at v3.2-rc3 854 lines 27 kB view raw
1#ifndef _FS_CEPH_SUPER_H 2#define _FS_CEPH_SUPER_H 3 4#include <linux/ceph/ceph_debug.h> 5 6#include <asm/unaligned.h> 7#include <linux/backing-dev.h> 8#include <linux/completion.h> 9#include <linux/exportfs.h> 10#include <linux/fs.h> 11#include <linux/mempool.h> 12#include <linux/pagemap.h> 13#include <linux/wait.h> 14#include <linux/writeback.h> 15#include <linux/slab.h> 16 17#include <linux/ceph/libceph.h> 18 19/* f_type in struct statfs */ 20#define CEPH_SUPER_MAGIC 0x00c36400 21 22/* large granularity for statfs utilization stats to facilitate 23 * large volume sizes on 32-bit machines. */ 24#define CEPH_BLOCK_SHIFT 20 /* 1 MB */ 25#define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT) 26 27#define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */ 28#define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */ 29#define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */ 30#define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */ 31 32#define CEPH_MOUNT_OPT_DEFAULT (CEPH_MOUNT_OPT_RBYTES) 33 34#define ceph_set_mount_opt(fsc, opt) \ 35 (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt; 36#define ceph_test_mount_opt(fsc, opt) \ 37 (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt)) 38 39#define CEPH_RSIZE_DEFAULT 0 /* max read size */ 40#define CEPH_RASIZE_DEFAULT (8192*1024) /* readahead */ 41#define CEPH_MAX_READDIR_DEFAULT 1024 42#define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024) 43#define CEPH_SNAPDIRNAME_DEFAULT ".snap" 44 45struct ceph_mount_options { 46 int flags; 47 int sb_flags; 48 49 int wsize; /* max write size */ 50 int rsize; /* max read size */ 51 int rasize; /* max readahead */ 52 int congestion_kb; /* max writeback in flight */ 53 int caps_wanted_delay_min, caps_wanted_delay_max; 54 int cap_release_safety; 55 int max_readdir; /* max readdir result (entires) */ 56 int max_readdir_bytes; /* max readdir result (bytes) */ 57 58 /* 59 * everything above this point can be memcmp'd; everything below 60 * is handled in compare_mount_options() 61 */ 62 63 char *snapdir_name; /* default ".snap" */ 64}; 65 66struct ceph_fs_client { 67 struct super_block *sb; 68 69 struct ceph_mount_options *mount_options; 70 struct ceph_client *client; 71 72 unsigned long mount_state; 73 int min_caps; /* min caps i added */ 74 75 struct ceph_mds_client *mdsc; 76 77 /* writeback */ 78 mempool_t *wb_pagevec_pool; 79 struct workqueue_struct *wb_wq; 80 struct workqueue_struct *pg_inv_wq; 81 struct workqueue_struct *trunc_wq; 82 atomic_long_t writeback_count; 83 84 struct backing_dev_info backing_dev_info; 85 86#ifdef CONFIG_DEBUG_FS 87 struct dentry *debugfs_dentry_lru, *debugfs_caps; 88 struct dentry *debugfs_congestion_kb; 89 struct dentry *debugfs_bdi; 90 struct dentry *debugfs_mdsc, *debugfs_mdsmap; 91#endif 92}; 93 94 95/* 96 * File i/o capability. This tracks shared state with the metadata 97 * server that allows us to cache or writeback attributes or to read 98 * and write data. For any given inode, we should have one or more 99 * capabilities, one issued by each metadata server, and our 100 * cumulative access is the OR of all issued capabilities. 101 * 102 * Each cap is referenced by the inode's i_caps rbtree and by per-mds 103 * session capability lists. 