at v3.2-rc5 1337 lines 34 kB view raw
1/* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the 18 Free Software Foundation, Inc., 19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22/* 23 Module: rt2x00lib 24 Abstract: rt2x00 generic device routines. 25 */ 26 27#include <linux/kernel.h> 28#include <linux/module.h> 29#include <linux/slab.h> 30#include <linux/log2.h> 31 32#include "rt2x00.h" 33#include "rt2x00lib.h" 34 35/* 36 * Utility functions. 37 */ 38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 39 struct ieee80211_vif *vif) 40{ 41 /* 42 * When in STA mode, bssidx is always 0 otherwise local_address[5] 43 * contains the bss number, see BSS_ID_MASK comments for details. 44 */ 45 if (rt2x00dev->intf_sta_count) 46 return 0; 47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 48} 49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 50 51/* 52 * Radio control handlers. 53 */ 54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 55{ 56 int status; 57 58 /* 59 * Don't enable the radio twice. 60 * And check if the hardware button has been disabled. 61 */ 62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 63 return 0; 64 65 /* 66 * Initialize all data queues. 67 */ 68 rt2x00queue_init_queues(rt2x00dev); 69 70 /* 71 * Enable radio. 72 */ 73 status = 74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 75 if (status) 76 return status; 77 78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 79 80 rt2x00leds_led_radio(rt2x00dev, true); 81 rt2x00led_led_activity(rt2x00dev, true); 82 83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 84 85 /* 86 * Enable queues. 87 */ 88 rt2x00queue_start_queues(rt2x00dev); 89 rt2x00link_start_tuner(rt2x00dev); 90 rt2x00link_start_agc(rt2x00dev); 91 92 /* 93 * Start watchdog monitoring. 94 */ 95 rt2x00link_start_watchdog(rt2x00dev); 96 97 return 0; 98} 99 100void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 101{ 102 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 103 return; 104 105 /* 106 * Stop watchdog monitoring. 107 */ 108 rt2x00link_stop_watchdog(rt2x00dev); 109 110 /* 111 * Stop all queues 112 */ 113 rt2x00link_stop_agc(rt2x00dev); 114 rt2x00link_stop_tuner(rt2x00dev); 115 rt2x00queue_stop_queues(rt2x00dev); 116 rt2x00queue_flush_queues(rt2x00dev, true); 117 118 /* 119 * Disable radio. 120 */ 121 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 122 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 123 rt2x00led_led_activity(rt2x00dev, false); 124 rt2x00leds_led_radio(rt2x00dev, false); 125} 126 127static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 128 struct ieee80211_vif *vif) 129{ 130 struct rt2x00_dev *rt2x00dev = data; 131 struct rt2x00_intf *intf = vif_to_intf(vif); 132 133 /* 134 * It is possible the radio was disabled while the work had been 135 * scheduled. If that happens we should return here immediately, 136 * note that in the spinlock protected area above the delayed_flags 137 * have been cleared correctly. 138 */ 139 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 140 return; 141 142 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) 143 rt2x00queue_update_beacon(rt2x00dev, vif); 144} 145 146static void rt2x00lib_intf_scheduled(struct work_struct *work) 147{ 148 struct rt2x00_dev *rt2x00dev = 149 container_of(work, struct rt2x00_dev, intf_work); 150 151 /* 152 * Iterate over each interface and perform the 153 * requested configurations. 154 */ 155 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 156 rt2x00lib_intf_scheduled_iter, 157 rt2x00dev); 158} 159 160static void rt2x00lib_autowakeup(struct work_struct *work) 161{ 162 struct rt2x00_dev *rt2x00dev = 163 container_of(work, struct rt2x00_dev, autowakeup_work.work); 164 165 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 166 return; 167 168 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 169 ERROR(rt2x00dev, "Device failed to wakeup.\n"); 170 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 171} 172 173/* 174 * Interrupt context handlers. 175 */ 176static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 177 struct ieee80211_vif *vif) 178{ 179 struct rt2x00_dev *rt2x00dev = data; 180 struct sk_buff *skb; 181 182 /* 183 * Only AP mode interfaces do broad- and multicast buffering 184 */ 185 if (vif->type != NL80211_IFTYPE_AP) 186 return; 187 188 /* 189 * Send out buffered broad- and multicast frames 190 */ 191 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 192 while (skb) { 193 rt2x00mac_tx(rt2x00dev->hw, skb); 194 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 195 } 196} 197 198static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 199 struct ieee80211_vif *vif) 200{ 201 struct rt2x00_dev *rt2x00dev = data; 202 203 if (vif->type != NL80211_IFTYPE_AP && 204 vif->type != NL80211_IFTYPE_ADHOC && 205 vif->type != NL80211_IFTYPE_MESH_POINT && 206 vif->type != NL80211_IFTYPE_WDS) 207 return; 208 209 /* 210 * Update the beacon without locking. This is safe on PCI devices 211 * as they only update the beacon periodically here. This should 212 * never be called for USB devices. 