Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22/*
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
25 */
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/slab.h>
30#include <linux/log2.h>
31
32#include "rt2x00.h"
33#include "rt2x00lib.h"
34
35/*
36 * Utility functions.
37 */
38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
40{
41 /*
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
44 */
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48}
49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51/*
52 * Radio control handlers.
53 */
54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55{
56 int status;
57
58 /*
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
61 */
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
64
65 /*
66 * Initialize all data queues.
67 */
68 rt2x00queue_init_queues(rt2x00dev);
69
70 /*
71 * Enable radio.
72 */
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
77
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
82
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85 /*
86 * Enable queues.
87 */
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90 rt2x00link_start_agc(rt2x00dev);
91
92 /*
93 * Start watchdog monitoring.
94 */
95 rt2x00link_start_watchdog(rt2x00dev);
96
97 return 0;
98}
99
100void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
101{
102 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103 return;
104
105 /*
106 * Stop watchdog monitoring.
107 */
108 rt2x00link_stop_watchdog(rt2x00dev);
109
110 /*
111 * Stop all queues
112 */
113 rt2x00link_stop_agc(rt2x00dev);
114 rt2x00link_stop_tuner(rt2x00dev);
115 rt2x00queue_stop_queues(rt2x00dev);
116 rt2x00queue_flush_queues(rt2x00dev, true);
117
118 /*
119 * Disable radio.
120 */
121 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
122 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
123 rt2x00led_led_activity(rt2x00dev, false);
124 rt2x00leds_led_radio(rt2x00dev, false);
125}
126
127static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
128 struct ieee80211_vif *vif)
129{
130 struct rt2x00_dev *rt2x00dev = data;
131 struct rt2x00_intf *intf = vif_to_intf(vif);
132
133 /*
134 * It is possible the radio was disabled while the work had been
135 * scheduled. If that happens we should return here immediately,
136 * note that in the spinlock protected area above the delayed_flags
137 * have been cleared correctly.
138 */
139 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
140 return;
141
142 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
143 rt2x00queue_update_beacon(rt2x00dev, vif);
144}
145
146static void rt2x00lib_intf_scheduled(struct work_struct *work)
147{
148 struct rt2x00_dev *rt2x00dev =
149 container_of(work, struct rt2x00_dev, intf_work);
150
151 /*
152 * Iterate over each interface and perform the
153 * requested configurations.
154 */
155 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
156 rt2x00lib_intf_scheduled_iter,
157 rt2x00dev);
158}
159
160static void rt2x00lib_autowakeup(struct work_struct *work)
161{
162 struct rt2x00_dev *rt2x00dev =
163 container_of(work, struct rt2x00_dev, autowakeup_work.work);
164
165 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
166 return;
167
168 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
169 ERROR(rt2x00dev, "Device failed to wakeup.\n");
170 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
171}
172
173/*
174 * Interrupt context handlers.
175 */
176static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
177 struct ieee80211_vif *vif)
178{
179 struct rt2x00_dev *rt2x00dev = data;
180 struct sk_buff *skb;
181
182 /*
183 * Only AP mode interfaces do broad- and multicast buffering
184 */
185 if (vif->type != NL80211_IFTYPE_AP)
186 return;
187
188 /*
189 * Send out buffered broad- and multicast frames
190 */
191 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
192 while (skb) {
193 rt2x00mac_tx(rt2x00dev->hw, skb);
194 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195 }
196}
197
198static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
199 struct ieee80211_vif *vif)
200{
201 struct rt2x00_dev *rt2x00dev = data;
202
203 if (vif->type != NL80211_IFTYPE_AP &&
204 vif->type != NL80211_IFTYPE_ADHOC &&
205 vif->type != NL80211_IFTYPE_MESH_POINT &&
206 vif->type != NL80211_IFTYPE_WDS)
207 return;
208
209 /*
210 * Update the beacon without locking. This is safe on PCI devices
211 * as they only update the beacon periodically here. This should
212 * never be called for USB devices.
