at v3.2-rc5 32 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/smp.h> 6#include <linux/cpumask.h> 7#include <linux/pfn.h> 8#include <linux/init.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33/* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37#define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40} while (0) 41 42#define get_cpu_ptr(var) ({ \ 43 preempt_disable(); \ 44 this_cpu_ptr(var); }) 45 46#define put_cpu_ptr(var) do { \ 47 (void)(var); \ 48 preempt_enable(); \ 49} while (0) 50 51/* minimum unit size, also is the maximum supported allocation size */ 52#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) 53 54/* 55 * Percpu allocator can serve percpu allocations before slab is 56 * initialized which allows slab to depend on the percpu allocator. 57 * The following two parameters decide how much resource to 58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 59 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 60 */ 61#define PERCPU_DYNAMIC_EARLY_SLOTS 128 62#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 63 64/* 65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 66 * back on the first chunk for dynamic percpu allocation if arch is 67 * manually allocating and mapping it for faster access (as a part of 68 * large page mapping for example). 69 * 70 * The following values give between one and two pages of free space 71 * after typical minimal boot (2-way SMP, single disk and NIC) with 72 * both defconfig and a distro config on x86_64 and 32. More 73 * intelligent way to determine this would be nice. 74 */ 75#if BITS_PER_LONG > 32 76#define PERCPU_DYNAMIC_RESERVE (20 << 10) 77#else 78#define PERCPU_DYNAMIC_RESERVE (12 << 10) 79#endif 80 81extern void *pcpu_base_addr; 82extern const unsigned long *pcpu_unit_offsets; 83 84struct pcpu_group_info { 85 int nr_units; /* aligned # of units */ 86 unsigned long base_offset; /* base address offset */ 87 unsigned int *cpu_map; /* unit->cpu map, empty 88 * entries contain NR_CPUS */ 89}; 90 91struct pcpu_alloc_info { 92 size_t static_size; 93 size_t reserved_size; 94 size_t dyn_size; 95 size_t unit_size; 96 size_t atom_size; 97 size_t alloc_size; 98 size_t __ai_size; /* internal, don't use */ 99 int nr_groups; /* 0 if grouping unnecessary */ 100 struct pcpu_group_info groups[]; 101}; 102 103enum pcpu_fc { 104 PCPU_FC_AUTO, 105 PCPU_FC_EMBED, 106 PCPU_FC_PAGE, 107 108 PCPU_FC_NR, 109}; 110extern const char *pcpu_fc_names[PCPU_FC_NR]; 111 112extern enum pcpu_fc pcpu_chosen_fc; 113 114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 115 size_t align); 116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 119 120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 121 int nr_units); 122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 123 124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 125 void *base_addr); 126 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 129 size_t atom_size, 130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 131 pcpu_fc_alloc_fn_t alloc_fn, 132 pcpu_fc_free_fn_t free_fn); 133#endif 134 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 136extern int __init pcpu_page_first_chunk(size_t reserved_size, 137 pcpu_fc_alloc_fn_t alloc_fn, 138 pcpu_fc_free_fn_t free_fn, 139 pcpu_fc_populate_pte_fn_t populate_pte_fn); 140#endif 141 142/* 143 * Use this to get to a cpu's version of the per-cpu object 144 * dynamically allocated. Non-atomic access to the current CPU's 145 * version should probably be combined with get_cpu()/put_cpu(). 146 */ 147#ifdef CONFIG_SMP 148#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 149#else 150#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 151#endif 152 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 154extern bool is_kernel_percpu_address(unsigned long addr); 155 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 157extern void __init setup_per_cpu_areas(void); 158#endif 159extern void __init percpu_init_late(void); 160 161extern void __percpu *__alloc_percpu(size_t size, size_t align); 162extern void free_percpu(void __percpu *__pdata); 163extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 164 165#define alloc_percpu(type) \ 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 167 168/* 169 * Optional methods for optimized non-lvalue per-cpu variable access. 170 * 171 * @var can be a percpu variable or a field of it and its size should 172 * equal char, int or long. percpu_read() evaluates to a lvalue and 173 * all others to void. 174 * 175 * These operations are guaranteed to be atomic w.r.t. preemption. 176 * The generic versions use plain get/put_cpu_var(). Archs are 177 * encouraged to implement single-instruction alternatives which don't 178 * require preemption protection. 