213 */ 214 WARN_ON(rt2x00_is_usb(rt2x00dev)); 215 rt2x00queue_update_beacon_locked(rt2x00dev, vif); 216} 217 218void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 219{ 220 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 221 return; 222 223 /* send buffered bc/mc frames out for every bssid */ 224 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 225 rt2x00lib_bc_buffer_iter, 226 rt2x00dev); 227 /* 228 * Devices with pre tbtt interrupt don't need to update the beacon 229 * here as they will fetch the next beacon directly prior to 230 * transmission. 231 */ 232 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags)) 233 return; 234 235 /* fetch next beacon */ 236 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 237 rt2x00lib_beaconupdate_iter, 238 rt2x00dev); 239} 240EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 241 242void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 243{ 244 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 245 return; 246 247 /* fetch next beacon */ 248 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 249 rt2x00lib_beaconupdate_iter, 250 rt2x00dev); 251} 252EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 253 254void rt2x00lib_dmastart(struct queue_entry *entry) 255{ 256 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 257 rt2x00queue_index_inc(entry, Q_INDEX); 258} 259EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 260 261void rt2x00lib_dmadone(struct queue_entry *entry) 262{ 263 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 264 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 265 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 266} 267EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 268 269void rt2x00lib_txdone(struct queue_entry *entry, 270 struct txdone_entry_desc *txdesc) 271{ 272 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 273 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 274 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 275 unsigned int header_length, i; 276 u8 rate_idx, rate_flags, retry_rates; 277 u8 skbdesc_flags = skbdesc->flags; 278 bool success; 279 280 /* 281 * Unmap the skb. 282 */ 283 rt2x00queue_unmap_skb(entry); 284 285 /* 286 * Remove the extra tx headroom from the skb. 287 */ 288 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom); 289 290 /* 291 * Signal that the TX descriptor is no longer in the skb. 292 */ 293 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 294 295 /* 296 * Determine the length of 802.11 header. 297 */ 298 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 299 300 /* 301 * Remove L2 padding which was added during 302 */ 303 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 304 rt2x00queue_remove_l2pad(entry->skb, header_length); 305 306 /* 307 * If the IV/EIV data was stripped from the frame before it was 308 * passed to the hardware, we should now reinsert it again because 309 * mac80211 will expect the same data to be present it the 310 * frame as it was passed to us. 311 */ 312 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) 313 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 314 315 /* 316 * Send frame to debugfs immediately, after this call is completed 317 * we are going to overwrite the skb->cb array. 318 */ 319 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); 320 321 /* 322 * Determine if the frame has been successfully transmitted. 323 */ 324 success = 325 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 326 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 327 328 /* 329 * Update TX statistics. 330 */ 331 rt2x00dev->link.qual.tx_success += success; 332 rt2x00dev->link.qual.tx_failed += !success; 333 334 rate_idx = skbdesc->tx_rate_idx; 335 rate_flags = skbdesc->tx_rate_flags; 336 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 337 (txdesc->retry + 1) : 1; 338 339 /* 340 * Initialize TX status 341 */ 342 memset(&tx_info->status, 0, sizeof(tx_info->status)); 343 tx_info->status.ack_signal = 0; 344 345 /* 346 * Frame was send with retries, hardware tried 347 * different rates to send out the frame, at each 348 * retry it lowered the rate 1 step except when the 349 * lowest rate was used. 350 */ 351 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 352 tx_info->status.rates[i].idx = rate_idx - i; 353 tx_info->status.rates[i].flags = rate_flags; 354 355 if (rate_idx - i == 0) { 356 /* 357 * The lowest rate (index 0) was used until the 358 * number of max retries was reached. 