Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/if.h>
29#include <linux/if_ether.h>
30#include <linux/if_packet.h>
31#include <linux/if_link.h>
32
33#ifdef __KERNEL__
34#include <linux/pm_qos.h>
35#include <linux/timer.h>
36#include <linux/delay.h>
37#include <linux/atomic.h>
38#include <asm/cache.h>
39#include <asm/byteorder.h>
40
41#include <linux/device.h>
42#include <linux/percpu.h>
43#include <linux/rculist.h>
44#include <linux/dmaengine.h>
45#include <linux/workqueue.h>
46
47#include <linux/ethtool.h>
48#include <net/net_namespace.h>
49#include <net/dsa.h>
50#ifdef CONFIG_DCB
51#include <net/dcbnl.h>
52#endif
53
54struct vlan_group;
55struct netpoll_info;
56struct phy_device;
57/* 802.11 specific */
58struct wireless_dev;
59 /* source back-compat hooks */
60#define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63/* hardware address assignment types */
64#define NET_ADDR_PERM 0 /* address is permanent (default) */
65#define NET_ADDR_RANDOM 1 /* address is generated randomly */
66#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
67
68/* Backlog congestion levels */
69#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70#define NET_RX_DROP 1 /* packet dropped */
71
72/*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously, in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
86 * others are propagated to higher layers.
87 */
88
89/* qdisc ->enqueue() return codes. */
90#define NET_XMIT_SUCCESS 0x00
91#define NET_XMIT_DROP 0x01 /* skb dropped */
92#define NET_XMIT_CN 0x02 /* congestion notification */
93#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102/* Driver transmit return codes */
103#define NETDEV_TX_MASK 0xf0
104
105enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110};
111typedef enum netdev_tx netdev_tx_t;
112
113/*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117static inline bool dev_xmit_complete(int rc)
118{
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129}
130
131#endif
132
133#define MAX_ADDR_LEN 32 /* Largest hardware address length */
134
135/* Initial net device group. All devices belong to group 0 by default. */
136#define INIT_NETDEV_GROUP 0
137
138#ifdef __KERNEL__
139/*
140 * Compute the worst case header length according to the protocols
141 * used.
142 */
143
144#if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
145# if defined(CONFIG_MAC80211_MESH)
146# define LL_MAX_HEADER 128
147# else
148# define LL_MAX_HEADER 96
149# endif
150#elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
151# define LL_MAX_HEADER 48
152#else
153# define LL_MAX_HEADER 32
154#endif
155
156#if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
157 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
158 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
159 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
160#define MAX_HEADER LL_MAX_HEADER
161#else
162#define MAX_HEADER (LL_MAX_HEADER + 48)
163#endif
164
165/*
166 * Old network device statistics. Fields are native words
167 * (unsigned long) so they can be read and written atomically.
168 */
169
170struct net_device_stats {
171 unsigned long rx_packets;
172 unsigned long tx_packets;
173 unsigned long rx_bytes;
174 unsigned long tx_bytes;
175 unsigned long rx_errors;
176 unsigned long tx_errors;
177 unsigned long rx_dropped;
178 unsigned long tx_dropped;
179 unsigned long multicast;
180 unsigned long collisions;
181 unsigned long rx_length_errors;
182 unsigned long rx_over_errors;
183 unsigned long rx_crc_errors;
184 unsigned long rx_frame_errors;
185 unsigned long rx_fifo_errors;
186 unsigned long rx_missed_errors;
187 unsigned long tx_aborted_errors;
188 unsigned long tx_carrier_errors;
189 unsigned long tx_fifo_errors;
190 unsigned long tx_heartbeat_errors;
191 unsigned long tx_window_errors;
192 unsigned long rx_compressed;
193 unsigned long tx_compressed;
194};
195
196#endif /* __KERNEL__ */
197
198
199/* Media selection options. */
200enum {
201 IF_PORT_UNKNOWN = 0,
202 IF_PORT_10BASE2,
203 IF_PORT_10BASET,
204 IF_PORT_AUI,
205 IF_PORT_100BASET,
206 IF_PORT_100BASETX,
207 IF_PORT_100BASEFX
208};
209
210#ifdef __KERNEL__
211
212#include <linux/cache.h>
213#include <linux/skbuff.h>
214
215struct neighbour;
216struct neigh_parms;
217struct sk_buff;
218
219struct netdev_hw_addr {
220 struct list_head list;
221 unsigned char addr[MAX_ADDR_LEN];
222 unsigned char type;
223#define NETDEV_HW_ADDR_T_LAN 1
224#define NETDEV_HW_ADDR_T_SAN 2
225#define NETDEV_HW_ADDR_T_SLAVE 3
226#define NETDEV_HW_ADDR_T_UNICAST 4
227#define NETDEV_HW_ADDR_T_MULTICAST 5
228 bool synced;
229 bool global_use;
230 int refcount;
231 struct rcu_head rcu_head;
232};
233
234struct netdev_hw_addr_list {
235 struct list_head list;
236 int count;
237};
238
239#define netdev_hw_addr_list_count(l) ((l)->count)
240#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
241#define netdev_hw_addr_list_for_each(ha, l) \
242 list_for_each_entry(ha, &(l)->list, list)
243
244#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
245#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
246#define netdev_for_each_uc_addr(ha, dev) \
247 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
248
249#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
250#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
251#define netdev_for_each_mc_addr(ha, dev) \
252 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
253
254struct hh_cache {
255 u16 hh_len;
256 u16 __pad;
257 seqlock_t hh_lock;
258
259 /* cached hardware header; allow for machine alignment needs. */
260#define HH_DATA_MOD 16
261#define HH_DATA_OFF(__len) \
262 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
263#define HH_DATA_ALIGN(__len) \
264 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
265 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
266};
267
268/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
269 * Alternative is:
270 * dev->hard_header_len ? (dev->hard_header_len +
271 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
272 *
273 * We could use other alignment values, but we must maintain the
274 * relationship HH alignment <= LL alignment.
275 *
276 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
277 * may need.
278 */
279#define LL_RESERVED_SPACE(dev) \
280 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
281#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
282 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
283#define LL_ALLOCATED_SPACE(dev) \
284 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285
286struct header_ops {
287 int (*create) (struct sk_buff *skb, struct net_device *dev,
288 unsigned short type, const void *daddr,
289 const void *saddr, unsigned len);
290 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
291 int (*rebuild)(struct sk_buff *skb);
292 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
293 void (*cache_update)(struct hh_cache *hh,
294 const struct net_device *dev,
295 const unsigned char *haddr);
296};
297
298/* These flag bits are private to the generic network queueing
299 * layer, they may not be explicitly referenced by any other
300 * code.
301 */
302
303enum netdev_state_t {
304 __LINK_STATE_START,
305 __LINK_STATE_PRESENT,
306 __LINK_STATE_NOCARRIER,
307 __LINK_STATE_LINKWATCH_PENDING,
308 __LINK_STATE_DORMANT,
309};
310
311
312/*
313 * This structure holds at boot time configured netdevice settings. They
314 * are then used in the device probing.
315 */
316struct netdev_boot_setup {
317 char name[IFNAMSIZ];
318 struct ifmap map;
319};
320#define NETDEV_BOOT_SETUP_MAX 8
321
322extern int __init netdev_boot_setup(char *str);
323
324/*
325 * Structure for NAPI scheduling similar to tasklet but with weighting
326 */
327struct napi_struct {
328 /* The poll_list must only be managed by the entity which
329 * changes the state of the NAPI_STATE_SCHED bit. This means
330 * whoever atomically sets that bit can add this napi_struct
331 * to the per-cpu poll_list, and whoever clears that bit
332 * can remove from the list right before clearing the bit.
333 */
334 struct list_head poll_list;
335
336 unsigned long state;
337 int weight;
338 int (*poll)(struct napi_struct *, int);
339#ifdef CONFIG_NETPOLL
340 spinlock_t poll_lock;
341 int poll_owner;
342#endif
343
344 unsigned int gro_count;
345
346 struct net_device *dev;
347 struct list_head dev_list;
348 struct sk_buff *gro_list;
349 struct sk_buff *skb;
350};
351
352enum {
353 NAPI_STATE_SCHED, /* Poll is scheduled */
354 NAPI_STATE_DISABLE, /* Disable pending */
355 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
356};
357
358enum gro_result {
359 GRO_MERGED,
360 GRO_MERGED_FREE,
361 GRO_HELD,
362 GRO_NORMAL,
363 GRO_DROP,
364};
365typedef enum gro_result gro_result_t;
366
367/*
368 * enum rx_handler_result - Possible return values for rx_handlers.
369 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
370 * further.
371 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
372 * case skb->dev was changed by rx_handler.
373 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
374 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
375 *
376 * rx_handlers are functions called from inside __netif_receive_skb(), to do
377 * special processing of the skb, prior to delivery to protocol handlers.
378 *
379 * Currently, a net_device can only have a single rx_handler registered. Trying
380 * to register a second rx_handler will return -EBUSY.
381 *
382 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
383 * To unregister a rx_handler on a net_device, use
384 * netdev_rx_handler_unregister().
385 *
386 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
387 * do with the skb.
388 *
389 * If the rx_handler consumed to skb in some way, it should return
390 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
391 * the skb to be delivered in some other ways.
392 *
393 * If the rx_handler changed skb->dev, to divert the skb to another
394 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
395 * new device will be called if it exists.
396 *
397 * If the rx_handler consider the skb should be ignored, it should return
398 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
399 * are registred on exact device (ptype->dev == skb->dev).
400 *
401 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
402 * delivered, it should return RX_HANDLER_PASS.
403 *
404 * A device without a registered rx_handler will behave as if rx_handler
405 * returned RX_HANDLER_PASS.