104 */ 105struct ceph_cap { 106 struct ceph_inode_info *ci; 107 struct rb_node ci_node; /* per-ci cap tree */ 108 struct ceph_mds_session *session; 109 struct list_head session_caps; /* per-session caplist */ 110 int mds; 111 u64 cap_id; /* unique cap id (mds provided) */ 112 int issued; /* latest, from the mds */ 113 int implemented; /* implemented superset of issued (for revocation) */ 114 int mds_wanted; 115 u32 seq, issue_seq, mseq; 116 u32 cap_gen; /* active/stale cycle */ 117 unsigned long last_used; 118 struct list_head caps_item; 119}; 120 121#define CHECK_CAPS_NODELAY 1 /* do not delay any further */ 122#define CHECK_CAPS_AUTHONLY 2 /* only check auth cap */ 123#define CHECK_CAPS_FLUSH 4 /* flush any dirty caps */ 124 125/* 126 * Snapped cap state that is pending flush to mds. When a snapshot occurs, 127 * we first complete any in-process sync writes and writeback any dirty 128 * data before flushing the snapped state (tracked here) back to the MDS. 129 */ 130struct ceph_cap_snap { 131 atomic_t nref; 132 struct ceph_inode_info *ci; 133 struct list_head ci_item, flushing_item; 134 135 u64 follows, flush_tid; 136 int issued, dirty; 137 struct ceph_snap_context *context; 138 139 mode_t mode; 140 uid_t uid; 141 gid_t gid; 142 143 struct ceph_buffer *xattr_blob; 144 u64 xattr_version; 145 146 u64 size; 147 struct timespec mtime, atime, ctime; 148 u64 time_warp_seq; 149 int writing; /* a sync write is still in progress */ 150 int dirty_pages; /* dirty pages awaiting writeback */ 151}; 152 153static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap) 154{ 155 if (atomic_dec_and_test(&capsnap->nref)) { 156 if (capsnap->xattr_blob) 157 ceph_buffer_put(capsnap->xattr_blob); 158 kfree(capsnap); 159 } 160} 161 162/* 163 * The frag tree describes how a directory is fragmented, potentially across 164 * multiple metadata servers. It is also used to indicate points where 165 * metadata authority is delegated, and whether/where metadata is replicated. 166 * 167 * A _leaf_ frag will be present in the i_fragtree IFF there is 168 * delegation info. That is, if mds >= 0 || ndist > 0. 169 */ 170#define CEPH_MAX_DIRFRAG_REP 4 171 172struct ceph_inode_frag { 173 struct rb_node node; 174 175 /* fragtree state */ 176 u32 frag; 177 int split_by; /* i.e. 2^(split_by) children */ 178 179 /* delegation and replication info */ 180 int mds; /* -1 if same authority as parent */ 181 int ndist; /* >0 if replicated */ 182 int dist[CEPH_MAX_DIRFRAG_REP]; 183}; 184 185/* 186 * We cache inode xattrs as an encoded blob until they are first used, 187 * at which point we parse them into an rbtree. 188 */ 189struct ceph_inode_xattr { 190 struct rb_node node; 191 192 const char *name; 193 int name_len; 194 const char *val; 195 int val_len; 196 int dirty; 197 198 int should_free_name; 199 int should_free_val; 200}; 201 202/* 203 * Ceph dentry state 204 */ 205struct ceph_dentry_info { 206 unsigned long flags; 207 struct ceph_mds_session *lease_session; 208 u32 lease_gen, lease_shared_gen; 209 u32 lease_seq; 210 unsigned long lease_renew_after, lease_renew_from; 211 struct list_head lru; 212 struct dentry *dentry; 213 u64 time; 214 u64 offset; 215}; 216 217/* 218 * dentry flags 219 * 220 * The locking for D_COMPLETE is a bit odd: 221 * - we can clear it at almost any time (see ceph_d_prune) 222 * - it is only meaningful if: 223 * - we hold dir inode i_lock 224 * - we hold dir FILE_SHARED caps 225 * - the dentry D_COMPLETE is set 226 */ 227#define CEPH_D_COMPLETE 1 /* if set, d_u.d_subdirs is complete directory */ 228 229struct ceph_inode_xattrs_info { 230 /* 231 * (still encoded) xattr blob. we avoid the overhead of parsing 232 * this until someone actually calls getxattr, etc. 233 * 234 * blob->vec.iov_len == 4 implies there are no xattrs; blob == 235 * NULL means we don't know. 236 */ 237 struct ceph_buffer *blob, *prealloc_blob; 238 239 struct rb_root index; 240 bool dirty; 241 int count; 242 int names_size; 243 int vals_size; 244 u64 version, index_version; 245}; 246 247/* 248 * Ceph inode. 