at v3.2 1774 lines 51 kB view raw
1/* 2 * drivers/mtd/nand/diskonchip.c 3 * 4 * (C) 2003 Red Hat, Inc. 5 * (C) 2004 Dan Brown <dan_brown@ieee.org> 6 * (C) 2004 Kalev Lember <kalev@smartlink.ee> 7 * 8 * Author: David Woodhouse <dwmw2@infradead.org> 9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> 10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> 11 * 12 * Error correction code lifted from the old docecc code 13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 14 * Copyright (C) 2000 Netgem S.A. 15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> 16 * 17 * Interface to generic NAND code for M-Systems DiskOnChip devices 18 */ 19 20#include <linux/kernel.h> 21#include <linux/init.h> 22#include <linux/sched.h> 23#include <linux/delay.h> 24#include <linux/rslib.h> 25#include <linux/moduleparam.h> 26#include <linux/slab.h> 27#include <asm/io.h> 28 29#include <linux/mtd/mtd.h> 30#include <linux/mtd/nand.h> 31#include <linux/mtd/doc2000.h> 32#include <linux/mtd/partitions.h> 33#include <linux/mtd/inftl.h> 34#include <linux/module.h> 35 36/* Where to look for the devices? */ 37#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 38#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 39#endif 40 41static unsigned long __initdata doc_locations[] = { 42#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) 43#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH 44 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 45 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, 46 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 47 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 48 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, 49#else /* CONFIG_MTD_DOCPROBE_HIGH */ 50 0xc8000, 0xca000, 0xcc000, 0xce000, 51 0xd0000, 0xd2000, 0xd4000, 0xd6000, 52 0xd8000, 0xda000, 0xdc000, 0xde000, 53 0xe0000, 0xe2000, 0xe4000, 0xe6000, 54 0xe8000, 0xea000, 0xec000, 0xee000, 55#endif /* CONFIG_MTD_DOCPROBE_HIGH */ 56#else 57#warning Unknown architecture for DiskOnChip. No default probe locations defined 58#endif 59 0xffffffff }; 60 61static struct mtd_info *doclist = NULL; 62 63struct doc_priv { 64 void __iomem *virtadr; 65 unsigned long physadr; 66 u_char ChipID; 67 u_char CDSNControl; 68 int chips_per_floor; /* The number of chips detected on each floor */ 69 int curfloor; 70 int curchip; 71 int mh0_page; 72 int mh1_page; 73 struct mtd_info *nextdoc; 74}; 75 76/* This is the syndrome computed by the HW ecc generator upon reading an empty 77 page, one with all 0xff for data and stored ecc code. */ 78static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a }; 79 80/* This is the ecc value computed by the HW ecc generator upon writing an empty 81 page, one with all 0xff for data. */ 82static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; 83 84#define INFTL_BBT_RESERVED_BLOCKS 4 85 86#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) 87#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) 88#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) 89 90static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, 91 unsigned int bitmask); 92static void doc200x_select_chip(struct mtd_info *mtd, int chip); 93 94static int debug = 0; 95module_param(debug, int, 0); 96 97static int try_dword = 1; 98module_param(try_dword, int, 0); 99 100static int no_ecc_failures = 0; 101module_param(no_ecc_failures, int, 0); 102 103static int no_autopart = 0; 104module_param(no_autopart, int, 0); 105 106static int show_firmware_partition = 0; 107module_param(show_firmware_partition, int, 0); 108 109#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE 110static int inftl_bbt_write = 1; 111#else 112static int inftl_bbt_write = 0; 113#endif 114module_param(inftl_bbt_write, int, 0); 115 116static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; 117module_param(doc_config_location, ulong, 0); 118MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); 119 120/* Sector size for HW ECC */ 121#define SECTOR_SIZE 512 122/* The sector bytes are packed into NB_DATA 10 bit words */ 123#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) 124/* Number of roots */ 125#define NROOTS 4 126/* First consective root */ 127#define FCR 510 128/* Number of symbols */ 129#define NN 1023 130 131/* the Reed Solomon control structure */ 132static struct rs_control *rs_decoder; 133 134/* 135 * The HW decoder in the DoC ASIC's provides us a error syndrome, 136 * which we must convert to a standard syndrome usable by the generic 137 * Reed-Solomon library code. 138 * 139 * Fabrice Bellard figured this out in the old docecc code. I added 140 * some comments, improved a minor bit and converted it to make use 141 * of the generic Reed-Solomon library. tglx 142 */ 143static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) 144{ 145 int i, j, nerr, errpos[8]; 146 uint8_t parity; 147 uint16_t ds[4], s[5], tmp, errval[8], syn[4]; 148 149 memset(syn, 0, sizeof(syn)); 150 /* Convert the ecc bytes into words */ 151 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); 152 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); 153 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); 154 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); 155 parity = ecc[1]; 156 157 /* Initialize the syndrome buffer */ 158 for (i = 0; i < NROOTS; i++) 159 s[i] = ds[0]; 160 /* 161 * Evaluate 162 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] 163 * where x = alpha^(FCR + i) 164 */ 165 for (j = 1; j < NROOTS; j++) { 166 if (ds[j] == 0) 167 continue; 168 tmp = rs->index_of[ds[j]]; 169 for (i = 0; i < NROOTS; i++) 170 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; 171 } 172 173 /* Calc syn[i] = s[i] / alpha^(v + i) */ 174 for (i = 0; i < NROOTS; i++) { 175 if (s[i]) 176 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); 177 } 178 /* Call the decoder library */ 179 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); 180 181 /* Incorrectable errors ? */ 182 if (nerr < 0) 183 return nerr; 184 185 /* 186 * Correct the errors. The bitpositions are a bit of magic, 187 * but they are given by the design of the de/encoder circuit 188 * in the DoC ASIC's. 189 */ 190 for (i = 0; i < nerr; i++) { 191 int index, bitpos, pos = 1015 - errpos[i]; 192 uint8_t val; 193 if (pos >= NB_DATA && pos < 1019) 194 continue; 195 if (pos < NB_DATA) { 196 /* extract bit position (MSB first) */ 197 pos = 10 * (NB_DATA - 1 - pos) - 6; 198 /* now correct the following 10 bits. At most two bytes 199 can be modified since pos is even */ 200 index = (pos >> 3) ^ 1; 201 bitpos = pos & 7; 202 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { 203 val = (uint8_t) (errval[i] >> (2 + bitpos)); 204 parity ^= val; 205 if (index < SECTOR_SIZE) 206 