406 */
407
408enum rx_handler_result {
409 RX_HANDLER_CONSUMED,
410 RX_HANDLER_ANOTHER,
411 RX_HANDLER_EXACT,
412 RX_HANDLER_PASS,
413};
414typedef enum rx_handler_result rx_handler_result_t;
415typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
416
417extern void __napi_schedule(struct napi_struct *n);
418
419static inline int napi_disable_pending(struct napi_struct *n)
420{
421 return test_bit(NAPI_STATE_DISABLE, &n->state);
422}
423
424/**
425 * napi_schedule_prep - check if napi can be scheduled
426 * @n: napi context
427 *
428 * Test if NAPI routine is already running, and if not mark
429 * it as running. This is used as a condition variable
430 * insure only one NAPI poll instance runs. We also make
431 * sure there is no pending NAPI disable.
432 */
433static inline int napi_schedule_prep(struct napi_struct *n)
434{
435 return !napi_disable_pending(n) &&
436 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
437}
438
439/**
440 * napi_schedule - schedule NAPI poll
441 * @n: napi context
442 *
443 * Schedule NAPI poll routine to be called if it is not already
444 * running.
445 */
446static inline void napi_schedule(struct napi_struct *n)
447{
448 if (napi_schedule_prep(n))
449 __napi_schedule(n);
450}
451
452/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
453static inline int napi_reschedule(struct napi_struct *napi)
454{
455 if (napi_schedule_prep(napi)) {
456 __napi_schedule(napi);
457 return 1;
458 }
459 return 0;
460}
461
462/**
463 * napi_complete - NAPI processing complete
464 * @n: napi context
465 *
466 * Mark NAPI processing as complete.
467 */
468extern void __napi_complete(struct napi_struct *n);
469extern void napi_complete(struct napi_struct *n);
470
471/**
472 * napi_disable - prevent NAPI from scheduling
473 * @n: napi context
474 *
475 * Stop NAPI from being scheduled on this context.
476 * Waits till any outstanding processing completes.
477 */
478static inline void napi_disable(struct napi_struct *n)
479{
480 set_bit(NAPI_STATE_DISABLE, &n->state);
481 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
482 msleep(1);
483 clear_bit(NAPI_STATE_DISABLE, &n->state);
484}
485
486/**
487 * napi_enable - enable NAPI scheduling
488 * @n: napi context
489 *
490 * Resume NAPI from being scheduled on this context.
491 * Must be paired with napi_disable.
492 */
493static inline void napi_enable(struct napi_struct *n)
494{
495 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
496 smp_mb__before_clear_bit();
497 clear_bit(NAPI_STATE_SCHED, &n->state);
498}
499
500#ifdef CONFIG_SMP
501/**
502 * napi_synchronize - wait until NAPI is not running
503 * @n: napi context
504 *
505 * Wait until NAPI is done being scheduled on this context.
506 * Waits till any outstanding processing completes but
507 * does not disable future activations.
508 */
509static inline void napi_synchronize(const struct napi_struct *n)
510{
511 while (test_bit(NAPI_STATE_SCHED, &n->state))
512 msleep(1);
513}
514#else
515# define napi_synchronize(n) barrier()
516#endif
517
518enum netdev_queue_state_t {
519 __QUEUE_STATE_XOFF,
520 __QUEUE_STATE_FROZEN,
521#define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
522 (1 << __QUEUE_STATE_FROZEN))
523};
524
525struct netdev_queue {
526/*
527 * read mostly part
528 */
529 struct net_device *dev;
530 struct Qdisc *qdisc;
531 unsigned long state;
532 struct Qdisc *qdisc_sleeping;
533#if defined(CONFIG_RPS) || defined(CONFIG_XPS)
534 struct kobject kobj;
535#endif
536#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
537 int numa_node;
538#endif
539/*
540 * write mostly part
541 */
542 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
543 int xmit_lock_owner;
544 /*
545 * please use this field instead of dev->trans_start
546 */
547 unsigned long trans_start;
548} ____cacheline_aligned_in_smp;
549
550static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
551{
552#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
553 return q->numa_node;
554#else
555 return NUMA_NO_NODE;
556#endif
557}
558
559static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
560{
561#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 q->numa_node = node;
563#endif
564}
565
566#ifdef CONFIG_RPS
567/*
568 * This structure holds an RPS map which can be of variable length. The
569 * map is an array of CPUs.
570 */
571struct rps_map {
572 unsigned int len;
573 struct rcu_head rcu;
574 u16 cpus[0];
575};
576#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
577
578/*
579 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
580 * tail pointer for that CPU's input queue at the time of last enqueue, and
581 * a hardware filter index.
582 */
583struct rps_dev_flow {
584 u16 cpu;
585 u16 filter;
586 unsigned int last_qtail;
587};
588#define RPS_NO_FILTER 0xffff
589
590/*
591 * The rps_dev_flow_table structure contains a table of flow mappings.
592 */
593struct rps_dev_flow_table {
594 unsigned int mask;
595 struct rcu_head rcu;
596 struct work_struct free_work;
597 struct rps_dev_flow flows[0];
598};
599#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
600 (_num * sizeof(struct rps_dev_flow)))
601
602/*
603 * The rps_sock_flow_table contains mappings of flows to the last CPU
604 * on which they were processed by the application (set in recvmsg).
605 */
606struct rps_sock_flow_table {
607 unsigned int mask;
608 u16 ents[0];
609};
610#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
611 (_num * sizeof(u16)))
612
613#define RPS_NO_CPU 0xffff
614
615static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
616 u32 hash)
617{
618 if (table && hash) {
619 unsigned int cpu, index = hash & table->mask;
620
621 /* We only give a hint, preemption can change cpu under us */
622 cpu = raw_smp_processor_id();
623
624 if (table->ents[index] != cpu)
625 table->ents[index] = cpu;
626 }
627}
628
629static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
630 u32 hash)
631{
632 if (table && hash)
633 table->ents[hash & table->mask] = RPS_NO_CPU;
634}
635
636extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
637
638#ifdef CONFIG_RFS_ACCEL
639extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
640 u32 flow_id, u16 filter_id);
641#endif
642
643/* This structure contains an instance of an RX queue. */
644struct netdev_rx_queue {
645 struct rps_map __rcu *rps_map;
646 struct rps_dev_flow_table __rcu *rps_flow_table;
647 struct kobject kobj;
648 struct net_device *dev;
649} ____cacheline_aligned_in_smp;
650#endif /* CONFIG_RPS */
651
652#ifdef CONFIG_XPS
653/*
654 * This structure holds an XPS map which can be of variable length. The
655 * map is an array of queues.
656 */
657struct xps_map {
658 unsigned int len;
659 unsigned int alloc_len;
660 struct rcu_head rcu;
661 u16 queues[0];
662};
663#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
664#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
665 / sizeof(u16))
666
667/*
668 * This structure holds all XPS maps for device. Maps are indexed by CPU.
669 */
670struct xps_dev_maps {
671 struct rcu_head rcu;
672 struct xps_map __rcu *cpu_map[0];
673};
674#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
675 (nr_cpu_ids * sizeof(struct xps_map *)))
676#endif /* CONFIG_XPS */
677
678#define TC_MAX_QUEUE 16
679#define TC_BITMASK 15
680/* HW offloaded queuing disciplines txq count and offset maps */
681struct netdev_tc_txq {
682 u16 count;
683 u16 offset;
684};
685
686/*
687 * This structure defines the management hooks for network devices.
688 * The following hooks can be defined; unless noted otherwise, they are
689 * optional and can be filled with a null pointer.
690 *
691 * int (*ndo_init)(struct net_device *dev);
692 * This function is called once when network device is registered.
693 * The network device can use this to any late stage initializaton
694 * or semantic validattion. It can fail with an error code which will
695 * be propogated back to register_netdev
696 *
697 * void (*ndo_uninit)(struct net_device *dev);
698 * This function is called when device is unregistered or when registration
699 * fails. It is not called if init fails.
700 *
701 * int (*ndo_open)(struct net_device *dev);
702 * This function is called when network device transistions to the up
703 * state.
704 *
705 * int (*ndo_stop)(struct net_device *dev);
706 * This function is called when network device transistions to the down
707 * state.
708 *
709 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
710 * struct net_device *dev);
711 * Called when a packet needs to be transmitted.
712 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
713 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
714 * Required can not be NULL.
715 *
716 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
717 * Called to decide which queue to when device supports multiple
718 * transmit queues.
719 *
720 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
721 * This function is called to allow device receiver to make
722 * changes to configuration when multicast or promiscious is enabled.
723 *
724 * void (*ndo_set_rx_mode)(struct net_device *dev);
725 * This function is called device changes address list filtering.
726 * If driver handles unicast address filtering, it should set
727 * IFF_UNICAST_FLT to its priv_flags.
728 *
729 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
730 * This function is called when the Media Access Control address
731 * needs to be changed. If this interface is not defined, the
732 * mac address can not be changed.
733 *
734 * int (*ndo_validate_addr)(struct net_device *dev);
735 * Test if Media Access Control address is valid for the device.
736 *
737 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
738 * Called when a user request an ioctl which can't be handled by
739 * the generic interface code. If not defined ioctl's return
740 * not supported error code.
741 *
742 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
743 * Used to set network devices bus interface parameters. This interface
744 * is retained for legacy reason, new devices should use the bus
745 * interface (PCI) for low level management.
746 *
747 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
748 * Called when a user wants to change the Maximum Transfer Unit
749 * of a device. If not defined, any request to change MTU will
750 * will return an error.
751 *
752 * void (*ndo_tx_timeout)(struct net_device *dev);
753 * Callback uses when the transmitter has not made any progress
754 * for dev->watchdog ticks.
755 *
756 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
757 * struct rtnl_link_stats64 *storage);
758 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
759 * Called when a user wants to get the network device usage
760 * statistics. Drivers must do one of the following:
761 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
762 * rtnl_link_stats64 structure passed by the caller.
763 * 2. Define @ndo_get_stats to update a net_device_stats structure
764 * (which should normally be dev->stats) and return a pointer to
765 * it. The structure may be changed asynchronously only if each
766 * field is written atomically.
767 * 3. Update dev->stats asynchronously and atomically, and define
768 * neither operation.
769 *
770 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
771 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
772 * this function is called when a VLAN id is registered.
773 *
774 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
775 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
776 * this function is called when a VLAN id is unregistered.
777 *
778 * void (*ndo_poll_controller)(struct net_device *dev);
779 *
780 * SR-IOV management functions.