359 */ 360 tx_info->status.rates[i].count = retry_rates - i; 361 i++; 362 break; 363 } 364 tx_info->status.rates[i].count = 1; 365 } 366 if (i < (IEEE80211_TX_MAX_RATES - 1)) 367 tx_info->status.rates[i].idx = -1; /* terminate */ 368 369 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 370 if (success) 371 tx_info->flags |= IEEE80211_TX_STAT_ACK; 372 else 373 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 374 } 375 376 /* 377 * Every single frame has it's own tx status, hence report 378 * every frame as ampdu of size 1. 379 * 380 * TODO: if we can find out how many frames were aggregated 381 * by the hw we could provide the real ampdu_len to mac80211 382 * which would allow the rc algorithm to better decide on 383 * which rates are suitable. 384 */ 385 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 386 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 387 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 388 tx_info->status.ampdu_len = 1; 389 tx_info->status.ampdu_ack_len = success ? 1 : 0; 390 391 if (!success) 392 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 393 } 394 395 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 396 if (success) 397 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 398 else 399 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 400 } 401 402 /* 403 * Only send the status report to mac80211 when it's a frame 404 * that originated in mac80211. If this was a extra frame coming 405 * through a mac80211 library call (RTS/CTS) then we should not 406 * send the status report back. 407 */ 408 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 409 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags)) 410 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 411 else 412 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 413 } else 414 dev_kfree_skb_any(entry->skb); 415 416 /* 417 * Make this entry available for reuse. 418 */ 419 entry->skb = NULL; 420 entry->flags = 0; 421 422 rt2x00dev->ops->lib->clear_entry(entry); 423 424 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 425 426 /* 427 * If the data queue was below the threshold before the txdone 428 * handler we must make sure the packet queue in the mac80211 stack 429 * is reenabled when the txdone handler has finished. 430 */ 431 if (!rt2x00queue_threshold(entry->queue)) 432 rt2x00queue_unpause_queue(entry->queue); 433} 434EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 435 436void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 437{ 438 struct txdone_entry_desc txdesc; 439 440 txdesc.flags = 0; 441 __set_bit(status, &txdesc.flags); 442 txdesc.retry = 0; 443 444 rt2x00lib_txdone(entry, &txdesc); 445} 446EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 447 448static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 449{ 450 struct ieee80211_mgmt *mgmt = (void *)data; 451 u8 *pos, *end; 452 453 pos = (u8 *)mgmt->u.beacon.variable; 454 end = data + len; 455 while (pos < end) { 456 if (pos + 2 + pos[1] > end) 457 return NULL; 458 459 if (pos[0] == ie) 460 return pos; 461 462 pos += 2 + pos[1]; 463 } 464 465 return NULL; 466} 467 468static void rt2x00lib_sleep(struct work_struct *work) 469{ 470 struct rt2x00_dev *rt2x00dev = 471 container_of(work, struct rt2x00_dev, sleep_work); 472 473 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 474 return; 475 476 /* 477 * Check again is powersaving is enabled, to prevent races from delayed 478 * work execution. 479 */ 480 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 481 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 482 IEEE80211_CONF_CHANGE_PS); 483} 484 485static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 486 struct sk_buff *skb, 487 struct rxdone_entry_desc *rxdesc) 488{ 489 struct ieee80211_hdr *hdr = (void *) skb->data; 490 struct ieee80211_tim_ie *tim_ie; 491 u8 *tim; 492 u8 tim_len; 493 bool cam; 494 495 /* If this is not a beacon, or if mac80211 has no powersaving 496 * configured, or if the device is already in powersaving mode 497 * we can exit now. */ 498 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 499 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 