at v3.2-rc6 29 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef DMAENGINE_H 22#define DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/dma-direction.h> 27#include <linux/scatterlist.h> 28#include <linux/bitmap.h> 29#include <asm/page.h> 30 31/** 32 * typedef dma_cookie_t - an opaque DMA cookie 33 * 34 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 35 */ 36typedef s32 dma_cookie_t; 37#define DMA_MIN_COOKIE 1 38#define DMA_MAX_COOKIE INT_MAX 39 40#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 41 42/** 43 * enum dma_status - DMA transaction status 44 * @DMA_SUCCESS: transaction completed successfully 45 * @DMA_IN_PROGRESS: transaction not yet processed 46 * @DMA_PAUSED: transaction is paused 47 * @DMA_ERROR: transaction failed 48 */ 49enum dma_status { 50 DMA_SUCCESS, 51 DMA_IN_PROGRESS, 52 DMA_PAUSED, 53 DMA_ERROR, 54}; 55 56/** 57 * enum dma_transaction_type - DMA transaction types/indexes 58 * 59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 60 * automatically set as dma devices are registered. 61 */ 62enum dma_transaction_type { 63 DMA_MEMCPY, 64 DMA_XOR, 65 DMA_PQ, 66 DMA_XOR_VAL, 67 DMA_PQ_VAL, 68 DMA_MEMSET, 69 DMA_INTERRUPT, 70 DMA_SG, 71 DMA_PRIVATE, 72 DMA_ASYNC_TX, 73 DMA_SLAVE, 74 DMA_CYCLIC, 75}; 76 77/* last transaction type for creation of the capabilities mask */ 78#define DMA_TX_TYPE_END (DMA_CYCLIC + 1) 79 80 81/** 82 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 83 * control completion, and communicate status. 84 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 85 * this transaction 86 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 87 * acknowledges receipt, i.e. has has a chance to establish any dependency 88 * chains 89 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 90 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 91 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 92 * (if not set, do the source dma-unmapping as page) 93 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 94 * (if not set, do the destination dma-unmapping as page) 95 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 96 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 97 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 98 * sources that were the result of a previous operation, in the case of a PQ 99 * operation it continues the calculation with new sources 100 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 101 * on the result of this operation 102 */ 103enum dma_ctrl_flags { 104 DMA_PREP_INTERRUPT = (1 << 0), 105 DMA_CTRL_ACK = (1 << 1), 106 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 107 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 108 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 109 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 110 DMA_PREP_PQ_DISABLE_P = (1 << 6), 111 DMA_PREP_PQ_DISABLE_Q = (1 << 7), 112 DMA_PREP_CONTINUE = (1 << 8), 113 DMA_PREP_FENCE = (1 << 9), 114}; 115 116/** 117 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 118 * on a running channel. 119 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 120 * @DMA_PAUSE: pause ongoing transfers 121 * @DMA_RESUME: resume paused transfer 122 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 123 * that need to runtime reconfigure the slave channels (as opposed to passing 124 * configuration data in statically from the platform). An additional 125 * argument of struct dma_slave_config must be passed in with this 126 * command. 127 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller 128 * into external start mode. 129 */ 130enum dma_ctrl_cmd { 131 DMA_TERMINATE_ALL, 132 DMA_PAUSE, 133 DMA_RESUME, 134 DMA_SLAVE_CONFIG, 135 FSLDMA_EXTERNAL_START, 136}; 137 138/** 139 * enum sum_check_bits - bit position of pq_check_flags 140 */ 141enum sum_check_bits { 142 SUM_CHECK_P = 0, 143 SUM_CHECK_Q = 1, 144}; 145 146/** 147 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 148 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 149 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 150 */ 151enum sum_check_flags { 152 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 153 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 154}; 155 156 157/** 158 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 159 * See linux/cpumask.h 160 */ 161typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 162 163/** 164 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 165 * @memcpy_count: transaction counter 166 * @bytes_transferred: byte counter 167 */ 168 169struct dma_chan_percpu { 170 /* stats */ 171 unsigned long memcpy_count; 172 unsigned long bytes_transferred; 173}; 174 175/** 176 * struct dma_chan - devices supply DMA channels, clients use them 177 * @device: ptr to the dma device who supplies this channel, always !