data[index] ^= val; 207 } 208 index = ((pos >> 3) + 1) ^ 1; 209 bitpos = (bitpos + 10) & 7; 210 if (bitpos == 0) 211 bitpos = 8; 212 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { 213 val = (uint8_t) (errval[i] << (8 - bitpos)); 214 parity ^= val; 215 if (index < SECTOR_SIZE) 216 data[index] ^= val; 217 } 218 } 219 } 220 /* If the parity is wrong, no rescue possible */ 221 return parity ? -EBADMSG : nerr; 222} 223 224static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) 225{ 226 volatile char dummy; 227 int i; 228 229 for (i = 0; i < cycles; i++) { 230 if (DoC_is_Millennium(doc)) 231 dummy = ReadDOC(doc->virtadr, NOP); 232 else if (DoC_is_MillenniumPlus(doc)) 233 dummy = ReadDOC(doc->virtadr, Mplus_NOP); 234 else 235 dummy = ReadDOC(doc->virtadr, DOCStatus); 236 } 237 238} 239 240#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) 241 242/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ 243static int _DoC_WaitReady(struct doc_priv *doc) 244{ 245 void __iomem *docptr = doc->virtadr; 246 unsigned long timeo = jiffies + (HZ * 10); 247 248 if (debug) 249 printk("_DoC_WaitReady...\n"); 250 /* Out-of-line routine to wait for chip response */ 251 if (DoC_is_MillenniumPlus(doc)) { 252 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { 253 if (time_after(jiffies, timeo)) { 254 printk("_DoC_WaitReady timed out.\n"); 255 return -EIO; 256 } 257 udelay(1); 258 cond_resched(); 259 } 260 } else { 261 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 262 if (time_after(jiffies, timeo)) { 263 printk("_DoC_WaitReady timed out.\n"); 264 return -EIO; 265 } 266 udelay(1); 267 cond_resched(); 268 } 269 } 270 271 return 0; 272} 273 274static inline int DoC_WaitReady(struct doc_priv *doc) 275{ 276 void __iomem *docptr = doc->virtadr; 277 int ret = 0; 278 279 if (DoC_is_MillenniumPlus(doc)) { 280 DoC_Delay(doc, 4); 281 282 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) 283 /* Call the out-of-line routine to wait */ 284 ret = _DoC_WaitReady(doc); 285 } else { 286 DoC_Delay(doc, 4); 287 288 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) 289 /* Call the out-of-line routine to wait */ 290 ret = _DoC_WaitReady(doc); 291 DoC_Delay(doc, 2); 292 } 293 294 if (debug) 295 printk("DoC_WaitReady OK\n"); 296 return ret; 297} 298 299static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) 300{ 301 struct nand_chip *this = mtd->priv; 302 struct doc_priv *doc = this->priv; 303 void __iomem *docptr = doc->virtadr; 304 305 if (debug) 306 printk("write_byte %02x\n", datum); 307 WriteDOC(datum, docptr, CDSNSlowIO); 308 WriteDOC(datum, docptr, 2k_CDSN_IO); 309} 310 311static u_char doc2000_read_byte(struct mtd_info *mtd) 312{ 313 struct nand_chip *this = mtd->priv; 314 struct doc_priv *doc = this->priv; 315 void __iomem *docptr = doc->virtadr; 316 u_char ret; 317 318 ReadDOC(docptr, CDSNSlowIO); 319 DoC_Delay(doc, 2); 320 ret = ReadDOC(docptr, 2k_CDSN_IO); 321 if (debug) 322 printk("read_byte returns %02x\n", ret); 323 return ret; 324} 325 326static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len) 327{ 328 struct nand_chip *this = mtd->priv; 329 struct doc_priv *doc = this->priv; 330 void __iomem *docptr = doc->virtadr; 331 int i; 332 if (debug) 333 printk("writebuf of %d bytes: ", len); 334 for (i = 0; i < len; i++) { 335 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); 336 if (debug && i < 16) 337 printk("%02x ", buf[i]); 338 } 339 if (debug) 340 printk("\n"); 341} 342 343static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len) 344{ 345 struct nand_chip *this = mtd->priv; 346 struct doc_priv *doc = this->priv; 347 void __iomem *docptr = doc->virtadr; 348 int i; 349 350 if (debug) 351 printk("readbuf of %d bytes: ", len); 352 353 for (i = 0; i < len; i++) { 354 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); 355 } 356} 357 358static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) 359{ 360 struct nand_chip *this = mtd->priv; 361 struct doc_priv *doc = this->priv; 362 void __iomem *docptr = doc->virtadr; 363 int i; 364 365 if (debug) 366 printk("readbuf_dword of %d bytes: ", len); 367 368 if (unlikely((((unsigned long)buf) | len) & 3)) { 369 for (i = 0; i < len; i++) { 370 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); 371 } 372 } else { 373 for (i = 0; i < len; i += 4) { 374 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); 375 } 376 } 377} 378 379static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) 380{ 381 struct nand_chip *this = mtd->priv; 382 struct doc_priv *doc = this->priv; 383 void __iomem *docptr = doc->virtadr; 384 int i; 385 386 for (i = 0; i < len; i++) 387 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO)) 388 return -EFAULT; 389 return 0; 390} 391 392static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) 393{ 394 struct nand_chip *this = mtd->priv; 395 struct doc_priv *doc = this->priv; 396 uint16_t ret; 397 398 doc200x_select_chip(mtd, nr); 399 doc200x_hwcontrol(mtd, NAND_CMD_READID, 400 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 401 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 402 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 403 404 /* We can't use dev_ready here, but at least we wait for the 405 * command to complete 406 */ 407 udelay(50); 408 409 ret = this->read_byte(mtd) << 8; 410 ret |= this->read_byte(mtd); 411 412 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { 413 /* First chip probe. See if we get same results by 32-bit access */ 414 union { 415 uint32_t dword; 416 uint8_t byte[4]; 417 } ident; 418 void __iomem *docptr = doc->virtadr; 419 420 doc200x_hwcontrol(mtd, NAND_CMD_READID, 421 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 422 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 423 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 424 NAND_NCE | NAND_CTRL_CHANGE); 425 426 udelay(50); 427 428 ident.dword = readl(docptr + DoC_2k_CDSN_IO); 429 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { 430 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); 431 this->read_buf = &doc2000_readbuf_dword; 432 } 433 } 434 435 return ret; 436} 437 438static void __init doc2000_count_chips(struct mtd_info *mtd) 439{ 440 struct nand_chip *this = mtd->priv; 441 struct doc_priv *doc = this->priv; 442 uint16_t mfrid; 443 int i; 444 445 /* Max 4 chips per floor on DiskOnChip 2000 */ 446 doc->chips_per_floor = 4; 447 448 /* Find out what the first chip is */ 449 mfrid = doc200x_ident_chip(mtd, 0); 450 451 /* Find how many chips in each floor. */ 452 for (i = 1; i < 4; i++) { 453 if (doc200x_ident_chip(mtd, i) != mfrid) 454 break; 455 } 456 doc->chips_per_floor = i; 457 printk(KERN_DEBUG "Detected %d chips per floor.