249 */ 250struct ceph_inode_info { 251 struct ceph_vino i_vino; /* ceph ino + snap */ 252 253 u64 i_version; 254 u32 i_time_warp_seq; 255 256 unsigned i_ceph_flags; 257 unsigned long i_release_count; 258 259 struct ceph_dir_layout i_dir_layout; 260 struct ceph_file_layout i_layout; 261 char *i_symlink; 262 263 /* for dirs */ 264 struct timespec i_rctime; 265 u64 i_rbytes, i_rfiles, i_rsubdirs; 266 u64 i_files, i_subdirs; 267 u64 i_max_offset; /* largest readdir offset, set with D_COMPLETE */ 268 269 struct rb_root i_fragtree; 270 struct mutex i_fragtree_mutex; 271 272 struct ceph_inode_xattrs_info i_xattrs; 273 274 /* capabilities. protected _both_ by i_lock and cap->session's 275 * s_mutex. */ 276 struct rb_root i_caps; /* cap list */ 277 struct ceph_cap *i_auth_cap; /* authoritative cap, if any */ 278 unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */ 279 struct list_head i_dirty_item, i_flushing_item; 280 u64 i_cap_flush_seq; 281 /* we need to track cap writeback on a per-cap-bit basis, to allow 282 * overlapping, pipelined cap flushes to the mds. we can probably 283 * reduce the tid to 8 bits if we're concerned about inode size. */ 284 u16 i_cap_flush_last_tid, i_cap_flush_tid[CEPH_CAP_BITS]; 285 wait_queue_head_t i_cap_wq; /* threads waiting on a capability */ 286 unsigned long i_hold_caps_min; /* jiffies */ 287 unsigned long i_hold_caps_max; /* jiffies */ 288 struct list_head i_cap_delay_list; /* for delayed cap release to mds */ 289 int i_cap_exporting_mds; /* to handle cap migration between */ 290 unsigned i_cap_exporting_mseq; /* mds's. */ 291 unsigned i_cap_exporting_issued; 292 struct ceph_cap_reservation i_cap_migration_resv; 293 struct list_head i_cap_snaps; /* snapped state pending flush to mds */ 294 struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or 295 dirty|flushing caps */ 296 unsigned i_snap_caps; /* cap bits for snapped files */ 297 298 int i_nr_by_mode[CEPH_FILE_MODE_NUM]; /* open file counts */ 299 300 u32 i_truncate_seq; /* last truncate to smaller size */ 301 u64 i_truncate_size; /* and the size we last truncated down to */ 302 int i_truncate_pending; /* still need to call vmtruncate */ 303 304 u64 i_max_size; /* max file size authorized by mds */ 305 u64 i_reported_size; /* (max_)size reported to or requested of mds */ 306 u64 i_wanted_max_size; /* offset we'd like to write too */ 307 u64 i_requested_max_size; /* max_size we've requested */ 308 309 /* held references to caps */ 310 int i_pin_ref; 311 int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref; 312 int i_wrbuffer_ref, i_wrbuffer_ref_head; 313 u32 i_shared_gen; /* increment each time we get FILE_SHARED */ 314 u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */ 315 u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */ 316 317 struct list_head i_unsafe_writes; /* uncommitted sync writes */ 318 struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */ 319 spinlock_t i_unsafe_lock; 320 321 struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */ 322 int i_snap_realm_counter; /* snap realm (if caps) */ 323 struct list_head i_snap_realm_item; 324 struct list_head i_snap_flush_item; 325 326 struct work_struct i_wb_work; /* writeback work */ 327 struct work_struct i_pg_inv_work; /* page invalidation work */ 328 329 struct work_struct i_vmtruncate_work; 330 331 struct inode vfs_inode; /* at end */ 332}; 333 334static inline struct ceph_inode_info *ceph_inode(struct inode *inode) 335{ 336 return container_of(inode, struct ceph_inode_info, vfs_inode); 337} 338 339static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode) 340{ 341 return (struct ceph_fs_client *)inode->i_sb->s_fs_info; 342} 343 344static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb) 345{ 346 return (struct ceph_fs_client *)sb->s_fs_info; 347} 348 349static inline struct ceph_vino ceph_vino(struct inode *inode) 350{ 351 return ceph_inode(inode)->i_vino; 352} 353 354/* 355 * ino_t is <64 bits on many architectures, blech. 