500 return; 501 502 /* min. beacon length + FCS_LEN */ 503 if (skb->len <= 40 + FCS_LEN) 504 return; 505 506 /* and only beacons from the associated BSSID, please */ 507 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 508 !rt2x00dev->aid) 509 return; 510 511 rt2x00dev->last_beacon = jiffies; 512 513 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 514 if (!tim) 515 return; 516 517 if (tim[1] < sizeof(*tim_ie)) 518 return; 519 520 tim_len = tim[1]; 521 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 522 523 /* Check whenever the PHY can be turned off again. */ 524 525 /* 1. What about buffered unicast traffic for our AID? */ 526 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 527 528 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 529 cam |= (tim_ie->bitmap_ctrl & 0x01); 530 531 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 532 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 533} 534 535static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 536 struct rxdone_entry_desc *rxdesc) 537{ 538 struct ieee80211_supported_band *sband; 539 const struct rt2x00_rate *rate; 540 unsigned int i; 541 int signal = rxdesc->signal; 542 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 543 544 switch (rxdesc->rate_mode) { 545 case RATE_MODE_CCK: 546 case RATE_MODE_OFDM: 547 /* 548 * For non-HT rates the MCS value needs to contain the 549 * actually used rate modulation (CCK or OFDM). 550 */ 551 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 552 signal = RATE_MCS(rxdesc->rate_mode, signal); 553 554 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 555 for (i = 0; i < sband->n_bitrates; i++) { 556 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 557 if (((type == RXDONE_SIGNAL_PLCP) && 558 (rate->plcp == signal)) || 559 ((type == RXDONE_SIGNAL_BITRATE) && 560 (rate->bitrate == signal)) || 561 ((type == RXDONE_SIGNAL_MCS) && 562 (rate->mcs == signal))) { 563 return i; 564 } 565 } 566 break; 567 case RATE_MODE_HT_MIX: 568 case RATE_MODE_HT_GREENFIELD: 569 if (signal >= 0 && signal <= 76) 570 return signal; 571 break; 572 default: 573 break; 574 } 575 576 WARNING(rt2x00dev, "Frame received with unrecognized signal, " 577 "mode=0x%.4x, signal=0x%.4x, type=%d.\n", 578 rxdesc->rate_mode, signal, type); 579 return 0; 580} 581 582void rt2x00lib_rxdone(struct queue_entry *entry) 583{ 584 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 585 struct rxdone_entry_desc rxdesc; 586 struct sk_buff *skb; 587 struct ieee80211_rx_status *rx_status; 588 unsigned int header_length; 589 int rate_idx; 590 591 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 592 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 593 goto submit_entry; 594 595 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 596 goto submit_entry; 597 598 /* 599 * Allocate a new sk_buffer. If no new buffer available, drop the 600 * received frame and reuse the existing buffer. 601 */ 602 skb = rt2x00queue_alloc_rxskb(entry); 603 if (!skb) 604 goto submit_entry; 605 606 /* 607 * Unmap the skb. 608 */ 609 rt2x00queue_unmap_skb(entry); 610 611 /* 612 * Extract the RXD details. 613 */ 614 memset(&rxdesc, 0, sizeof(rxdesc)); 615 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 616 617 /* 618 * Check for valid size in case we get corrupted descriptor from 619 * hardware. 620 */ 621 if (unlikely(rxdesc.size == 0 || 622 rxdesc.size > entry->queue->data_size)) { 623 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n", 624 rxdesc.size, entry->queue->data_size); 625 dev_kfree_skb(entry->skb); 626 goto renew_skb; 627 } 628 629 /* 630 * The data behind the ieee80211 header must be 631 * aligned on a 4 byte boundary. 632 */ 633 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 634 635 /* 636 * Hardware might have stripped the IV/EIV/ICV data, 637 * in that case it is possible that the data was 638 * provided separately (through hardware descriptor) 639 * in which case we should reinsert the data into the frame. 640 */ 641 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 642 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 643 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 644 &rxdesc); 645 else if (header_length && 646 (rxdesc.size > header_length) && 647 (rxdesc.dev_flags & RXDONE_L2PAD)) 648 rt2x00queue_remove_l2pad(entry->skb, header_length); 649 650 /* Trim buffer to correct size */ 651 skb_trim(entry->skb, rxdesc.size); 652 653 /* 654 * Translate the signal to the correct bitrate index. 