at v3.2-rc7 1146 lines 29 kB view raw
1/* 2 * drivers/base/power/main.c - Where the driver meets power management. 3 * 4 * Copyright (c) 2003 Patrick Mochel 5 * Copyright (c) 2003 Open Source Development Lab 6 * 7 * This file is released under the GPLv2 8 * 9 * 10 * The driver model core calls device_pm_add() when a device is registered. 11 * This will initialize the embedded device_pm_info object in the device 12 * and add it to the list of power-controlled devices. sysfs entries for 13 * controlling device power management will also be added. 14 * 15 * A separate list is used for keeping track of power info, because the power 16 * domain dependencies may differ from the ancestral dependencies that the 17 * subsystem list maintains. 18 */ 19 20#include <linux/device.h> 21#include <linux/kallsyms.h> 22#include <linux/export.h> 23#include <linux/mutex.h> 24#include <linux/pm.h> 25#include <linux/pm_runtime.h> 26#include <linux/resume-trace.h> 27#include <linux/interrupt.h> 28#include <linux/sched.h> 29#include <linux/async.h> 30#include <linux/suspend.h> 31 32#include "../base.h" 33#include "power.h" 34 35/* 36 * The entries in the dpm_list list are in a depth first order, simply 37 * because children are guaranteed to be discovered after parents, and 38 * are inserted at the back of the list on discovery. 39 * 40 * Since device_pm_add() may be called with a device lock held, 41 * we must never try to acquire a device lock while holding 42 * dpm_list_mutex. 43 */ 44 45LIST_HEAD(dpm_list); 46LIST_HEAD(dpm_prepared_list); 47LIST_HEAD(dpm_suspended_list); 48LIST_HEAD(dpm_noirq_list); 49 50struct suspend_stats suspend_stats; 51static DEFINE_MUTEX(dpm_list_mtx); 52static pm_message_t pm_transition; 53 54static int async_error; 55 56/** 57 * device_pm_init - Initialize the PM-related part of a device object. 58 * @dev: Device object being initialized. 59 */ 60void device_pm_init(struct device *dev) 61{ 62 dev->power.is_prepared = false; 63 dev->power.is_suspended = false; 64 init_completion(&dev->power.completion); 65 complete_all(&dev->power.completion); 66 dev->power.wakeup = NULL; 67 spin_lock_init(&dev->power.lock); 68 pm_runtime_init(dev); 69 INIT_LIST_HEAD(&dev->power.entry); 70 dev->power.power_state = PMSG_INVALID; 71} 72 73/** 74 * device_pm_lock - Lock the list of active devices used by the PM core. 75 */ 76void device_pm_lock(void) 77{ 78 mutex_lock(&dpm_list_mtx); 79} 80 81/** 82 * device_pm_unlock - Unlock the list of active devices used by the PM core. 83 */ 84void device_pm_unlock(void) 85{ 86 mutex_unlock(&dpm_list_mtx); 87} 88 89/** 90 * device_pm_add - Add a device to the PM core's list of active devices. 91 * @dev: Device to add to the list. 92 */ 93void device_pm_add(struct device *dev) 94{ 95 pr_debug("PM: Adding info for %s:%s\n", 96 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 97 mutex_lock(&dpm_list_mtx); 98 if (dev->parent && dev->parent->power.is_prepared) 99 dev_warn(dev, "parent %s should not be sleeping\n", 100 dev_name(dev->parent)); 101 list_add_tail(&dev->power.entry, &dpm_list); 102 dev_pm_qos_constraints_init(dev); 103 mutex_unlock(&dpm_list_mtx); 104} 105 106/** 107 * device_pm_remove - Remove a device from the PM core's list of active devices. 108 * @dev: Device to be removed from the list. 109 */ 110void device_pm_remove(struct device *dev) 111{ 112 pr_debug("PM: Removing info for %s:%s\n", 113 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 114 complete_all(&dev->power.completion); 115 mutex_lock(&dpm_list_mtx); 116 dev_pm_qos_constraints_destroy(dev); 117 list_del_init(&dev->power.entry); 118 mutex_unlock(&dpm_list_mtx); 119 device_wakeup_disable(dev); 120 pm_runtime_remove(dev); 121} 122 123/** 124 * device_pm_move_before - Move device in the PM core's list of active devices. 125 * @deva: Device to move in dpm_list. 126 * @devb: Device @deva should come before. 