179 */ 180#ifndef percpu_read 181# define percpu_read(var) \ 182 ({ \ 183 typeof(var) *pr_ptr__ = &(var); \ 184 typeof(var) pr_ret__; \ 185 pr_ret__ = get_cpu_var(*pr_ptr__); \ 186 put_cpu_var(*pr_ptr__); \ 187 pr_ret__; \ 188 }) 189#endif 190 191#define __percpu_generic_to_op(var, val, op) \ 192do { \ 193 typeof(var) *pgto_ptr__ = &(var); \ 194 get_cpu_var(*pgto_ptr__) op val; \ 195 put_cpu_var(*pgto_ptr__); \ 196} while (0) 197 198#ifndef percpu_write 199# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 200#endif 201 202#ifndef percpu_add 203# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 204#endif 205 206#ifndef percpu_sub 207# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 208#endif 209 210#ifndef percpu_and 211# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 212#endif 213 214#ifndef percpu_or 215# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 216#endif 217 218#ifndef percpu_xor 219# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 220#endif 221 222/* 223 * Branching function to split up a function into a set of functions that 224 * are called for different scalar sizes of the objects handled. 225 */ 226 227extern void __bad_size_call_parameter(void); 228 229#define __pcpu_size_call_return(stem, variable) \ 230({ typeof(variable) pscr_ret__; \ 231 __verify_pcpu_ptr(&(variable)); \ 232 switch(sizeof(variable)) { \ 233 case 1: pscr_ret__ = stem##1(variable);break; \ 234 case 2: pscr_ret__ = stem##2(variable);break; \ 235 case 4: pscr_ret__ = stem##4(variable);break; \ 236 case 8: pscr_ret__ = stem##8(variable);break; \ 237 default: \ 238 __bad_size_call_parameter();break; \ 239 } \ 240 pscr_ret__; \ 241}) 242 243#define __pcpu_size_call_return2(stem, variable, ...) \ 244({ \ 245 typeof(variable) pscr2_ret__; \ 246 __verify_pcpu_ptr(&(variable)); \ 247 switch(sizeof(variable)) { \ 248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 252 default: \ 253 __bad_size_call_parameter(); break; \ 254 } \ 255 pscr2_ret__; \ 256}) 257 258/* 259 * Special handling for cmpxchg_double. cmpxchg_double is passed two 260 * percpu variables. The first has to be aligned to a double word 261 * boundary and the second has to follow directly thereafter. 262 * We enforce this on all architectures even if they don't support 263 * a double cmpxchg instruction, since it's a cheap requirement, and it 264 * avoids breaking the requirement for architectures with the instruction. 265 */ 266#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ 267({ \ 268 bool pdcrb_ret__; \ 269 __verify_pcpu_ptr(&pcp1); \ 270 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ 271 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \ 272 VM_BUG_ON((unsigned long)(&pcp2) != \ 273 (unsigned long)(&pcp1) + sizeof(pcp1)); \ 274 switch(sizeof(pcp1)) { \ 275 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ 276 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ 277 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ 278 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ 279 default: \ 280 __bad_size_call_parameter(); break; \ 281 } \ 282 pdcrb_ret__; \ 283}) 284 285#define __pcpu_size_call(stem, variable, ...) \ 286do { \ 287 __verify_pcpu_ptr(&(variable)); \ 288 switch(sizeof(variable)) { \ 289 case 1: stem##1(variable, __VA_ARGS__);break; \ 290 case 2: stem##2(variable, __VA_ARGS__);break; \ 291 case 4: stem##4(variable, __VA_ARGS__);break; \ 292 case 8: stem##8(variable, __VA_ARGS__);break; \ 293 default: \ 294 __bad_size_call_parameter();break; \ 295 } \ 296} while (0) 297 298/* 299 * Optimized manipulation for memory allocated through the per cpu 300 * allocator or for addresses of per cpu variables. 301 * 302 * These operation guarantee exclusivity of access for other operations 303 * on the *same* processor. The assumption is that per cpu data is only 304 * accessed by a single processor instance (the current one). 305 * 306 * The first group is used for accesses that must be done in a 307 * preemption safe way since we know that the context is not preempt 308 * safe. Interrupts may occur. If the interrupt modifies the variable 309 * too then RMW actions will not be reliable. 310 * 311 * The arch code can provide optimized functions in two ways: 312 * 313 * 1. Override the function completely. F.e. define this_cpu_add(). 314 * The arch must then ensure that the various scalar format passed 315 * are handled correctly. 316 * 317 * 2. Provide functions for certain scalar sizes. F.e. provide 318 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 319 * sized RMW actions. If arch code does not provide operations for 320 * a scalar size then the fallback in the generic code will be 321 * used. 322 */ 323 324#define _this_cpu_generic_read(pcp) \ 325({ typeof(pcp) ret__; \ 326 preempt_disable(); \ 327 ret__ = *this_cpu_ptr(&(pcp)); \ 328 preempt_enable(); \ 329 ret__; \ 330}) 331 332#ifndef this_cpu_read 333# ifndef this_cpu_read_1 334# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 335# endif 336# ifndef this_cpu_read_2 337# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 338# endif 339# ifndef this_cpu_read_4 340# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 