\n", i); 458} 459 460static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this) 461{ 462 struct doc_priv *doc = this->priv; 463 464 int status; 465 466 DoC_WaitReady(doc); 467 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); 468 DoC_WaitReady(doc); 469 status = (int)this->read_byte(mtd); 470 471 return status; 472} 473 474static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) 475{ 476 struct nand_chip *this = mtd->priv; 477 struct doc_priv *doc = this->priv; 478 void __iomem *docptr = doc->virtadr; 479 480 WriteDOC(datum, docptr, CDSNSlowIO); 481 WriteDOC(datum, docptr, Mil_CDSN_IO); 482 WriteDOC(datum, docptr, WritePipeTerm); 483} 484 485static u_char doc2001_read_byte(struct mtd_info *mtd) 486{ 487 struct nand_chip *this = mtd->priv; 488 struct doc_priv *doc = this->priv; 489 void __iomem *docptr = doc->virtadr; 490 491 //ReadDOC(docptr, CDSNSlowIO); 492 /* 11.4.5 -- delay twice to allow extended length cycle */ 493 DoC_Delay(doc, 2); 494 ReadDOC(docptr, ReadPipeInit); 495 //return ReadDOC(docptr, Mil_CDSN_IO); 496 return ReadDOC(docptr, LastDataRead); 497} 498 499static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len) 500{ 501 struct nand_chip *this = mtd->priv; 502 struct doc_priv *doc = this->priv; 503 void __iomem *docptr = doc->virtadr; 504 int i; 505 506 for (i = 0; i < len; i++) 507 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); 508 /* Terminate write pipeline */ 509 WriteDOC(0x00, docptr, WritePipeTerm); 510} 511 512static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) 513{ 514 struct nand_chip *this = mtd->priv; 515 struct doc_priv *doc = this->priv; 516 void __iomem *docptr = doc->virtadr; 517 int i; 518 519 /* Start read pipeline */ 520 ReadDOC(docptr, ReadPipeInit); 521 522 for (i = 0; i < len - 1; i++) 523 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); 524 525 /* Terminate read pipeline */ 526 buf[i] = ReadDOC(docptr, LastDataRead); 527} 528 529static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) 530{ 531 struct nand_chip *this = mtd->priv; 532 struct doc_priv *doc = this->priv; 533 void __iomem *docptr = doc->virtadr; 534 int i; 535 536 /* Start read pipeline */ 537 ReadDOC(docptr, ReadPipeInit); 538 539 for (i = 0; i < len - 1; i++) 540 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { 541 ReadDOC(docptr, LastDataRead); 542 return i; 543 } 544 if (buf[i] != ReadDOC(docptr, LastDataRead)) 545 return i; 546 return 0; 547} 548 549static u_char doc2001plus_read_byte(struct mtd_info *mtd) 550{ 551 struct nand_chip *this = mtd->priv; 552 struct doc_priv *doc = this->priv; 553 void __iomem *docptr = doc->virtadr; 554 u_char ret; 555 556 ReadDOC(docptr, Mplus_ReadPipeInit); 557 ReadDOC(docptr, Mplus_ReadPipeInit); 558 ret = ReadDOC(docptr, Mplus_LastDataRead); 559 if (debug) 560 printk("read_byte returns %02x\n", ret); 561 return ret; 562} 563 564static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len) 565{ 566 struct nand_chip *this = mtd->priv; 567 struct doc_priv *doc = this->priv; 568 void __iomem *docptr = doc->virtadr; 569 int i; 570 571 if (debug) 572 printk("writebuf of %d bytes: ", len); 573 for (i = 0; i < len; i++) { 574 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); 575 if (debug && i < 16) 576 printk("%02x ", buf[i]); 577 } 578 if (debug) 579 printk("\n"); 580} 581 582static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) 583{ 584 struct nand_chip *this = mtd->priv; 585 struct doc_priv *doc = this->priv; 586 void __iomem *docptr = doc->virtadr; 587 int i; 588 589 if (debug) 590 printk("readbuf of %d bytes: ", len); 591 592 /* Start read pipeline */ 593 ReadDOC(docptr, Mplus_ReadPipeInit); 594 ReadDOC(docptr, Mplus_ReadPipeInit); 595 596 for (i = 0; i < len - 2; i++) { 597 buf[i] = ReadDOC(docptr, Mil_CDSN_IO); 598 if (debug && i < 16) 599 printk("%02x ", buf[i]); 600 } 601 602 /* Terminate read pipeline */ 603 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); 604 if (debug && i < 16) 605 printk("%02x ", buf[len - 2]); 606 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); 607 if (debug && i < 16) 608 printk("%02x ", buf[len - 1]); 609 if (debug) 610 printk("\n"); 611} 612 613static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) 614{ 615 struct nand_chip *this = mtd->priv; 616 struct doc_priv *doc = this->priv; 617 void __iomem *docptr = doc->virtadr; 618 int i; 619 620 if (debug) 621 printk("verifybuf of %d bytes: ", len); 622 623 /* Start read pipeline */ 624 ReadDOC(docptr, Mplus_ReadPipeInit); 625 ReadDOC(docptr, Mplus_ReadPipeInit); 626 627 for (i = 0; i < len - 2; i++) 628 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { 629 ReadDOC(docptr, Mplus_LastDataRead); 630 ReadDOC(docptr, Mplus_LastDataRead); 631 return i; 632 } 633 if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead)) 634 return len - 2; 635 if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead)) 636 return len - 1; 637 return 0; 638} 639 640static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) 641{ 642 struct nand_chip *this = mtd->priv; 643 struct doc_priv *doc = this->priv; 644 void __iomem *docptr = doc->virtadr; 645 int floor = 0; 646 647 if (debug) 648 printk("select chip (%d)\n", chip); 649 650 if (chip == -1) { 651 /* Disable flash internally */ 652 WriteDOC(0, docptr, Mplus_FlashSelect); 653 return; 654 } 655 656 floor = chip / doc->chips_per_floor; 657 chip -= (floor * doc->chips_per_floor); 658 659 /* Assert ChipEnable and deassert WriteProtect */ 660 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); 661 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); 662 663 doc->curchip = chip; 664 doc->curfloor = floor; 665} 666 667static void doc200x_select_chip(struct mtd_info *mtd, int chip) 668{ 669 struct nand_chip *this = mtd->priv; 670 struct doc_priv *doc = this->priv; 671 void __iomem *docptr = doc->virtadr; 672 int floor = 0; 673 674 if (debug) 675 printk("select chip (%d)\n", chip); 676 677 if (chip == -1) 678 return; 679 680 floor = chip / doc->chips_per_floor; 681 chip -= (floor * doc->chips_per_floor); 682 683 /* 11.4.4 -- deassert CE before changing chip */ 684 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); 685 686 WriteDOC(floor, docptr, FloorSelect); 687 WriteDOC(chip, docptr, CDSNDeviceSelect); 688 689 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 690 691 doc->curchip = chip; 692 doc->curfloor = floor; 693} 694 695#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE) 696 697static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, 698 unsigned int ctrl) 699{ 700 struct nand_chip *this = mtd->priv; 701 struct doc_priv *doc = this->priv; 702 void __iomem *docptr = doc->virtadr; 703 704 if (ctrl & NAND_CTRL_CHANGE) { 705 doc->CDSNControl &= ~CDSN_CTRL_MSK; 706 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK; 707 if (debug) 708 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); 709 WriteDOC(doc->CDSNControl, docptr, CDSNControl); 710 /* 11.4.3 -- 4 NOPs after CSDNControl write */ 711 DoC_Delay(doc, 4); 712 } 713 if (cmd != NAND_CMD_NONE) { 714 if (DoC_is_2000(doc)) 715 doc2000_write_byte(mtd, cmd); 716 else 717 doc2001_write_byte(mtd, cmd); 718 } 719} 720 721static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) 722{ 723 struct nand_chip *this = mtd->priv; 724 struct doc_priv *doc = this->priv; 725 void __iomem *docptr = doc->virtadr; 726 727 /* 728 * Must terminate write pipeline before sending any commands 729 * to the device. 