127 */ 128void device_pm_move_before(struct device *deva, struct device *devb) 129{ 130 pr_debug("PM: Moving %s:%s before %s:%s\n", 131 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 132 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 133 /* Delete deva from dpm_list and reinsert before devb. */ 134 list_move_tail(&deva->power.entry, &devb->power.entry); 135} 136 137/** 138 * device_pm_move_after - Move device in the PM core's list of active devices. 139 * @deva: Device to move in dpm_list. 140 * @devb: Device @deva should come after. 141 */ 142void device_pm_move_after(struct device *deva, struct device *devb) 143{ 144 pr_debug("PM: Moving %s:%s after %s:%s\n", 145 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 146 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 147 /* Delete deva from dpm_list and reinsert after devb. */ 148 list_move(&deva->power.entry, &devb->power.entry); 149} 150 151/** 152 * device_pm_move_last - Move device to end of the PM core's list of devices. 153 * @dev: Device to move in dpm_list. 154 */ 155void device_pm_move_last(struct device *dev) 156{ 157 pr_debug("PM: Moving %s:%s to end of list\n", 158 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 159 list_move_tail(&dev->power.entry, &dpm_list); 160} 161 162static ktime_t initcall_debug_start(struct device *dev) 163{ 164 ktime_t calltime = ktime_set(0, 0); 165 166 if (initcall_debug) { 167 pr_info("calling %s+ @ %i\n", 168 dev_name(dev), task_pid_nr(current)); 169 calltime = ktime_get(); 170 } 171 172 return calltime; 173} 174 175static void initcall_debug_report(struct device *dev, ktime_t calltime, 176 int error) 177{ 178 ktime_t delta, rettime; 179 180 if (initcall_debug) { 181 rettime = ktime_get(); 182 delta = ktime_sub(rettime, calltime); 183 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev), 184 error, (unsigned long long)ktime_to_ns(delta) >> 10); 185 } 186} 187 188/** 189 * dpm_wait - Wait for a PM operation to complete. 190 * @dev: Device to wait for. 191 * @async: If unset, wait only if the device's power.async_suspend flag is set. 192 */ 193static void dpm_wait(struct device *dev, bool async) 194{ 195 if (!dev) 196 return; 197 198 if (async || (pm_async_enabled && dev->power.async_suspend)) 199 wait_for_completion(&dev->power.completion); 200} 201 202static int dpm_wait_fn(struct device *dev, void *async_ptr) 203{ 204 dpm_wait(dev, *((bool *)async_ptr)); 205 return 0; 206} 207 208static void dpm_wait_for_children(struct device *dev, bool async) 209{ 210 device_for_each_child(dev, &async, dpm_wait_fn); 211} 212 213/** 214 * pm_op - Execute the PM operation appropriate for given PM event. 215 * @dev: Device to handle. 216 * @ops: PM operations to choose from. 217 * @state: PM transition of the system being carried out. 218 */ 219static int pm_op(struct device *dev, 220 const struct dev_pm_ops *ops, 221 pm_message_t state) 222{ 223 int error = 0; 224 ktime_t calltime; 225 226 calltime = initcall_debug_start(dev); 227 228 switch (state.event) { 229#ifdef CONFIG_SUSPEND 230 case PM_EVENT_SUSPEND: 231 if (ops->suspend) { 232 error = ops->suspend(dev); 233 suspend_report_result(ops->suspend, error); 234 } 235 break; 236 case PM_EVENT_RESUME: 237 if (ops->resume) { 238 error = ops->resume(dev); 239 suspend_report_result(ops->resume, error); 240 } 241 break; 242#endif /* CONFIG_SUSPEND */ 243#ifdef CONFIG_HIBERNATE_CALLBACKS 244 case PM_EVENT_FREEZE: 245 case PM_EVENT_QUIESCE: 246 if (ops->freeze) { 247 error = ops->freeze(dev); 248 suspend_report_result(ops->freeze, error); 249 } 250 break; 251 case PM_EVENT_HIBERNATE: 252 if (ops->poweroff) { 253 error = ops->poweroff(dev); 254 suspend_report_result(ops->poweroff, error); 255 } 256 break; 257 case PM_EVENT_THAW: 258 case PM_EVENT_RECOVER: 259 if (ops->thaw) { 260 error = ops->thaw(dev); 261 suspend_report_result(ops->thaw, error); 262 } 263 break; 264 case PM_EVENT_RESTORE: 265 if (ops->restore) { 266 error = ops->restore(dev); 267 suspend_report_result(ops->restore, error); 268 } 269 break; 270#endif /* CONFIG_HIBERNATE_CALLBACKS */ 271 default: 272 error = -EINVAL; 273 } 274 275 initcall_debug_report(dev, calltime, error); 276 277 return error; 278} 279 280/** 281 * pm_noirq_op - Execute the PM operation appropriate for given PM event. 