655 */ 656 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 657 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 658 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 659 rxdesc.flags |= RX_FLAG_HT; 660 661 /* 662 * Check if this is a beacon, and more frames have been 663 * buffered while we were in powersaving mode. 664 */ 665 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 666 667 /* 668 * Update extra components 669 */ 670 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 671 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 672 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); 673 674 /* 675 * Initialize RX status information, and send frame 676 * to mac80211. 677 */ 678 rx_status = IEEE80211_SKB_RXCB(entry->skb); 679 rx_status->mactime = rxdesc.timestamp; 680 rx_status->band = rt2x00dev->curr_band; 681 rx_status->freq = rt2x00dev->curr_freq; 682 rx_status->rate_idx = rate_idx; 683 rx_status->signal = rxdesc.rssi; 684 rx_status->flag = rxdesc.flags; 685 rx_status->antenna = rt2x00dev->link.ant.active.rx; 686 687 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 688 689renew_skb: 690 /* 691 * Replace the skb with the freshly allocated one. 692 */ 693 entry->skb = skb; 694 695submit_entry: 696 entry->flags = 0; 697 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 698 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 699 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 700 rt2x00dev->ops->lib->clear_entry(entry); 701} 702EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 703 704/* 705 * Driver initialization handlers. 706 */ 707const struct rt2x00_rate rt2x00_supported_rates[12] = { 708 { 709 .flags = DEV_RATE_CCK, 710 .bitrate = 10, 711 .ratemask = BIT(0), 712 .plcp = 0x00, 713 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 714 }, 715 { 716 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 717 .bitrate = 20, 718 .ratemask = BIT(1), 719 .plcp = 0x01, 720 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 721 }, 722 { 723 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 724 .bitrate = 55, 725 .ratemask = BIT(2), 726 .plcp = 0x02, 727 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 728 }, 729 { 730 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 731 .bitrate = 110, 732 .ratemask = BIT(3), 733 .plcp = 0x03, 734 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 735 }, 736 { 737 .flags = DEV_RATE_OFDM, 738 .bitrate = 60, 739 .ratemask = BIT(4), 740 .plcp = 0x0b, 741 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 742 }, 743 { 744 .flags = DEV_RATE_OFDM, 745 .bitrate = 90, 746 .ratemask = BIT(5), 747 .plcp = 0x0f, 748 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 749 }, 750 { 751 .flags = DEV_RATE_OFDM, 752 .bitrate = 120, 753 .ratemask = BIT(6), 754 .plcp = 0x0a, 755 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 756 }, 757 { 758 .flags = DEV_RATE_OFDM, 759 .bitrate = 180, 760 .ratemask = BIT(7), 761 .plcp = 0x0e, 762 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 763 }, 764 { 765 .flags = DEV_RATE_OFDM, 766 .bitrate = 240, 767 .ratemask = BIT(8), 768 .plcp = 0x09, 769 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 770 }, 771 { 772 .flags = DEV_RATE_OFDM, 773 .bitrate = 360, 774 .ratemask = BIT(9), 775 .plcp = 0x0d, 776 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 777 }, 778 { 779 .flags = DEV_RATE_OFDM, 780 .bitrate = 480, 781 .ratemask = BIT(10), 782 .plcp = 0x08, 783 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 784 }, 785 { 786 .flags = DEV_RATE_OFDM, 787 .bitrate = 540, 788 .ratemask = BIT(11), 789 .plcp = 0x0c, 790 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 791 }, 792}; 793 794static void rt2x00lib_channel(struct ieee80211_channel *entry, 795 const int channel, const int tx_power, 796 const int value) 797{ 798 /* XXX: this assumption about the band is wrong for 802.11j */ 799 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 800 entry->center_freq = ieee80211_channel_to_frequency(channel, 801 entry->band); 802 entry->hw_value = value; 803 entry->max_power = tx_power; 804 entry->max_antenna_gain = 0xff; 805} 806 807static void rt2x00lib_rate(struct ieee80211_rate *entry, 808 const u16 index, const struct rt2x00_rate *rate) 809{ 810 entry->flags = 0; 811 entry->bitrate = rate->bitrate; 812 entry->hw_value = index; 813 entry->hw_value_short = index; 814 815 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 816 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 817} 818 819static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 820 struct hw_mode_spec *spec) 821{ 822 struct ieee80211_hw *hw = rt2x00dev->hw; 