781 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
782 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
783 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
784 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
785 * int (*ndo_get_vf_config)(struct net_device *dev,
786 * int vf, struct ifla_vf_info *ivf);
787 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
788 * struct nlattr *port[]);
789 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
790 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
791 * Called to setup 'tc' number of traffic classes in the net device. This
792 * is always called from the stack with the rtnl lock held and netif tx
793 * queues stopped. This allows the netdevice to perform queue management
794 * safely.
795 *
796 * Fiber Channel over Ethernet (FCoE) offload functions.
797 * int (*ndo_fcoe_enable)(struct net_device *dev);
798 * Called when the FCoE protocol stack wants to start using LLD for FCoE
799 * so the underlying device can perform whatever needed configuration or
800 * initialization to support acceleration of FCoE traffic.
801 *
802 * int (*ndo_fcoe_disable)(struct net_device *dev);
803 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
804 * so the underlying device can perform whatever needed clean-ups to
805 * stop supporting acceleration of FCoE traffic.
806 *
807 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
808 * struct scatterlist *sgl, unsigned int sgc);
809 * Called when the FCoE Initiator wants to initialize an I/O that
810 * is a possible candidate for Direct Data Placement (DDP). The LLD can
811 * perform necessary setup and returns 1 to indicate the device is set up
812 * successfully to perform DDP on this I/O, otherwise this returns 0.
813 *
814 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
815 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
816 * indicated by the FC exchange id 'xid', so the underlying device can
817 * clean up and reuse resources for later DDP requests.
818 *
819 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
820 * struct scatterlist *sgl, unsigned int sgc);
821 * Called when the FCoE Target wants to initialize an I/O that
822 * is a possible candidate for Direct Data Placement (DDP). The LLD can
823 * perform necessary setup and returns 1 to indicate the device is set up
824 * successfully to perform DDP on this I/O, otherwise this returns 0.
825 *
826 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
827 * Called when the underlying device wants to override default World Wide
828 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
829 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
830 * protocol stack to use.
831 *
832 * RFS acceleration.
833 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
834 * u16 rxq_index, u32 flow_id);
835 * Set hardware filter for RFS. rxq_index is the target queue index;
836 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
837 * Return the filter ID on success, or a negative error code.
838 *
839 * Slave management functions (for bridge, bonding, etc). User should
840 * call netdev_set_master() to set dev->master properly.
841 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
842 * Called to make another netdev an underling.
843 *
844 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
845 * Called to release previously enslaved netdev.
846 *
847 * Feature/offload setting functions.
848 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features);
849 * Adjusts the requested feature flags according to device-specific
850 * constraints, and returns the resulting flags. Must not modify
851 * the device state.
852 *
853 * int (*ndo_set_features)(struct net_device *dev, u32 features);
854 * Called to update device configuration to new features. Passed
855 * feature set might be less than what was returned by ndo_fix_features()).
856 * Must return >0 or -errno if it changed dev->features itself.
857 *
858 */
859struct net_device_ops {
860 int (*ndo_init)(struct net_device *dev);
861 void (*ndo_uninit)(struct net_device *dev);
862 int (*ndo_open)(struct net_device *dev);
863 int (*ndo_stop)(struct net_device *dev);
864 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
865 struct net_device *dev);
866 u16 (*ndo_select_queue)(struct net_device *dev,
867 struct sk_buff *skb);
868 void (*ndo_change_rx_flags)(struct net_device *dev,
869 int flags);
870 void (*ndo_set_rx_mode)(struct net_device *dev);
871 int (*ndo_set_mac_address)(struct net_device *dev,
872 void *addr);
873 int (*ndo_validate_addr)(struct net_device *dev);
874 int (*ndo_do_ioctl)(struct net_device *dev,
875 struct ifreq *ifr, int cmd);
876 int (*ndo_set_config)(struct net_device *dev,
877 struct ifmap *map);
878 int (*ndo_change_mtu)(struct net_device *dev,
879 int new_mtu);
880 int (*ndo_neigh_setup)(struct net_device *dev,
881 struct neigh_parms *);
882 void (*ndo_tx_timeout) (struct net_device *dev);
883
884 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
885 struct rtnl_link_stats64 *storage);
886 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
887
888 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
889 unsigned short vid);
890 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
891 unsigned short vid);
892#ifdef CONFIG_NET_POLL_CONTROLLER
893 void (*ndo_poll_controller)(struct net_device *dev);
894 int (*ndo_netpoll_setup)(struct net_device *dev,
895 struct netpoll_info *info);
896 void (*ndo_netpoll_cleanup)(struct net_device *dev);
897#endif
898 int (*ndo_set_vf_mac)(struct net_device *dev,
899 int queue, u8 *mac);
900 int (*ndo_set_vf_vlan)(struct net_device *dev,
901 int queue, u16 vlan, u8 qos);
902 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
903 int vf, int rate);
904 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
905 int vf, bool setting);
906 int (*ndo_get_vf_config)(struct net_device *dev,
907 int vf,
908 struct ifla_vf_info *ivf);
909 int (*ndo_set_vf_port)(struct net_device *dev,
910 int vf,
911 struct nlattr *port[]);
912 int (*ndo_get_vf_port)(struct net_device *dev,
913 int vf, struct sk_buff *skb);
914 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
915#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
916 int (*ndo_fcoe_enable)(struct net_device *dev);
917 int (*ndo_fcoe_disable)(struct net_device *dev);
918 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
919 u16 xid,
920 struct scatterlist *sgl,
921 unsigned int sgc);
922 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
923 u16 xid);
924 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
925 u16 xid,
926 struct scatterlist *sgl,
927 unsigned int sgc);
928#endif
929
930#if defined(CONFIG_LIBFCOE) || defined(CONFIG_LIBFCOE_MODULE)
931#define NETDEV_FCOE_WWNN 0
932#define NETDEV_FCOE_WWPN 1
933 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
934 u64 *wwn, int type);
935#endif
936
937#ifdef CONFIG_RFS_ACCEL
938 int (*ndo_rx_flow_steer)(struct net_device *dev,
939 const struct sk_buff *skb,
940 u16 rxq_index,
941 u32 flow_id);
942#endif
943 int (*ndo_add_slave)(struct net_device *dev,
944 struct net_device *slave_dev);
945 int (*ndo_del_slave)(struct net_device *dev,
946 struct net_device *slave_dev);
947 u32 (*ndo_fix_features)(struct net_device *dev,
948 u32 features);
949 int (*ndo_set_features)(struct net_device *dev,
950 u32 features);
951};
952
953/*
954 * The DEVICE structure.
955 * Actually, this whole structure is a big mistake. It mixes I/O
956 * data with strictly "high-level" data, and it has to know about
957 * almost every data structure used in the INET module.
958 *
959 * FIXME: cleanup struct net_device such that network protocol info
960 * moves out.
961 */
962
963struct net_device {
964
965 /*
966 * This is the first field of the "visible" part of this structure
967 * (i.e. as seen by users in the "Space.c" file). It is the name
968 * of the interface.
969 */
970 char name[IFNAMSIZ];
971
972 struct pm_qos_request pm_qos_req;
973
974 /* device name hash chain */
975 struct hlist_node name_hlist;
976 /* snmp alias */
977 char *ifalias;
978
979 /*
980 * I/O specific fields
981 * FIXME: Merge these and struct ifmap into one
982 */
983 unsigned long mem_end; /* shared mem end */
984 unsigned long mem_start; /* shared mem start */
985 unsigned long base_addr; /* device I/O address */
986 unsigned int irq; /* device IRQ number */
987
988 /*
989 * Some hardware also needs these fields, but they are not
990 * part of the usual set specified in Space.c.
991 */
992
993 unsigned long state;
994
995 struct list_head dev_list;
996 struct list_head napi_list;
997 struct list_head unreg_list;
998
999 /* currently active device features */
1000 u32 features;
1001 /* user-changeable features */
1002 u32 hw_features;
1003 /* user-requested features */
1004 u32 wanted_features;
1005 /* mask of features inheritable by VLAN devices */
1006 u32 vlan_features;
1007
1008 /* Net device feature bits; if you change something,
1009 * also update netdev_features_strings[] in ethtool.c */
1010
1011#define NETIF_F_SG 1 /* Scatter/gather IO. */
1012#define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
1013#define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
1014#define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
1015#define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
1016#define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
1017#define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
1018#define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
1019#define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
1020#define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
1021#define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
1022#define NETIF_F_GSO 2048 /* Enable software GSO. */
1023#define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
1024 /* do not use LLTX in new drivers */
1025#define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
1026#define NETIF_F_GRO 16384 /* Generic receive offload */
1027#define NETIF_F_LRO 32768 /* large receive offload */
1028
1029/* the GSO_MASK reserves bits 16 through 23 */
1030#define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
1031#define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
1032#define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
1033#define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
1034#define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
1035#define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */
1036#define NETIF_F_NOCACHE_COPY (1 << 30) /* Use no-cache copyfromuser */
1037#define NETIF_F_LOOPBACK (1 << 31) /* Enable loopback */
1038
1039 /* Segmentation offload features */
1040#define NETIF_F_GSO_SHIFT 16
1041#define NETIF_F_GSO_MASK 0x00ff0000
1042#define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
1043#define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
1044#define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
1045#define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
1046#define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
1047#define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
1048
1049 /* Features valid for ethtool to change */
1050 /* = all defined minus driver/device-class-related */
1051#define NETIF_F_NEVER_CHANGE (NETIF_F_VLAN_CHALLENGED | \
1052 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
1053#define NETIF_F_ETHTOOL_BITS (0xff3fffff & ~NETIF_F_NEVER_CHANGE)
1054
1055 /* List of features with software fallbacks. */
1056#define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
1057 NETIF_F_TSO6 | NETIF_F_UFO)
1058
1059
1060#define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
1061#define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
1062#define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
1063#define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
1064
1065#define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1066
1067#define NETIF_F_ALL_FCOE (NETIF_F_FCOE_CRC | NETIF_F_FCOE_MTU | \
1068 NETIF_F_FSO)
1069
1070 /*
1071 * If one device supports one of these features, then enable them
1072 * for all in netdev_increment_features.