341# endif 342# ifndef this_cpu_read_8 343# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 344# endif 345# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 346#endif 347 348#define _this_cpu_generic_to_op(pcp, val, op) \ 349do { \ 350 preempt_disable(); \ 351 *__this_cpu_ptr(&(pcp)) op val; \ 352 preempt_enable(); \ 353} while (0) 354 355#ifndef this_cpu_write 356# ifndef this_cpu_write_1 357# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 358# endif 359# ifndef this_cpu_write_2 360# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 361# endif 362# ifndef this_cpu_write_4 363# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 364# endif 365# ifndef this_cpu_write_8 366# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 367# endif 368# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 369#endif 370 371#ifndef this_cpu_add 372# ifndef this_cpu_add_1 373# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 374# endif 375# ifndef this_cpu_add_2 376# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 377# endif 378# ifndef this_cpu_add_4 379# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 380# endif 381# ifndef this_cpu_add_8 382# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 383# endif 384# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 385#endif 386 387#ifndef this_cpu_sub 388# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 389#endif 390 391#ifndef this_cpu_inc 392# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 393#endif 394 395#ifndef this_cpu_dec 396# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 397#endif 398 399#ifndef this_cpu_and 400# ifndef this_cpu_and_1 401# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 402# endif 403# ifndef this_cpu_and_2 404# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 405# endif 406# ifndef this_cpu_and_4 407# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 408# endif 409# ifndef this_cpu_and_8 410# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 411# endif 412# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 413#endif 414 415#ifndef this_cpu_or 416# ifndef this_cpu_or_1 417# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 418# endif 419# ifndef this_cpu_or_2 420# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 421# endif 422# ifndef this_cpu_or_4 423# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 424# endif 425# ifndef this_cpu_or_8 426# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 427# endif 428# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 429#endif 430 431#ifndef this_cpu_xor 432# ifndef this_cpu_xor_1 433# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 434# endif 435# ifndef this_cpu_xor_2 436# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 437# endif 438# ifndef this_cpu_xor_4 439# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 440# endif 441# ifndef this_cpu_xor_8 442# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 443# endif 444# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 445#endif 446 447#define _this_cpu_generic_add_return(pcp, val) \ 448({ \ 449 typeof(pcp) ret__; \ 450 preempt_disable(); \ 451 __this_cpu_add(pcp, val); \ 452 ret__ = __this_cpu_read(pcp); \ 453 preempt_enable(); \ 454 ret__; \ 455}) 456 457#ifndef this_cpu_add_return 458# ifndef this_cpu_add_return_1 459# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val) 460# endif 461# ifndef this_cpu_add_return_2 462# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val) 463# endif 464# ifndef this_cpu_add_return_4 465# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val) 466# endif 467# ifndef this_cpu_add_return_8 468# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val) 469# endif 470# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 471#endif 472 473#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val)) 474#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 475#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 476 477#define _this_cpu_generic_xchg(pcp, nval) \ 478({ typeof(pcp) ret__; \ 479 preempt_disable(); \ 480 ret__ = __this_cpu_read(pcp); \ 481 __this_cpu_write(pcp, nval); \ 482 preempt_enable(); \ 483 ret__; \ 484}) 485 486#ifndef this_cpu_xchg 487# ifndef this_cpu_xchg_1 488# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 489# endif 490# ifndef this_cpu_xchg_2 491# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 492# endif 493# ifndef this_cpu_xchg_4 494# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 495# endif 496# ifndef this_cpu_xchg_8 497# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 498# endif 499# define this_cpu_xchg(pcp, nval) \ 500 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) 501#endif 502 503#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \ 504({ typeof(pcp) ret__; \ 505 preempt_disable(); \ 506 ret__ = __this_cpu_read(pcp); \ 507 if (ret__ == (oval)) \ 508 __this_cpu_write(pcp, nval); \ 509 