213 */
214 WARN_ON(rt2x00_is_usb(rt2x00dev));
215 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
216}
217
218void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
219{
220 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221 return;
222
223 /* send buffered bc/mc frames out for every bssid */
224 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
225 rt2x00lib_bc_buffer_iter,
226 rt2x00dev);
227 /*
228 * Devices with pre tbtt interrupt don't need to update the beacon
229 * here as they will fetch the next beacon directly prior to
230 * transmission.
231 */
232 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
233 return;
234
235 /* fetch next beacon */
236 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
237 rt2x00lib_beaconupdate_iter,
238 rt2x00dev);
239}
240EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
241
242void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
243{
244 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245 return;
246
247 /* fetch next beacon */
248 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
249 rt2x00lib_beaconupdate_iter,
250 rt2x00dev);
251}
252EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
253
254void rt2x00lib_dmastart(struct queue_entry *entry)
255{
256 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257 rt2x00queue_index_inc(entry, Q_INDEX);
258}
259EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
260
261void rt2x00lib_dmadone(struct queue_entry *entry)
262{
263 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
264 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
265 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
266}
267EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
268
269void rt2x00lib_txdone(struct queue_entry *entry,
270 struct txdone_entry_desc *txdesc)
271{
272 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
273 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
274 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
275 unsigned int header_length, i;
276 u8 rate_idx, rate_flags, retry_rates;
277 u8 skbdesc_flags = skbdesc->flags;
278 bool success;
279
280 /*
281 * Unmap the skb.
282 */
283 rt2x00queue_unmap_skb(entry);
284
285 /*
286 * Remove the extra tx headroom from the skb.
287 */
288 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
289
290 /*
291 * Signal that the TX descriptor is no longer in the skb.
292 */
293 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
294
295 /*
296 * Determine the length of 802.11 header.
297 */
298 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
299
300 /*
301 * Remove L2 padding which was added during
302 */
303 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
304 rt2x00queue_remove_l2pad(entry->skb, header_length);
305
306 /*
307 * If the IV/EIV data was stripped from the frame before it was
308 * passed to the hardware, we should now reinsert it again because
309 * mac80211 will expect the same data to be present it the
310 * frame as it was passed to us.
311 */
312 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
313 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
314
315 /*
316 * Send frame to debugfs immediately, after this call is completed
317 * we are going to overwrite the skb->cb array.
318 */
319 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
320
321 /*
322 * Determine if the frame has been successfully transmitted.
323 */
324 success =
325 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
326 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
327
328 /*
329 * Update TX statistics.
330 */
331 rt2x00dev->link.qual.tx_success += success;
332 rt2x00dev->link.qual.tx_failed += !success;
333
334 rate_idx = skbdesc->tx_rate_idx;
335 rate_flags = skbdesc->tx_rate_flags;
336 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
337 (txdesc->retry + 1) : 1;
338
339 /*
340 * Initialize TX status
341 */
342 memset(&tx_info->status, 0, sizeof(tx_info->status));
343 tx_info->status.ack_signal = 0;
344
345 /*
346 * Frame was send with retries, hardware tried
347 * different rates to send out the frame, at each
348 * retry it lowered the rate 1 step except when the
349 * lowest rate was used.
350 */
351 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
352 tx_info->status.rates[i].idx = rate_idx - i;
353 tx_info->status.rates[i].flags = rate_flags;
354
355 if (rate_idx - i == 0) {
356 /*
357 * The lowest rate (index 0) was used until the
358 * number of max retries was reached.
359 */
360 tx_info->status.rates[i].count = retry_rates - i;
361 i++;
362 break;
363 }
364 tx_info->status.rates[i].count = 1;
365 }
366 if (i < (IEEE80211_TX_MAX_RATES - 1))
367 tx_info->status.rates[i].idx = -1; /* terminate */
368
369 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
370 if (success)
371 tx_info->flags |= IEEE80211_TX_STAT_ACK;
372 else
373 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
374 }
375
376 /*
377 * Every single frame has it's own tx status, hence report
378 * every frame as ampdu of size 1.
379 *
380 * TODO: if we can find out how many frames were aggregated
381 * by the hw we could provide the real ampdu_len to mac80211
382 * which would allow the rc algorithm to better decide on
383 * which rates are suitable.