282 * @dev: Device to handle. 283 * @ops: PM operations to choose from. 284 * @state: PM transition of the system being carried out. 285 * 286 * The driver of @dev will not receive interrupts while this function is being 287 * executed. 288 */ 289static int pm_noirq_op(struct device *dev, 290 const struct dev_pm_ops *ops, 291 pm_message_t state) 292{ 293 int error = 0; 294 ktime_t calltime = ktime_set(0, 0), delta, rettime; 295 296 if (initcall_debug) { 297 pr_info("calling %s+ @ %i, parent: %s\n", 298 dev_name(dev), task_pid_nr(current), 299 dev->parent ? dev_name(dev->parent) : "none"); 300 calltime = ktime_get(); 301 } 302 303 switch (state.event) { 304#ifdef CONFIG_SUSPEND 305 case PM_EVENT_SUSPEND: 306 if (ops->suspend_noirq) { 307 error = ops->suspend_noirq(dev); 308 suspend_report_result(ops->suspend_noirq, error); 309 } 310 break; 311 case PM_EVENT_RESUME: 312 if (ops->resume_noirq) { 313 error = ops->resume_noirq(dev); 314 suspend_report_result(ops->resume_noirq, error); 315 } 316 break; 317#endif /* CONFIG_SUSPEND */ 318#ifdef CONFIG_HIBERNATE_CALLBACKS 319 case PM_EVENT_FREEZE: 320 case PM_EVENT_QUIESCE: 321 if (ops->freeze_noirq) { 322 error = ops->freeze_noirq(dev); 323 suspend_report_result(ops->freeze_noirq, error); 324 } 325 break; 326 case PM_EVENT_HIBERNATE: 327 if (ops->poweroff_noirq) { 328 error = ops->poweroff_noirq(dev); 329 suspend_report_result(ops->poweroff_noirq, error); 330 } 331 break; 332 case PM_EVENT_THAW: 333 case PM_EVENT_RECOVER: 334 if (ops->thaw_noirq) { 335 error = ops->thaw_noirq(dev); 336 suspend_report_result(ops->thaw_noirq, error); 337 } 338 break; 339 case PM_EVENT_RESTORE: 340 if (ops->restore_noirq) { 341 error = ops->restore_noirq(dev); 342 suspend_report_result(ops->restore_noirq, error); 343 } 344 break; 345#endif /* CONFIG_HIBERNATE_CALLBACKS */ 346 default: 347 error = -EINVAL; 348 } 349 350 if (initcall_debug) { 351 rettime = ktime_get(); 352 delta = ktime_sub(rettime, calltime); 353 printk("initcall %s_i+ returned %d after %Ld usecs\n", 354 dev_name(dev), error, 355 (unsigned long long)ktime_to_ns(delta) >> 10); 356 } 357 358 return error; 359} 360 361static char *pm_verb(int event) 362{ 363 switch (event) { 364 case PM_EVENT_SUSPEND: 365 return "suspend"; 366 case PM_EVENT_RESUME: 367 return "resume"; 368 case PM_EVENT_FREEZE: 369 return "freeze"; 370 case PM_EVENT_QUIESCE: 371 return "quiesce"; 372 case PM_EVENT_HIBERNATE: 373 return "hibernate"; 374 case PM_EVENT_THAW: 375 return "thaw"; 376 case PM_EVENT_RESTORE: 377 return "restore"; 378 case PM_EVENT_RECOVER: 379 return "recover"; 380 default: 381 return "(unknown PM event)"; 382 } 383} 384 385static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info) 386{ 387 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 388 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 389 ", may wakeup" : ""); 390} 391 392static void pm_dev_err(struct device *dev, pm_message_t state, char *info, 393 int error) 394{ 395 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", 396 dev_name(dev), pm_verb(state.event), info, error); 397} 398 399static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info) 400{ 401 ktime_t calltime; 402 u64 usecs64; 403 int usecs; 404 405 calltime = ktime_get(); 406 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 407 do_div(usecs64, NSEC_PER_USEC); 408 usecs = usecs64; 409 if (usecs == 0) 410 usecs = 1; 411 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n", 412 info ?: "", info ? " " : "", pm_verb(state.event), 413 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 414} 415 416/*------------------------- Resume routines -------------------------*/ 417 418/** 419 * device_resume_noirq - Execute an "early resume" callback for given device. 