at v3.2 17 kB view raw
1/* 2 * Copyright 2010 Tilera Corporation. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation, version 2. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 11 * NON INFRINGEMENT. See the GNU General Public License for 12 * more details. 13 */ 14 15#include <linux/sched.h> 16#include <linux/kernel.h> 17#include <linux/errno.h> 18#include <linux/mm.h> 19#include <linux/swap.h> 20#include <linux/highmem.h> 21#include <linux/slab.h> 22#include <linux/pagemap.h> 23#include <linux/spinlock.h> 24#include <linux/cpumask.h> 25#include <linux/module.h> 26#include <linux/io.h> 27#include <linux/vmalloc.h> 28#include <linux/smp.h> 29 30#include <asm/system.h> 31#include <asm/pgtable.h> 32#include <asm/pgalloc.h> 33#include <asm/fixmap.h> 34#include <asm/tlb.h> 35#include <asm/tlbflush.h> 36#include <asm/homecache.h> 37 38#define K(x) ((x) << (PAGE_SHIFT-10)) 39 40/* 41 * The normal show_free_areas() is too verbose on Tile, with dozens 42 * of processors and often four NUMA zones each with high and lowmem. 43 */ 44void show_mem(unsigned int filter) 45{ 46 struct zone *zone; 47 48 pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu" 49 " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu" 50 " pagecache:%lu swap:%lu\n", 51 (global_page_state(NR_ACTIVE_ANON) + 52 global_page_state(NR_ACTIVE_FILE)), 53 (global_page_state(NR_INACTIVE_ANON) + 54 global_page_state(NR_INACTIVE_FILE)), 55 global_page_state(NR_FILE_DIRTY), 56 global_page_state(NR_WRITEBACK), 57 global_page_state(NR_UNSTABLE_NFS), 58 global_page_state(NR_FREE_PAGES), 59 (global_page_state(NR_SLAB_RECLAIMABLE) + 60 global_page_state(NR_SLAB_UNRECLAIMABLE)), 61 global_page_state(NR_FILE_MAPPED), 62 global_page_state(NR_PAGETABLE), 63 global_page_state(NR_BOUNCE), 64 global_page_state(NR_FILE_PAGES), 65 nr_swap_pages); 66 67 for_each_zone(zone) { 68 unsigned long flags, order, total = 0, largest_order = -1; 69 70 if (!populated_zone(zone)) 71 continue; 72 73 spin_lock_irqsave(&zone->lock, flags); 74 for (order = 0; order < MAX_ORDER; order++) { 75 int nr = zone->free_area[order].nr_free; 76 total += nr << order; 77 if (nr) 78 largest_order = order; 79 } 80 spin_unlock_irqrestore(&zone->lock, flags); 81 pr_err("Node %d %7s: %lukB (largest %luKb)\n", 82 zone_to_nid(zone), zone->name, 83 K(total), largest_order ? K(1UL) << largest_order : 0); 84 } 85} 86 87/* 88 * Associate a virtual page frame with a given physical page frame 89 * and protection flags for that frame. 90 */ 91static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) 92{ 93 pgd_t *pgd; 94 pud_t *pud; 95 pmd_t *pmd; 96 pte_t *pte; 97 98 pgd = swapper_pg_dir + pgd_index(vaddr); 99 if (pgd_none(*pgd)) { 100 BUG(); 101 return; 102 } 103 pud = pud_offset(pgd, vaddr); 104 if (pud_none(*pud)) { 105 BUG(); 106 return; 107 } 108 pmd = pmd_offset(pud, vaddr); 109 if (pmd_none(*pmd)) { 110 BUG(); 111 return; 112 } 113 pte = pte_offset_kernel(pmd, vaddr); 114 /* <pfn,flags> stored as-is, to permit clearing entries */ 115 set_pte(pte, pfn_pte(pfn, flags)); 116 117 /* 118 * It's enough to flush this one mapping. 119 * This appears conservative since it is only called 120 * from __set_fixmap. 