384 */
385 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
386 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
387 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
388 tx_info->status.ampdu_len = 1;
389 tx_info->status.ampdu_ack_len = success ? 1 : 0;
390
391 if (!success)
392 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
393 }
394
395 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
396 if (success)
397 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
398 else
399 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
400 }
401
402 /*
403 * Only send the status report to mac80211 when it's a frame
404 * that originated in mac80211. If this was a extra frame coming
405 * through a mac80211 library call (RTS/CTS) then we should not
406 * send the status report back.
407 */
408 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
409 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
410 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
411 else
412 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
413 } else
414 dev_kfree_skb_any(entry->skb);
415
416 /*
417 * Make this entry available for reuse.
418 */
419 entry->skb = NULL;
420 entry->flags = 0;
421
422 rt2x00dev->ops->lib->clear_entry(entry);
423
424 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
425
426 /*
427 * If the data queue was below the threshold before the txdone
428 * handler we must make sure the packet queue in the mac80211 stack
429 * is reenabled when the txdone handler has finished.
430 */
431 if (!rt2x00queue_threshold(entry->queue))
432 rt2x00queue_unpause_queue(entry->queue);
433}
434EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
435
436void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
437{
438 struct txdone_entry_desc txdesc;
439
440 txdesc.flags = 0;
441 __set_bit(status, &txdesc.flags);
442 txdesc.retry = 0;
443
444 rt2x00lib_txdone(entry, &txdesc);
445}
446EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
447
448static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
449{
450 struct ieee80211_mgmt *mgmt = (void *)data;
451 u8 *pos, *end;
452
453 pos = (u8 *)mgmt->u.beacon.variable;
454 end = data + len;
455 while (pos < end) {
456 if (pos + 2 + pos[1] > end)
457 return NULL;
458
459 if (pos[0] == ie)
460 return pos;
461
462 pos += 2 + pos[1];
463 }
464
465 return NULL;
466}
467
468static void rt2x00lib_sleep(struct work_struct *work)
469{
470 struct rt2x00_dev *rt2x00dev =
471 container_of(work, struct rt2x00_dev, sleep_work);
472
473 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
474 return;
475
476 /*
477 * Check again is powersaving is enabled, to prevent races from delayed
478 * work execution.
479 */
480 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
481 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
482 IEEE80211_CONF_CHANGE_PS);
483}
484
485static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
486 struct sk_buff *skb,
487 struct rxdone_entry_desc *rxdesc)
488{
489 struct ieee80211_hdr *hdr = (void *) skb->data;
490 struct ieee80211_tim_ie *tim_ie;
491 u8 *tim;
492 u8 tim_len;
493 bool cam;
494
495 /* If this is not a beacon, or if mac80211 has no powersaving
496 * configured, or if the device is already in powersaving mode
497 * we can exit now. */
498 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
499 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
500 return;
501
502 /* min. beacon length + FCS_LEN */
503 if (skb->len <= 40 + FCS_LEN)
504 return;
505
506 /* and only beacons from the associated BSSID, please */
507 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
508 !rt2x00dev->aid)
509 return;
510
511 rt2x00dev->last_beacon = jiffies;
512
513 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
514 if (!tim)
515 return;
516
517 if (tim[1] < sizeof(*tim_ie))
518 return;
519
520 tim_len = tim[1];
521 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
522
523 /* Check whenever the PHY can be turned off again. */
524
525 /* 1. What about buffered unicast traffic for our AID? */
526 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
527
528 /* 2. Maybe the AP wants to send multicast/broadcast data? */
529 cam |= (tim_ie->bitmap_ctrl & 0x01);
530
531 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
532 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
533}
534
535static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
536 struct rxdone_entry_desc *rxdesc)
537{
538 struct ieee80211_supported_band *sband;
539 const struct rt2x00_rate *rate;
540 unsigned int i;
541 int signal = rxdesc->signal;
542 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
543
544 switch (rxdesc->rate_mode) {
545 case RATE_MODE_CCK:
546 case RATE_MODE_OFDM:
547 /*
548 * For non-HT rates the MCS value needs to contain the
549 * actually used rate modulation (CCK or OFDM).
