlock(&inode->i_lock); 596 spin_unlock(&wb->list_lock); 597 iput(inode); 598 cond_resched(); 599 spin_lock(&wb->list_lock); 600 /* 601 * bail out to wb_writeback() often enough to check 602 * background threshold and other termination conditions. 603 */ 604 if (wrote) { 605 if (time_is_before_jiffies(start_time + HZ / 10UL)) 606 break; 607 if (work->nr_pages <= 0) 608 break; 609 } 610 } 611 return wrote; 612} 613 614static long __writeback_inodes_wb(struct bdi_writeback *wb, 615 struct wb_writeback_work *work) 616{ 617 unsigned long start_time = jiffies; 618 long wrote = 0; 619 620 while (!list_empty(&wb->b_io)) { 621 struct inode *inode = wb_inode(wb->b_io.prev); 622 struct super_block *sb = inode->i_sb; 623 624 if (!grab_super_passive(sb)) { 625 /* 626 * grab_super_passive() may fail consistently due to 627 * s_umount being grabbed by someone else. Don't use 628 * requeue_io() to avoid busy retrying the inode/sb. 629 */ 630 redirty_tail(inode, wb); 631 continue; 632 } 633 wrote += writeback_sb_inodes(sb, wb, work); 634 drop_super(sb); 635 636 /* refer to the same tests at the end of writeback_sb_inodes */ 637 if (wrote) { 638 if (time_is_before_jiffies(start_time + HZ / 10UL)) 639 break; 640 if (work->nr_pages <= 0) 641 break; 642 } 643 } 644 /* Leave any unwritten inodes on b_io */ 645 return wrote; 646} 647 648long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 649 enum wb_reason reason) 650{ 651 struct wb_writeback_work work = { 652 .nr_pages = nr_pages, 653 .sync_mode = WB_SYNC_NONE, 654 .range_cyclic = 1, 655 .reason = reason, 656 }; 657 658 spin_lock(&wb->list_lock); 659 if (list_empty(&wb->b_io)) 660 queue_io(wb, &work); 661 __writeback_inodes_wb(wb, &work); 662 spin_unlock(&wb->list_lock); 663 664 return nr_pages - work.nr_pages; 665} 666 667static bool over_bground_thresh(struct backing_dev_info *bdi) 668{ 669 unsigned long background_thresh, dirty_thresh; 670 671 global_dirty_limits(&background_thresh, &dirty_thresh); 672 673 if (global_page_state(NR_FILE_DIRTY) + 674 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 675 return true; 676 677 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 678 bdi_dirty_limit(bdi, background_thresh)) 679 return true; 680 681 return false; 682} 683 684/* 685 * Called under wb->list_lock. If there are multiple wb per bdi, 686 * only the flusher working on the first wb should do it. 687 */ 688static void wb_update_bandwidth(struct bdi_writeback *wb, 689 unsigned long start_time) 690{ 691 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 692} 693 694/* 695 * Explicit flushing or periodic writeback of "old" data. 696 * 697 * Define "old": the first time one of an inode's pages is dirtied, we mark the 698 * dirtying-time in the inode's address_space. So this periodic writeback code 699 * just walks the superblock inode list, writing back any inodes which are 700 * older than a specific point in time. 701 * 702 * Try to run once per dirty_writeback_interval. But if a writeback event 703 * takes longer than a dirty_writeback_interval interval, then leave a 704 * one-second gap. 705 * 706 * older_than_this takes precedence over nr_to_write. So we'll only write back 707 * all dirty pages if they are all attached to "old" mappings. 708 */ 709static long wb_writeback(struct bdi_writeback *wb, 710 struct wb_writeback_work *work) 711{ 712 unsigned long wb_start = jiffies; 713 long nr_pages = work->nr_pages; 714 unsigned long oldest_jif; 715 struct inode *inode; 716 long progress; 717 718 oldest_jif = jiffies; 719 work->older_than_this = &oldest_jif; 720 721 spin_lock(&wb->list_lock); 722 for (;;) { 723 /* 724 * Stop writeback when nr_pages has been consumed 725 */ 726 if (work->nr_pages <= 0) 727 break; 728 729 /* 730 * Background writeout and kupdate-style writeback may 731 * run forever. Stop them if there is other work to do 732 * so that e.g. sync can proceed. They'll be