121 */ 122 local_flush_tlb_page(NULL, vaddr, PAGE_SIZE); 123} 124 125void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags) 126{ 127 unsigned long address = __fix_to_virt(idx); 128 129 if (idx >= __end_of_fixed_addresses) { 130 BUG(); 131 return; 132 } 133 set_pte_pfn(address, phys >> PAGE_SHIFT, flags); 134} 135 136#if defined(CONFIG_HIGHPTE) 137pte_t *_pte_offset_map(pmd_t *dir, unsigned long address) 138{ 139 pte_t *pte = kmap_atomic(pmd_page(*dir)) + 140 (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK; 141 return &pte[pte_index(address)]; 142} 143#endif 144 145/** 146 * shatter_huge_page() - ensure a given address is mapped by a small page. 147 * 148 * This function converts a huge PTE mapping kernel LOWMEM into a bunch 149 * of small PTEs with the same caching. No cache flush required, but we 150 * must do a global TLB flush. 151 * 152 * Any caller that wishes to modify a kernel mapping that might 153 * have been made with a huge page should call this function, 154 * since doing so properly avoids race conditions with installing the 155 * newly-shattered page and then flushing all the TLB entries. 156 * 157 * @addr: Address at which to shatter any existing huge page. 158 */ 159void shatter_huge_page(unsigned long addr) 160{ 161 pgd_t *pgd; 162 pud_t *pud; 163 pmd_t *pmd; 164 unsigned long flags = 0; /* happy compiler */ 165#ifdef __PAGETABLE_PMD_FOLDED 166 struct list_head *pos; 167#endif 168 169 /* Get a pointer to the pmd entry that we need to change. */ 170 addr &= HPAGE_MASK; 171 BUG_ON(pgd_addr_invalid(addr)); 172 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */ 173 pgd = swapper_pg_dir + pgd_index(addr); 174 pud = pud_offset(pgd, addr); 175 BUG_ON(!pud_present(*pud)); 176 pmd = pmd_offset(pud, addr); 177 BUG_ON(!pmd_present(*pmd)); 178 if (!pmd_huge_page(*pmd)) 179 return; 180 181 /* 182 * Grab the pgd_lock, since we may need it to walk the pgd_list, 183 * and since we need some kind of lock here to avoid races. 184 */ 185 spin_lock_irqsave(&pgd_lock, flags); 186 if (!pmd_huge_page(*pmd)) { 187 /* Lost the race to convert the huge page. */ 188 spin_unlock_irqrestore(&pgd_lock, flags); 189 return; 190 } 191 192 /* Shatter the huge page into the preallocated L2 page table. */ 193 pmd_populate_kernel(&init_mm, pmd, 194 get_prealloc_pte(pte_pfn(*(pte_t *)pmd))); 195 196#ifdef __PAGETABLE_PMD_FOLDED 197 /* Walk every pgd on the system and update the pmd there. */ 198 list_for_each(pos, &pgd_list) { 199 pmd_t *copy_pmd; 200 pgd = list_to_pgd(pos) + pgd_index(addr); 201 pud = pud_offset(pgd, addr); 202 copy_pmd = pmd_offset(pud, addr); 203 __set_pmd(copy_pmd, *pmd); 204 } 205#endif 206 207 /* Tell every cpu to notice the change. */ 208 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE, 209 cpu_possible_mask, NULL, 0); 210 211 /* Hold the lock until the TLB flush is finished to avoid races. */ 212 spin_unlock_irqrestore(&pgd_lock, flags); 213} 214 215/* 216 * List of all pgd's needed so it can invalidate entries in both cached 217 * and uncached pgd's. This is essentially codepath-based locking 218 * against pageattr.c; it is the unique case in which a valid change 219 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 220 * vmalloc faults work because attached pagetables are never freed. 221 * The locking scheme was chosen on the basis of manfred's 222 * recommendations and having no core impact whatsoever. 223 * -- wli 224 */ 225DEFINE_SPINLOCK(pgd_lock); 226LIST_HEAD(pgd_list); 227 228static inline void pgd_list_add(pgd_t *pgd) 229{ 230 list_add(pgd_to_list(pgd), &pgd_list); 231} 232 233static inline void pgd_list_del(pgd_t *pgd) 234{ 235 list_del(pgd_to_list(pgd)); 236} 237 238#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET) 239#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START) 240 241static void pgd_ctor(pgd_t *pgd) 242{ 243 unsigned long flags; 244 245 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t)); 246 spin_lock_irqsave(&pgd_lock, flags); 247 248#ifndef __tilegx__ 249 /* 250 * Check that the user interrupt vector has no L2. 