550 */
551 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
552 signal = RATE_MCS(rxdesc->rate_mode, signal);
553
554 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
555 for (i = 0; i < sband->n_bitrates; i++) {
556 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
557 if (((type == RXDONE_SIGNAL_PLCP) &&
558 (rate->plcp == signal)) ||
559 ((type == RXDONE_SIGNAL_BITRATE) &&
560 (rate->bitrate == signal)) ||
561 ((type == RXDONE_SIGNAL_MCS) &&
562 (rate->mcs == signal))) {
563 return i;
564 }
565 }
566 break;
567 case RATE_MODE_HT_MIX:
568 case RATE_MODE_HT_GREENFIELD:
569 if (signal >= 0 && signal <= 76)
570 return signal;
571 break;
572 default:
573 break;
574 }
575
576 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
577 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
578 rxdesc->rate_mode, signal, type);
579 return 0;
580}
581
582void rt2x00lib_rxdone(struct queue_entry *entry)
583{
584 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
585 struct rxdone_entry_desc rxdesc;
586 struct sk_buff *skb;
587 struct ieee80211_rx_status *rx_status;
588 unsigned int header_length;
589 int rate_idx;
590
591 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
592 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
593 goto submit_entry;
594
595 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
596 goto submit_entry;
597
598 /*
599 * Allocate a new sk_buffer. If no new buffer available, drop the
600 * received frame and reuse the existing buffer.
601 */
602 skb = rt2x00queue_alloc_rxskb(entry);
603 if (!skb)
604 goto submit_entry;
605
606 /*
607 * Unmap the skb.
608 */
609 rt2x00queue_unmap_skb(entry);
610
611 /*
612 * Extract the RXD details.
613 */
614 memset(&rxdesc, 0, sizeof(rxdesc));
615 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
616
617 /*
618 * Check for valid size in case we get corrupted descriptor from
619 * hardware.
620 */
621 if (unlikely(rxdesc.size == 0 ||
622 rxdesc.size > entry->queue->data_size)) {
623 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
624 rxdesc.size, entry->queue->data_size);
625 dev_kfree_skb(entry->skb);
626 goto renew_skb;
627 }
628
629 /*
630 * The data behind the ieee80211 header must be
631 * aligned on a 4 byte boundary.
632 */
633 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
634
635 /*
636 * Hardware might have stripped the IV/EIV/ICV data,
637 * in that case it is possible that the data was
638 * provided separately (through hardware descriptor)
639 * in which case we should reinsert the data into the frame.
640 */
641 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
642 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
643 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
644 &rxdesc);
645 else if (header_length &&
646 (rxdesc.size > header_length) &&
647 (rxdesc.dev_flags & RXDONE_L2PAD))
648 rt2x00queue_remove_l2pad(entry->skb, header_length);
649
650 /* Trim buffer to correct size */
651 skb_trim(entry->skb, rxdesc.size);
652
653 /*
654 * Translate the signal to the correct bitrate index.
655 */
656 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
657 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
658 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
659 rxdesc.flags |= RX_FLAG_HT;
660
661 /*
662 * Check if this is a beacon, and more frames have been
663 * buffered while we were in powersaving mode.
664 */
665 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
666
667 /*
668 * Update extra components
669 */
670 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
671 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
672 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
673
674 /*
675 * Initialize RX status information, and send frame
676 * to mac80211.
677 */
678 rx_status = IEEE80211_SKB_RXCB(entry->skb);
679 rx_status->mactime = rxdesc.timestamp;
680 rx_status->band = rt2x00dev->curr_band;
681 rx_status->freq = rt2x00dev->curr_freq;
682 rx_status->rate_idx = rate_idx;
683 rx_status->signal = rxdesc.rssi;
684 rx_status->flag = rxdesc.flags;
685 rx_status->antenna = rt2x00dev->link.ant.active.rx;
686
687 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
688
689renew_skb:
690 /*
691 * Replace the skb with the freshly allocated one.