1073 */
1074#define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
1075 NETIF_F_SG | NETIF_F_HIGHDMA | \
1076 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED)
1077 /*
1078 * If one device doesn't support one of these features, then disable it
1079 * for all in netdev_increment_features.
1080 */
1081#define NETIF_F_ALL_FOR_ALL (NETIF_F_NOCACHE_COPY | NETIF_F_FSO)
1082
1083 /* changeable features with no special hardware requirements */
1084#define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO)
1085
1086 /* Interface index. Unique device identifier */
1087 int ifindex;
1088 int iflink;
1089
1090 struct net_device_stats stats;
1091 atomic_long_t rx_dropped; /* dropped packets by core network
1092 * Do not use this in drivers.
1093 */
1094
1095#ifdef CONFIG_WIRELESS_EXT
1096 /* List of functions to handle Wireless Extensions (instead of ioctl).
1097 * See <net/iw_handler.h> for details. Jean II */
1098 const struct iw_handler_def * wireless_handlers;
1099 /* Instance data managed by the core of Wireless Extensions. */
1100 struct iw_public_data * wireless_data;
1101#endif
1102 /* Management operations */
1103 const struct net_device_ops *netdev_ops;
1104 const struct ethtool_ops *ethtool_ops;
1105
1106 /* Hardware header description */
1107 const struct header_ops *header_ops;
1108
1109 unsigned int flags; /* interface flags (a la BSD) */
1110 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1111 unsigned short gflags;
1112 unsigned short padded; /* How much padding added by alloc_netdev() */
1113
1114 unsigned char operstate; /* RFC2863 operstate */
1115 unsigned char link_mode; /* mapping policy to operstate */
1116
1117 unsigned char if_port; /* Selectable AUI, TP,..*/
1118 unsigned char dma; /* DMA channel */
1119
1120 unsigned int mtu; /* interface MTU value */
1121 unsigned short type; /* interface hardware type */
1122 unsigned short hard_header_len; /* hardware hdr length */
1123
1124 /* extra head- and tailroom the hardware may need, but not in all cases
1125 * can this be guaranteed, especially tailroom. Some cases also use
1126 * LL_MAX_HEADER instead to allocate the skb.
1127 */
1128 unsigned short needed_headroom;
1129 unsigned short needed_tailroom;
1130
1131 /* Interface address info. */
1132 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1133 unsigned char addr_assign_type; /* hw address assignment type */
1134 unsigned char addr_len; /* hardware address length */
1135 unsigned short dev_id; /* for shared network cards */
1136
1137 spinlock_t addr_list_lock;
1138 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1139 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1140 bool uc_promisc;
1141 unsigned int promiscuity;
1142 unsigned int allmulti;
1143
1144
1145 /* Protocol specific pointers */
1146
1147#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1148 struct vlan_group __rcu *vlgrp; /* VLAN group */
1149#endif
1150#ifdef CONFIG_NET_DSA
1151 void *dsa_ptr; /* dsa specific data */
1152#endif
1153 void *atalk_ptr; /* AppleTalk link */
1154 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1155 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1156 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1157 void *ec_ptr; /* Econet specific data */
1158 void *ax25_ptr; /* AX.25 specific data */
1159 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1160 assign before registering */
1161
1162/*
1163 * Cache lines mostly used on receive path (including eth_type_trans())
1164 */
1165 unsigned long last_rx; /* Time of last Rx
1166 * This should not be set in
1167 * drivers, unless really needed,
1168 * because network stack (bonding)
1169 * use it if/when necessary, to
1170 * avoid dirtying this cache line.
1171 */
1172
1173 struct net_device *master; /* Pointer to master device of a group,
1174 * which this device is member of.
1175 */
1176
1177 /* Interface address info used in eth_type_trans() */
1178 unsigned char *dev_addr; /* hw address, (before bcast
1179 because most packets are
1180 unicast) */
1181
1182 struct netdev_hw_addr_list dev_addrs; /* list of device
1183 hw addresses */
1184
1185 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1186
1187#if defined(CONFIG_RPS) || defined(CONFIG_XPS)
1188 struct kset *queues_kset;
1189
1190 struct netdev_rx_queue *_rx;
1191
1192 /* Number of RX queues allocated at register_netdev() time */
1193 unsigned int num_rx_queues;
1194
1195 /* Number of RX queues currently active in device */
1196 unsigned int real_num_rx_queues;
1197
1198#ifdef CONFIG_RFS_ACCEL
1199 /* CPU reverse-mapping for RX completion interrupts, indexed
1200 * by RX queue number. Assigned by driver. This must only be
1201 * set if the ndo_rx_flow_steer operation is defined. */
1202 struct cpu_rmap *rx_cpu_rmap;
1203#endif
1204#endif
1205
1206 rx_handler_func_t __rcu *rx_handler;
1207 void __rcu *rx_handler_data;
1208
1209 struct netdev_queue __rcu *ingress_queue;
1210
1211/*
1212 * Cache lines mostly used on transmit path
1213 */
1214 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1215
1216 /* Number of TX queues allocated at alloc_netdev_mq() time */
1217 unsigned int num_tx_queues;
1218
1219 /* Number of TX queues currently active in device */
1220 unsigned int real_num_tx_queues;
1221
1222 /* root qdisc from userspace point of view */
1223 struct Qdisc *qdisc;
1224
1225 unsigned long tx_queue_len; /* Max frames per queue allowed */
1226 spinlock_t tx_global_lock;
1227
1228#ifdef CONFIG_XPS
1229 struct xps_dev_maps __rcu *xps_maps;
1230#endif
1231
1232 /* These may be needed for future network-power-down code. */
1233
1234 /*
1235 * trans_start here is expensive for high speed devices on SMP,
1236 * please use netdev_queue->trans_start instead.
1237 */
1238 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1239
1240 int watchdog_timeo; /* used by dev_watchdog() */
1241 struct timer_list watchdog_timer;
1242
1243 /* Number of references to this device */
1244 int __percpu *pcpu_refcnt;
1245
1246 /* delayed register/unregister */
1247 struct list_head todo_list;
1248 /* device index hash chain */
1249 struct hlist_node index_hlist;
1250
1251 struct list_head link_watch_list;
1252
1253 /* register/unregister state machine */
1254 enum { NETREG_UNINITIALIZED=0,
1255 NETREG_REGISTERED, /* completed register_netdevice */
1256 NETREG_UNREGISTERING, /* called unregister_netdevice */
1257 NETREG_UNREGISTERED, /* completed unregister todo */
1258 NETREG_RELEASED, /* called free_netdev */
1259 NETREG_DUMMY, /* dummy device for NAPI poll */
1260 } reg_state:8;
1261
1262 bool dismantle; /* device is going do be freed */
1263
1264 enum {
1265 RTNL_LINK_INITIALIZED,
1266 RTNL_LINK_INITIALIZING,
1267 } rtnl_link_state:16;
1268
1269 /* Called from unregister, can be used to call free_netdev */
1270 void (*destructor)(struct net_device *dev);
1271
1272#ifdef CONFIG_NETPOLL
1273 struct netpoll_info *npinfo;
1274#endif
1275
1276#ifdef CONFIG_NET_NS
1277 /* Network namespace this network device is inside */
1278 struct net *nd_net;
1279#endif
1280
1281 /* mid-layer private */
1282 union {
1283 void *ml_priv;
1284 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1285 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1286 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1287 };
1288 /* GARP */
1289 struct garp_port __rcu *garp_port;
1290
1291 /* class/net/name entry */
1292 struct device dev;
1293 /* space for optional device, statistics, and wireless sysfs groups */
1294 const struct attribute_group *sysfs_groups[4];
1295
1296 /* rtnetlink link ops */
1297 const struct rtnl_link_ops *rtnl_link_ops;
1298
1299 /* for setting kernel sock attribute on TCP connection setup */
1300#define GSO_MAX_SIZE 65536
1301 unsigned int gso_max_size;
1302
1303#ifdef CONFIG_DCB
1304 /* Data Center Bridging netlink ops */
1305 const struct dcbnl_rtnl_ops *dcbnl_ops;
1306#endif
1307 u8 num_tc;
1308 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1309 u8 prio_tc_map[TC_BITMASK + 1];
1310
1311#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1312 /* max exchange id for FCoE LRO by ddp */
1313 unsigned int fcoe_ddp_xid;
1314#endif
1315 /* phy device may attach itself for hardware timestamping */
1316 struct phy_device *phydev;
1317
1318 /* group the device belongs to */
1319 int group;
1320};
1321#define to_net_dev(d) container_of(d, struct net_device, dev)
1322
1323#define NETDEV_ALIGN 32
1324
1325static inline
1326int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1327{
1328 return dev->prio_tc_map[prio & TC_BITMASK];
1329}
1330
1331static inline
1332int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1333{
1334 if (tc >= dev->num_tc)
1335 return -EINVAL;
1336
1337 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1338 return 0;
1339}
1340
1341static inline
1342void netdev_reset_tc(struct net_device *dev)
1343{
1344 dev->num_tc = 0;
1345 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1346 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1347}
1348
1349static inline
1350int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1351{
1352 if (tc >= dev->num_tc)
1353 return -EINVAL;
1354
1355 dev->tc_to_txq[tc].count = count;
1356 dev->tc_to_txq[tc].offset = offset;
1357 return 0;
1358}
1359
1360static inline
1361int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1362{
1363 if (num_tc > TC_MAX_QUEUE)
1364 return -EINVAL;
1365
1366 dev->num_tc = num_tc;
1367 return 0;
1368}
1369
1370static inline
1371int netdev_get_num_tc(struct net_device *dev)
1372{
1373 return dev->num_tc;
1374}
1375
1376static inline
1377struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1378 unsigned int index)
1379{
1380 return &dev->_tx[index];
1381}
1382
1383static inline void netdev_for_each_tx_queue(struct net_device *dev,
1384 void (*f)(struct net_device *,
1385 struct netdev_queue *,
1386 void *),
1387 void *arg)
1388{
1389 unsigned int i;
1390
1391 for (i = 0; i < dev->num_tx_queues; i++)
1392 f(dev, &dev->_tx[i], arg);
1393}
1394
1395/*
1396 * Net namespace inlines
1397 */
1398static inline
1399struct net *dev_net(const struct net_device *dev)
1400{
1401 return read_pnet(&dev->nd_net);
1402}
1403
1404static inline
1405void dev_net_set(struct net_device *dev, struct net *net)
1406{
1407#ifdef CONFIG_NET_NS
1408 release_net(dev->nd_net);
1409 dev->nd_net = hold_net(net);
1410#endif
1411}
1412
1413static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1414{
1415#ifdef CONFIG_NET_DSA_TAG_DSA
1416 if (dev->dsa_ptr != NULL)
1417 return dsa_uses_dsa_tags(dev->dsa_ptr);
1418#endif
1419
1420 return 0;
1421}
1422
1423#ifndef CONFIG_NET_NS
1424static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1425{
1426 skb->dev = dev;
1427}
1428#else /* CONFIG_NET_NS */
1429void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1430#endif
1431
1432static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1433{
1434#ifdef CONFIG_NET_DSA_TAG_TRAILER
1435 if (dev->dsa_ptr != NULL)
1436 return dsa_uses_trailer_tags(dev->dsa_ptr);
1437#endif
1438
1439 return 0;
1440}
1441
1442/**
1443 * netdev_priv - access network device private data
1444 * @dev: network device
1445 *
1446 * Get network device private data
1447 */
1448static inline void *netdev_priv(const struct net_device *dev)
1449{
1450 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1451}
1452
1453/* Set the sysfs physical device reference for the network logical device
1454 * if set prior to registration will cause a symlink during initialization.