823 struct ieee80211_channel *channels; 824 struct ieee80211_rate *rates; 825 unsigned int num_rates; 826 unsigned int i; 827 828 num_rates = 0; 829 if (spec->supported_rates & SUPPORT_RATE_CCK) 830 num_rates += 4; 831 if (spec->supported_rates & SUPPORT_RATE_OFDM) 832 num_rates += 8; 833 834 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL); 835 if (!channels) 836 return -ENOMEM; 837 838 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL); 839 if (!rates) 840 goto exit_free_channels; 841 842 /* 843 * Initialize Rate list. 844 */ 845 for (i = 0; i < num_rates; i++) 846 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 847 848 /* 849 * Initialize Channel list. 850 */ 851 for (i = 0; i < spec->num_channels; i++) { 852 rt2x00lib_channel(&channels[i], 853 spec->channels[i].channel, 854 spec->channels_info[i].max_power, i); 855 } 856 857 /* 858 * Intitialize 802.11b, 802.11g 859 * Rates: CCK, OFDM. 860 * Channels: 2.4 GHz 861 */ 862 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 863 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; 864 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; 865 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; 866 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; 867 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = 868 &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; 869 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap, 870 &spec->ht, sizeof(spec->ht)); 871 } 872 873 /* 874 * Intitialize 802.11a 875 * Rates: OFDM. 876 * Channels: OFDM, UNII, HiperLAN2. 877 */ 878 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 879 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = 880 spec->num_channels - 14; 881 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = 882 num_rates - 4; 883 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; 884 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; 885 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = 886 &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; 887 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap, 888 &spec->ht, sizeof(spec->ht)); 889 } 890 891 return 0; 892 893 exit_free_channels: 894 kfree(channels); 895 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); 896 return -ENOMEM; 897} 898 899static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 900{ 901 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 902 ieee80211_unregister_hw(rt2x00dev->hw); 903 904 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { 905 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); 906 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); 907 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; 908 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; 909 } 910 911 kfree(rt2x00dev->spec.channels_info); 912} 913 914static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 915{ 916 struct hw_mode_spec *spec = &rt2x00dev->spec; 917 int status; 918 919 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 920 return 0; 921 922 /* 923 * Initialize HW modes. 924 */ 925 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 926 if (status) 927 return status; 928 929 /* 930 * Initialize HW fields. 931 */ 932 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 933 934 /* 935 * Initialize extra TX headroom required. 936 */ 937 rt2x00dev->hw->extra_tx_headroom = 938 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 939 rt2x00dev->ops->extra_tx_headroom); 940 941 /* 942 * Take TX headroom required for alignment into account. 943 */ 944 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 945 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 946 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) 947 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 948 949 /* 950 * Tell mac80211 about the size of our private STA structure. 951 */ 952 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 953 954 /* 955 * Allocate tx status FIFO for driver use. 956 */ 957 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) { 958 /* 959 * Allocate the txstatus fifo. In the worst case the tx 960 * status fifo has to hold the tx status of all entries 961 * in all tx queues. Hence, calculate the kfifo size as 962 * tx_queues * entry_num and round up to the nearest 963 * power of 2. 