692 */
693 entry->skb = skb;
694
695submit_entry:
696 entry->flags = 0;
697 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
698 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
699 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
700 rt2x00dev->ops->lib->clear_entry(entry);
701}
702EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
703
704/*
705 * Driver initialization handlers.
706 */
707const struct rt2x00_rate rt2x00_supported_rates[12] = {
708 {
709 .flags = DEV_RATE_CCK,
710 .bitrate = 10,
711 .ratemask = BIT(0),
712 .plcp = 0x00,
713 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
714 },
715 {
716 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
717 .bitrate = 20,
718 .ratemask = BIT(1),
719 .plcp = 0x01,
720 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
721 },
722 {
723 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
724 .bitrate = 55,
725 .ratemask = BIT(2),
726 .plcp = 0x02,
727 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
728 },
729 {
730 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
731 .bitrate = 110,
732 .ratemask = BIT(3),
733 .plcp = 0x03,
734 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
735 },
736 {
737 .flags = DEV_RATE_OFDM,
738 .bitrate = 60,
739 .ratemask = BIT(4),
740 .plcp = 0x0b,
741 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
742 },
743 {
744 .flags = DEV_RATE_OFDM,
745 .bitrate = 90,
746 .ratemask = BIT(5),
747 .plcp = 0x0f,
748 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
749 },
750 {
751 .flags = DEV_RATE_OFDM,
752 .bitrate = 120,
753 .ratemask = BIT(6),
754 .plcp = 0x0a,
755 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
756 },
757 {
758 .flags = DEV_RATE_OFDM,
759 .bitrate = 180,
760 .ratemask = BIT(7),
761 .plcp = 0x0e,
762 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
763 },
764 {
765 .flags = DEV_RATE_OFDM,
766 .bitrate = 240,
767 .ratemask = BIT(8),
768 .plcp = 0x09,
769 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
770 },
771 {
772 .flags = DEV_RATE_OFDM,
773 .bitrate = 360,
774 .ratemask = BIT(9),
775 .plcp = 0x0d,
776 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
777 },
778 {
779 .flags = DEV_RATE_OFDM,
780 .bitrate = 480,
781 .ratemask = BIT(10),
782 .plcp = 0x08,
783 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
784 },
785 {
786 .flags = DEV_RATE_OFDM,
787 .bitrate = 540,
788 .ratemask = BIT(11),
789 .plcp = 0x0c,
790 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
791 },
792};
793
794static void rt2x00lib_channel(struct ieee80211_channel *entry,
795 const int channel, const int tx_power,
796 const int value)
797{
798 /* XXX: this assumption about the band is wrong for 802.11j */
799 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
800 entry->center_freq = ieee80211_channel_to_frequency(channel,
801 entry->band);
802 entry->hw_value = value;
803 entry->max_power = tx_power;
804 entry->max_antenna_gain = 0xff;
805}
806
807static void rt2x00lib_rate(struct ieee80211_rate *entry,
808 const u16 index, const struct rt2x00_rate *rate)
809{
810 entry->flags = 0;
811 entry->bitrate = rate->bitrate;
812 entry->hw_value = index;
813 entry->hw_value_short = index;
814
815 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
816 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
817}
818
819static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
820 struct hw_mode_spec *spec)
821{
822 struct ieee80211_hw *hw = rt2x00dev->hw;
823 struct ieee80211_channel *channels;
824 struct ieee80211_rate *rates;
825 unsigned int num_rates;
826 unsigned int i;
827
828 num_rates = 0;
829 if (spec->supported_rates & SUPPORT_RATE_CCK)
830 num_rates += 4;
831 if (spec->supported_rates & SUPPORT_RATE_OFDM)
832 num_rates += 8;
833
834 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
835 if (!channels)
836 return -ENOMEM;
837
838 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
839 if (!rates)
840 goto exit_free_channels;
841
842 /*
843 * Initialize Rate list.
844 */
845 for (i = 0; i < num_rates; i++)
846 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
847
848 /*
849 * Initialize Channel list.