1455 */
1456#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1457
1458/* Set the sysfs device type for the network logical device to allow
1459 * fin grained indentification of different network device types. For
1460 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1461 */
1462#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1463
1464/**
1465 * netif_napi_add - initialize a napi context
1466 * @dev: network device
1467 * @napi: napi context
1468 * @poll: polling function
1469 * @weight: default weight
1470 *
1471 * netif_napi_add() must be used to initialize a napi context prior to calling
1472 * *any* of the other napi related functions.
1473 */
1474void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1475 int (*poll)(struct napi_struct *, int), int weight);
1476
1477/**
1478 * netif_napi_del - remove a napi context
1479 * @napi: napi context
1480 *
1481 * netif_napi_del() removes a napi context from the network device napi list
1482 */
1483void netif_napi_del(struct napi_struct *napi);
1484
1485struct napi_gro_cb {
1486 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1487 void *frag0;
1488
1489 /* Length of frag0. */
1490 unsigned int frag0_len;
1491
1492 /* This indicates where we are processing relative to skb->data. */
1493 int data_offset;
1494
1495 /* This is non-zero if the packet may be of the same flow. */
1496 int same_flow;
1497
1498 /* This is non-zero if the packet cannot be merged with the new skb. */
1499 int flush;
1500
1501 /* Number of segments aggregated. */
1502 int count;
1503
1504 /* Free the skb? */
1505 int free;
1506};
1507
1508#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1509
1510struct packet_type {
1511 __be16 type; /* This is really htons(ether_type). */
1512 struct net_device *dev; /* NULL is wildcarded here */
1513 int (*func) (struct sk_buff *,
1514 struct net_device *,
1515 struct packet_type *,
1516 struct net_device *);
1517 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1518 u32 features);
1519 int (*gso_send_check)(struct sk_buff *skb);
1520 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1521 struct sk_buff *skb);
1522 int (*gro_complete)(struct sk_buff *skb);
1523 void *af_packet_priv;
1524 struct list_head list;
1525};
1526
1527#include <linux/notifier.h>
1528
1529/* netdevice notifier chain. Please remember to update the rtnetlink
1530 * notification exclusion list in rtnetlink_event() when adding new
1531 * types.
1532 */
1533#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1534#define NETDEV_DOWN 0x0002
1535#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1536 detected a hardware crash and restarted
1537 - we can use this eg to kick tcp sessions
1538 once done */
1539#define NETDEV_CHANGE 0x0004 /* Notify device state change */
1540#define NETDEV_REGISTER 0x0005
1541#define NETDEV_UNREGISTER 0x0006
1542#define NETDEV_CHANGEMTU 0x0007
1543#define NETDEV_CHANGEADDR 0x0008
1544#define NETDEV_GOING_DOWN 0x0009
1545#define NETDEV_CHANGENAME 0x000A
1546#define NETDEV_FEAT_CHANGE 0x000B
1547#define NETDEV_BONDING_FAILOVER 0x000C
1548#define NETDEV_PRE_UP 0x000D
1549#define NETDEV_PRE_TYPE_CHANGE 0x000E
1550#define NETDEV_POST_TYPE_CHANGE 0x000F
1551#define NETDEV_POST_INIT 0x0010
1552#define NETDEV_UNREGISTER_BATCH 0x0011
1553#define NETDEV_RELEASE 0x0012
1554#define NETDEV_NOTIFY_PEERS 0x0013
1555#define NETDEV_JOIN 0x0014
1556
1557extern int register_netdevice_notifier(struct notifier_block *nb);
1558extern int unregister_netdevice_notifier(struct notifier_block *nb);
1559extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1560
1561
1562extern rwlock_t dev_base_lock; /* Device list lock */
1563
1564
1565#define for_each_netdev(net, d) \
1566 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1567#define for_each_netdev_reverse(net, d) \
1568 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1569#define for_each_netdev_rcu(net, d) \
1570 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1571#define for_each_netdev_safe(net, d, n) \
1572 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1573#define for_each_netdev_continue(net, d) \
1574 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1575#define for_each_netdev_continue_rcu(net, d) \
1576 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1577#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1578
1579static inline struct net_device *next_net_device(struct net_device *dev)
1580{
1581 struct list_head *lh;
1582 struct net *net;
1583
1584 net = dev_net(dev);
1585 lh = dev->dev_list.next;
1586 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1587}
1588
1589static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1590{
1591 struct list_head *lh;
1592 struct net *net;
1593
1594 net = dev_net(dev);
1595 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1596 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1597}
1598
1599static inline struct net_device *first_net_device(struct net *net)
1600{
1601 return list_empty(&net->dev_base_head) ? NULL :
1602 net_device_entry(net->dev_base_head.next);
1603}
1604
1605static inline struct net_device *first_net_device_rcu(struct net *net)
1606{
1607 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1608
1609 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1610}
1611
1612extern int netdev_boot_setup_check(struct net_device *dev);
1613extern unsigned long netdev_boot_base(const char *prefix, int unit);
1614extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1615 const char *hwaddr);
1616extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1617extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1618extern void dev_add_pack(struct packet_type *pt);
1619extern void dev_remove_pack(struct packet_type *pt);
1620extern void __dev_remove_pack(struct packet_type *pt);
1621
1622extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1623 unsigned short mask);
1624extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1625extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1626extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1627extern int dev_alloc_name(struct net_device *dev, const char *name);
1628extern int dev_open(struct net_device *dev);
1629extern int dev_close(struct net_device *dev);
1630extern void dev_disable_lro(struct net_device *dev);
1631extern int dev_queue_xmit(struct sk_buff *skb);
1632extern int register_netdevice(struct net_device *dev);
1633extern void unregister_netdevice_queue(struct net_device *dev,
1634 struct list_head *head);
1635extern void unregister_netdevice_many(struct list_head *head);
1636static inline void unregister_netdevice(struct net_device *dev)
1637{
1638 unregister_netdevice_queue(dev, NULL);
1639}
1640
1641extern int netdev_refcnt_read(const struct net_device *dev);
1642extern void free_netdev(struct net_device *dev);
1643extern void synchronize_net(void);
1644extern int init_dummy_netdev(struct net_device *dev);
1645extern void netdev_resync_ops(struct net_device *dev);
1646
1647extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1648extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1649extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1650extern int dev_restart(struct net_device *dev);
1651#ifdef CONFIG_NETPOLL_TRAP
1652extern int netpoll_trap(void);
1653#endif
1654extern int skb_gro_receive(struct sk_buff **head,
1655 struct sk_buff *skb);
1656extern void skb_gro_reset_offset(struct sk_buff *skb);
1657
1658static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1659{
1660 return NAPI_GRO_CB(skb)->data_offset;
1661}
1662
1663static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1664{
1665 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1666}
1667
1668static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1669{
1670 NAPI_GRO_CB(skb)->data_offset += len;
1671}
1672
1673static inline void *skb_gro_header_fast(struct sk_buff *skb,
1674 unsigned int offset)
1675{
1676 return NAPI_GRO_CB(skb)->frag0 + offset;
1677}
1678
1679static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1680{
1681 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1682}
1683
1684static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1685 unsigned int offset)
1686{
1687 if (!pskb_may_pull(skb, hlen))
1688 return NULL;
1689
1690 NAPI_GRO_CB(skb)->frag0 = NULL;
1691 NAPI_GRO_CB(skb)->frag0_len = 0;
1692 return skb->data + offset;
1693}
1694
1695static inline void *skb_gro_mac_header(struct sk_buff *skb)
1696{
1697 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1698}
1699
1700static inline void *skb_gro_network_header(struct sk_buff *skb)
1701{
1702 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1703 skb_network_offset(skb);
1704}
1705
1706static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1707 unsigned short type,
1708 const void *daddr, const void *saddr,
1709 unsigned len)
1710{
1711 if (!dev->header_ops || !dev->header_ops->create)
1712 return 0;
1713
1714 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1715}
1716
1717static inline int dev_parse_header(const struct sk_buff *skb,
1718 unsigned char *haddr)
1719{
1720 const struct net_device *dev = skb->dev;
1721
1722 if (!dev->header_ops || !dev->header_ops->parse)
1723 return 0;
1724 return dev->header_ops->parse(skb, haddr);
1725}
1726
1727typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1728extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1729static inline int unregister_gifconf(unsigned int family)
1730{
1731 return register_gifconf(family, NULL);
1732}
1733
1734/*
1735 * Incoming packets are placed on per-cpu queues
1736 */
1737struct softnet_data {
1738 struct Qdisc *output_queue;
1739 struct Qdisc **output_queue_tailp;
1740 struct list_head poll_list;
1741 struct sk_buff *completion_queue;
1742 struct sk_buff_head process_queue;
1743
1744 /* stats */
1745 unsigned int processed;
1746 unsigned int time_squeeze;
1747 unsigned int cpu_collision;
1748 unsigned int received_rps;
1749
1750#ifdef CONFIG_RPS
1751 struct softnet_data *rps_ipi_list;
1752
1753 /* Elements below can be accessed between CPUs for RPS */
1754 struct call_single_data csd ____cacheline_aligned_in_smp;
1755 struct softnet_data *rps_ipi_next;
1756 unsigned int cpu;
1757 unsigned int input_queue_head;
1758 unsigned int input_queue_tail;
1759#endif
1760 unsigned dropped;
1761 struct sk_buff_head input_pkt_queue;
1762 struct napi_struct backlog;
1763};
1764
1765static inline void input_queue_head_incr(struct softnet_data *sd)
1766{
1767#ifdef CONFIG_RPS
1768 sd->input_queue_head++;
1769#endif
1770}
1771
1772static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1773 unsigned int *qtail)
1774{
1775#ifdef CONFIG_RPS
1776 *qtail = ++sd->input_queue_tail;
1777#endif
1778}
1779
1780DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1781
1782extern void __netif_schedule(struct Qdisc *q);
1783
1784static inline void netif_schedule_queue(struct netdev_queue *txq)
1785{
1786 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1787 __netif_schedule(txq->qdisc);
1788}
1789
1790static inline void netif_tx_schedule_all(struct net_device *dev)
1791{
1792 unsigned int i;
1793
1794 for (i = 0; i < dev->num_tx_queues; i++)
1795 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1796}
1797
1798static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1799{
1800 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1801}
1802
1803/**
1804 * netif_start_queue - allow transmit
1805 * @dev: network device
1806 *
1807 * Allow upper layers to call the device hard_start_xmit routine.