restarted 733 * after the other works are all done. 734 */ 735 if ((work->for_background || work->for_kupdate) && 736 !list_empty(&wb->bdi->work_list)) 737 break; 738 739 /* 740 * For background writeout, stop when we are below the 741 * background dirty threshold 742 */ 743 if (work->for_background && !over_bground_thresh(wb->bdi)) 744 break; 745 746 if (work->for_kupdate) { 747 oldest_jif = jiffies - 748 msecs_to_jiffies(dirty_expire_interval * 10); 749 work->older_than_this = &oldest_jif; 750 } 751 752 trace_writeback_start(wb->bdi, work); 753 if (list_empty(&wb->b_io)) 754 queue_io(wb, work); 755 if (work->sb) 756 progress = writeback_sb_inodes(work->sb, wb, work); 757 else 758 progress = __writeback_inodes_wb(wb, work); 759 trace_writeback_written(wb->bdi, work); 760 761 wb_update_bandwidth(wb, wb_start); 762 763 /* 764 * Did we write something? Try for more 765 * 766 * Dirty inodes are moved to b_io for writeback in batches. 767 * The completion of the current batch does not necessarily 768 * mean the overall work is done. So we keep looping as long 769 * as made some progress on cleaning pages or inodes. 770 */ 771 if (progress) 772 continue; 773 /* 774 * No more inodes for IO, bail 775 */ 776 if (list_empty(&wb->b_more_io)) 777 break; 778 /* 779 * Nothing written. Wait for some inode to 780 * become available for writeback. Otherwise 781 * we'll just busyloop. 782 */ 783 if (!list_empty(&wb->b_more_io)) { 784 trace_writeback_wait(wb->bdi, work); 785 inode = wb_inode(wb->b_more_io.prev); 786 spin_lock(&inode->i_lock); 787 inode_wait_for_writeback(inode, wb); 788 spin_unlock(&inode->i_lock); 789 } 790 } 791 spin_unlock(&wb->list_lock); 792 793 return nr_pages - work->nr_pages; 794} 795 796/* 797 * Return the next wb_writeback_work struct that hasn't been processed yet. 798 */ 799static struct wb_writeback_work * 800get_next_work_item(struct backing_dev_info *bdi) 801{ 802 struct wb_writeback_work *work = NULL; 803 804 spin_lock_bh(&bdi->wb_lock); 805 if (!list_empty(&bdi->work_list)) { 806 work = list_entry(bdi->work_list.next, 807 struct wb_writeback_work, list); 808 list_del_init(&work->list); 809 } 810 spin_unlock_bh(&bdi->wb_lock); 811 return work; 812} 813 814/* 815 * Add in the number of potentially dirty inodes, because each inode 816 * write can dirty pagecache in the underlying blockdev. 817 */ 818static unsigned long get_nr_dirty_pages(void) 819{ 820 return global_page_state(NR_FILE_DIRTY) + 821 global_page_state(NR_UNSTABLE_NFS) + 822 get_nr_dirty_inodes(); 823} 824 825static long wb_check_background_flush(struct bdi_writeback *wb) 826{ 827 if (over_bground_thresh(wb->bdi)) { 828 829 struct wb_writeback_work work = { 830 .nr_pages = LONG_MAX, 831 .sync_mode = WB_SYNC_NONE, 832 .for_background = 1, 833 .range_cyclic = 1, 834 .reason = WB_REASON_BACKGROUND, 835 }; 836 837 return wb_writeback(wb, &work); 838 } 839 840 return 0; 841} 842 843static long wb_check_old_data_flush(struct bdi_writeback *wb) 844{ 845 unsigned long expired; 846 long nr_pages; 847 848 /* 849 * When set to zero, disable periodic writeback 850 */ 851 if (!dirty_writeback_interval) 852 return 0; 853 854 expired = wb->last_old_flush + 855 msecs_to_jiffies(dirty_writeback_interval * 10); 856 if (time_before(jiffies, expired)) 857 return 0; 858 859 wb->last_old_flush = jiffies; 860 nr_pages = get_nr_dirty_pages(); 861 862 if (nr_pages) { 863 struct wb_writeback_work work = { 864 .nr_pages = nr_pages, 865 .sync_mode = WB_SYNC_NONE, 866 .for_kupdate = 1, 867 .range_cyclic = 1, 868 .reason = WB_REASON_PERIODIC, 869 }; 870 871 return wb_writeback(wb, &work); 872 } 873 874 return 0; 875} 876 877/* 878 * Retrieve work items and do the writeback they describe 879 */ 880long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 881{ 882 struct backing_dev_info *bdi = wb->bdi; 883 struct wb_writeback_work *work; 884 long wrote = 0; 885 886 