420 * @dev: Device to handle. 421 * @state: PM transition of the system being carried out. 422 * 423 * The driver of @dev will not receive interrupts while this function is being 424 * executed. 425 */ 426static int device_resume_noirq(struct device *dev, pm_message_t state) 427{ 428 int error = 0; 429 430 TRACE_DEVICE(dev); 431 TRACE_RESUME(0); 432 433 if (dev->pm_domain) { 434 pm_dev_dbg(dev, state, "EARLY power domain "); 435 error = pm_noirq_op(dev, &dev->pm_domain->ops, state); 436 } else if (dev->type && dev->type->pm) { 437 pm_dev_dbg(dev, state, "EARLY type "); 438 error = pm_noirq_op(dev, dev->type->pm, state); 439 } else if (dev->class && dev->class->pm) { 440 pm_dev_dbg(dev, state, "EARLY class "); 441 error = pm_noirq_op(dev, dev->class->pm, state); 442 } else if (dev->bus && dev->bus->pm) { 443 pm_dev_dbg(dev, state, "EARLY "); 444 error = pm_noirq_op(dev, dev->bus->pm, state); 445 } 446 447 TRACE_RESUME(error); 448 return error; 449} 450 451/** 452 * dpm_resume_noirq - Execute "early resume" callbacks for non-sysdev devices. 453 * @state: PM transition of the system being carried out. 454 * 455 * Call the "noirq" resume handlers for all devices marked as DPM_OFF_IRQ and 456 * enable device drivers to receive interrupts. 457 */ 458void dpm_resume_noirq(pm_message_t state) 459{ 460 ktime_t starttime = ktime_get(); 461 462 mutex_lock(&dpm_list_mtx); 463 while (!list_empty(&dpm_noirq_list)) { 464 struct device *dev = to_device(dpm_noirq_list.next); 465 int error; 466 467 get_device(dev); 468 list_move_tail(&dev->power.entry, &dpm_suspended_list); 469 mutex_unlock(&dpm_list_mtx); 470 471 error = device_resume_noirq(dev, state); 472 if (error) { 473 suspend_stats.failed_resume_noirq++; 474 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 475 dpm_save_failed_dev(dev_name(dev)); 476 pm_dev_err(dev, state, " early", error); 477 } 478 479 mutex_lock(&dpm_list_mtx); 480 put_device(dev); 481 } 482 mutex_unlock(&dpm_list_mtx); 483 dpm_show_time(starttime, state, "early"); 484 resume_device_irqs(); 485} 486EXPORT_SYMBOL_GPL(dpm_resume_noirq); 487 488/** 489 * legacy_resume - Execute a legacy (bus or class) resume callback for device. 490 * @dev: Device to resume. 491 * @cb: Resume callback to execute. 492 */ 493static int legacy_resume(struct device *dev, int (*cb)(struct device *dev)) 494{ 495 int error; 496 ktime_t calltime; 497 498 calltime = initcall_debug_start(dev); 499 500 error = cb(dev); 501 suspend_report_result(cb, error); 502 503 initcall_debug_report(dev, calltime, error); 504 505 return error; 506} 507 508/** 509 * device_resume - Execute "resume" callbacks for given device. 510 * @dev: Device to handle. 511 * @state: PM transition of the system being carried out. 512 * @async: If true, the device is being resumed asynchronously. 513 */ 514static int device_resume(struct device *dev, pm_message_t state, bool async) 515{ 516 int error = 0; 517 bool put = false; 518 519 TRACE_DEVICE(dev); 520 TRACE_RESUME(0); 521 522 dpm_wait(dev->parent, async); 523 device_lock(dev); 524 525 /* 526 * This is a fib. But we'll allow new children to be added below 527 * a resumed device, even if the device hasn't been completed yet. 528 */ 529 dev->power.is_prepared = false; 530 531 if (!dev->power.is_suspended) 532 goto Unlock; 533 534 pm_runtime_enable(dev); 535 put = true; 536 537 if (dev->pm_domain) { 538 pm_dev_dbg(dev, state, "power domain "); 539 error = pm_op(dev, &dev->pm_domain->ops, state); 540 goto End; 541 } 542 543 if (dev->type && dev->type->pm) { 544 pm_dev_dbg(dev, state, "type "); 545 error = pm_op(dev, dev->type->pm, state); 546 goto End; 547 } 548 549 if (dev->class) { 550 if (dev->class->pm) { 551 pm_dev_dbg(dev, state, "class "); 552 error = pm_op(dev, dev->class->pm, state); 553 goto End; 554 } else if (dev->class->resume) { 555 pm_dev_dbg(dev, state, "legacy class "); 556 error = legacy_resume(dev, dev->class->resume); 