356 * 357 * i_ino (kernel inode) st_ino (userspace) 358 * i386 32 32 359 * x86_64+ino32 64 32 360 * x86_64 64 64 361 */ 362static inline u32 ceph_ino_to_ino32(__u64 vino) 363{ 364 u32 ino = vino & 0xffffffff; 365 ino ^= vino >> 32; 366 if (!ino) 367 ino = 1; 368 return ino; 369} 370 371/* 372 * kernel i_ino value 373 */ 374static inline ino_t ceph_vino_to_ino(struct ceph_vino vino) 375{ 376#if BITS_PER_LONG == 32 377 return ceph_ino_to_ino32(vino.ino); 378#else 379 return (ino_t)vino.ino; 380#endif 381} 382 383/* 384 * user-visible ino (stat, filldir) 385 */ 386#if BITS_PER_LONG == 32 387static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino) 388{ 389 return ino; 390} 391#else 392static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino) 393{ 394 if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32)) 395 ino = ceph_ino_to_ino32(ino); 396 return ino; 397} 398#endif 399 400 401/* for printf-style formatting */ 402#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap 403 404static inline u64 ceph_ino(struct inode *inode) 405{ 406 return ceph_inode(inode)->i_vino.ino; 407} 408static inline u64 ceph_snap(struct inode *inode) 409{ 410 return ceph_inode(inode)->i_vino.snap; 411} 412 413static inline int ceph_ino_compare(struct inode *inode, void *data) 414{ 415 struct ceph_vino *pvino = (struct ceph_vino *)data; 416 struct ceph_inode_info *ci = ceph_inode(inode); 417 return ci->i_vino.ino == pvino->ino && 418 ci->i_vino.snap == pvino->snap; 419} 420 421static inline struct inode *ceph_find_inode(struct super_block *sb, 422 struct ceph_vino vino) 423{ 424 ino_t t = ceph_vino_to_ino(vino); 425 return ilookup5(sb, t, ceph_ino_compare, &vino); 426} 427 428 429/* 430 * Ceph inode. 431 */ 432#define CEPH_I_NODELAY 4 /* do not delay cap release */ 433#define CEPH_I_FLUSH 8 /* do not delay flush of dirty metadata */ 434#define CEPH_I_NOFLUSH 16 /* do not flush dirty caps */ 435 436static inline void ceph_i_clear(struct inode *inode, unsigned mask) 437{ 438 struct ceph_inode_info *ci = ceph_inode(inode); 439 440 spin_lock(&inode->i_lock); 441 ci->i_ceph_flags &= ~mask; 442 spin_unlock(&inode->i_lock); 443} 444 445static inline void ceph_i_set(struct inode *inode, unsigned mask) 446{ 447 struct ceph_inode_info *ci = ceph_inode(inode); 448 449 spin_lock(&inode->i_lock); 450 ci->i_ceph_flags |= mask; 451 spin_unlock(&inode->i_lock); 452} 453 454static inline bool ceph_i_test(struct inode *inode, unsigned mask) 455{ 456 struct ceph_inode_info *ci = ceph_inode(inode); 457 bool r; 458 459 spin_lock(&inode->i_lock); 460 r = (ci->i_ceph_flags & mask) == mask; 461 spin_unlock(&inode->i_lock); 462 return r; 463} 464 465 466/* find a specific frag @f */ 467extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci, 468 u32 f); 469 470/* 471 * choose fragment for value @v. copy frag content to pfrag, if leaf 472 * exists 473 */ 474extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v, 475 struct ceph_inode_frag *pfrag, 476 int *found); 477 478static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry) 479{ 480 return (struct ceph_dentry_info *)dentry->d_fsdata; 481} 482 483static inline loff_t ceph_make_fpos(unsigned frag, unsigned off) 484{ 485 return ((loff_t)frag << 32) | (loff_t)off; 486} 487 488/* 489 * set/clear directory D_COMPLETE flag 490 */ 491void ceph_dir_set_complete(struct inode *inode); 492void ceph_dir_clear_complete(struct inode *inode); 493bool ceph_dir_test_complete(struct inode *inode); 494 495/* 496 * caps helpers 497 */ 498static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci) 499{ 500 return !RB_EMPTY_ROOT(&ci->i_caps); 501} 502 503extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented); 504extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t); 505extern int __ceph_caps_issued_other(struct ceph_inode_info *ci, 506 struct ceph_cap *cap); 507 508static inline int ceph_caps_issued(struct ceph_inode_info *ci) 509{ 510 int issued; 511 spin_lock(&ci->vfs_inode.i_lock); 512 issued = __ceph_caps_issued(ci, NULL); 513 spin_unlock(&ci->vfs_inode.i_lock); 514 return issued; 515} 516 517static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, 