set_bit(BDI_writeback_running, &wb->bdi->state); 887 while ((work = get_next_work_item(bdi)) != NULL) { 888 /* 889 * Override sync mode, in case we must wait for completion 890 * because this thread is exiting now. 891 */ 892 if (force_wait) 893 work->sync_mode = WB_SYNC_ALL; 894 895 trace_writeback_exec(bdi, work); 896 897 wrote += wb_writeback(wb, work); 898 899 /* 900 * Notify the caller of completion if this is a synchronous 901 * work item, otherwise just free it. 902 */ 903 if (work->done) 904 complete(work->done); 905 else 906 kfree(work); 907 } 908 909 /* 910 * Check for periodic writeback, kupdated() style 911 */ 912 wrote += wb_check_old_data_flush(wb); 913 wrote += wb_check_background_flush(wb); 914 clear_bit(BDI_writeback_running, &wb->bdi->state); 915 916 return wrote; 917} 918 919/* 920 * Handle writeback of dirty data for the device backed by this bdi. Also 921 * wakes up periodically and does kupdated style flushing. 922 */ 923int bdi_writeback_thread(void *data) 924{ 925 struct bdi_writeback *wb = data; 926 struct backing_dev_info *bdi = wb->bdi; 927 long pages_written; 928 929 current->flags |= PF_SWAPWRITE; 930 set_freezable(); 931 wb->last_active = jiffies; 932 933 /* 934 * Our parent may run at a different priority, just set us to normal 935 */ 936 set_user_nice(current, 0); 937 938 trace_writeback_thread_start(bdi); 939 940 while (!kthread_should_stop()) { 941 /* 942 * Remove own delayed wake-up timer, since we are already awake 943 * and we'll take care of the preriodic write-back. 944 */ 945 del_timer(&wb->wakeup_timer); 946 947 pages_written = wb_do_writeback(wb, 0); 948 949 trace_writeback_pages_written(pages_written); 950 951 if (pages_written) 952 wb->last_active = jiffies; 953 954 set_current_state(TASK_INTERRUPTIBLE); 955 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 956 __set_current_state(TASK_RUNNING); 957 continue; 958 } 959 960 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 961 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 962 else { 963 /* 964 * We have nothing to do, so can go sleep without any 965 * timeout and save power. When a work is queued or 966 * something is made dirty - we will be woken up. 967 */ 968 schedule(); 969 } 970 971 try_to_freeze(); 972 } 973 974 /* Flush any work that raced with us exiting */ 975 if (!list_empty(&bdi->work_list)) 976 wb_do_writeback(wb, 1); 977 978 trace_writeback_thread_stop(bdi); 979 return 0; 980} 981 982 983/* 984 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 985 * the whole world. 986 */ 987void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 988{ 989 struct backing_dev_info *bdi; 990 991 if (!nr_pages) { 992 nr_pages = global_page_state(NR_FILE_DIRTY) + 993 global_page_state(NR_UNSTABLE_NFS); 994 } 995 996 rcu_read_lock(); 997 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 998 if (!bdi_has_dirty_io(bdi)) 999 continue; 1000 __bdi_start_writeback(bdi, nr_pages, false, reason); 1001 } 1002 rcu_read_unlock(); 1003} 1004 1005static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1006{ 1007 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1008 struct dentry *dentry; 1009 const char *name = "?"; 1010 1011 dentry = d_find_alias(inode); 1012 if (dentry) { 1013 spin_lock(&dentry->d_lock); 1014 name = (const char *) dentry->d_name.name; 1015 } 1016 printk(KERN_DEBUG 1017 "%s(%d): dirtied inode %lu (%s) on %s\n", 1018 current->comm, task_pid_nr(current), inode->i_ino, 1019 name, inode->i_sb->s_id); 1020 if (dentry) { 1021 spin_unlock(&dentry->d_lock); 1022 dput(dentry); 1023 } 1024 } 1025} 1026 1027/** 1028 * __mark_inode_dirty - internal function 1029 * @inode: inode to mark 1030 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1031 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1032 * mark_inode_dirty_sync. 1033 * 1034 * Put the inode on the super block's dirty list. 1035 * 1036 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1037 * dirty list only if it is hashed or if it refers to a blockdev. 