251 * It never should for the swapper, and new page tables 252 * should always start with an empty user interrupt vector. 253 */ 254 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0); 255#endif 256 257 memcpy(pgd + KERNEL_PGD_INDEX_START, 258 swapper_pg_dir + KERNEL_PGD_INDEX_START, 259 KERNEL_PGD_PTRS * sizeof(pgd_t)); 260 261 pgd_list_add(pgd); 262 spin_unlock_irqrestore(&pgd_lock, flags); 263} 264 265static void pgd_dtor(pgd_t *pgd) 266{ 267 unsigned long flags; /* can be called from interrupt context */ 268 269 spin_lock_irqsave(&pgd_lock, flags); 270 pgd_list_del(pgd); 271 spin_unlock_irqrestore(&pgd_lock, flags); 272} 273 274pgd_t *pgd_alloc(struct mm_struct *mm) 275{ 276 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL); 277 if (pgd) 278 pgd_ctor(pgd); 279 return pgd; 280} 281 282void pgd_free(struct mm_struct *mm, pgd_t *pgd) 283{ 284 pgd_dtor(pgd); 285 kmem_cache_free(pgd_cache, pgd); 286} 287 288 289#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER) 290 291struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) 292{ 293 gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO; 294 struct page *p; 295#if L2_USER_PGTABLE_ORDER > 0 296 int i; 297#endif 298 299#ifdef CONFIG_HIGHPTE 300 flags |= __GFP_HIGHMEM; 301#endif 302 303 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER); 304 if (p == NULL) 305 return NULL; 306 307#if L2_USER_PGTABLE_ORDER > 0 308 /* 309 * Make every page have a page_count() of one, not just the first. 310 * We don't use __GFP_COMP since it doesn't look like it works 311 * correctly with tlb_remove_page(). 312 */ 313 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) { 314 init_page_count(p+i); 315 inc_zone_page_state(p+i, NR_PAGETABLE); 316 } 317#endif 318 319 pgtable_page_ctor(p); 320 return p; 321} 322 323/* 324 * Free page immediately (used in __pte_alloc if we raced with another 325 * process). We have to correct whatever pte_alloc_one() did before 326 * returning the pages to the allocator. 327 */ 328void pte_free(struct mm_struct *mm, struct page *p) 329{ 330 int i; 331 332 pgtable_page_dtor(p); 333 __free_page(p); 334 335 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) { 336 __free_page(p+i); 337 dec_zone_page_state(p+i, NR_PAGETABLE); 338 } 339} 340 341void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte, 342 unsigned long address) 343{ 344 int i; 345 346 pgtable_page_dtor(pte); 347 tlb_remove_page(tlb, pte); 348 349 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) { 350 tlb_remove_page(tlb, pte + i); 351 dec_zone_page_state(pte + i, NR_PAGETABLE); 352 } 353} 354 355#ifndef __tilegx__ 356 357/* 358 * FIXME: needs to be atomic vs hypervisor writes. For now we make the 359 * window of vulnerability a bit smaller by doing an unlocked 8-bit update. 360 */ 361int ptep_test_and_clear_young(struct vm_area_struct *vma, 362 unsigned long addr, pte_t *ptep) 363{ 364#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16 365# error Code assumes HV_PTE "accessed" bit in second byte 366#endif 367 u8 *tmp = (u8 *)ptep; 368 u8 second_byte = tmp[1]; 369 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8)))) 370 return 0; 371 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8)); 372 return 1; 373} 374 375/* 376 * This implementation is atomic vs hypervisor writes, since the hypervisor 377 * always writes the low word (where "accessed" and "dirty" are) and this 378 * routine only writes the high word. 379 */ 380void ptep_set_wrprotect(struct mm_struct *mm, 381 