518 int touch) 519{ 520 int r; 521 spin_lock(&ci->vfs_inode.i_lock); 522 r = __ceph_caps_issued_mask(ci, mask, touch); 523 spin_unlock(&ci->vfs_inode.i_lock); 524 return r; 525} 526 527static inline int __ceph_caps_dirty(struct ceph_inode_info *ci) 528{ 529 return ci->i_dirty_caps | ci->i_flushing_caps; 530} 531extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask); 532 533extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask); 534extern int __ceph_caps_used(struct ceph_inode_info *ci); 535 536extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci); 537 538/* 539 * wanted, by virtue of open file modes AND cap refs (buffered/cached data) 540 */ 541static inline int __ceph_caps_wanted(struct ceph_inode_info *ci) 542{ 543 int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci); 544 if (w & CEPH_CAP_FILE_BUFFER) 545 w |= CEPH_CAP_FILE_EXCL; /* we want EXCL if dirty data */ 546 return w; 547} 548 549/* what the mds thinks we want */ 550extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci); 551 552extern void ceph_caps_init(struct ceph_mds_client *mdsc); 553extern void ceph_caps_finalize(struct ceph_mds_client *mdsc); 554extern void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta); 555extern int ceph_reserve_caps(struct ceph_mds_client *mdsc, 556 struct ceph_cap_reservation *ctx, int need); 557extern int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 558 struct ceph_cap_reservation *ctx); 559extern void ceph_reservation_status(struct ceph_fs_client *client, 560 int *total, int *avail, int *used, 561 int *reserved, int *min); 562 563 564 565/* 566 * we keep buffered readdir results attached to file->private_data 567 */ 568#define CEPH_F_SYNC 1 569#define CEPH_F_ATEND 2 570 571struct ceph_file_info { 572 short fmode; /* initialized on open */ 573 short flags; /* CEPH_F_* */ 574 575 /* readdir: position within the dir */ 576 u32 frag; 577 struct ceph_mds_request *last_readdir; 578 579 /* readdir: position within a frag */ 580 unsigned offset; /* offset of last chunk, adjusted for . and .. */ 581 u64 next_offset; /* offset of next chunk (last_name's + 1) */ 582 char *last_name; /* last entry in previous chunk */ 583 struct dentry *dentry; /* next dentry (for dcache readdir) */ 584 unsigned long dir_release_count; 585 586 /* used for -o dirstat read() on directory thing */ 587 char *dir_info; 588 int dir_info_len; 589}; 590 591 592 593/* 594 * A "snap realm" describes a subset of the file hierarchy sharing 595 * the same set of snapshots that apply to it. The realms themselves 596 * are organized into a hierarchy, such that children inherit (some of) 597 * the snapshots of their parents. 598 * 599 * All inodes within the realm that have capabilities are linked into a 600 * per-realm list. 601 */ 602struct ceph_snap_realm { 603 u64 ino; 604 atomic_t nref; 605 struct rb_node node; 606 607 u64 created, seq; 608 u64 parent_ino; 609 u64 parent_since; /* snapid when our current parent became so */ 610 611 u64 *prior_parent_snaps; /* snaps inherited from any parents we */ 612 int num_prior_parent_snaps; /* had prior to parent_since */ 613 u64 *snaps; /* snaps specific to this realm */ 614 int num_snaps; 615 616 struct ceph_snap_realm *parent; 617 struct list_head children; /* list of child realms */ 618 struct list_head child_item; 619 620 struct list_head empty_item; /* if i have ref==0 */ 621 622 struct list_head dirty_item; /* if realm needs new context */ 623 624 /* the current set of snaps for this realm */ 625 struct ceph_snap_context *cached_context; 626 627 struct list_head inodes_with_caps; 628 spinlock_t inodes_with_caps_lock; 629}; 630 631static inline int default_congestion_kb(void) 632{ 633 int congestion_kb; 634 635 /* 636 * Copied from NFS 637 * 638 * congestion size, scale with available memory. 