%NULL 178 * @cookie: last cookie value returned to client 179 * @chan_id: channel ID for sysfs 180 * @dev: class device for sysfs 181 * @device_node: used to add this to the device chan list 182 * @local: per-cpu pointer to a struct dma_chan_percpu 183 * @client-count: how many clients are using this channel 184 * @table_count: number of appearances in the mem-to-mem allocation table 185 * @private: private data for certain client-channel associations 186 */ 187struct dma_chan { 188 struct dma_device *device; 189 dma_cookie_t cookie; 190 191 /* sysfs */ 192 int chan_id; 193 struct dma_chan_dev *dev; 194 195 struct list_head device_node; 196 struct dma_chan_percpu __percpu *local; 197 int client_count; 198 int table_count; 199 void *private; 200}; 201 202/** 203 * struct dma_chan_dev - relate sysfs device node to backing channel device 204 * @chan - driver channel device 205 * @device - sysfs device 206 * @dev_id - parent dma_device dev_id 207 * @idr_ref - reference count to gate release of dma_device dev_id 208 */ 209struct dma_chan_dev { 210 struct dma_chan *chan; 211 struct device device; 212 int dev_id; 213 atomic_t *idr_ref; 214}; 215 216/** 217 * enum dma_slave_buswidth - defines bus with of the DMA slave 218 * device, source or target buses 219 */ 220enum dma_slave_buswidth { 221 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 222 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 223 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 224 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 225 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 226}; 227 228/** 229 * struct dma_slave_config - dma slave channel runtime config 230 * @direction: whether the data shall go in or out on this slave 231 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are 232 * legal values, DMA_BIDIRECTIONAL is not acceptable since we 233 * need to differentiate source and target addresses. 234 * @src_addr: this is the physical address where DMA slave data 235 * should be read (RX), if the source is memory this argument is 236 * ignored. 237 * @dst_addr: this is the physical address where DMA slave data 238 * should be written (TX), if the source is memory this argument 239 * is ignored. 240 * @src_addr_width: this is the width in bytes of the source (RX) 241 * register where DMA data shall be read. If the source 242 * is memory this may be ignored depending on architecture. 243 * Legal values: 1, 2, 4, 8. 244 * @dst_addr_width: same as src_addr_width but for destination 245 * target (TX) mutatis mutandis. 246 * @src_maxburst: the maximum number of words (note: words, as in 247 * units of the src_addr_width member, not bytes) that can be sent 248 * in one burst to the device. Typically something like half the 249 * FIFO depth on I/O peripherals so you don't overflow it. This 250 * may or may not be applicable on memory sources. 251 * @dst_maxburst: same as src_maxburst but for destination target 252 * mutatis mutandis. 253 * 254 * This struct is passed in as configuration data to a DMA engine 255 * in order to set up a certain channel for DMA transport at runtime. 256 * The DMA device/engine has to provide support for an additional 257 * command in the channel config interface, DMA_SLAVE_CONFIG 258 * and this struct will then be passed in as an argument to the 259 * DMA engine device_control() function. 260 * 261 * The rationale for adding configuration information to this struct 262 * is as follows: if it is likely that most DMA slave controllers in 263 * the world will support the configuration option, then make it 264 * generic. If not: if it is fixed so that it be sent in static from 265 * the platform data, then prefer to do that. Else, if it is neither 266 * fixed at runtime, nor generic enough (such as bus mastership on 267 * some CPU family and whatnot) then create a custom slave config 268 * struct and pass that, then make this config a member of that 269 * struct, if applicable. 270 */ 271struct dma_slave_config { 272 enum dma_data_direction direction; 273 dma_addr_t src_addr; 274 dma_addr_t dst_addr; 275 enum dma_slave_buswidth src_addr_width; 276 enum dma_slave_buswidth dst_addr_width; 277 u32 src_maxburst; 278 u32 dst_maxburst; 279}; 280 281static inline const char *dma_chan_name(struct dma_chan *chan) 282{ 283 return dev_name(&chan->dev->device); 284} 285 286void dma_chan_cleanup(struct kref *kref); 287 288/** 289 * typedef dma_filter_fn - callback filter for dma_request_channel 290 * @chan: channel to be reviewed 291 * @filter_param: opaque parameter passed through dma_request_channel 292 * 293 * When this optional parameter is specified in a call to dma_request_channel a 294 * suitable channel is passed to this routine for further dispositioning before 295 * being returned. Where 'suitable' indicates a non-busy channel that 296 * satisfies the given capability mask. It returns 'true' to indicate that the 297 * channel is suitable. 