unsigned long addr, pte_t *ptep) 382{ 383#if HV_PTE_INDEX_WRITABLE < 32 384# error Code assumes HV_PTE "writable" bit in high word 385#endif 386 u32 *tmp = (u32 *)ptep; 387 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32)); 388} 389 390#endif 391 392pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr) 393{ 394 pgd_t *pgd; 395 pud_t *pud; 396 pmd_t *pmd; 397 398 if (pgd_addr_invalid(addr)) 399 return NULL; 400 401 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr); 402 pud = pud_offset(pgd, addr); 403 if (!pud_present(*pud)) 404 return NULL; 405 pmd = pmd_offset(pud, addr); 406 if (pmd_huge_page(*pmd)) 407 return (pte_t *)pmd; 408 if (!pmd_present(*pmd)) 409 return NULL; 410 return pte_offset_kernel(pmd, addr); 411} 412 413pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu) 414{ 415 unsigned int width = smp_width; 416 int x = cpu % width; 417 int y = cpu / width; 418 BUG_ON(y >= smp_height); 419 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); 420 BUG_ON(cpu < 0 || cpu >= NR_CPUS); 421 BUG_ON(!cpu_is_valid_lotar(cpu)); 422 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y)); 423} 424 425int get_remote_cache_cpu(pgprot_t prot) 426{ 427 HV_LOTAR lotar = hv_pte_get_lotar(prot); 428 int x = HV_LOTAR_X(lotar); 429 int y = HV_LOTAR_Y(lotar); 430 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); 431 return x + y * smp_width; 432} 433 434/* 435 * Convert a kernel VA to a PA and homing information. 436 */ 437int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte) 438{ 439 struct page *page = virt_to_page(va); 440 pte_t null_pte = { 0 }; 441 442 *cpa = __pa(va); 443 444 /* Note that this is not writing a page table, just returning a pte. */ 445 *pte = pte_set_home(null_pte, page_home(page)); 446 447 return 0; /* return non-zero if not hfh? */ 448} 449EXPORT_SYMBOL(va_to_cpa_and_pte); 450 451void __set_pte(pte_t *ptep, pte_t pte) 452{ 453#ifdef __tilegx__ 454 *ptep = pte; 455#else 456# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32 457# error Must write the present and migrating bits last 458# endif 459 if (pte_present(pte)) { 460 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); 461 barrier(); 462 ((u32 *)ptep)[0] = (u32)(pte_val(pte)); 463 } else { 464 ((u32 *)ptep)[0] = (u32)(pte_val(pte)); 465 barrier(); 466 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); 467 } 468#endif /* __tilegx__ */ 469} 470 471void set_pte(pte_t *ptep, pte_t pte) 472{ 473 struct page *page = pfn_to_page(pte_pfn(pte)); 474 475 /* Update the home of a PTE if necessary */ 476 pte = pte_set_home(pte, page_home(page)); 477 478 __set_pte(ptep, pte); 479} 480 481/* Can this mm load a PTE with cached_priority set? */ 482static inline int mm_is_priority_cached(struct mm_struct *mm) 483{ 484 return mm->context.priority_cached; 485} 486 487/* 488 * Add a priority mapping to an mm_context and 489 * notify the hypervisor if this is the first one. 490 */ 491void start_mm_caching(struct mm_struct *mm) 492{ 493 if (!mm_is_priority_cached(mm)) { 494 mm->context.priority_cached = -1U; 495 hv_set_caching(-1U); 496 } 497} 498 499/* 500 * Validate and return the priority_cached flag. We know if it's zero 501 * that we don't need to scan, since we immediately set it non-zero 502 * when we first consider a MAP_CACHE_PRIORITY mapping. 503 * 504 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it, 505 * since we're in an interrupt context (servicing switch_mm) we don't 506 * worry about it and don't unset the "priority_cached" field. 507 * Presumably we'll come back later and have more luck and clear 508 * the value then; for now we'll just keep the cache marked for priority. 