964 */ 965 int kfifo_size = 966 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 967 rt2x00dev->ops->tx->entry_num * 968 sizeof(u32)); 969 970 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 971 GFP_KERNEL); 972 if (status) 973 return status; 974 } 975 976 /* 977 * Initialize tasklets if used by the driver. Tasklets are 978 * disabled until the interrupts are turned on. The driver 979 * has to handle that. 980 */ 981#define RT2X00_TASKLET_INIT(taskletname) \ 982 if (rt2x00dev->ops->lib->taskletname) { \ 983 tasklet_init(&rt2x00dev->taskletname, \ 984 rt2x00dev->ops->lib->taskletname, \ 985 (unsigned long)rt2x00dev); \ 986 } 987 988 RT2X00_TASKLET_INIT(txstatus_tasklet); 989 RT2X00_TASKLET_INIT(pretbtt_tasklet); 990 RT2X00_TASKLET_INIT(tbtt_tasklet); 991 RT2X00_TASKLET_INIT(rxdone_tasklet); 992 RT2X00_TASKLET_INIT(autowake_tasklet); 993 994#undef RT2X00_TASKLET_INIT 995 996 /* 997 * Register HW. 998 */ 999 status = ieee80211_register_hw(rt2x00dev->hw); 1000 if (status) 1001 return status; 1002 1003 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1004 1005 return 0; 1006} 1007 1008/* 1009 * Initialization/uninitialization handlers. 1010 */ 1011static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1012{ 1013 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1014 return; 1015 1016 /* 1017 * Unregister extra components. 1018 */ 1019 rt2x00rfkill_unregister(rt2x00dev); 1020 1021 /* 1022 * Allow the HW to uninitialize. 1023 */ 1024 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1025 1026 /* 1027 * Free allocated queue entries. 1028 */ 1029 rt2x00queue_uninitialize(rt2x00dev); 1030} 1031 1032static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1033{ 1034 int status; 1035 1036 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1037 return 0; 1038 1039 /* 1040 * Allocate all queue entries. 1041 */ 1042 status = rt2x00queue_initialize(rt2x00dev); 1043 if (status) 1044 return status; 1045 1046 /* 1047 * Initialize the device. 1048 */ 1049 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1050 if (status) { 1051 rt2x00queue_uninitialize(rt2x00dev); 1052 return status; 1053 } 1054 1055 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1056 1057 /* 1058 * Register the extra components. 1059 */ 1060 rt2x00rfkill_register(rt2x00dev); 1061 1062 return 0; 1063} 1064 1065int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1066{ 1067 int retval; 1068 1069 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1070 return 0; 1071 1072 /* 1073 * If this is the first interface which is added, 1074 * we should load the firmware now. 1075 */ 1076 retval = rt2x00lib_load_firmware(rt2x00dev); 1077 if (retval) 1078 return retval; 1079 1080 /* 1081 * Initialize the device. 1082 */ 1083 retval = rt2x00lib_initialize(rt2x00dev); 1084 if (retval) 1085 return retval; 1086 1087 rt2x00dev->intf_ap_count = 0; 1088 rt2x00dev->intf_sta_count = 0; 1089 rt2x00dev->intf_associated = 0; 1090 1091 /* Enable the radio */ 1092 retval = rt2x00lib_enable_radio(rt2x00dev); 1093 if (retval) 1094 return retval; 1095 1096 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1097 1098 return 0; 1099} 1100 1101void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1102{ 1103 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1104 return; 1105 1106 /* 1107 * Perhaps we can add something smarter here, 1108 * but for now just disabling the radio should do. 1109 */ 1110 rt2x00lib_disable_radio(rt2x00dev); 1111 1112 rt2x00dev->intf_ap_count = 0; 1113 rt2x00dev->intf_sta_count = 0; 1114 rt2x00dev->intf_associated = 0; 1115} 1116 1117/* 1118 * driver allocation handlers. 1119 */ 1120int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1121{ 1122 int retval = -ENOMEM; 1123 1124 spin_lock_init(&rt2x00dev->irqmask_lock); 1125 mutex_init(&rt2x00dev->csr_mutex); 1126 1127 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1128 1129 /* 1130 * Make room for rt2x00_intf inside the per-interface 1131 * structure ieee80211_vif. 1132 */ 1133 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1134 1135 /* 1136 * Determine which operating modes are supported, all modes 1137 * which require beaconing, depend on the availability of 1138 * beacon entries. 1139 */ 1140 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1141 if (rt2x00dev->ops->bcn->entry_num > 0) 1142 rt2x00dev->hw->wiphy->interface_modes |= 1143 BIT(NL80211_IFTYPE_ADHOC) | 1144 BIT(NL80211_IFTYPE_AP) | 1145 BIT(NL80211_IFTYPE_MESH_POINT) | 1146 BIT(NL80211_IFTYPE_WDS); 1147 1148 /* 1149 * Initialize work. 1150 */ 1151 rt2x00dev->workqueue = 1152 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0); 1153 if (!rt2x00dev->workqueue) { 1154 retval = -ENOMEM; 1155 goto exit; 1156 } 1157 1158 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1159 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1160 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1161 1162 /* 1163 * Let the driver probe the device to detect the capabilities. 