730 */ 731 if (command == NAND_CMD_PAGEPROG) { 732 WriteDOC(0x00, docptr, Mplus_WritePipeTerm); 733 WriteDOC(0x00, docptr, Mplus_WritePipeTerm); 734 } 735 736 /* 737 * Write out the command to the device. 738 */ 739 if (command == NAND_CMD_SEQIN) { 740 int readcmd; 741 742 if (column >= mtd->writesize) { 743 /* OOB area */ 744 column -= mtd->writesize; 745 readcmd = NAND_CMD_READOOB; 746 } else if (column < 256) { 747 /* First 256 bytes --> READ0 */ 748 readcmd = NAND_CMD_READ0; 749 } else { 750 column -= 256; 751 readcmd = NAND_CMD_READ1; 752 } 753 WriteDOC(readcmd, docptr, Mplus_FlashCmd); 754 } 755 WriteDOC(command, docptr, Mplus_FlashCmd); 756 WriteDOC(0, docptr, Mplus_WritePipeTerm); 757 WriteDOC(0, docptr, Mplus_WritePipeTerm); 758 759 if (column != -1 || page_addr != -1) { 760 /* Serially input address */ 761 if (column != -1) { 762 /* Adjust columns for 16 bit buswidth */ 763 if (this->options & NAND_BUSWIDTH_16) 764 column >>= 1; 765 WriteDOC(column, docptr, Mplus_FlashAddress); 766 } 767 if (page_addr != -1) { 768 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress); 769 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); 770 /* One more address cycle for higher density devices */ 771 if (this->chipsize & 0x0c000000) { 772 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); 773 printk("high density\n"); 774 } 775 } 776 WriteDOC(0, docptr, Mplus_WritePipeTerm); 777 WriteDOC(0, docptr, Mplus_WritePipeTerm); 778 /* deassert ALE */ 779 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || 780 command == NAND_CMD_READOOB || command == NAND_CMD_READID) 781 WriteDOC(0, docptr, Mplus_FlashControl); 782 } 783 784 /* 785 * program and erase have their own busy handlers 786 * status and sequential in needs no delay 787 */ 788 switch (command) { 789 790 case NAND_CMD_PAGEPROG: 791 case NAND_CMD_ERASE1: 792 case NAND_CMD_ERASE2: 793 case NAND_CMD_SEQIN: 794 case NAND_CMD_STATUS: 795 return; 796 797 case NAND_CMD_RESET: 798 if (this->dev_ready) 799 break; 800 udelay(this->chip_delay); 801 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); 802 WriteDOC(0, docptr, Mplus_WritePipeTerm); 803 WriteDOC(0, docptr, Mplus_WritePipeTerm); 804 while (!(this->read_byte(mtd) & 0x40)) ; 805 return; 806 807 /* This applies to read commands */ 808 default: 809 /* 810 * If we don't have access to the busy pin, we apply the given 811 * command delay 812 */ 813 if (!this->dev_ready) { 814 udelay(this->chip_delay); 815 return; 816 } 817 } 818 819 /* Apply this short delay always to ensure that we do wait tWB in 820 * any case on any machine. */ 821 ndelay(100); 822 /* wait until command is processed */ 823 while (!this->dev_ready(mtd)) ; 824} 825 826static int doc200x_dev_ready(struct mtd_info *mtd) 827{ 828 struct nand_chip *this = mtd->priv; 829 struct doc_priv *doc = this->priv; 830 void __iomem *docptr = doc->virtadr; 831 832 if (DoC_is_MillenniumPlus(doc)) { 833 /* 11.4.2 -- must NOP four times before checking FR/B# */ 834 DoC_Delay(doc, 4); 835 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { 836 if (debug) 837 printk("not ready\n"); 838 return 0; 839 } 840 if (debug) 841 printk("was ready\n"); 842 return 1; 843 } else { 844 /* 11.4.2 -- must NOP four times before checking FR/B# */ 845 DoC_Delay(doc, 4); 846 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 847 if (debug) 848 printk("not ready\n"); 849 return 0; 850 } 851 /* 11.4.2 -- Must NOP twice if it's ready */ 852 DoC_Delay(doc, 2); 853 if (debug) 854 printk("was ready\n"); 855 return 1; 856 } 857} 858 859static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) 860{ 861 /* This is our last resort if we couldn't find or create a BBT. Just 862 pretend all blocks are good. */ 863 return 0; 864} 865 866static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) 867{ 868 struct nand_chip *this = mtd->priv; 869 struct doc_priv *doc = this->priv; 870 void __iomem *docptr = doc->virtadr; 871 872 /* Prime the ECC engine */ 873 switch (mode) { 874 case NAND_ECC_READ: 875 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 876 WriteDOC(DOC_ECC_EN, docptr, ECCConf); 877 break; 878 case NAND_ECC_WRITE: 879 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 880 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); 881 break; 882 } 883} 884 885static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) 886{ 887 struct nand_chip *this = mtd->priv; 888 struct doc_priv *doc = this->priv; 889 void __iomem *docptr = doc->virtadr; 890 891 /* Prime the ECC engine */ 892 switch (mode) { 893 case NAND_ECC_READ: 894 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); 895 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); 896 break; 897 case NAND_ECC_WRITE: 898 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); 899 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); 900 break; 901 } 902} 903 904/* This code is only called on write */ 905static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code) 906{ 907 struct nand_chip *this = mtd->priv; 908 struct doc_priv *doc = this->priv; 909 void __iomem *docptr = doc->virtadr; 910 int i; 911 int emptymatch = 1; 912 913 /* flush the pipeline */ 914 if (DoC_is_2000(doc)) { 915 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); 916 WriteDOC(0, docptr, 2k_CDSN_IO); 917 WriteDOC(0, docptr, 2k_CDSN_IO); 918 WriteDOC(0, docptr, 2k_CDSN_IO); 919 WriteDOC(doc->CDSNControl, docptr, CDSNControl); 920 } else if (DoC_is_MillenniumPlus(doc)) { 921 WriteDOC(0, docptr, Mplus_NOP); 922 WriteDOC(0, docptr, Mplus_NOP); 923 WriteDOC(0, docptr, Mplus_NOP); 924 } else { 925 WriteDOC(0, docptr, NOP); 926 WriteDOC(0, docptr, NOP); 927 WriteDOC(0, docptr, NOP); 928 } 929 930 for (i = 0; i < 6; i++) { 931 if (DoC_is_MillenniumPlus(doc)) 932 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); 933 else 934 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); 935 if (ecc_code[i] != empty_write_ecc[i]) 936 emptymatch = 0; 937 } 938 if (DoC_is_MillenniumPlus(doc)) 939 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); 940 else 941 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 942#if 0 943 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ 944 if (emptymatch) { 945 /* Note: this somewhat expensive test should not be triggered 946 often. It could be optimized away by examining the data in 947 the writebuf routine, and remembering the result. */ 948 for (i = 0; i < 512; i++) { 949 if (dat[i] == 0xff) 950 continue; 951 emptymatch = 0; 952 break; 953 } 954 } 955 /* If emptymatch still =1, we do have an all-0xff data buffer. 