557 goto End; 558 } 559 } 560 561 if (dev->bus) { 562 if (dev->bus->pm) { 563 pm_dev_dbg(dev, state, ""); 564 error = pm_op(dev, dev->bus->pm, state); 565 } else if (dev->bus->resume) { 566 pm_dev_dbg(dev, state, "legacy "); 567 error = legacy_resume(dev, dev->bus->resume); 568 } 569 } 570 571 End: 572 dev->power.is_suspended = false; 573 574 Unlock: 575 device_unlock(dev); 576 complete_all(&dev->power.completion); 577 578 TRACE_RESUME(error); 579 580 if (put) 581 pm_runtime_put_sync(dev); 582 583 return error; 584} 585 586static void async_resume(void *data, async_cookie_t cookie) 587{ 588 struct device *dev = (struct device *)data; 589 int error; 590 591 error = device_resume(dev, pm_transition, true); 592 if (error) 593 pm_dev_err(dev, pm_transition, " async", error); 594 put_device(dev); 595} 596 597static bool is_async(struct device *dev) 598{ 599 return dev->power.async_suspend && pm_async_enabled 600 && !pm_trace_is_enabled(); 601} 602 603/** 604 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 605 * @state: PM transition of the system being carried out. 606 * 607 * Execute the appropriate "resume" callback for all devices whose status 608 * indicates that they are suspended. 609 */ 610void dpm_resume(pm_message_t state) 611{ 612 struct device *dev; 613 ktime_t starttime = ktime_get(); 614 615 might_sleep(); 616 617 mutex_lock(&dpm_list_mtx); 618 pm_transition = state; 619 async_error = 0; 620 621 list_for_each_entry(dev, &dpm_suspended_list, power.entry) { 622 INIT_COMPLETION(dev->power.completion); 623 if (is_async(dev)) { 624 get_device(dev); 625 async_schedule(async_resume, dev); 626 } 627 } 628 629 while (!list_empty(&dpm_suspended_list)) { 630 dev = to_device(dpm_suspended_list.next); 631 get_device(dev); 632 if (!is_async(dev)) { 633 int error; 634 635 mutex_unlock(&dpm_list_mtx); 636 637 error = device_resume(dev, state, false); 638 if (error) { 639 suspend_stats.failed_resume++; 640 dpm_save_failed_step(SUSPEND_RESUME); 641 dpm_save_failed_dev(dev_name(dev)); 642 pm_dev_err(dev, state, "", error); 643 } 644 645 mutex_lock(&dpm_list_mtx); 646 } 647 if (!list_empty(&dev->power.entry)) 648 list_move_tail(&dev->power.entry, &dpm_prepared_list); 649 put_device(dev); 650 } 651 mutex_unlock(&dpm_list_mtx); 652 async_synchronize_full(); 653 dpm_show_time(starttime, state, NULL); 654} 655 656/** 657 * device_complete - Complete a PM transition for given device. 658 * @dev: Device to handle. 659 * @state: PM transition of the system being carried out. 660 */ 661static void device_complete(struct device *dev, pm_message_t state) 662{ 663 device_lock(dev); 664 665 if (dev->pm_domain) { 666 pm_dev_dbg(dev, state, "completing power domain "); 667 if (dev->pm_domain->ops.complete) 668 dev->pm_domain->ops.complete(dev); 669 } else if (dev->type && dev->type->pm) { 670 pm_dev_dbg(dev, state, "completing type "); 671 if (dev->type->pm->complete) 672 dev->type->pm->complete(dev); 673 } else if (dev->class && dev->class->pm) { 674 pm_dev_dbg(dev, state, "completing class "); 675 if (dev->class->pm->complete) 676 dev->class->pm->complete(dev); 677 } else if (dev->bus && dev->bus->pm) { 678 pm_dev_dbg(dev, state, "completing "); 679 if (dev->bus->pm->complete) 680 dev->bus->pm->complete(dev); 681 } 682 683 device_unlock(dev); 684} 685 686/** 687 * dpm_complete - Complete a PM transition for all non-sysdev devices. 688 * @state: PM transition of the system being carried out. 689 * 690 * Execute the ->complete() callbacks for all devices whose PM status is not 691 * DPM_ON (this allows new devices to be registered). 