509 */ 510static unsigned int update_priority_cached(struct mm_struct *mm) 511{ 512 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) { 513 struct vm_area_struct *vm; 514 for (vm = mm->mmap; vm; vm = vm->vm_next) { 515 if (hv_pte_get_cached_priority(vm->vm_page_prot)) 516 break; 517 } 518 if (vm == NULL) 519 mm->context.priority_cached = 0; 520 up_write(&mm->mmap_sem); 521 } 522 return mm->context.priority_cached; 523} 524 525/* Set caching correctly for an mm that we are switching to. */ 526void check_mm_caching(struct mm_struct *prev, struct mm_struct *next) 527{ 528 if (!mm_is_priority_cached(next)) { 529 /* 530 * If the new mm doesn't use priority caching, just see if we 531 * need the hv_set_caching(), or can assume it's already zero. 532 */ 533 if (mm_is_priority_cached(prev)) 534 hv_set_caching(0); 535 } else { 536 hv_set_caching(update_priority_cached(next)); 537 } 538} 539 540#if CHIP_HAS_MMIO() 541 542/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */ 543void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 544 pgprot_t home) 545{ 546 void *addr; 547 struct vm_struct *area; 548 unsigned long offset, last_addr; 549 pgprot_t pgprot; 550 551 /* Don't allow wraparound or zero size */ 552 last_addr = phys_addr + size - 1; 553 if (!size || last_addr < phys_addr) 554 return NULL; 555 556 /* Create a read/write, MMIO VA mapping homed at the requested shim. */ 557 pgprot = PAGE_KERNEL; 558 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO); 559 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home)); 560 561 /* 562 * Mappings have to be page-aligned 563 */ 564 offset = phys_addr & ~PAGE_MASK; 565 phys_addr &= PAGE_MASK; 566 size = PAGE_ALIGN(last_addr+1) - phys_addr; 567 568 /* 569 * Ok, go for it.. 570 */ 571 area = get_vm_area(size, VM_IOREMAP /* | other flags? */); 572 if (!area) 573 return NULL; 574 area->phys_addr = phys_addr; 575 addr = area->addr; 576 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size, 577 phys_addr, pgprot)) { 578 remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr)); 579 return NULL; 580 } 581 return (__force void __iomem *) (offset + (char *)addr); 582} 583EXPORT_SYMBOL(ioremap_prot); 584 585/* Map a PCI MMIO bus address into VA space. */ 586void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) 587{ 588 panic("ioremap for PCI MMIO is not supported"); 589} 590EXPORT_SYMBOL(ioremap); 591 592/* Unmap an MMIO VA mapping. */ 593void iounmap(volatile void __iomem *addr_in) 594{ 595 volatile void __iomem *addr = (volatile void __iomem *) 596 (PAGE_MASK & (unsigned long __force)addr_in); 597#if 1 598 vunmap((void * __force)addr); 599#else 600 /* x86 uses this complicated flow instead of vunmap(). Is 601 * there any particular reason we should do the same? */ 602 struct vm_struct *p, *o; 603 604 /* Use the vm area unlocked, assuming the caller 605 ensures there isn't another iounmap for the same address 606 in parallel. Reuse of the virtual address is prevented by 607 leaving it in the global lists until we're done with it. 608 cpa takes care of the direct mappings. */ 609 read_lock(&vmlist_lock); 610 for (p = vmlist; p; p = p->next) { 611 if (p->addr == addr) 612 break; 613 } 614 read_unlock(&vmlist_lock); 615 616 if (!p) { 617 pr_err("iounmap: bad address %p\n", addr); 618 dump_stack(); 619 return; 620 } 621 622 /* Finally remove it */ 623 o = remove_vm_area((void *)addr); 624 BUG_ON(p != o || o == NULL); 625 kfree(p); 626#endif 627} 628EXPORT_SYMBOL(iounmap); 629 630#endif /* CHIP_HAS_MMIO() */