956 Return all-0xff ecc value instead of the computed one, so 957 it'll look just like a freshly-erased page. */ 958 if (emptymatch) 959 memset(ecc_code, 0xff, 6); 960#endif 961 return 0; 962} 963 964static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, 965 u_char *read_ecc, u_char *isnull) 966{ 967 int i, ret = 0; 968 struct nand_chip *this = mtd->priv; 969 struct doc_priv *doc = this->priv; 970 void __iomem *docptr = doc->virtadr; 971 uint8_t calc_ecc[6]; 972 volatile u_char dummy; 973 int emptymatch = 1; 974 975 /* flush the pipeline */ 976 if (DoC_is_2000(doc)) { 977 dummy = ReadDOC(docptr, 2k_ECCStatus); 978 dummy = ReadDOC(docptr, 2k_ECCStatus); 979 dummy = ReadDOC(docptr, 2k_ECCStatus); 980 } else if (DoC_is_MillenniumPlus(doc)) { 981 dummy = ReadDOC(docptr, Mplus_ECCConf); 982 dummy = ReadDOC(docptr, Mplus_ECCConf); 983 dummy = ReadDOC(docptr, Mplus_ECCConf); 984 } else { 985 dummy = ReadDOC(docptr, ECCConf); 986 dummy = ReadDOC(docptr, ECCConf); 987 dummy = ReadDOC(docptr, ECCConf); 988 } 989 990 /* Error occurred ? */ 991 if (dummy & 0x80) { 992 for (i = 0; i < 6; i++) { 993 if (DoC_is_MillenniumPlus(doc)) 994 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); 995 else 996 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); 997 if (calc_ecc[i] != empty_read_syndrome[i]) 998 emptymatch = 0; 999 } 1000 /* If emptymatch=1, the read syndrome is consistent with an 1001 all-0xff data and stored ecc block. Check the stored ecc. */ 1002 if (emptymatch) { 1003 for (i = 0; i < 6; i++) { 1004 if (read_ecc[i] == 0xff) 1005 continue; 1006 emptymatch = 0; 1007 break; 1008 } 1009 } 1010 /* If emptymatch still =1, check the data block. */ 1011 if (emptymatch) { 1012 /* Note: this somewhat expensive test should not be triggered 1013 often. It could be optimized away by examining the data in 1014 the readbuf routine, and remembering the result. */ 1015 for (i = 0; i < 512; i++) { 1016 if (dat[i] == 0xff) 1017 continue; 1018 emptymatch = 0; 1019 break; 1020 } 1021 } 1022 /* If emptymatch still =1, this is almost certainly a freshly- 1023 erased block, in which case the ECC will not come out right. 1024 We'll suppress the error and tell the caller everything's 1025 OK. Because it is. */ 1026 if (!emptymatch) 1027 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc); 1028 if (ret > 0) 1029 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); 1030 } 1031 if (DoC_is_MillenniumPlus(doc)) 1032 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); 1033 else 1034 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 1035 if (no_ecc_failures && mtd_is_eccerr(ret)) { 1036 printk(KERN_ERR "suppressing ECC failure\n"); 1037 ret = 0; 1038 } 1039 return ret; 1040} 1041 1042//u_char mydatabuf[528]; 1043 1044/* The strange out-of-order .oobfree list below is a (possibly unneeded) 1045 * attempt to retain compatibility. It used to read: 1046 * .oobfree = { {8, 8} } 1047 * Since that leaves two bytes unusable, it was changed. But the following 1048 * scheme might affect existing jffs2 installs by moving the cleanmarker: 1049 * .oobfree = { {6, 10} } 1050 * jffs2 seems to handle the above gracefully, but the current scheme seems 1051 * safer. The only problem with it is that any code that parses oobfree must 1052 * be able to handle out-of-order segments. 1053 */ 1054static struct nand_ecclayout doc200x_oobinfo = { 1055 .eccbytes = 6, 1056 .eccpos = {0, 1, 2, 3, 4, 5}, 1057 .oobfree = {{8, 8}, {6, 2}} 1058}; 1059 1060/* Find the (I)NFTL Media Header, and optionally also the mirror media header. 1061 On successful return, buf will contain a copy of the media header for 1062 further processing. id is the string to scan for, and will presumably be 1063 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media 1064 header. The page #s of the found media headers are placed in mh0_page and 1065 mh1_page in the DOC private structure. */ 1066static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) 1067{ 1068 struct nand_chip *this = mtd->priv; 1069 struct doc_priv *doc = this->priv; 1070 unsigned offs; 1071 int ret; 1072 size_t retlen; 1073 1074 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { 1075 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf); 1076 if (retlen != mtd->writesize) 1077 continue; 1078 if (ret) { 1079 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs); 1080 } 1081 if (memcmp(buf, id, 6)) 1082 continue; 1083 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); 1084 if (doc->mh0_page == -1) { 1085 doc->mh0_page = offs >> this->page_shift; 1086 if (!findmirror) 1087 return 1; 1088 continue; 1089 } 1090 doc->mh1_page = offs >> this->page_shift; 1091 return 2; 1092 } 1093 if (doc->mh0_page == -1) { 1094 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); 1095 return 0; 1096 } 1097 /* Only one mediaheader was found. We want buf to contain a 1098 mediaheader on return, so we'll have to re-read the one we found. */ 1099 offs = doc->mh0_page << this->page_shift; 1100 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf); 1101 if (retlen != mtd->writesize) { 1102 /* Insanity. Give up. */ 1103 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); 1104 return 0; 1105 } 1106 return 1; 1107} 1108 1109static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) 1110{ 1111 struct nand_chip *this = mtd->priv; 1112 struct doc_priv *doc = this->priv; 1113 int ret = 0; 1114 u_char *buf; 1115 struct NFTLMediaHeader *mh; 1116 const unsigned psize = 1 << this->page_shift; 1117 int numparts = 0; 1118 unsigned blocks, maxblocks; 1119 int offs, numheaders; 1120 1121 buf = kmalloc(mtd->writesize, GFP_KERNEL); 1122 if (!buf) { 1123 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); 1124 return 0; 1125 } 1126 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) 1127 goto out; 1128 mh = (struct NFTLMediaHeader *)buf; 1129 1130 le16_to_cpus(&mh->NumEraseUnits); 1131 le16_to_cpus(&mh->FirstPhysicalEUN); 1132 le32_to_cpus(&mh->FormattedSize); 1133 1134 printk(KERN_INFO " DataOrgID = %s\n" 1135 " NumEraseUnits = %d\n" 1136 " FirstPhysicalEUN = %d\n" 1137 " FormattedSize = %d\n" 1138 " UnitSizeFactor = %d\n", 1139 mh->DataOrgID, mh->NumEraseUnits, 1140 mh->FirstPhysicalEUN, mh->FormattedSize, 1141 mh->UnitSizeFactor); 1142 1143 blocks = mtd->size >> this->phys_erase_shift; 1144 maxblocks = min(32768U, mtd->erasesize - psize); 1145 1146 if (mh->UnitSizeFactor == 0x00) { 1147 /* Auto-determine UnitSizeFactor. The constraints are: 1148 - There can be at most 32768 virtual blocks. 