preempt_enable(); \ 510 ret__; \ 511}) 512 513#ifndef this_cpu_cmpxchg 514# ifndef this_cpu_cmpxchg_1 515# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 516# endif 517# ifndef this_cpu_cmpxchg_2 518# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 519# endif 520# ifndef this_cpu_cmpxchg_4 521# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 522# endif 523# ifndef this_cpu_cmpxchg_8 524# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 525# endif 526# define this_cpu_cmpxchg(pcp, oval, nval) \ 527 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) 528#endif 529 530/* 531 * cmpxchg_double replaces two adjacent scalars at once. The first 532 * two parameters are per cpu variables which have to be of the same 533 * size. A truth value is returned to indicate success or failure 534 * (since a double register result is difficult to handle). There is 535 * very limited hardware support for these operations, so only certain 536 * sizes may work. 537 */ 538#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 539({ \ 540 int ret__; \ 541 preempt_disable(); \ 542 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \ 543 oval1, oval2, nval1, nval2); \ 544 preempt_enable(); \ 545 ret__; \ 546}) 547 548#ifndef this_cpu_cmpxchg_double 549# ifndef this_cpu_cmpxchg_double_1 550# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 551 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 552# endif 553# ifndef this_cpu_cmpxchg_double_2 554# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 555 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 556# endif 557# ifndef this_cpu_cmpxchg_double_4 558# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 559 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 560# endif 561# ifndef this_cpu_cmpxchg_double_8 562# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 563 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 564# endif 565# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 566 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 567#endif 568 569/* 570 * Generic percpu operations that do not require preemption handling. 571 * Either we do not care about races or the caller has the 572 * responsibility of handling preemptions issues. Arch code can still 573 * override these instructions since the arch per cpu code may be more 574 * efficient and may actually get race freeness for free (that is the 575 * case for x86 for example). 576 * 577 * If there is no other protection through preempt disable and/or 578 * disabling interupts then one of these RMW operations can show unexpected 579 * behavior because the execution thread was rescheduled on another processor 580 * or an interrupt occurred and the same percpu variable was modified from 581 * the interrupt context. 582 */ 583#ifndef __this_cpu_read 584# ifndef __this_cpu_read_1 585# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 586# endif 587# ifndef __this_cpu_read_2 588# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 589# endif 590# ifndef __this_cpu_read_4 591# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 592# endif 593# ifndef __this_cpu_read_8 594# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 595# endif 596# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 597#endif 598 599#define __this_cpu_generic_to_op(pcp, val, op) \ 600do { \ 601 *__this_cpu_ptr(&(pcp)) op val; \ 602} while (0) 603 604#ifndef __this_cpu_write 605# ifndef __this_cpu_write_1 606# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 607# endif 608# ifndef __this_cpu_write_2 609# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 610# endif 611# ifndef __this_cpu_write_4 612# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 613# endif 614# ifndef __this_cpu_write_8 615# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 616# endif 617# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 618#endif 619 620#ifndef __this_cpu_add 621# ifndef __this_cpu_add_1 622# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 623# endif 624# ifndef __this_cpu_add_2 625# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 626# endif 627# ifndef __this_cpu_add_4 628# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 629# endif 630# ifndef __this_cpu_add_8 631# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 632# endif 633# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 634#endif 635 636#ifndef __this_cpu_sub 637# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 638#endif 639 640#ifndef __this_cpu_inc 641# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 642#endif 643 644#ifndef __this_cpu_dec 645# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 646#endif 647 648#ifndef __this_cpu_and 649# ifndef __this_cpu_and_1 650# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 651# endif 652# ifndef __this_cpu_and_2 653# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 654# endif 655# ifndef __this_cpu_and_4 656# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 657# endif 658# ifndef __this_cpu_and_8 659# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 660# endif 661# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 662#endif 663 664#ifndef __this_cpu_or 665# ifndef __this_cpu_or_1 666# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 667# endif 668# ifndef __this_cpu_or_2 669# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 670# endif 671# ifndef __this_cpu_or_4 672# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 673# endif 674# ifndef __this_cpu_or_8 675# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 676# endif 677# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 678#endif 679 680#ifndef __this_cpu_xor 681# ifndef __this_cpu_xor_1 682# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 683# endif 684# ifndef __this_cpu_xor_2 685# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 686# endif 687# ifndef __this_cpu_xor_4 688# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 689# endif 690# ifndef __this_cpu_xor_8 691# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 692# endif 693# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 694#endif 695 696#define __this_cpu_generic_add_return(pcp, val) \ 697({ \ 698 __this_cpu_add(pcp, val); \ 699 __this_cpu_read(pcp); \ 700}) 701 702#ifndef __this_cpu_add_return 703# ifndef __this_cpu_add_return_1 704# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val) 705# endif 706# ifndef __this_cpu_add_return_2 707# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val) 708# endif 709# ifndef __this_cpu_add_return_4 710# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val) 711# endif 712# ifndef __this_cpu_add_return_8 713# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val) 714# endif 715# define __this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 716#endif 717 718#define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val)) 719#define __this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 720#define __this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 721 722#define __this_cpu_generic_xchg(pcp, nval) \ 723({ typeof(pcp) ret__; \ 724 ret__ = __this_cpu_read(pcp); \ 725 __this_cpu_write(pcp, nval); \ 726 ret__; \ 727}) 728 729#ifndef __this_cpu_xchg 730# ifndef __this_cpu_xchg_1 731# define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 732# endif 733# ifndef __this_cpu_xchg_2 734# define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 735# endif 736# ifndef __this_cpu_xchg_4 737# define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 738# endif 739# ifndef __this_cpu_xchg_8 740# define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 741# endif 742# define __this_cpu_xchg(pcp, nval) \ 743 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval) 744#endif 745 746#define __this_cpu_generic_cmpxchg(pcp, oval, nval) \ 747({ \ 748 typeof(pcp) ret__; \ 749 ret__ = __this_cpu_read(pcp); \ 750 if (ret__ == (oval)) \ 751 __this_cpu_write(pcp, nval); \ 752 ret__; \ 753}) 754 755#ifndef __this_cpu_cmpxchg 756# ifndef __this_cpu_cmpxchg_1 757# define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 758# endif 759# ifndef __this_cpu_cmpxchg_2 760# define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 761# endif 762# ifndef __this_cpu_cmpxchg_4 763# define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 764# endif 765# ifndef __this_cpu_cmpxchg_8 766# define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 767# endif 768# define __this_cpu_cmpxchg(pcp, oval, nval) \ 769 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval) 770#endif 771 772#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 773({ \ 774 int __ret = 0; \ 775 if (__this_cpu_read(pcp1) == (oval1) && \ 776 __this_cpu_read(pcp2) == (oval2)) { \ 777 __this_cpu_write(pcp1, (nval1)); \ 778 __this_cpu_write(pcp2, (nval2)); \ 779 __ret = 1; \ 780 } \ 781 (__ret); \ 782}) 783 784#ifndef __this_cpu_cmpxchg_double 785# ifndef __this_cpu_cmpxchg_double_1 786# define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 787 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 788# endif 789# ifndef __this_cpu_cmpxchg_double_2 790# define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 791 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 792# endif 793# ifndef __this_cpu_cmpxchg_double_4 794# define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 795 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 796# endif 797# ifndef __this_cpu_cmpxchg_double_8 798# define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 799 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 800# endif 801# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 802 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 803#endif 804 805/* 806 * IRQ safe versions of the per cpu RMW operations. Note that these operations 807 * are *not* safe against modification of the same variable