298 */ 299typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 300 301typedef void (*dma_async_tx_callback)(void *dma_async_param); 302/** 303 * struct dma_async_tx_descriptor - async transaction descriptor 304 * ---dma generic offload fields--- 305 * @cookie: tracking cookie for this transaction, set to -EBUSY if 306 * this tx is sitting on a dependency list 307 * @flags: flags to augment operation preparation, control completion, and 308 * communicate status 309 * @phys: physical address of the descriptor 310 * @chan: target channel for this operation 311 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 312 * @callback: routine to call after this operation is complete 313 * @callback_param: general parameter to pass to the callback routine 314 * ---async_tx api specific fields--- 315 * @next: at completion submit this descriptor 316 * @parent: pointer to the next level up in the dependency chain 317 * @lock: protect the parent and next pointers 318 */ 319struct dma_async_tx_descriptor { 320 dma_cookie_t cookie; 321 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 322 dma_addr_t phys; 323 struct dma_chan *chan; 324 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 325 dma_async_tx_callback callback; 326 void *callback_param; 327#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 328 struct dma_async_tx_descriptor *next; 329 struct dma_async_tx_descriptor *parent; 330 spinlock_t lock; 331#endif 332}; 333 334#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 335static inline void txd_lock(struct dma_async_tx_descriptor *txd) 336{ 337} 338static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 339{ 340} 341static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 342{ 343 BUG(); 344} 345static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 346{ 347} 348static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 349{ 350} 351static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 352{ 353 return NULL; 354} 355static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 356{ 357 return NULL; 358} 359 360#else 361static inline void txd_lock(struct dma_async_tx_descriptor *txd) 362{ 363 spin_lock_bh(&txd->lock); 364} 365static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 366{ 367 spin_unlock_bh(&txd->lock); 368} 369static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 370{ 371 txd->next = next; 372 next->parent = txd; 373} 374static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 375{ 376 txd->parent = NULL; 377} 378static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 379{ 380 txd->next = NULL; 381} 382static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 383{ 384 return txd->parent; 385} 386static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 387{ 388 return txd->next; 389} 390#endif 391 392/** 393 * struct dma_tx_state - filled in to report the status of 394 * a transfer. 395 * @last: last completed DMA cookie 396 * @used: last issued DMA cookie (i.e. the one in progress) 397 * @residue: the remaining number of bytes left to transmit 398 * on the selected transfer for states DMA_IN_PROGRESS and 399 * DMA_PAUSED if this is implemented in the driver, else 0 400 */ 401struct dma_tx_state { 402 dma_cookie_t last; 403 dma_cookie_t used; 404 u32 residue; 405}; 406 407/** 408 * struct dma_device - info on the entity supplying DMA services 409 * @chancnt: how many DMA channels are supported 410 * @privatecnt: how many DMA channels are requested by dma_request_channel 411 * @channels: the list of struct dma_chan 412 * @global_node: list_head for global dma_device_list 413 * @cap_mask: one or more dma_capability flags 414 * @max_xor: maximum number of xor sources, 0 if no capability 415 * @max_pq: maximum number of PQ sources and PQ-continue capability 416 * @copy_align: alignment shift for memcpy operations 417 * @xor_align: alignment shift for xor operations 418 * @pq_align: alignment shift for pq operations 419 * @fill_align: alignment shift for memset operations 420 * @dev_id: unique device ID 421 * @dev: struct device reference for dma mapping api 422 * @device_alloc_chan_resources: allocate resources and return the 423 * number of allocated descriptors 424 * @device_free_chan_resources: release DMA channel's resources 425 * @device_prep_dma_memcpy: prepares a memcpy operation 426 * @device_prep_dma_xor: prepares a xor operation 427 * @device_prep_dma_xor_val: prepares a xor validation operation 428 * @device_prep_dma_pq: prepares a pq operation 429 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 430 * @device_prep_dma_memset: prepares a memset operation 431 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 432 * @device_prep_slave_sg: prepares a slave dma operation 433 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 434 * The function takes a buffer of size buf_len. The callback function will 435 * be called after period_len bytes have been transferred. 