1149 - There can be at most (virtual block size - page size) 1150 virtual blocks (because MediaHeader+BBT must fit in 1). 1151 */ 1152 mh->UnitSizeFactor = 0xff; 1153 while (blocks > maxblocks) { 1154 blocks >>= 1; 1155 maxblocks = min(32768U, (maxblocks << 1) + psize); 1156 mh->UnitSizeFactor--; 1157 } 1158 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); 1159 } 1160 1161 /* NOTE: The lines below modify internal variables of the NAND and MTD 1162 layers; variables with have already been configured by nand_scan. 1163 Unfortunately, we didn't know before this point what these values 1164 should be. Thus, this code is somewhat dependent on the exact 1165 implementation of the NAND layer. */ 1166 if (mh->UnitSizeFactor != 0xff) { 1167 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); 1168 mtd->erasesize <<= (0xff - mh->UnitSizeFactor); 1169 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); 1170 blocks = mtd->size >> this->bbt_erase_shift; 1171 maxblocks = min(32768U, mtd->erasesize - psize); 1172 } 1173 1174 if (blocks > maxblocks) { 1175 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); 1176 goto out; 1177 } 1178 1179 /* Skip past the media headers. */ 1180 offs = max(doc->mh0_page, doc->mh1_page); 1181 offs <<= this->page_shift; 1182 offs += mtd->erasesize; 1183 1184 if (show_firmware_partition == 1) { 1185 parts[0].name = " DiskOnChip Firmware / Media Header partition"; 1186 parts[0].offset = 0; 1187 parts[0].size = offs; 1188 numparts = 1; 1189 } 1190 1191 parts[numparts].name = " DiskOnChip BDTL partition"; 1192 parts[numparts].offset = offs; 1193 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; 1194 1195 offs += parts[numparts].size; 1196 numparts++; 1197 1198 if (offs < mtd->size) { 1199 parts[numparts].name = " DiskOnChip Remainder partition"; 1200 parts[numparts].offset = offs; 1201 parts[numparts].size = mtd->size - offs; 1202 numparts++; 1203 } 1204 1205 ret = numparts; 1206 out: 1207 kfree(buf); 1208 return ret; 1209} 1210 1211/* This is a stripped-down copy of the code in inftlmount.c */ 1212static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) 1213{ 1214 struct nand_chip *this = mtd->priv; 1215 struct doc_priv *doc = this->priv; 1216 int ret = 0; 1217 u_char *buf; 1218 struct INFTLMediaHeader *mh; 1219 struct INFTLPartition *ip; 1220 int numparts = 0; 1221 int blocks; 1222 int vshift, lastvunit = 0; 1223 int i; 1224 int end = mtd->size; 1225 1226 if (inftl_bbt_write) 1227 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); 1228 1229 buf = kmalloc(mtd->writesize, GFP_KERNEL); 1230 if (!buf) { 1231 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); 1232 return 0; 1233 } 1234 1235 if (!find_media_headers(mtd, buf, "BNAND", 0)) 1236 goto out; 1237 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); 1238 mh = (struct INFTLMediaHeader *)buf; 1239 1240 le32_to_cpus(&mh->NoOfBootImageBlocks); 1241 le32_to_cpus(&mh->NoOfBinaryPartitions); 1242 le32_to_cpus(&mh->NoOfBDTLPartitions); 1243 le32_to_cpus(&mh->BlockMultiplierBits); 1244 le32_to_cpus(&mh->FormatFlags); 1245 le32_to_cpus(&mh->PercentUsed); 1246 1247 printk(KERN_INFO " bootRecordID = %s\n" 1248 " NoOfBootImageBlocks = %d\n" 1249 " NoOfBinaryPartitions = %d\n" 1250 " NoOfBDTLPartitions = %d\n" 1251 " BlockMultiplerBits = %d\n" 1252 " FormatFlgs = %d\n" 1253 " OsakVersion = %d.%d.%d.%d\n" 1254 " PercentUsed = %d\n", 1255 mh->bootRecordID, mh->NoOfBootImageBlocks, 1256 mh->NoOfBinaryPartitions, 1257 mh->NoOfBDTLPartitions, 1258 mh->BlockMultiplierBits, mh->FormatFlags, 1259 ((unsigned char *) &mh->OsakVersion)[0] & 0xf, 1260 ((unsigned char *) &mh->OsakVersion)[1] & 0xf, 1261 ((unsigned char *) &mh->OsakVersion)[2] & 0xf, 1262 ((unsigned char *) &mh->OsakVersion)[3] & 0xf, 1263 mh->PercentUsed); 1264 1265 vshift = this->phys_erase_shift + mh->BlockMultiplierBits; 1266 1267 blocks = mtd->size >> vshift; 1268 if (blocks > 32768) { 1269 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); 1270 goto out; 1271 } 1272 1273 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); 1274 if (inftl_bbt_write && (blocks > mtd->erasesize)) { 1275 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); 1276 goto out; 1277 } 1278 1279 /* Scan the partitions */ 1280 for (i = 0; (i < 4); i++) { 1281 ip = &(mh->Partitions[i]); 1282 le32_to_cpus(&ip->virtualUnits); 1283 le32_to_cpus(&ip->firstUnit); 1284 le32_to_cpus(&ip->lastUnit); 1285 le32_to_cpus(&ip->flags); 1286 le32_to_cpus(&ip->spareUnits); 1287 le32_to_cpus(&ip->Reserved0); 1288 1289 printk(KERN_INFO " PARTITION[%d] ->\n" 1290 " virtualUnits = %d\n" 1291 " firstUnit = %d\n" 1292 " lastUnit = %d\n" 1293 " flags = 0x%x\n" 1294 " spareUnits = %d\n", 1295 i, ip->virtualUnits, ip->firstUnit, 1296 ip->lastUnit, ip->flags, 1297 ip->spareUnits); 1298 1299 if ((show_firmware_partition == 1) && 1300 (i == 0) && (ip->firstUnit > 0)) { 1301 parts[0].name = " DiskOnChip IPL / Media Header partition"; 1302 parts[0].offset = 0; 1303 parts[0].size = mtd->erasesize * ip->firstUnit; 1304 numparts = 1; 1305 } 1306 1307 if (ip->flags & INFTL_BINARY) 1308 parts[numparts].name = " DiskOnChip BDK partition"; 1309 else 1310 parts[numparts].name = " DiskOnChip BDTL partition"; 1311 parts[numparts].offset = ip->firstUnit << vshift; 1312 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; 1313 numparts++; 1314 if (ip->lastUnit > lastvunit) 1315 lastvunit = ip->lastUnit; 1316 if (ip->flags & INFTL_LAST) 1317 break; 1318 } 1319 lastvunit++; 1320 if ((lastvunit << vshift) < end) { 1321 parts[numparts].name = " DiskOnChip Remainder partition"; 1322 parts[numparts].offset = lastvunit << vshift; 1323 parts[numparts].size = end - parts[numparts].offset; 1324 numparts++; 1325 } 1326 ret = numparts; 1327 out: 1328 kfree(buf); 1329 return ret; 1330} 1331 1332static int __init nftl_scan_bbt(struct mtd_info *mtd) 1333{ 1334 int ret, numparts; 1335 struct nand_chip *this = mtd->priv; 1336 struct doc_priv *doc = this->priv; 1337 struct mtd_partition parts[2]; 1338 1339 memset((char *)parts, 0, sizeof(parts)); 1340 /* On NFTL, we have to find the media headers before we can read the 1341 BBTs, since they're stored in the media header eraseblocks. */ 1342 numparts = nftl_partscan(mtd, parts); 1343 if (!numparts) 1344 return -EIO; 1345 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | 1346 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | 1347 NAND_BBT_VERSION; 1348 this->bbt_td->veroffs = 7; 1349 this->bbt_td->pages[0] = doc->mh0_page + 1; 1350 if (doc->mh1_page != -1) { 1351 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | 1352 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | 1353 NAND_BBT_VERSION; 1354 this->bbt_md->veroffs = 7; 1355 this->bbt_md->pages[0] = doc->mh1_page + 1; 1356 } else { 1357 this->bbt_md = NULL; 1358 } 1359 1360 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. 