850 */
851 for (i = 0; i < spec->num_channels; i++) {
852 rt2x00lib_channel(&channels[i],
853 spec->channels[i].channel,
854 spec->channels_info[i].max_power, i);
855 }
856
857 /*
858 * Intitialize 802.11b, 802.11g
859 * Rates: CCK, OFDM.
860 * Channels: 2.4 GHz
861 */
862 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
863 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
864 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
865 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
866 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
867 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
868 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
869 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
870 &spec->ht, sizeof(spec->ht));
871 }
872
873 /*
874 * Intitialize 802.11a
875 * Rates: OFDM.
876 * Channels: OFDM, UNII, HiperLAN2.
877 */
878 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
879 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
880 spec->num_channels - 14;
881 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
882 num_rates - 4;
883 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
884 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
885 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
886 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
887 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
888 &spec->ht, sizeof(spec->ht));
889 }
890
891 return 0;
892
893 exit_free_channels:
894 kfree(channels);
895 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
896 return -ENOMEM;
897}
898
899static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
900{
901 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
902 ieee80211_unregister_hw(rt2x00dev->hw);
903
904 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
905 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
906 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
907 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
908 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
909 }
910
911 kfree(rt2x00dev->spec.channels_info);
912}
913
914static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
915{
916 struct hw_mode_spec *spec = &rt2x00dev->spec;
917 int status;
918
919 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
920 return 0;
921
922 /*
923 * Initialize HW modes.
924 */
925 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
926 if (status)
927 return status;
928
929 /*
930 * Initialize HW fields.
931 */
932 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
933
934 /*
935 * Initialize extra TX headroom required.
936 */
937 rt2x00dev->hw->extra_tx_headroom =
938 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
939 rt2x00dev->ops->extra_tx_headroom);
940
941 /*
942 * Take TX headroom required for alignment into account.
943 */
944 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
945 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
946 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
947 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
948
949 /*
950 * Tell mac80211 about the size of our private STA structure.
951 */
952 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
953
954 /*
955 * Allocate tx status FIFO for driver use.
956 */
957 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
958 /*
959 * Allocate the txstatus fifo. In the worst case the tx
960 * status fifo has to hold the tx status of all entries
961 * in all tx queues. Hence, calculate the kfifo size as
962 * tx_queues * entry_num and round up to the nearest
963 * power of 2.
964 */
965 int kfifo_size =
966 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
967 rt2x00dev->ops->tx->entry_num *
968 sizeof(u32));
969
970 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
971 GFP_KERNEL);
972 if (status)
973 return status;
974 }
975
976 /*
977 * Initialize tasklets if used by the driver. Tasklets are
978 * disabled until the interrupts are turned on. The driver
979 * has to handle that.
980 */
981#define RT2X00_TASKLET_INIT(taskletname) \
982 if (rt2x00dev->ops->lib->taskletname) { \
983 tasklet_init(&rt2x00dev->taskletname, \
984 rt2x00dev->ops->lib->taskletname, \
985 (unsigned long)rt2x00dev); \
986 }
987
988 RT2X00_TASKLET_INIT(txstatus_tasklet);
989 RT2X00_TASKLET_INIT(pretbtt_tasklet);
990 RT2X00_TASKLET_INIT(tbtt_tasklet);
991 RT2X00_TASKLET_INIT(rxdone_tasklet);
992 RT2X00_TASKLET_INIT(autowake_tasklet);
993
994#undef RT2X00_TASKLET_INIT
995
996 /*
997 * Register HW.
998 */
999 status = ieee80211_register_hw(rt2x00dev->hw);
1000 if (status)
1001 return status;
1002
1003 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1004
1005 return 0;
1006}
1007
1008/*
1009 * Initialization/uninitialization handlers.
1010 */
1011static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1012{
1013 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1014 return;
1015
1016 /*
1017 * Unregister extra components.
1018 */
1019 rt2x00rfkill_unregister(rt2x00dev);
1020
1021 /*
1022 * Allow the HW to uninitialize.
1023 */
1024 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1025
1026 /*
1027 * Free allocated queue entries.