436 * @device_control: manipulate all pending operations on a channel, returns 437 * zero or error code 438 * @device_tx_status: poll for transaction completion, the optional 439 * txstate parameter can be supplied with a pointer to get a 440 * struct with auxiliary transfer status information, otherwise the call 441 * will just return a simple status code 442 * @device_issue_pending: push pending transactions to hardware 443 */ 444struct dma_device { 445 446 unsigned int chancnt; 447 unsigned int privatecnt; 448 struct list_head channels; 449 struct list_head global_node; 450 dma_cap_mask_t cap_mask; 451 unsigned short max_xor; 452 unsigned short max_pq; 453 u8 copy_align; 454 u8 xor_align; 455 u8 pq_align; 456 u8 fill_align; 457 #define DMA_HAS_PQ_CONTINUE (1 << 15) 458 459 int dev_id; 460 struct device *dev; 461 462 int (*device_alloc_chan_resources)(struct dma_chan *chan); 463 void (*device_free_chan_resources)(struct dma_chan *chan); 464 465 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 466 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 467 size_t len, unsigned long flags); 468 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 469 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 470 unsigned int src_cnt, size_t len, unsigned long flags); 471 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 472 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 473 size_t len, enum sum_check_flags *result, unsigned long flags); 474 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 475 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 476 unsigned int src_cnt, const unsigned char *scf, 477 size_t len, unsigned long flags); 478 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 479 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 480 unsigned int src_cnt, const unsigned char *scf, size_t len, 481 enum sum_check_flags *pqres, unsigned long flags); 482 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 483 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 484 unsigned long flags); 485 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 486 struct dma_chan *chan, unsigned long flags); 487 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 488 struct dma_chan *chan, 489 struct scatterlist *dst_sg, unsigned int dst_nents, 490 struct scatterlist *src_sg, unsigned int src_nents, 491 unsigned long flags); 492 493 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 494 struct dma_chan *chan, struct scatterlist *sgl, 495 unsigned int sg_len, enum dma_data_direction direction, 496 unsigned long flags); 497 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 498 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 499 size_t period_len, enum dma_data_direction direction); 500 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 501 unsigned long arg); 502 503 enum dma_status (*device_tx_status)(struct dma_chan *chan, 504 dma_cookie_t cookie, 505 struct dma_tx_state *txstate); 506 void (*device_issue_pending)(struct dma_chan *chan); 507}; 508 509static inline int dmaengine_device_control(struct dma_chan *chan, 510 enum dma_ctrl_cmd cmd, 511 unsigned long arg) 512{ 513 return chan->device->device_control(chan, cmd, arg); 514} 515 516static inline int dmaengine_slave_config(struct dma_chan *chan, 517 struct dma_slave_config *config) 518{ 519 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 520 (unsigned long)config); 521} 522 523static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 524 struct dma_chan *chan, void *buf, size_t len, 525 enum dma_data_direction dir, unsigned long flags) 526{ 527 struct scatterlist sg; 528 sg_init_one(&sg, buf, len); 529 530 return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags); 531} 532 533static inline int dmaengine_terminate_all(struct dma_chan *chan) 534{ 535 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 536} 537 538static inline int dmaengine_pause(struct dma_chan *chan) 539{ 540 return dmaengine_device_control(chan, DMA_PAUSE, 0); 541} 542 543static inline int dmaengine_resume(struct dma_chan *chan) 544{ 545 return dmaengine_device_control(chan, DMA_RESUME, 0); 546} 547 548static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 549{ 550 return desc->tx_submit(desc); 551} 552 553static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 554{ 555 size_t mask; 556 557 if (!align) 558 return true; 559 mask = (1 << align) - 1; 560 if (mask & (off1 | off2 | len)) 561 return false; 562 return true; 563} 564 565static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 566 size_t off2, size_t len) 567{ 568 return dmaengine_check_align(dev->copy_align, off1, off2, len); 569} 570 