1361 At least as nand_bbt.c is currently written. */ 1362 if ((ret = nand_scan_bbt(mtd, NULL))) 1363 return ret; 1364 mtd_device_register(mtd, NULL, 0); 1365 if (!no_autopart) 1366 mtd_device_register(mtd, parts, numparts); 1367 return 0; 1368} 1369 1370static int __init inftl_scan_bbt(struct mtd_info *mtd) 1371{ 1372 int ret, numparts; 1373 struct nand_chip *this = mtd->priv; 1374 struct doc_priv *doc = this->priv; 1375 struct mtd_partition parts[5]; 1376 1377 if (this->numchips > doc->chips_per_floor) { 1378 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); 1379 return -EIO; 1380 } 1381 1382 if (DoC_is_MillenniumPlus(doc)) { 1383 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; 1384 if (inftl_bbt_write) 1385 this->bbt_td->options |= NAND_BBT_WRITE; 1386 this->bbt_td->pages[0] = 2; 1387 this->bbt_md = NULL; 1388 } else { 1389 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; 1390 if (inftl_bbt_write) 1391 this->bbt_td->options |= NAND_BBT_WRITE; 1392 this->bbt_td->offs = 8; 1393 this->bbt_td->len = 8; 1394 this->bbt_td->veroffs = 7; 1395 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; 1396 this->bbt_td->reserved_block_code = 0x01; 1397 this->bbt_td->pattern = "MSYS_BBT"; 1398 1399 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; 1400 if (inftl_bbt_write) 1401 this->bbt_md->options |= NAND_BBT_WRITE; 1402 this->bbt_md->offs = 8; 1403 this->bbt_md->len = 8; 1404 this->bbt_md->veroffs = 7; 1405 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; 1406 this->bbt_md->reserved_block_code = 0x01; 1407 this->bbt_md->pattern = "TBB_SYSM"; 1408 } 1409 1410 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. 1411 At least as nand_bbt.c is currently written. */ 1412 if ((ret = nand_scan_bbt(mtd, NULL))) 1413 return ret; 1414 memset((char *)parts, 0, sizeof(parts)); 1415 numparts = inftl_partscan(mtd, parts); 1416 /* At least for now, require the INFTL Media Header. We could probably 1417 do without it for non-INFTL use, since all it gives us is 1418 autopartitioning, but I want to give it more thought. */ 1419 if (!numparts) 1420 return -EIO; 1421 mtd_device_register(mtd, NULL, 0); 1422 if (!no_autopart) 1423 mtd_device_register(mtd, parts, numparts); 1424 return 0; 1425} 1426 1427static inline int __init doc2000_init(struct mtd_info *mtd) 1428{ 1429 struct nand_chip *this = mtd->priv; 1430 struct doc_priv *doc = this->priv; 1431 1432 this->read_byte = doc2000_read_byte; 1433 this->write_buf = doc2000_writebuf; 1434 this->read_buf = doc2000_readbuf; 1435 this->verify_buf = doc2000_verifybuf; 1436 this->scan_bbt = nftl_scan_bbt; 1437 1438 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; 1439 doc2000_count_chips(mtd); 1440 mtd->name = "DiskOnChip 2000 (NFTL Model)"; 1441 return (4 * doc->chips_per_floor); 1442} 1443 1444static inline int __init doc2001_init(struct mtd_info *mtd) 1445{ 1446 struct nand_chip *this = mtd->priv; 1447 struct doc_priv *doc = this->priv; 1448 1449 this->read_byte = doc2001_read_byte; 1450 this->write_buf = doc2001_writebuf; 1451 this->read_buf = doc2001_readbuf; 1452 this->verify_buf = doc2001_verifybuf; 1453 1454 ReadDOC(doc->virtadr, ChipID); 1455 ReadDOC(doc->virtadr, ChipID); 1456 ReadDOC(doc->virtadr, ChipID); 1457 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { 1458 /* It's not a Millennium; it's one of the newer 1459 DiskOnChip 2000 units with a similar ASIC. 1460 Treat it like a Millennium, except that it 1461 can have multiple chips. */ 1462 doc2000_count_chips(mtd); 1463 mtd->name = "DiskOnChip 2000 (INFTL Model)"; 1464 this->scan_bbt = inftl_scan_bbt; 1465 return (4 * doc->chips_per_floor); 1466 } else { 1467 /* Bog-standard Millennium */ 1468 doc->chips_per_floor = 1; 1469 mtd->name = "DiskOnChip Millennium"; 1470 this->scan_bbt = nftl_scan_bbt; 1471 return 1; 1472 } 1473} 1474 1475static inline int __init doc2001plus_init(struct mtd_info *mtd) 1476{ 1477 struct nand_chip *this = mtd->priv; 1478 struct doc_priv *doc = this->priv; 1479 1480 this->read_byte = doc2001plus_read_byte; 1481 this->write_buf = doc2001plus_writebuf; 1482 this->read_buf = doc2001plus_readbuf; 1483 this->verify_buf = doc2001plus_verifybuf; 1484 this->scan_bbt = inftl_scan_bbt; 1485 this->cmd_ctrl = NULL; 1486 this->select_chip = doc2001plus_select_chip; 1487 this->cmdfunc = doc2001plus_command; 1488 this->ecc.hwctl = doc2001plus_enable_hwecc; 1489 1490 doc->chips_per_floor = 1; 1491 mtd->name = "DiskOnChip Millennium Plus"; 1492 1493 return 1; 1494} 1495 1496static int __init doc_probe(unsigned long physadr) 1497{ 1498 unsigned char ChipID; 1499 struct mtd_info *mtd; 1500 struct nand_chip *nand; 1501 struct doc_priv *doc; 1502 void __iomem *virtadr; 1503 unsigned char save_control; 1504 unsigned char tmp, tmpb, tmpc; 1505 int reg, len, numchips; 1506 int ret = 0; 1507 1508 virtadr = ioremap(physadr, DOC_IOREMAP_LEN); 1509 if (!virtadr) { 1510 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); 1511 return -EIO; 1512 } 1513 1514 /* It's not possible to cleanly detect the DiskOnChip - the 1515 * bootup procedure will put the device into reset mode, and 1516 * it's not possible to talk to it without actually writing 1517 * to the DOCControl register. So we store the current contents 1518 * of the DOCControl register's location, in case we later decide 1519 * that it's not a DiskOnChip, and want to put it back how we 1520 * found it. 1521 */ 1522 save_control = ReadDOC(virtadr, DOCControl); 1523 1524 /* Reset the DiskOnChip ASIC */ 1525 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); 1526 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); 1527 1528 /* Enable the DiskOnChip ASIC */ 1529 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); 1530 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); 1531 1532 ChipID = ReadDOC(virtadr, ChipID); 1533 1534 switch (ChipID) { 1535 case DOC_ChipID_Doc2k: 1536 reg = DoC_2k_ECCStatus; 1537 break; 1538 case DOC_ChipID_DocMil: 1539 reg = DoC_ECCConf; 1540 break; 1541 case DOC_ChipID_DocMilPlus16: 1542 case DOC_ChipID_DocMilPlus32: 1543 case 0: 1544 /* Possible Millennium Plus, need to do more checks */ 1545 /* Possibly release from power down mode */ 1546 for (tmp = 0; (tmp < 4); tmp++) 1547 ReadDOC(virtadr, Mplus_Power); 1548 1549 /* Reset the Millennium Plus ASIC */ 1550 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; 