692 */ 693void dpm_complete(pm_message_t state) 694{ 695 struct list_head list; 696 697 might_sleep(); 698 699 INIT_LIST_HEAD(&list); 700 mutex_lock(&dpm_list_mtx); 701 while (!list_empty(&dpm_prepared_list)) { 702 struct device *dev = to_device(dpm_prepared_list.prev); 703 704 get_device(dev); 705 dev->power.is_prepared = false; 706 list_move(&dev->power.entry, &list); 707 mutex_unlock(&dpm_list_mtx); 708 709 device_complete(dev, state); 710 711 mutex_lock(&dpm_list_mtx); 712 put_device(dev); 713 } 714 list_splice(&list, &dpm_list); 715 mutex_unlock(&dpm_list_mtx); 716} 717 718/** 719 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 720 * @state: PM transition of the system being carried out. 721 * 722 * Execute "resume" callbacks for all devices and complete the PM transition of 723 * the system. 724 */ 725void dpm_resume_end(pm_message_t state) 726{ 727 dpm_resume(state); 728 dpm_complete(state); 729} 730EXPORT_SYMBOL_GPL(dpm_resume_end); 731 732 733/*------------------------- Suspend routines -------------------------*/ 734 735/** 736 * resume_event - Return a "resume" message for given "suspend" sleep state. 737 * @sleep_state: PM message representing a sleep state. 738 * 739 * Return a PM message representing the resume event corresponding to given 740 * sleep state. 741 */ 742static pm_message_t resume_event(pm_message_t sleep_state) 743{ 744 switch (sleep_state.event) { 745 case PM_EVENT_SUSPEND: 746 return PMSG_RESUME; 747 case PM_EVENT_FREEZE: 748 case PM_EVENT_QUIESCE: 749 return PMSG_RECOVER; 750 case PM_EVENT_HIBERNATE: 751 return PMSG_RESTORE; 752 } 753 return PMSG_ON; 754} 755 756/** 757 * device_suspend_noirq - Execute a "late suspend" callback for given device. 758 * @dev: Device to handle. 759 * @state: PM transition of the system being carried out. 760 * 761 * The driver of @dev will not receive interrupts while this function is being 762 * executed. 763 */ 764static int device_suspend_noirq(struct device *dev, pm_message_t state) 765{ 766 int error; 767 768 if (dev->pm_domain) { 769 pm_dev_dbg(dev, state, "LATE power domain "); 770 error = pm_noirq_op(dev, &dev->pm_domain->ops, state); 771 if (error) 772 return error; 773 } else if (dev->type && dev->type->pm) { 774 pm_dev_dbg(dev, state, "LATE type "); 775 error = pm_noirq_op(dev, dev->type->pm, state); 776 if (error) 777 return error; 778 } else if (dev->class && dev->class->pm) { 779 pm_dev_dbg(dev, state, "LATE class "); 780 error = pm_noirq_op(dev, dev->class->pm, state); 781 if (error) 782 return error; 783 } else if (dev->bus && dev->bus->pm) { 784 pm_dev_dbg(dev, state, "LATE "); 785 error = pm_noirq_op(dev, dev->bus->pm, state); 786 if (error) 787 return error; 788 } 789 790 return 0; 791} 792 793/** 794 * dpm_suspend_noirq - Execute "late suspend" callbacks for non-sysdev devices. 795 * @state: PM transition of the system being carried out. 796 * 797 * Prevent device drivers from receiving interrupts and call the "noirq" suspend 798 * handlers for all non-sysdev devices. 799 */ 800int dpm_suspend_noirq(pm_message_t state) 801{ 802 ktime_t starttime = ktime_get(); 803 int error = 0; 804 805 suspend_device_irqs(); 806 mutex_lock(&dpm_list_mtx); 807 while (!list_empty(&dpm_suspended_list)) { 808 struct device *dev = to_device(dpm_suspended_list.prev); 809 810 get_device(dev); 811 mutex_unlock(&dpm_list_mtx); 812 813 error = device_suspend_noirq(dev, state); 814 815 mutex_lock(&dpm_list_mtx); 816 if (error) { 817 pm_dev_err(dev, state, " late", error); 818 suspend_stats.failed_suspend_noirq++; 819 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 820 dpm_save_failed_dev(dev_name(dev)); 821 put_device(dev); 822 break; 823 } 824 if (!list_empty(&dev->power.entry)) 825 list_move(&dev->power.entry, &dpm_noirq_list); 826 put_device(dev); 827 } 828 mutex_unlock(&dpm_list_mtx); 829 if (error) 830 dpm_resume_noirq(resume_event(state)); 831 else 832 dpm_show_time(starttime, state, "late"); 833 return error; 834} 835EXPORT_SYMBOL_GPL(dpm_suspend_noirq); 836 837/** 838 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 839 * @dev: Device to suspend. 840 * @state: PM transition of the system being carried out. 841 * @cb: Suspend callback to execute. 