571static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 572 size_t off2, size_t len) 573{ 574 return dmaengine_check_align(dev->xor_align, off1, off2, len); 575} 576 577static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 578 size_t off2, size_t len) 579{ 580 return dmaengine_check_align(dev->pq_align, off1, off2, len); 581} 582 583static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 584 size_t off2, size_t len) 585{ 586 return dmaengine_check_align(dev->fill_align, off1, off2, len); 587} 588 589static inline void 590dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 591{ 592 dma->max_pq = maxpq; 593 if (has_pq_continue) 594 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 595} 596 597static inline bool dmaf_continue(enum dma_ctrl_flags flags) 598{ 599 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 600} 601 602static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 603{ 604 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 605 606 return (flags & mask) == mask; 607} 608 609static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 610{ 611 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 612} 613 614static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 615{ 616 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 617} 618 619/* dma_maxpq - reduce maxpq in the face of continued operations 620 * @dma - dma device with PQ capability 621 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 622 * 623 * When an engine does not support native continuation we need 3 extra 624 * source slots to reuse P and Q with the following coefficients: 625 * 1/ {00} * P : remove P from Q', but use it as a source for P' 626 * 2/ {01} * Q : use Q to continue Q' calculation 627 * 3/ {00} * Q : subtract Q from P' to cancel (2) 628 * 629 * In the case where P is disabled we only need 1 extra source: 630 * 1/ {01} * Q : use Q to continue Q' calculation 631 */ 632static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 633{ 634 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 635 return dma_dev_to_maxpq(dma); 636 else if (dmaf_p_disabled_continue(flags)) 637 return dma_dev_to_maxpq(dma) - 1; 638 else if (dmaf_continue(flags)) 639 return dma_dev_to_maxpq(dma) - 3; 640 BUG(); 641} 642 643/* --- public DMA engine API --- */ 644 645#ifdef CONFIG_DMA_ENGINE 646void dmaengine_get(void); 647void dmaengine_put(void); 648#else 649static inline void dmaengine_get(void) 650{ 651} 652static inline void dmaengine_put(void) 653{ 654} 655#endif 656 657#ifdef CONFIG_NET_DMA 658#define net_dmaengine_get() dmaengine_get() 659#define net_dmaengine_put() dmaengine_put() 660#else 661static inline void net_dmaengine_get(void) 662{ 663} 664static inline void net_dmaengine_put(void) 665{ 666} 667#endif 668 669#ifdef CONFIG_ASYNC_TX_DMA 670#define async_dmaengine_get() dmaengine_get() 671#define async_dmaengine_put() dmaengine_put() 672#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 673#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 674#else 675#define async_dma_find_channel(type) dma_find_channel(type) 676#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 677#else 678static inline void async_dmaengine_get(void) 679{ 680} 681static inline void async_dmaengine_put(void) 682{ 683} 684static inline struct dma_chan * 685async_dma_find_channel(enum dma_transaction_type type) 686{ 687 return NULL; 688} 689#endif /* CONFIG_ASYNC_TX_DMA */ 690 691dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 692 void *dest, void *src, size_t len); 693dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 694 struct page *page, unsigned int offset, void *kdata, size_t len); 695dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 696 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 697 unsigned int src_off, size_t len); 698void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 699 struct dma_chan *chan); 700 701static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 702{ 703 tx->flags |= DMA_CTRL_ACK; 704} 705 706static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 707{ 708 tx->flags &= ~DMA_CTRL_ACK; 709} 710 711static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 712{ 713 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 714} 715 716#define first_dma_cap(mask) __first_dma_cap(&(mask)) 717static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 718{ 719 return min_t(int, DMA_TX_TYPE_END, 720 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 721} 722 723#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 724static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 725{ 726 return min_t(int, DMA_TX_TYPE_END, 727 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 728} 729 730#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 731static inline void 732__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 