1028 */
1029 rt2x00queue_uninitialize(rt2x00dev);
1030}
1031
1032static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1033{
1034 int status;
1035
1036 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1037 return 0;
1038
1039 /*
1040 * Allocate all queue entries.
1041 */
1042 status = rt2x00queue_initialize(rt2x00dev);
1043 if (status)
1044 return status;
1045
1046 /*
1047 * Initialize the device.
1048 */
1049 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1050 if (status) {
1051 rt2x00queue_uninitialize(rt2x00dev);
1052 return status;
1053 }
1054
1055 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1056
1057 /*
1058 * Register the extra components.
1059 */
1060 rt2x00rfkill_register(rt2x00dev);
1061
1062 return 0;
1063}
1064
1065int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1066{
1067 int retval;
1068
1069 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1070 return 0;
1071
1072 /*
1073 * If this is the first interface which is added,
1074 * we should load the firmware now.
1075 */
1076 retval = rt2x00lib_load_firmware(rt2x00dev);
1077 if (retval)
1078 return retval;
1079
1080 /*
1081 * Initialize the device.
1082 */
1083 retval = rt2x00lib_initialize(rt2x00dev);
1084 if (retval)
1085 return retval;
1086
1087 rt2x00dev->intf_ap_count = 0;
1088 rt2x00dev->intf_sta_count = 0;
1089 rt2x00dev->intf_associated = 0;
1090
1091 /* Enable the radio */
1092 retval = rt2x00lib_enable_radio(rt2x00dev);
1093 if (retval)
1094 return retval;
1095
1096 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1097
1098 return 0;
1099}
1100
1101void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1102{
1103 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1104 return;
1105
1106 /*
1107 * Perhaps we can add something smarter here,
1108 * but for now just disabling the radio should do.
1109 */
1110 rt2x00lib_disable_radio(rt2x00dev);
1111
1112 rt2x00dev->intf_ap_count = 0;
1113 rt2x00dev->intf_sta_count = 0;
1114 rt2x00dev->intf_associated = 0;
1115}
1116
1117/*
1118 * driver allocation handlers.
1119 */
1120int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1121{
1122 int retval = -ENOMEM;
1123
1124 spin_lock_init(&rt2x00dev->irqmask_lock);
1125 mutex_init(&rt2x00dev->csr_mutex);
1126
1127 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1128
1129 /*
1130 * Make room for rt2x00_intf inside the per-interface
1131 * structure ieee80211_vif.
1132 */
1133 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1134
1135 /*
1136 * Determine which operating modes are supported, all modes
1137 * which require beaconing, depend on the availability of
1138 * beacon entries.
1139 */
1140 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1141 if (rt2x00dev->ops->bcn->entry_num > 0)
1142 rt2x00dev->hw->wiphy->interface_modes |=
1143 BIT(NL80211_IFTYPE_ADHOC) |
1144 BIT(NL80211_IFTYPE_AP) |
1145 BIT(NL80211_IFTYPE_MESH_POINT) |
1146 BIT(NL80211_IFTYPE_WDS);
1147
1148 /*
1149 * Initialize work.
1150 */
1151 rt2x00dev->workqueue =
1152 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1153 if (!rt2x00dev->workqueue) {
1154 retval = -ENOMEM;
1155 goto exit;
1156 }
1157
1158 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1159 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1160 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1161
1162 /*
1163 * Let the driver probe the device to detect the capabilities.
1164 */
1165 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1166 if (retval) {
1167 ERROR(rt2x00dev, "Failed to allocate device.\n");
1168 goto exit;
1169 }
1170
1171 /*
1172 * Allocate queue array.
1173 */
1174 retval = rt2x00queue_allocate(rt2x00dev);
1175 if (retval)
1176 goto exit;
1177
1178 /*
1179 * Initialize ieee80211 structure.
1180 */
1181 retval = rt2x00lib_probe_hw(rt2x00dev);
1182 if (retval) {
1183 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1184 goto exit;
1185 }
1186
1187 /*
1188 * Register extra components.