842 */ 843static int legacy_suspend(struct device *dev, pm_message_t state, 844 int (*cb)(struct device *dev, pm_message_t state)) 845{ 846 int error; 847 ktime_t calltime; 848 849 calltime = initcall_debug_start(dev); 850 851 error = cb(dev, state); 852 suspend_report_result(cb, error); 853 854 initcall_debug_report(dev, calltime, error); 855 856 return error; 857} 858 859/** 860 * device_suspend - Execute "suspend" callbacks for given device. 861 * @dev: Device to handle. 862 * @state: PM transition of the system being carried out. 863 * @async: If true, the device is being suspended asynchronously. 864 */ 865static int __device_suspend(struct device *dev, pm_message_t state, bool async) 866{ 867 int error = 0; 868 869 dpm_wait_for_children(dev, async); 870 871 if (async_error) 872 return 0; 873 874 pm_runtime_get_noresume(dev); 875 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) 876 pm_wakeup_event(dev, 0); 877 878 if (pm_wakeup_pending()) { 879 pm_runtime_put_sync(dev); 880 async_error = -EBUSY; 881 return 0; 882 } 883 884 device_lock(dev); 885 886 if (dev->pm_domain) { 887 pm_dev_dbg(dev, state, "power domain "); 888 error = pm_op(dev, &dev->pm_domain->ops, state); 889 goto End; 890 } 891 892 if (dev->type && dev->type->pm) { 893 pm_dev_dbg(dev, state, "type "); 894 error = pm_op(dev, dev->type->pm, state); 895 goto End; 896 } 897 898 if (dev->class) { 899 if (dev->class->pm) { 900 pm_dev_dbg(dev, state, "class "); 901 error = pm_op(dev, dev->class->pm, state); 902 goto End; 903 } else if (dev->class->suspend) { 904 pm_dev_dbg(dev, state, "legacy class "); 905 error = legacy_suspend(dev, state, dev->class->suspend); 906 goto End; 907 } 908 } 909 910 if (dev->bus) { 911 if (dev->bus->pm) { 912 pm_dev_dbg(dev, state, ""); 913 error = pm_op(dev, dev->bus->pm, state); 914 } else if (dev->bus->suspend) { 915 pm_dev_dbg(dev, state, "legacy "); 916 error = legacy_suspend(dev, state, dev->bus->suspend); 917 } 918 } 919 920 End: 921 if (!error) { 922 dev->power.is_suspended = true; 923 if (dev->power.wakeup_path 924 && dev->parent && !dev->parent->power.ignore_children) 925 dev->parent->power.wakeup_path = true; 926 } 927 928 device_unlock(dev); 929 complete_all(&dev->power.completion); 930 931 if (error) { 932 pm_runtime_put_sync(dev); 933 async_error = error; 934 } else if (dev->power.is_suspended) { 935 __pm_runtime_disable(dev, false); 936 } 937 938 return error; 939} 940 941static void async_suspend(void *data, async_cookie_t cookie) 942{ 943 struct device *dev = (struct device *)data; 944 int error; 945 946 error = __device_suspend(dev, pm_transition, true); 947 if (error) { 948 dpm_save_failed_dev(dev_name(dev)); 949 pm_dev_err(dev, pm_transition, " async", error); 950 } 951 952 put_device(dev); 953} 954 955static int device_suspend(struct device *dev) 956{ 957 INIT_COMPLETION(dev->power.completion); 958 959 if (pm_async_enabled && dev->power.async_suspend) { 960 get_device(dev); 961 async_schedule(async_suspend, dev); 962 return 0; 963 } 964 965 return __device_suspend(dev, pm_transition, false); 966} 967 968/** 969 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 970 * @state: PM transition of the system being carried out. 971 */ 972int dpm_suspend(pm_message_t state) 973{ 974 ktime_t starttime = ktime_get(); 975 int error = 0; 976 977 might_sleep(); 978 979 mutex_lock(&dpm_list_mtx); 980 pm_transition = state; 981 async_error = 0; 982 while (!list_empty(&dpm_prepared_list)) { 983 struct device *dev = to_device(dpm_prepared_list.prev); 984 985 get_device(dev); 986 mutex_unlock(&dpm_list_mtx); 987 988 error = device_suspend(dev); 989 990 mutex_lock(&dpm_list_mtx); 991 if (error) { 992 pm_dev_err(dev, state, "", error); 993 dpm_save_failed_dev(dev_name(dev)); 994 put_device(dev); 995 break; 996 } 997 if (!list_empty(&dev->power.entry)) 998 list_move(&dev->power.entry, &dpm_suspended_list); 999 put_device(dev); 1000 if (async_error) 1001 break; 1002 } 1003 mutex_unlock(&dpm_list_mtx); 1004 async_synchronize_full(); 1005 if (!error) 1006 error = async_error; 1007 if (error) { 1008 suspend_stats.failed_suspend++; 1009 dpm_save_failed_step(SUSPEND_SUSPEND); 1010 } else 1011 dpm_show_time(starttime, state, NULL); 1012 return error; 1013} 1014 1015/** 1016 * device_prepare - Prepare a device for system power transition. 