733{ 734 set_bit(tx_type, dstp->bits); 735} 736 737#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 738static inline void 739__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 740{ 741 clear_bit(tx_type, dstp->bits); 742} 743 744#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 745static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 746{ 747 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 748} 749 750#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 751static inline int 752__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 753{ 754 return test_bit(tx_type, srcp->bits); 755} 756 757#define for_each_dma_cap_mask(cap, mask) \ 758 for ((cap) = first_dma_cap(mask); \ 759 (cap) < DMA_TX_TYPE_END; \ 760 (cap) = next_dma_cap((cap), (mask))) 761 762/** 763 * dma_async_issue_pending - flush pending transactions to HW 764 * @chan: target DMA channel 765 * 766 * This allows drivers to push copies to HW in batches, 767 * reducing MMIO writes where possible. 768 */ 769static inline void dma_async_issue_pending(struct dma_chan *chan) 770{ 771 chan->device->device_issue_pending(chan); 772} 773 774#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 775 776/** 777 * dma_async_is_tx_complete - poll for transaction completion 778 * @chan: DMA channel 779 * @cookie: transaction identifier to check status of 780 * @last: returns last completed cookie, can be NULL 781 * @used: returns last issued cookie, can be NULL 782 * 783 * If @last and @used are passed in, upon return they reflect the driver 784 * internal state and can be used with dma_async_is_complete() to check 785 * the status of multiple cookies without re-checking hardware state. 786 */ 787static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 788 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 789{ 790 struct dma_tx_state state; 791 enum dma_status status; 792 793 status = chan->device->device_tx_status(chan, cookie, &state); 794 if (last) 795 *last = state.last; 796 if (used) 797 *used = state.used; 798 return status; 799} 800 801#define dma_async_memcpy_complete(chan, cookie, last, used)\ 802 dma_async_is_tx_complete(chan, cookie, last, used) 803 804/** 805 * dma_async_is_complete - test a cookie against chan state 806 * @cookie: transaction identifier to test status of 807 * @last_complete: last know completed transaction 808 * @last_used: last cookie value handed out 809 * 810 * dma_async_is_complete() is used in dma_async_memcpy_complete() 811 * the test logic is separated for lightweight testing of multiple cookies 812 */ 813static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 814 dma_cookie_t last_complete, dma_cookie_t last_used) 815{ 816 if (last_complete <= last_used) { 817 if ((cookie <= last_complete) || (cookie > last_used)) 818 return DMA_SUCCESS; 819 } else { 820 if ((cookie <= last_complete) && (cookie > last_used)) 821 return DMA_SUCCESS; 822 } 823 return DMA_IN_PROGRESS; 824} 825 826static inline void 827dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 828{ 829 if (st) { 830 st->last = last; 831 st->used = used; 832 st->residue = residue; 833 } 834} 835 836enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 837#ifdef CONFIG_DMA_ENGINE 838enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 839void dma_issue_pending_all(void); 840struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 841void dma_release_channel(struct dma_chan *chan); 842#else 843static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 844{ 845 return DMA_SUCCESS; 846} 847static inline void dma_issue_pending_all(void) 848{ 849} 850static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, 851 dma_filter_fn fn, void *fn_param) 852{ 853 return NULL; 854} 855static inline void dma_release_channel(struct dma_chan *chan) 856{ 857} 858#endif 859 860/* --- DMA device --- */ 861 862int dma_async_device_register(struct dma_device *device); 863void dma_async_device_unregister(struct dma_device *device); 864void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 865struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 866#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 867 868/* --- Helper iov-locking functions --- */ 869 870struct dma_page_list { 871 char __user *base_address; 872 int nr_pages; 873 struct page **pages; 874}; 875 876struct dma_pinned_list { 877 int nr_iovecs; 878 struct dma_page_list page_list[0]; 879}; 880 881struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 882void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 883 884dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 885 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 886dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 887 struct dma_pinned_list *pinned_list, struct page *page, 888 unsigned int offset, size_t len); 889 890#endif /* DMAENGINE_H */