1808 */
1809static inline void netif_start_queue(struct net_device *dev)
1810{
1811 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1812}
1813
1814static inline void netif_tx_start_all_queues(struct net_device *dev)
1815{
1816 unsigned int i;
1817
1818 for (i = 0; i < dev->num_tx_queues; i++) {
1819 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1820 netif_tx_start_queue(txq);
1821 }
1822}
1823
1824static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1825{
1826#ifdef CONFIG_NETPOLL_TRAP
1827 if (netpoll_trap()) {
1828 netif_tx_start_queue(dev_queue);
1829 return;
1830 }
1831#endif
1832 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1833 __netif_schedule(dev_queue->qdisc);
1834}
1835
1836/**
1837 * netif_wake_queue - restart transmit
1838 * @dev: network device
1839 *
1840 * Allow upper layers to call the device hard_start_xmit routine.
1841 * Used for flow control when transmit resources are available.
1842 */
1843static inline void netif_wake_queue(struct net_device *dev)
1844{
1845 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1846}
1847
1848static inline void netif_tx_wake_all_queues(struct net_device *dev)
1849{
1850 unsigned int i;
1851
1852 for (i = 0; i < dev->num_tx_queues; i++) {
1853 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1854 netif_tx_wake_queue(txq);
1855 }
1856}
1857
1858static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1859{
1860 if (WARN_ON(!dev_queue)) {
1861 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1862 return;
1863 }
1864 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1865}
1866
1867/**
1868 * netif_stop_queue - stop transmitted packets
1869 * @dev: network device
1870 *
1871 * Stop upper layers calling the device hard_start_xmit routine.
1872 * Used for flow control when transmit resources are unavailable.
1873 */
1874static inline void netif_stop_queue(struct net_device *dev)
1875{
1876 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1877}
1878
1879static inline void netif_tx_stop_all_queues(struct net_device *dev)
1880{
1881 unsigned int i;
1882
1883 for (i = 0; i < dev->num_tx_queues; i++) {
1884 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1885 netif_tx_stop_queue(txq);
1886 }
1887}
1888
1889static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1890{
1891 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1892}
1893
1894/**
1895 * netif_queue_stopped - test if transmit queue is flowblocked
1896 * @dev: network device
1897 *
1898 * Test if transmit queue on device is currently unable to send.
1899 */
1900static inline int netif_queue_stopped(const struct net_device *dev)
1901{
1902 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1903}
1904
1905static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1906{
1907 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1908}
1909
1910/**
1911 * netif_running - test if up
1912 * @dev: network device
1913 *
1914 * Test if the device has been brought up.
1915 */
1916static inline int netif_running(const struct net_device *dev)
1917{
1918 return test_bit(__LINK_STATE_START, &dev->state);
1919}
1920
1921/*
1922 * Routines to manage the subqueues on a device. We only need start
1923 * stop, and a check if it's stopped. All other device management is
1924 * done at the overall netdevice level.
1925 * Also test the device if we're multiqueue.
1926 */
1927
1928/**
1929 * netif_start_subqueue - allow sending packets on subqueue
1930 * @dev: network device
1931 * @queue_index: sub queue index
1932 *
1933 * Start individual transmit queue of a device with multiple transmit queues.
1934 */
1935static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1936{
1937 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1938
1939 netif_tx_start_queue(txq);
1940}
1941
1942/**
1943 * netif_stop_subqueue - stop sending packets on subqueue
1944 * @dev: network device
1945 * @queue_index: sub queue index
1946 *
1947 * Stop individual transmit queue of a device with multiple transmit queues.
1948 */
1949static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1950{
1951 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1952#ifdef CONFIG_NETPOLL_TRAP
1953 if (netpoll_trap())
1954 return;
1955#endif
1956 netif_tx_stop_queue(txq);
1957}
1958
1959/**
1960 * netif_subqueue_stopped - test status of subqueue
1961 * @dev: network device
1962 * @queue_index: sub queue index
1963 *
1964 * Check individual transmit queue of a device with multiple transmit queues.
1965 */
1966static inline int __netif_subqueue_stopped(const struct net_device *dev,
1967 u16 queue_index)
1968{
1969 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1970
1971 return netif_tx_queue_stopped(txq);
1972}
1973
1974static inline int netif_subqueue_stopped(const struct net_device *dev,
1975 struct sk_buff *skb)
1976{
1977 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1978}
1979
1980/**
1981 * netif_wake_subqueue - allow sending packets on subqueue
1982 * @dev: network device
1983 * @queue_index: sub queue index
1984 *
1985 * Resume individual transmit queue of a device with multiple transmit queues.
1986 */
1987static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1988{
1989 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1990#ifdef CONFIG_NETPOLL_TRAP
1991 if (netpoll_trap())
1992 return;
1993#endif
1994 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1995 __netif_schedule(txq->qdisc);
1996}
1997
1998/*
1999 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2000 * as a distribution range limit for the returned value.
2001 */
2002static inline u16 skb_tx_hash(const struct net_device *dev,
2003 const struct sk_buff *skb)
2004{
2005 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2006}
2007
2008/**
2009 * netif_is_multiqueue - test if device has multiple transmit queues
2010 * @dev: network device
2011 *
2012 * Check if device has multiple transmit queues
2013 */
2014static inline int netif_is_multiqueue(const struct net_device *dev)
2015{
2016 return dev->num_tx_queues > 1;
2017}
2018
2019extern int netif_set_real_num_tx_queues(struct net_device *dev,
2020 unsigned int txq);
2021
2022#ifdef CONFIG_RPS
2023extern int netif_set_real_num_rx_queues(struct net_device *dev,
2024 unsigned int rxq);
2025#else
2026static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2027 unsigned int rxq)
2028{
2029 return 0;
2030}
2031#endif
2032
2033static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2034 const struct net_device *from_dev)
2035{
2036 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2037#ifdef CONFIG_RPS
2038 return netif_set_real_num_rx_queues(to_dev,
2039 from_dev->real_num_rx_queues);
2040#else
2041 return 0;
2042#endif
2043}
2044
2045/* Use this variant when it is known for sure that it
2046 * is executing from hardware interrupt context or with hardware interrupts
2047 * disabled.
2048 */
2049extern void dev_kfree_skb_irq(struct sk_buff *skb);
2050
2051/* Use this variant in places where it could be invoked
2052 * from either hardware interrupt or other context, with hardware interrupts
2053 * either disabled or enabled.
2054 */
2055extern void dev_kfree_skb_any(struct sk_buff *skb);
2056
2057extern int netif_rx(struct sk_buff *skb);
2058extern int netif_rx_ni(struct sk_buff *skb);
2059extern int netif_receive_skb(struct sk_buff *skb);
2060extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2061 struct sk_buff *skb);
2062extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2063extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2064 struct sk_buff *skb);
2065extern void napi_gro_flush(struct napi_struct *napi);
2066extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2067extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2068 struct sk_buff *skb,
2069 gro_result_t ret);
2070extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2071extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2072
2073static inline void napi_free_frags(struct napi_struct *napi)
2074{
2075 kfree_skb(napi->skb);
2076 napi->skb = NULL;
2077}
2078
2079extern int netdev_rx_handler_register(struct net_device *dev,
2080 rx_handler_func_t *rx_handler,
2081 void *rx_handler_data);
2082extern void netdev_rx_handler_unregister(struct net_device *dev);
2083
2084extern int dev_valid_name(const char *name);
2085extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2086extern int dev_ethtool(struct net *net, struct ifreq *);
2087extern unsigned dev_get_flags(const struct net_device *);
2088extern int __dev_change_flags(struct net_device *, unsigned int flags);
2089extern int dev_change_flags(struct net_device *, unsigned);
2090extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2091extern int dev_change_name(struct net_device *, const char *);
2092extern int dev_set_alias(struct net_device *, const char *, size_t);
2093extern int dev_change_net_namespace(struct net_device *,
2094 struct net *, const char *);
2095extern int dev_set_mtu(struct net_device *, int);
2096extern void dev_set_group(struct net_device *, int);
2097extern int dev_set_mac_address(struct net_device *,
2098 struct sockaddr *);
2099extern int dev_hard_start_xmit(struct sk_buff *skb,
2100 struct net_device *dev,
2101 struct netdev_queue *txq);
2102extern int dev_forward_skb(struct net_device *dev,
2103 struct sk_buff *skb);
2104
2105extern int netdev_budget;
2106
2107/* Called by rtnetlink.c:rtnl_unlock() */
2108extern void netdev_run_todo(void);
2109
2110/**
2111 * dev_put - release reference to device
2112 * @dev: network device
2113 *
2114 * Release reference to device to allow it to be freed.