1038 * If it was not hashed, it will never be added to the dirty list 1039 * even if it is later hashed, as it will have been marked dirty already. 1040 * 1041 * In short, make sure you hash any inodes _before_ you start marking 1042 * them dirty. 1043 * 1044 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1045 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1046 * the kernel-internal blockdev inode represents the dirtying time of the 1047 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1048 * page->mapping->host, so the page-dirtying time is recorded in the internal 1049 * blockdev inode. 1050 */ 1051void __mark_inode_dirty(struct inode *inode, int flags) 1052{ 1053 struct super_block *sb = inode->i_sb; 1054 struct backing_dev_info *bdi = NULL; 1055 1056 /* 1057 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1058 * dirty the inode itself 1059 */ 1060 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1061 if (sb->s_op->dirty_inode) 1062 sb->s_op->dirty_inode(inode, flags); 1063 } 1064 1065 /* 1066 * make sure that changes are seen by all cpus before we test i_state 1067 * -- mikulas 1068 */ 1069 smp_mb(); 1070 1071 /* avoid the locking if we can */ 1072 if ((inode->i_state & flags) == flags) 1073 return; 1074 1075 if (unlikely(block_dump)) 1076 block_dump___mark_inode_dirty(inode); 1077 1078 spin_lock(&inode->i_lock); 1079 if ((inode->i_state & flags) != flags) { 1080 const int was_dirty = inode->i_state & I_DIRTY; 1081 1082 inode->i_state |= flags; 1083 1084 /* 1085 * If the inode is being synced, just update its dirty state. 1086 * The unlocker will place the inode on the appropriate 1087 * superblock list, based upon its state. 1088 */ 1089 if (inode->i_state & I_SYNC) 1090 goto out_unlock_inode; 1091 1092 /* 1093 * Only add valid (hashed) inodes to the superblock's 1094 * dirty list. Add blockdev inodes as well. 1095 */ 1096 if (!S_ISBLK(inode->i_mode)) { 1097 if (inode_unhashed(inode)) 1098 goto out_unlock_inode; 1099 } 1100 if (inode->i_state & I_FREEING) 1101 goto out_unlock_inode; 1102 1103 /* 1104 * If the inode was already on b_dirty/b_io/b_more_io, don't 1105 * reposition it (that would break b_dirty time-ordering). 1106 */ 1107 if (!was_dirty) { 1108 bool wakeup_bdi = false; 1109 bdi = inode_to_bdi(inode); 1110 1111 if (bdi_cap_writeback_dirty(bdi)) { 1112 WARN(!test_bit(BDI_registered, &bdi->state), 1113 "bdi-%s not registered\n", bdi->name); 1114 1115 /* 1116 * If this is the first dirty inode for this 1117 * bdi, we have to wake-up the corresponding 1118 * bdi thread to make sure background 1119 * write-back happens later. 1120 */ 1121 if (!wb_has_dirty_io(&bdi->wb)) 1122 wakeup_bdi = true; 1123 } 1124 1125 spin_unlock(&inode->i_lock); 1126 spin_lock(&bdi->wb.list_lock); 1127 inode->dirtied_when = jiffies; 1128 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1129 spin_unlock(&bdi->wb.list_lock); 1130 1131 if (wakeup_bdi) 1132 bdi_wakeup_thread_delayed(bdi); 1133 return; 1134 } 1135 } 1136out_unlock_inode: 1137 spin_unlock(&inode->i_lock); 1138 1139} 1140EXPORT_SYMBOL(__mark_inode_dirty); 1141 1142/* 1143 * Write out a superblock's list of dirty inodes. A wait will be performed 1144 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1145 * 1146 * If older_than_this is non-NULL, then only write out inodes which 1147 * had their first dirtying at a time earlier than *older_than_this. 1148 * 1149 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1150 * This function assumes that the blockdev superblock's inodes are backed by 1151 * a variety of queues, so all inodes are searched. For other superblocks, 1152 * assume that all inodes are backed by the same queue. 