1164 */ 1165 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1166 if (retval) { 1167 ERROR(rt2x00dev, "Failed to allocate device.\n"); 1168 goto exit; 1169 } 1170 1171 /* 1172 * Allocate queue array. 1173 */ 1174 retval = rt2x00queue_allocate(rt2x00dev); 1175 if (retval) 1176 goto exit; 1177 1178 /* 1179 * Initialize ieee80211 structure. 1180 */ 1181 retval = rt2x00lib_probe_hw(rt2x00dev); 1182 if (retval) { 1183 ERROR(rt2x00dev, "Failed to initialize hw.\n"); 1184 goto exit; 1185 } 1186 1187 /* 1188 * Register extra components. 1189 */ 1190 rt2x00link_register(rt2x00dev); 1191 rt2x00leds_register(rt2x00dev); 1192 rt2x00debug_register(rt2x00dev); 1193 1194 return 0; 1195 1196exit: 1197 rt2x00lib_remove_dev(rt2x00dev); 1198 1199 return retval; 1200} 1201EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1202 1203void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1204{ 1205 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1206 1207 /* 1208 * Disable radio. 1209 */ 1210 rt2x00lib_disable_radio(rt2x00dev); 1211 1212 /* 1213 * Stop all work. 1214 */ 1215 cancel_work_sync(&rt2x00dev->intf_work); 1216 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1217 cancel_work_sync(&rt2x00dev->sleep_work); 1218 if (rt2x00_is_usb(rt2x00dev)) { 1219 del_timer_sync(&rt2x00dev->txstatus_timer); 1220 cancel_work_sync(&rt2x00dev->rxdone_work); 1221 cancel_work_sync(&rt2x00dev->txdone_work); 1222 } 1223 destroy_workqueue(rt2x00dev->workqueue); 1224 1225 /* 1226 * Free the tx status fifo. 1227 */ 1228 kfifo_free(&rt2x00dev->txstatus_fifo); 1229 1230 /* 1231 * Kill the tx status tasklet. 1232 */ 1233 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1234 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1235 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1236 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1237 tasklet_kill(&rt2x00dev->autowake_tasklet); 1238 1239 /* 1240 * Uninitialize device. 1241 */ 1242 rt2x00lib_uninitialize(rt2x00dev); 1243 1244 /* 1245 * Free extra components 1246 */ 1247 rt2x00debug_deregister(rt2x00dev); 1248 rt2x00leds_unregister(rt2x00dev); 1249 1250 /* 1251 * Free ieee80211_hw memory. 1252 */ 1253 rt2x00lib_remove_hw(rt2x00dev); 1254 1255 /* 1256 * Free firmware image. 1257 */ 1258 rt2x00lib_free_firmware(rt2x00dev); 1259 1260 /* 1261 * Free queue structures. 1262 */ 1263 rt2x00queue_free(rt2x00dev); 1264} 1265EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1266 1267/* 1268 * Device state handlers 1269 */ 1270#ifdef CONFIG_PM 1271int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1272{ 1273 NOTICE(rt2x00dev, "Going to sleep.\n"); 1274 1275 /* 1276 * Prevent mac80211 from accessing driver while suspended. 1277 */ 1278 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1279 return 0; 1280 1281 /* 1282 * Cleanup as much as possible. 1283 */ 1284 rt2x00lib_uninitialize(rt2x00dev); 1285 1286 /* 1287 * Suspend/disable extra components. 1288 */ 1289 rt2x00leds_suspend(rt2x00dev); 1290 rt2x00debug_deregister(rt2x00dev); 1291 1292 /* 1293 * Set device mode to sleep for power management, 1294 * on some hardware this call seems to consistently fail. 1295 * From the specifications it is hard to tell why it fails, 1296 * and if this is a "bad thing". 1297 * Overall it is safe to just ignore the failure and 1298 * continue suspending. The only downside is that the 1299 * device will not be in optimal power save mode, but with 1300 * the radio and the other components already disabled the 1301 * device is as good as disabled. 1302 */ 1303 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1304 WARNING(rt2x00dev, "Device failed to enter sleep state, " 1305 "continue suspending.\n"); 1306 1307 return 0; 1308} 1309EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1310 1311int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1312{ 1313 NOTICE(rt2x00dev, "Waking up.\n"); 1314 1315 /* 1316 * Restore/enable extra components. 1317 */ 1318 rt2x00debug_register(rt2x00dev); 1319 rt2x00leds_resume(rt2x00dev); 1320 1321 /* 1322 * We are ready again to receive requests from mac80211. 1323 */ 1324 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1325 1326 return 0; 1327} 1328EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1329#endif /* CONFIG_PM */ 1330 1331/* 1332 * rt2x00lib module information. 1333 */ 1334MODULE_AUTHOR(DRV_PROJECT); 1335MODULE_VERSION(DRV_VERSION); 1336MODULE_DESCRIPTION("rt2x00 library"); 1337MODULE_LICENSE("GPL");