2115 */
2116static inline void dev_put(struct net_device *dev)
2117{
2118 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2119}
2120
2121/**
2122 * dev_hold - get reference to device
2123 * @dev: network device
2124 *
2125 * Hold reference to device to keep it from being freed.
2126 */
2127static inline void dev_hold(struct net_device *dev)
2128{
2129 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2130}
2131
2132/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2133 * and _off may be called from IRQ context, but it is caller
2134 * who is responsible for serialization of these calls.
2135 *
2136 * The name carrier is inappropriate, these functions should really be
2137 * called netif_lowerlayer_*() because they represent the state of any
2138 * kind of lower layer not just hardware media.
2139 */
2140
2141extern void linkwatch_fire_event(struct net_device *dev);
2142extern void linkwatch_forget_dev(struct net_device *dev);
2143
2144/**
2145 * netif_carrier_ok - test if carrier present
2146 * @dev: network device
2147 *
2148 * Check if carrier is present on device
2149 */
2150static inline int netif_carrier_ok(const struct net_device *dev)
2151{
2152 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2153}
2154
2155extern unsigned long dev_trans_start(struct net_device *dev);
2156
2157extern void __netdev_watchdog_up(struct net_device *dev);
2158
2159extern void netif_carrier_on(struct net_device *dev);
2160
2161extern void netif_carrier_off(struct net_device *dev);
2162
2163extern void netif_notify_peers(struct net_device *dev);
2164
2165/**
2166 * netif_dormant_on - mark device as dormant.
2167 * @dev: network device
2168 *
2169 * Mark device as dormant (as per RFC2863).
2170 *
2171 * The dormant state indicates that the relevant interface is not
2172 * actually in a condition to pass packets (i.e., it is not 'up') but is
2173 * in a "pending" state, waiting for some external event. For "on-
2174 * demand" interfaces, this new state identifies the situation where the
2175 * interface is waiting for events to place it in the up state.
2176 *
2177 */
2178static inline void netif_dormant_on(struct net_device *dev)
2179{
2180 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2181 linkwatch_fire_event(dev);
2182}
2183
2184/**
2185 * netif_dormant_off - set device as not dormant.
2186 * @dev: network device
2187 *
2188 * Device is not in dormant state.
2189 */
2190static inline void netif_dormant_off(struct net_device *dev)
2191{
2192 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2193 linkwatch_fire_event(dev);
2194}
2195
2196/**
2197 * netif_dormant - test if carrier present
2198 * @dev: network device
2199 *
2200 * Check if carrier is present on device
2201 */
2202static inline int netif_dormant(const struct net_device *dev)
2203{
2204 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2205}
2206
2207
2208/**
2209 * netif_oper_up - test if device is operational
2210 * @dev: network device
2211 *
2212 * Check if carrier is operational
2213 */
2214static inline int netif_oper_up(const struct net_device *dev)
2215{
2216 return (dev->operstate == IF_OPER_UP ||
2217 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2218}
2219
2220/**
2221 * netif_device_present - is device available or removed
2222 * @dev: network device
2223 *
2224 * Check if device has not been removed from system.
2225 */
2226static inline int netif_device_present(struct net_device *dev)
2227{
2228 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2229}
2230
2231extern void netif_device_detach(struct net_device *dev);
2232
2233extern void netif_device_attach(struct net_device *dev);
2234
2235/*
2236 * Network interface message level settings
2237 */
2238
2239enum {
2240 NETIF_MSG_DRV = 0x0001,
2241 NETIF_MSG_PROBE = 0x0002,
2242 NETIF_MSG_LINK = 0x0004,
2243 NETIF_MSG_TIMER = 0x0008,
2244 NETIF_MSG_IFDOWN = 0x0010,
2245 NETIF_MSG_IFUP = 0x0020,
2246 NETIF_MSG_RX_ERR = 0x0040,
2247 NETIF_MSG_TX_ERR = 0x0080,
2248 NETIF_MSG_TX_QUEUED = 0x0100,
2249 NETIF_MSG_INTR = 0x0200,
2250 NETIF_MSG_TX_DONE = 0x0400,
2251 NETIF_MSG_RX_STATUS = 0x0800,
2252 NETIF_MSG_PKTDATA = 0x1000,
2253 NETIF_MSG_HW = 0x2000,
2254 NETIF_MSG_WOL = 0x4000,
2255};
2256
2257#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2258#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2259#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2260#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2261#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2262#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2263#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2264#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2265#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2266#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2267#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2268#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2269#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2270#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2271#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2272
2273static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2274{
2275 /* use default */
2276 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2277 return default_msg_enable_bits;
2278 if (debug_value == 0) /* no output */
2279 return 0;
2280 /* set low N bits */
2281 return (1 << debug_value) - 1;
2282}
2283
2284static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2285{
2286 spin_lock(&txq->_xmit_lock);
2287 txq->xmit_lock_owner = cpu;
2288}
2289
2290static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2291{
2292 spin_lock_bh(&txq->_xmit_lock);
2293 txq->xmit_lock_owner = smp_processor_id();
2294}
2295
2296static inline int __netif_tx_trylock(struct netdev_queue *txq)
2297{
2298 int ok = spin_trylock(&txq->_xmit_lock);
2299 if (likely(ok))
2300 txq->xmit_lock_owner = smp_processor_id();
2301 return ok;
2302}
2303
2304static inline void __netif_tx_unlock(struct netdev_queue *txq)
2305{
2306 txq->xmit_lock_owner = -1;
2307 spin_unlock(&txq->_xmit_lock);
2308}
2309
2310static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2311{
2312 txq->xmit_lock_owner = -1;
2313 spin_unlock_bh(&txq->_xmit_lock);
2314}
2315
2316static inline void txq_trans_update(struct netdev_queue *txq)
2317{
2318 if (txq->xmit_lock_owner != -1)
2319 txq->trans_start = jiffies;
2320}
2321
2322/**
2323 * netif_tx_lock - grab network device transmit lock
2324 * @dev: network device
2325 *
2326 * Get network device transmit lock
2327 */
2328static inline void netif_tx_lock(struct net_device *dev)
2329{
2330 unsigned int i;
2331 int cpu;
2332
2333 spin_lock(&dev->tx_global_lock);
2334 cpu = smp_processor_id();
2335 for (i = 0; i < dev->num_tx_queues; i++) {
2336 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2337
2338 /* We are the only thread of execution doing a
2339 * freeze, but we have to grab the _xmit_lock in
2340 * order to synchronize with threads which are in
2341 * the ->hard_start_xmit() handler and already
2342 * checked the frozen bit.
2343 */
2344 __netif_tx_lock(txq, cpu);
2345 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2346 __netif_tx_unlock(txq);
2347 }
2348}
2349
2350static inline void netif_tx_lock_bh(struct net_device *dev)
2351{
2352 local_bh_disable();
2353 netif_tx_lock(dev);
2354}
2355
2356static inline void netif_tx_unlock(struct net_device *dev)
2357{
2358 unsigned int i;
2359
2360 for (i = 0; i < dev->num_tx_queues; i++) {
2361 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2362
2363 /* No need to grab the _xmit_lock here. If the
2364 * queue is not stopped for another reason, we
2365 * force a schedule.
2366 */
2367 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2368 netif_schedule_queue(txq);
2369 }
2370 spin_unlock(&dev->tx_global_lock);
2371}
2372
2373static inline void netif_tx_unlock_bh(struct net_device *dev)
2374{
2375 netif_tx_unlock(dev);
2376 local_bh_enable();
2377}
2378
2379#define HARD_TX_LOCK(dev, txq, cpu) { \
2380 if ((dev->features & NETIF_F_LLTX) == 0) { \
2381 __netif_tx_lock(txq, cpu); \
2382 } \
2383}
2384
2385#define HARD_TX_UNLOCK(dev, txq) { \
2386 if ((dev->features & NETIF_F_LLTX) == 0) { \
2387 __netif_tx_unlock(txq); \
2388 } \
2389}
2390
2391static inline void netif_tx_disable(struct net_device *dev)
2392{
2393 unsigned int i;
2394 int cpu;
2395
2396 local_bh_disable();
2397 cpu = smp_processor_id();
2398 for (i = 0; i < dev->num_tx_queues; i++) {
2399 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2400
2401 __netif_tx_lock(txq, cpu);
2402 netif_tx_stop_queue(txq);
2403 __netif_tx_unlock(txq);
2404 }
2405 local_bh_enable();
2406}
2407
2408static inline void netif_addr_lock(struct net_device *dev)
2409{
2410 spin_lock(&dev->addr_list_lock);
2411}
2412
2413static inline void netif_addr_lock_bh(struct net_device *dev)
2414{
2415 spin_lock_bh(&dev->addr_list_lock);
2416}
2417
2418static inline void netif_addr_unlock(struct net_device *dev)
2419{
2420 spin_unlock(&dev->addr_list_lock);
2421}
2422
2423static inline void netif_addr_unlock_bh(struct net_device *dev)
2424{
2425 spin_unlock_bh(&dev->addr_list_lock);
2426}
2427
2428/*
2429 * dev_addrs walker. Should be used only for read access. Call with
2430 * rcu_read_lock held.