1153 * 1154 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1155 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1156 * on the writer throttling path, and we get decent balancing between many 1157 * throttled threads: we don't want them all piling up on inode_sync_wait. 1158 */ 1159static void wait_sb_inodes(struct super_block *sb) 1160{ 1161 struct inode *inode, *old_inode = NULL; 1162 1163 /* 1164 * We need to be protected against the filesystem going from 1165 * r/o to r/w or vice versa. 1166 */ 1167 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1168 1169 spin_lock(&inode_sb_list_lock); 1170 1171 /* 1172 * Data integrity sync. Must wait for all pages under writeback, 1173 * because there may have been pages dirtied before our sync 1174 * call, but which had writeout started before we write it out. 1175 * In which case, the inode may not be on the dirty list, but 1176 * we still have to wait for that writeout. 1177 */ 1178 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1179 struct address_space *mapping = inode->i_mapping; 1180 1181 spin_lock(&inode->i_lock); 1182 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1183 (mapping->nrpages == 0)) { 1184 spin_unlock(&inode->i_lock); 1185 continue; 1186 } 1187 __iget(inode); 1188 spin_unlock(&inode->i_lock); 1189 spin_unlock(&inode_sb_list_lock); 1190 1191 /* 1192 * We hold a reference to 'inode' so it couldn't have been 1193 * removed from s_inodes list while we dropped the 1194 * inode_sb_list_lock. We cannot iput the inode now as we can 1195 * be holding the last reference and we cannot iput it under 1196 * inode_sb_list_lock. So we keep the reference and iput it 1197 * later. 1198 */ 1199 iput(old_inode); 1200 old_inode = inode; 1201 1202 filemap_fdatawait(mapping); 1203 1204 cond_resched(); 1205 1206 spin_lock(&inode_sb_list_lock); 1207 } 1208 spin_unlock(&inode_sb_list_lock); 1209 iput(old_inode); 1210} 1211 1212/** 1213 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1214 * @sb: the superblock 1215 * @nr: the number of pages to write 1216 * @reason: reason why some writeback work initiated 1217 * 1218 * Start writeback on some inodes on this super_block. No guarantees are made 1219 * on how many (if any) will be written, and this function does not wait 1220 * for IO completion of submitted IO. 1221 */ 1222void writeback_inodes_sb_nr(struct super_block *sb, 1223 unsigned long nr, 1224 enum wb_reason reason) 1225{ 1226 DECLARE_COMPLETION_ONSTACK(done); 1227 struct wb_writeback_work work = { 1228 .sb = sb, 1229 .sync_mode = WB_SYNC_NONE, 1230 .tagged_writepages = 1, 1231 .done = &done, 1232 .nr_pages = nr, 1233 .reason = reason, 1234 }; 1235 1236 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1237 bdi_queue_work(sb->s_bdi, &work); 1238 wait_for_completion(&done); 1239} 1240EXPORT_SYMBOL(writeback_inodes_sb_nr); 1241 1242/** 1243 * writeback_inodes_sb - writeback dirty inodes from given super_block 1244 * @sb: the superblock 1245 * @reason: reason why some writeback work was initiated 1246 * 1247 * Start writeback on some inodes on this super_block. No guarantees are made 1248 * on how many (if any) will be written, and this function does not wait 1249 * for IO completion of submitted IO. 1250 */ 1251void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1252{ 1253 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1254} 1255EXPORT_SYMBOL(writeback_inodes_sb); 1256 1257/** 1258 * writeback_inodes_sb_if_idle - start writeback if none underway 1259 * @sb: the superblock 1260 * @reason: reason why some writeback work was initiated 1261 * 1262 * Invoke writeback_inodes_sb if no writeback is currently underway. 1263 * Returns 1 if writeback was started, 0 if not. 1264 */ 1265int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason) 1266{ 1267 if (!writeback_in_progress(sb->s_bdi)) { 1268 down_read(&sb->s_umount); 1269 writeback_inodes_sb(sb, reason); 1270 up_read(&sb->s_umount); 1271 return 1; 1272 } else 1273 return 0; 1274} 1275EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1276 1277/** 1278 * writeback_inodes_sb_if_idle - start writeback if none underway 1279 * @sb: the superblock 1280 * @nr: the number of pages to write 1281 * @reason: reason why some writeback work was initiated 1282 * 1283 * Invoke writeback_inodes_sb if no writeback is currently underway. 