1189 */
1190 rt2x00link_register(rt2x00dev);
1191 rt2x00leds_register(rt2x00dev);
1192 rt2x00debug_register(rt2x00dev);
1193
1194 return 0;
1195
1196exit:
1197 rt2x00lib_remove_dev(rt2x00dev);
1198
1199 return retval;
1200}
1201EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1202
1203void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1204{
1205 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1206
1207 /*
1208 * Disable radio.
1209 */
1210 rt2x00lib_disable_radio(rt2x00dev);
1211
1212 /*
1213 * Stop all work.
1214 */
1215 cancel_work_sync(&rt2x00dev->intf_work);
1216 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1217 cancel_work_sync(&rt2x00dev->sleep_work);
1218 if (rt2x00_is_usb(rt2x00dev)) {
1219 del_timer_sync(&rt2x00dev->txstatus_timer);
1220 cancel_work_sync(&rt2x00dev->rxdone_work);
1221 cancel_work_sync(&rt2x00dev->txdone_work);
1222 }
1223 destroy_workqueue(rt2x00dev->workqueue);
1224
1225 /*
1226 * Free the tx status fifo.
1227 */
1228 kfifo_free(&rt2x00dev->txstatus_fifo);
1229
1230 /*
1231 * Kill the tx status tasklet.
1232 */
1233 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1234 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1235 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1236 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1237 tasklet_kill(&rt2x00dev->autowake_tasklet);
1238
1239 /*
1240 * Uninitialize device.
1241 */
1242 rt2x00lib_uninitialize(rt2x00dev);
1243
1244 /*
1245 * Free extra components
1246 */
1247 rt2x00debug_deregister(rt2x00dev);
1248 rt2x00leds_unregister(rt2x00dev);
1249
1250 /*
1251 * Free ieee80211_hw memory.
1252 */
1253 rt2x00lib_remove_hw(rt2x00dev);
1254
1255 /*
1256 * Free firmware image.
1257 */
1258 rt2x00lib_free_firmware(rt2x00dev);
1259
1260 /*
1261 * Free queue structures.
1262 */
1263 rt2x00queue_free(rt2x00dev);
1264}
1265EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1266
1267/*
1268 * Device state handlers
1269 */
1270#ifdef CONFIG_PM
1271int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1272{
1273 NOTICE(rt2x00dev, "Going to sleep.\n");
1274
1275 /*
1276 * Prevent mac80211 from accessing driver while suspended.
1277 */
1278 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1279 return 0;
1280
1281 /*
1282 * Cleanup as much as possible.
1283 */
1284 rt2x00lib_uninitialize(rt2x00dev);
1285
1286 /*
1287 * Suspend/disable extra components.
1288 */
1289 rt2x00leds_suspend(rt2x00dev);
1290 rt2x00debug_deregister(rt2x00dev);
1291
1292 /*
1293 * Set device mode to sleep for power management,
1294 * on some hardware this call seems to consistently fail.
1295 * From the specifications it is hard to tell why it fails,
1296 * and if this is a "bad thing".
1297 * Overall it is safe to just ignore the failure and
1298 * continue suspending. The only downside is that the
1299 * device will not be in optimal power save mode, but with
1300 * the radio and the other components already disabled the
1301 * device is as good as disabled.
1302 */
1303 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1304 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1305 "continue suspending.\n");
1306
1307 return 0;
1308}
1309EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1310
1311int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1312{
1313 NOTICE(rt2x00dev, "Waking up.\n");
1314
1315 /*
1316 * Restore/enable extra components.
1317 */
1318 rt2x00debug_register(rt2x00dev);
1319 rt2x00leds_resume(rt2x00dev);
1320
1321 /*
1322 * We are ready again to receive requests from mac80211.
1323 */
1324 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1325
1326 return 0;
1327}
1328EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1329#endif /* CONFIG_PM */
1330
1331/*
1332 * rt2x00lib module information.
1333 */
1334MODULE_AUTHOR(DRV_PROJECT);
1335MODULE_VERSION(DRV_VERSION);
1336MODULE_DESCRIPTION("rt2x00 library");
1337MODULE_LICENSE("GPL");