1017 * @dev: Device to handle. 1018 * @state: PM transition of the system being carried out. 1019 * 1020 * Execute the ->prepare() callback(s) for given device. No new children of the 1021 * device may be registered after this function has returned. 1022 */ 1023static int device_prepare(struct device *dev, pm_message_t state) 1024{ 1025 int error = 0; 1026 1027 device_lock(dev); 1028 1029 dev->power.wakeup_path = device_may_wakeup(dev); 1030 1031 if (dev->pm_domain) { 1032 pm_dev_dbg(dev, state, "preparing power domain "); 1033 if (dev->pm_domain->ops.prepare) 1034 error = dev->pm_domain->ops.prepare(dev); 1035 suspend_report_result(dev->pm_domain->ops.prepare, error); 1036 if (error) 1037 goto End; 1038 } else if (dev->type && dev->type->pm) { 1039 pm_dev_dbg(dev, state, "preparing type "); 1040 if (dev->type->pm->prepare) 1041 error = dev->type->pm->prepare(dev); 1042 suspend_report_result(dev->type->pm->prepare, error); 1043 if (error) 1044 goto End; 1045 } else if (dev->class && dev->class->pm) { 1046 pm_dev_dbg(dev, state, "preparing class "); 1047 if (dev->class->pm->prepare) 1048 error = dev->class->pm->prepare(dev); 1049 suspend_report_result(dev->class->pm->prepare, error); 1050 if (error) 1051 goto End; 1052 } else if (dev->bus && dev->bus->pm) { 1053 pm_dev_dbg(dev, state, "preparing "); 1054 if (dev->bus->pm->prepare) 1055 error = dev->bus->pm->prepare(dev); 1056 suspend_report_result(dev->bus->pm->prepare, error); 1057 } 1058 1059 End: 1060 device_unlock(dev); 1061 1062 return error; 1063} 1064 1065/** 1066 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1067 * @state: PM transition of the system being carried out. 1068 * 1069 * Execute the ->prepare() callback(s) for all devices. 1070 */ 1071int dpm_prepare(pm_message_t state) 1072{ 1073 int error = 0; 1074 1075 might_sleep(); 1076 1077 mutex_lock(&dpm_list_mtx); 1078 while (!list_empty(&dpm_list)) { 1079 struct device *dev = to_device(dpm_list.next); 1080 1081 get_device(dev); 1082 mutex_unlock(&dpm_list_mtx); 1083 1084 error = device_prepare(dev, state); 1085 1086 mutex_lock(&dpm_list_mtx); 1087 if (error) { 1088 if (error == -EAGAIN) { 1089 put_device(dev); 1090 error = 0; 1091 continue; 1092 } 1093 printk(KERN_INFO "PM: Device %s not prepared " 1094 "for power transition: code %d\n", 1095 dev_name(dev), error); 1096 put_device(dev); 1097 break; 1098 } 1099 dev->power.is_prepared = true; 1100 if (!list_empty(&dev->power.entry)) 1101 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1102 put_device(dev); 1103 } 1104 mutex_unlock(&dpm_list_mtx); 1105 return error; 1106} 1107 1108/** 1109 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1110 * @state: PM transition of the system being carried out. 1111 * 1112 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1113 * callbacks for them. 1114 */ 1115int dpm_suspend_start(pm_message_t state) 1116{ 1117 int error; 1118 1119 error = dpm_prepare(state); 1120 if (error) { 1121 suspend_stats.failed_prepare++; 1122 dpm_save_failed_step(SUSPEND_PREPARE); 1123 } else 1124 error = dpm_suspend(state); 1125 return error; 1126} 1127EXPORT_SYMBOL_GPL(dpm_suspend_start); 1128 1129void __suspend_report_result(const char *function, void *fn, int ret) 1130{ 1131 if (ret) 1132 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); 1133} 1134EXPORT_SYMBOL_GPL(__suspend_report_result); 1135 1136/** 1137 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1138 * @dev: Device to wait for. 1139 * @subordinate: Device that needs to wait for @dev. 1140 */ 1141int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1142{ 1143 dpm_wait(dev, subordinate->power.async_suspend); 1144 return async_error; 1145} 1146EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);