1551 WriteDOC(tmp, virtadr, Mplus_DOCControl); 1552 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); 1553 1554 mdelay(1); 1555 /* Enable the Millennium Plus ASIC */ 1556 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; 1557 WriteDOC(tmp, virtadr, Mplus_DOCControl); 1558 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); 1559 mdelay(1); 1560 1561 ChipID = ReadDOC(virtadr, ChipID); 1562 1563 switch (ChipID) { 1564 case DOC_ChipID_DocMilPlus16: 1565 reg = DoC_Mplus_Toggle; 1566 break; 1567 case DOC_ChipID_DocMilPlus32: 1568 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); 1569 default: 1570 ret = -ENODEV; 1571 goto notfound; 1572 } 1573 break; 1574 1575 default: 1576 ret = -ENODEV; 1577 goto notfound; 1578 } 1579 /* Check the TOGGLE bit in the ECC register */ 1580 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1581 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1582 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1583 if ((tmp == tmpb) || (tmp != tmpc)) { 1584 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); 1585 ret = -ENODEV; 1586 goto notfound; 1587 } 1588 1589 for (mtd = doclist; mtd; mtd = doc->nextdoc) { 1590 unsigned char oldval; 1591 unsigned char newval; 1592 nand = mtd->priv; 1593 doc = nand->priv; 1594 /* Use the alias resolution register to determine if this is 1595 in fact the same DOC aliased to a new address. If writes 1596 to one chip's alias resolution register change the value on 1597 the other chip, they're the same chip. */ 1598 if (ChipID == DOC_ChipID_DocMilPlus16) { 1599 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); 1600 newval = ReadDOC(virtadr, Mplus_AliasResolution); 1601 } else { 1602 oldval = ReadDOC(doc->virtadr, AliasResolution); 1603 newval = ReadDOC(virtadr, AliasResolution); 1604 } 1605 if (oldval != newval) 1606 continue; 1607 if (ChipID == DOC_ChipID_DocMilPlus16) { 1608 WriteDOC(~newval, virtadr, Mplus_AliasResolution); 1609 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); 1610 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it 1611 } else { 1612 WriteDOC(~newval, virtadr, AliasResolution); 1613 oldval = ReadDOC(doc->virtadr, AliasResolution); 1614 WriteDOC(newval, virtadr, AliasResolution); // restore it 1615 } 1616 newval = ~newval; 1617 if (oldval == newval) { 1618 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); 1619 goto notfound; 1620 } 1621 } 1622 1623 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); 1624 1625 len = sizeof(struct mtd_info) + 1626 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr)); 1627 mtd = kzalloc(len, GFP_KERNEL); 1628 if (!mtd) { 1629 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len); 1630 ret = -ENOMEM; 1631 goto fail; 1632 } 1633 1634 nand = (struct nand_chip *) (mtd + 1); 1635 doc = (struct doc_priv *) (nand + 1); 1636 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); 1637 nand->bbt_md = nand->bbt_td + 1; 1638 1639 mtd->priv = nand; 1640 mtd->owner = THIS_MODULE; 1641 1642 nand->priv = doc; 1643 nand->select_chip = doc200x_select_chip; 1644 nand->cmd_ctrl = doc200x_hwcontrol; 1645 nand->dev_ready = doc200x_dev_ready; 1646 nand->waitfunc = doc200x_wait; 1647 nand->block_bad = doc200x_block_bad; 1648 nand->ecc.hwctl = doc200x_enable_hwecc; 1649 nand->ecc.calculate = doc200x_calculate_ecc; 1650 nand->ecc.correct = doc200x_correct_data; 1651 1652 nand->ecc.layout = &doc200x_oobinfo; 1653 nand->ecc.mode = NAND_ECC_HW_SYNDROME; 1654 nand->ecc.size = 512; 1655 nand->ecc.bytes = 6; 1656 nand->bbt_options = NAND_BBT_USE_FLASH; 1657 1658 doc->physadr = physadr; 1659 doc->virtadr = virtadr; 1660 doc->ChipID = ChipID; 1661 doc->curfloor = -1; 1662 doc->curchip = -1; 1663 doc->mh0_page = -1; 1664 doc->mh1_page = -1; 1665 doc->nextdoc = doclist; 1666 1667 if (ChipID == DOC_ChipID_Doc2k) 1668 numchips = doc2000_init(mtd); 1669 else if (ChipID == DOC_ChipID_DocMilPlus16) 1670 numchips = doc2001plus_init(mtd); 1671 else 1672 numchips = doc2001_init(mtd); 1673 1674 if ((ret = nand_scan(mtd, numchips))) { 1675 /* DBB note: i believe nand_release is necessary here, as 1676 buffers may have been allocated in nand_base. Check with 1677 Thomas. FIX ME! */ 1678 /* nand_release will call mtd_device_unregister, but we 1679 haven't yet added it. This is handled without incident by 1680 mtd_device_unregister, as far as I can tell. */ 1681 nand_release(mtd); 1682 kfree(mtd); 1683 goto fail; 1684 } 1685 1686 /* Success! */ 1687 doclist = mtd; 1688 return 0; 1689 1690 notfound: 1691 /* Put back the contents of the DOCControl register, in case it's not 1692 actually a DiskOnChip. */ 1693 WriteDOC(save_control, virtadr, DOCControl); 1694 fail: 1695 iounmap(virtadr); 1696 return ret; 1697} 1698 1699static void release_nanddoc(void) 1700{ 1701 struct mtd_info *mtd, *nextmtd; 1702 struct nand_chip *nand; 1703 struct doc_priv *doc; 1704 1705 for (mtd = doclist; mtd; mtd = nextmtd) { 1706 nand = mtd->priv; 1707 doc = nand->priv; 1708 1709 nextmtd = doc->nextdoc; 1710 nand_release(mtd); 1711 iounmap(doc->virtadr); 1712 kfree(mtd); 1713 } 1714} 1715 1716static int __init init_nanddoc(void) 1717{ 1718 int i, ret = 0; 1719 1720 /* We could create the decoder on demand, if memory is a concern. 1721 * This way we have it handy, if an error happens 1722 * 1723 * Symbolsize is 10 (bits) 1724 * Primitve polynomial is x^10+x^3+1 1725 * first consecutive root is 510 1726 * primitve element to generate roots = 1 1727 * generator polinomial degree = 4 1728 */ 1729 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); 1730 if (!rs_decoder) { 1731 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); 1732 return -ENOMEM; 1733 } 1734 1735 if (doc_config_location) { 1736 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); 1737 ret = doc_probe(doc_config_location); 1738 if (ret < 0) 1739 goto outerr; 1740 } else { 1741 for (i = 0; (doc_locations[i] != 0xffffffff); i++) { 1742 doc_probe(doc_locations[i]); 1743 } 1744 } 1745 /* No banner message any more. Print a message if no DiskOnChip 1746 found, so the user knows we at least tried. */ 1747 if (!doclist) { 1748 printk(KERN_INFO "No valid DiskOnChip devices found\n"); 1749 ret = -ENODEV; 1750 goto outerr; 1751 } 1752 return 0; 1753 outerr: 1754 free_rs(rs_decoder); 1755 return ret; 1756} 1757 1758static void __exit cleanup_nanddoc(void) 1759{ 1760 /* Cleanup the nand/DoC resources */ 1761 release_nanddoc(); 1762 1763 /* Free the reed solomon resources */ 1764 if (rs_decoder) { 1765 free_rs(rs_decoder); 1766 } 1767} 1768 1769module_init(init_nanddoc); 1770module_exit(cleanup_nanddoc); 1771 1772MODULE_LICENSE("GPL"); 1773MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1774MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");