from another 808 * processors (which one gets when using regular atomic operations) 809 * They are guaranteed to be atomic vs. local interrupts and 810 * preemption only. 811 */ 812#define irqsafe_cpu_generic_to_op(pcp, val, op) \ 813do { \ 814 unsigned long flags; \ 815 local_irq_save(flags); \ 816 *__this_cpu_ptr(&(pcp)) op val; \ 817 local_irq_restore(flags); \ 818} while (0) 819 820#ifndef irqsafe_cpu_add 821# ifndef irqsafe_cpu_add_1 822# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 823# endif 824# ifndef irqsafe_cpu_add_2 825# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 826# endif 827# ifndef irqsafe_cpu_add_4 828# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 829# endif 830# ifndef irqsafe_cpu_add_8 831# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 832# endif 833# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 834#endif 835 836#ifndef irqsafe_cpu_sub 837# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 838#endif 839 840#ifndef irqsafe_cpu_inc 841# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 842#endif 843 844#ifndef irqsafe_cpu_dec 845# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 846#endif 847 848#ifndef irqsafe_cpu_and 849# ifndef irqsafe_cpu_and_1 850# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 851# endif 852# ifndef irqsafe_cpu_and_2 853# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 854# endif 855# ifndef irqsafe_cpu_and_4 856# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 857# endif 858# ifndef irqsafe_cpu_and_8 859# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 860# endif 861# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 862#endif 863 864#ifndef irqsafe_cpu_or 865# ifndef irqsafe_cpu_or_1 866# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 867# endif 868# ifndef irqsafe_cpu_or_2 869# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 870# endif 871# ifndef irqsafe_cpu_or_4 872# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 873# endif 874# ifndef irqsafe_cpu_or_8 875# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 876# endif 877# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 878#endif 879 880#ifndef irqsafe_cpu_xor 881# ifndef irqsafe_cpu_xor_1 882# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 883# endif 884# ifndef irqsafe_cpu_xor_2 885# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 886# endif 887# ifndef irqsafe_cpu_xor_4 888# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 889# endif 890# ifndef irqsafe_cpu_xor_8 891# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 892# endif 893# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 894#endif 895 896#define irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) \ 897({ \ 898 typeof(pcp) ret__; \ 899 unsigned long flags; \ 900 local_irq_save(flags); \ 901 ret__ = __this_cpu_read(pcp); \ 902 if (ret__ == (oval)) \ 903 __this_cpu_write(pcp, nval); \ 904 local_irq_restore(flags); \ 905 ret__; \ 906}) 907 908#ifndef irqsafe_cpu_cmpxchg 909# ifndef irqsafe_cpu_cmpxchg_1 910# define irqsafe_cpu_cmpxchg_1(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 911# endif 912# ifndef irqsafe_cpu_cmpxchg_2 913# define irqsafe_cpu_cmpxchg_2(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 914# endif 915# ifndef irqsafe_cpu_cmpxchg_4 916# define irqsafe_cpu_cmpxchg_4(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 917# endif 918# ifndef irqsafe_cpu_cmpxchg_8 919# define irqsafe_cpu_cmpxchg_8(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 920# endif 921# define irqsafe_cpu_cmpxchg(pcp, oval, nval) \ 922 __pcpu_size_call_return2(irqsafe_cpu_cmpxchg_, (pcp), oval, nval) 923#endif 924 925#define irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 926({ \ 927 int ret__; \ 928 unsigned long flags; \ 929 local_irq_save(flags); \ 930 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \ 931 oval1, oval2, nval1, nval2); \ 932 local_irq_restore(flags); \ 933 ret__; \ 934}) 935 936#ifndef irqsafe_cpu_cmpxchg_double 937# ifndef irqsafe_cpu_cmpxchg_double_1 938# define irqsafe_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 939 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 940# endif 941# ifndef irqsafe_cpu_cmpxchg_double_2 942# define irqsafe_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 943 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 944# endif 945# ifndef irqsafe_cpu_cmpxchg_double_4 946# define irqsafe_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 947 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 948# endif 949# ifndef irqsafe_cpu_cmpxchg_double_8 950# define irqsafe_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 951 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 952# endif 953# define irqsafe_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 954 __pcpu_double_call_return_bool(irqsafe_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 955#endif 956 957#endif /* __LINUX_PERCPU_H */