1284 * Returns 1 if writeback was started, 0 if not. 1285 */ 1286int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1287 unsigned long nr, 1288 enum wb_reason reason) 1289{ 1290 if (!writeback_in_progress(sb->s_bdi)) { 1291 down_read(&sb->s_umount); 1292 writeback_inodes_sb_nr(sb, nr, reason); 1293 up_read(&sb->s_umount); 1294 return 1; 1295 } else 1296 return 0; 1297} 1298EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1299 1300/** 1301 * sync_inodes_sb - sync sb inode pages 1302 * @sb: the superblock 1303 * 1304 * This function writes and waits on any dirty inode belonging to this 1305 * super_block. 1306 */ 1307void sync_inodes_sb(struct super_block *sb) 1308{ 1309 DECLARE_COMPLETION_ONSTACK(done); 1310 struct wb_writeback_work work = { 1311 .sb = sb, 1312 .sync_mode = WB_SYNC_ALL, 1313 .nr_pages = LONG_MAX, 1314 .range_cyclic = 0, 1315 .done = &done, 1316 .reason = WB_REASON_SYNC, 1317 }; 1318 1319 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1320 1321 bdi_queue_work(sb->s_bdi, &work); 1322 wait_for_completion(&done); 1323 1324 wait_sb_inodes(sb); 1325} 1326EXPORT_SYMBOL(sync_inodes_sb); 1327 1328/** 1329 * write_inode_now - write an inode to disk 1330 * @inode: inode to write to disk 1331 * @sync: whether the write should be synchronous or not 1332 * 1333 * This function commits an inode to disk immediately if it is dirty. This is 1334 * primarily needed by knfsd. 1335 * 1336 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1337 */ 1338int write_inode_now(struct inode *inode, int sync) 1339{ 1340 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1341 int ret; 1342 struct writeback_control wbc = { 1343 .nr_to_write = LONG_MAX, 1344 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1345 .range_start = 0, 1346 .range_end = LLONG_MAX, 1347 }; 1348 1349 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1350 wbc.nr_to_write = 0; 1351 1352 might_sleep(); 1353 spin_lock(&wb->list_lock); 1354 spin_lock(&inode->i_lock); 1355 ret = writeback_single_inode(inode, wb, &wbc); 1356 spin_unlock(&inode->i_lock); 1357 spin_unlock(&wb->list_lock); 1358 if (sync) 1359 inode_sync_wait(inode); 1360 return ret; 1361} 1362EXPORT_SYMBOL(write_inode_now); 1363 1364/** 1365 * sync_inode - write an inode and its pages to disk. 1366 * @inode: the inode to sync 1367 * @wbc: controls the writeback mode 1368 * 1369 * sync_inode() will write an inode and its pages to disk. It will also 1370 * correctly update the inode on its superblock's dirty inode lists and will 1371 * update inode->i_state. 1372 * 1373 * The caller must have a ref on the inode. 1374 */ 1375int sync_inode(struct inode *inode, struct writeback_control *wbc) 1376{ 1377 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1378 int ret; 1379 1380 spin_lock(&wb->list_lock); 1381 spin_lock(&inode->i_lock); 1382 ret = writeback_single_inode(inode, wb, wbc); 1383 spin_unlock(&inode->i_lock); 1384 spin_unlock(&wb->list_lock); 1385 return ret; 1386} 1387EXPORT_SYMBOL(sync_inode); 1388 1389/** 1390 * sync_inode_metadata - write an inode to disk 1391 * @inode: the inode to sync 1392 * @wait: wait for I/O to complete. 1393 * 1394 * Write an inode to disk and adjust its dirty state after completion. 1395 * 1396 * Note: only writes the actual inode, no associated data or other metadata. 1397 */ 1398int sync_inode_metadata(struct inode *inode, int wait) 1399{ 1400 struct writeback_control wbc = { 1401 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1402 .nr_to_write = 0, /* metadata-only */ 1403 }; 1404 1405 return sync_inode(inode, &wbc); 1406} 1407EXPORT_SYMBOL(sync_inode_metadata);