2431 */
2432#define for_each_dev_addr(dev, ha) \
2433 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2434
2435/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2436
2437extern void ether_setup(struct net_device *dev);
2438
2439/* Support for loadable net-drivers */
2440extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2441 void (*setup)(struct net_device *),
2442 unsigned int txqs, unsigned int rxqs);
2443#define alloc_netdev(sizeof_priv, name, setup) \
2444 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2445
2446#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2447 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2448
2449extern int register_netdev(struct net_device *dev);
2450extern void unregister_netdev(struct net_device *dev);
2451
2452/* General hardware address lists handling functions */
2453extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2454 struct netdev_hw_addr_list *from_list,
2455 int addr_len, unsigned char addr_type);
2456extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2457 struct netdev_hw_addr_list *from_list,
2458 int addr_len, unsigned char addr_type);
2459extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2460 struct netdev_hw_addr_list *from_list,
2461 int addr_len);
2462extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2463 struct netdev_hw_addr_list *from_list,
2464 int addr_len);
2465extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2466extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2467
2468/* Functions used for device addresses handling */
2469extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2470 unsigned char addr_type);
2471extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2472 unsigned char addr_type);
2473extern int dev_addr_add_multiple(struct net_device *to_dev,
2474 struct net_device *from_dev,
2475 unsigned char addr_type);
2476extern int dev_addr_del_multiple(struct net_device *to_dev,
2477 struct net_device *from_dev,
2478 unsigned char addr_type);
2479extern void dev_addr_flush(struct net_device *dev);
2480extern int dev_addr_init(struct net_device *dev);
2481
2482/* Functions used for unicast addresses handling */
2483extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2484extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2485extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2486extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2487extern void dev_uc_flush(struct net_device *dev);
2488extern void dev_uc_init(struct net_device *dev);
2489
2490/* Functions used for multicast addresses handling */
2491extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2492extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2493extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2494extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2495extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2496extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2497extern void dev_mc_flush(struct net_device *dev);
2498extern void dev_mc_init(struct net_device *dev);
2499
2500/* Functions used for secondary unicast and multicast support */
2501extern void dev_set_rx_mode(struct net_device *dev);
2502extern void __dev_set_rx_mode(struct net_device *dev);
2503extern int dev_set_promiscuity(struct net_device *dev, int inc);
2504extern int dev_set_allmulti(struct net_device *dev, int inc);
2505extern void netdev_state_change(struct net_device *dev);
2506extern int netdev_bonding_change(struct net_device *dev,
2507 unsigned long event);
2508extern void netdev_features_change(struct net_device *dev);
2509/* Load a device via the kmod */
2510extern void dev_load(struct net *net, const char *name);
2511extern void dev_mcast_init(void);
2512extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2513 struct rtnl_link_stats64 *storage);
2514
2515extern int netdev_max_backlog;
2516extern int netdev_tstamp_prequeue;
2517extern int weight_p;
2518extern int bpf_jit_enable;
2519extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2520extern int netdev_set_bond_master(struct net_device *dev,
2521 struct net_device *master);
2522extern int skb_checksum_help(struct sk_buff *skb);
2523extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
2524#ifdef CONFIG_BUG
2525extern void netdev_rx_csum_fault(struct net_device *dev);
2526#else
2527static inline void netdev_rx_csum_fault(struct net_device *dev)
2528{
2529}
2530#endif
2531/* rx skb timestamps */
2532extern void net_enable_timestamp(void);
2533extern void net_disable_timestamp(void);
2534
2535#ifdef CONFIG_PROC_FS
2536extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2537extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2538extern void dev_seq_stop(struct seq_file *seq, void *v);
2539extern int dev_seq_open_ops(struct inode *inode, struct file *file,
2540 const struct seq_operations *ops);
2541#endif
2542
2543extern int netdev_class_create_file(struct class_attribute *class_attr);
2544extern void netdev_class_remove_file(struct class_attribute *class_attr);
2545
2546extern struct kobj_ns_type_operations net_ns_type_operations;
2547
2548extern const char *netdev_drivername(const struct net_device *dev);
2549
2550extern void linkwatch_run_queue(void);
2551
2552static inline u32 netdev_get_wanted_features(struct net_device *dev)
2553{
2554 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2555}
2556u32 netdev_increment_features(u32 all, u32 one, u32 mask);
2557int __netdev_update_features(struct net_device *dev);
2558void netdev_update_features(struct net_device *dev);
2559void netdev_change_features(struct net_device *dev);
2560
2561void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2562 struct net_device *dev);
2563
2564u32 netif_skb_features(struct sk_buff *skb);
2565
2566static inline int net_gso_ok(u32 features, int gso_type)
2567{
2568 int feature = gso_type << NETIF_F_GSO_SHIFT;
2569 return (features & feature) == feature;
2570}
2571
2572static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2573{
2574 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2575 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2576}
2577
2578static inline int netif_needs_gso(struct sk_buff *skb, int features)
2579{
2580 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2581 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2582}
2583
2584static inline void netif_set_gso_max_size(struct net_device *dev,
2585 unsigned int size)
2586{
2587 dev->gso_max_size = size;
2588}
2589
2590static inline int netif_is_bond_slave(struct net_device *dev)
2591{
2592 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2593}
2594
2595extern struct pernet_operations __net_initdata loopback_net_ops;
2596
2597static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2598{
2599 if (dev->features & NETIF_F_RXCSUM)
2600 return 1;
2601 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2602 return 0;
2603 return dev->ethtool_ops->get_rx_csum(dev);
2604}
2605
2606static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2607{
2608 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2609 return 0;
2610 return dev->ethtool_ops->get_flags(dev);
2611}
2612
2613/* Logging, debugging and troubleshooting/diagnostic helpers. */
2614
2615/* netdev_printk helpers, similar to dev_printk */
2616
2617static inline const char *netdev_name(const struct net_device *dev)
2618{
2619 if (dev->reg_state != NETREG_REGISTERED)
2620 return "(unregistered net_device)";
2621 return dev->name;
2622}
2623
2624extern int __netdev_printk(const char *level, const struct net_device *dev,
2625 struct va_format *vaf);
2626
2627extern __printf(3, 4)
2628int netdev_printk(const char *level, const struct net_device *dev,
2629 const char *format, ...);
2630extern __printf(2, 3)
2631int netdev_emerg(const struct net_device *dev, const char *format, ...);
2632extern __printf(2, 3)
2633int netdev_alert(const struct net_device *dev, const char *format, ...);
2634extern __printf(2, 3)
2635int netdev_crit(const struct net_device *dev, const char *format, ...);
2636extern __printf(2, 3)
2637int netdev_err(const struct net_device *dev, const char *format, ...);
2638extern __printf(2, 3)
2639int netdev_warn(const struct net_device *dev, const char *format, ...);
2640extern __printf(2, 3)
2641int netdev_notice(const struct net_device *dev, const char *format, ...);
2642extern __printf(2, 3)
2643int netdev_info(const struct net_device *dev, const char *format, ...);
2644
2645#define MODULE_ALIAS_NETDEV(device) \
2646 MODULE_ALIAS("netdev-" device)
2647
2648#if defined(DEBUG)
2649#define netdev_dbg(__dev, format, args...) \
2650 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2651#elif defined(CONFIG_DYNAMIC_DEBUG)
2652#define netdev_dbg(__dev, format, args...) \
2653do { \
2654 dynamic_netdev_dbg(__dev, format, ##args); \
2655} while (0)
2656#else
2657#define netdev_dbg(__dev, format, args...) \
2658({ \
2659 if (0) \
2660 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2661 0; \
2662})
2663#endif
2664
2665#if defined(VERBOSE_DEBUG)
2666#define netdev_vdbg netdev_dbg
2667#else
2668
2669#define netdev_vdbg(dev, format, args...) \
2670({ \
2671 if (0) \
2672 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2673 0; \
2674})
2675#endif
2676
2677/*
2678 * netdev_WARN() acts like dev_printk(), but with the key difference
2679 * of using a WARN/WARN_ON to get the message out, including the
2680 * file/line information and a backtrace.
2681 */
2682#define netdev_WARN(dev, format, args...) \
2683 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2684
2685/* netif printk helpers, similar to netdev_printk */
2686
2687#define netif_printk(priv, type, level, dev, fmt, args...) \
2688do { \
2689 if (netif_msg_##type(priv)) \
2690 netdev_printk(level, (dev), fmt, ##args); \
2691} while (0)
2692
2693#define netif_level(level, priv, type, dev, fmt, args...) \
2694do { \
2695 if (netif_msg_##type(priv)) \
2696 netdev_##level(dev, fmt, ##args); \
2697} while (0)
2698
2699#define netif_emerg(priv, type, dev, fmt, args...) \
2700 netif_level(emerg, priv, type, dev, fmt, ##args)
2701#define netif_alert(priv, type, dev, fmt, args...) \
2702 netif_level(alert, priv, type, dev, fmt, ##args)
2703#define netif_crit(priv, type, dev, fmt, args...) \
2704 netif_level(crit, priv, type, dev, fmt, ##args)
2705#define netif_err(priv, type, dev, fmt, args...) \
2706 netif_level(err, priv, type, dev, fmt, ##args)
2707#define netif_warn(priv, type, dev, fmt, args...) \
2708 netif_level(warn, priv, type, dev, fmt, ##args)
2709#define netif_notice(priv, type, dev, fmt, args...) \
2710 netif_level(notice, priv, type, dev, fmt, ##args)
2711#define netif_info(priv, type, dev, fmt, args...) \
2712 netif_level(info, priv, type, dev, fmt, ##args)
2713
2714#if defined(DEBUG)
2715#define netif_dbg(priv, type, dev, format, args...) \
2716 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2717#elif defined(CONFIG_DYNAMIC_DEBUG)
2718#define netif_dbg(priv, type, netdev, format, args...) \
2719do { \
2720 if (netif_msg_##type(priv)) \
2721 dynamic_netdev_dbg(netdev, format, ##args); \
2722} while (0)
2723#else
2724#define netif_dbg(priv, type, dev, format, args...) \
2725({ \
2726 if (0) \
2727 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2728 0; \
2729})
2730#endif
2731
2732#if defined(VERBOSE_DEBUG)
2733#define netif_vdbg netif_dbg
2734#else
2735#define netif_vdbg(priv, type, dev, format, args...) \
2736({ \
2737 if (0) \
2738 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2739 0; \
2740})
2741#endif
2742
2743#endif /* __KERNEL__ */
2744
2745#endif /* _LINUX_NETDEVICE_H */