639 * 640 * 64MB: 8192k 641 * 128MB: 11585k 642 * 256MB: 16384k 643 * 512MB: 23170k 644 * 1GB: 32768k 645 * 2GB: 46340k 646 * 4GB: 65536k 647 * 8GB: 92681k 648 * 16GB: 131072k 649 * 650 * This allows larger machines to have larger/more transfers. 651 * Limit the default to 256M 652 */ 653 congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 654 if (congestion_kb > 256*1024) 655 congestion_kb = 256*1024; 656 657 return congestion_kb; 658} 659 660 661 662/* snap.c */ 663struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, 664 u64 ino); 665extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc, 666 struct ceph_snap_realm *realm); 667extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc, 668 struct ceph_snap_realm *realm); 669extern int ceph_update_snap_trace(struct ceph_mds_client *m, 670 void *p, void *e, bool deletion); 671extern void ceph_handle_snap(struct ceph_mds_client *mdsc, 672 struct ceph_mds_session *session, 673 struct ceph_msg *msg); 674extern void ceph_queue_cap_snap(struct ceph_inode_info *ci); 675extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci, 676 struct ceph_cap_snap *capsnap); 677extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc); 678 679/* 680 * a cap_snap is "pending" if it is still awaiting an in-progress 681 * sync write (that may/may not still update size, mtime, etc.). 682 */ 683static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci) 684{ 685 return !list_empty(&ci->i_cap_snaps) && 686 list_entry(ci->i_cap_snaps.prev, struct ceph_cap_snap, 687 ci_item)->writing; 688} 689 690/* inode.c */ 691extern const struct inode_operations ceph_file_iops; 692 693extern struct inode *ceph_alloc_inode(struct super_block *sb); 694extern void ceph_destroy_inode(struct inode *inode); 695 696extern struct inode *ceph_get_inode(struct super_block *sb, 697 struct ceph_vino vino); 698extern struct inode *ceph_get_snapdir(struct inode *parent); 699extern int ceph_fill_file_size(struct inode *inode, int issued, 700 u32 truncate_seq, u64 truncate_size, u64 size); 701extern void ceph_fill_file_time(struct inode *inode, int issued, 702 u64 time_warp_seq, struct timespec *ctime, 703 struct timespec *mtime, struct timespec *atime); 704extern int ceph_fill_trace(struct super_block *sb, 705 struct ceph_mds_request *req, 706 struct ceph_mds_session *session); 707extern int ceph_readdir_prepopulate(struct ceph_mds_request *req, 708 struct ceph_mds_session *session); 709 710extern int ceph_inode_holds_cap(struct inode *inode, int mask); 711 712extern int ceph_inode_set_size(struct inode *inode, loff_t size); 713extern void __ceph_do_pending_vmtruncate(struct inode *inode); 714extern void ceph_queue_vmtruncate(struct inode *inode); 715 716extern void ceph_queue_invalidate(struct inode *inode); 717extern void ceph_queue_writeback(struct inode *inode); 718 719extern int ceph_do_getattr(struct inode *inode, int mask); 720extern int ceph_permission(struct inode *inode, int mask); 721extern int ceph_setattr(struct dentry *dentry, struct iattr *attr); 722extern int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry, 723 struct kstat *stat); 724 725/* xattr.c */ 726extern int ceph_setxattr(struct dentry *, const char *, const void *, 727 size_t, int); 728extern ssize_t ceph_getxattr(struct dentry *, const char *, void *, size_t); 729extern ssize_t ceph_listxattr(struct dentry *, char *, size_t); 730extern int ceph_removexattr(struct dentry *, const char *); 731extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci); 732extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci); 733 734/* caps.c */ 735extern const char *ceph_cap_string(int c); 736extern void ceph_handle_caps(struct ceph_mds_session *session, 737 struct ceph_msg *msg); 738extern int ceph_add_cap(struct inode *inode, 739 struct ceph_mds_session *session, u64 cap_id, 740 int fmode, unsigned issued, unsigned wanted, 741 unsigned cap, unsigned seq, u64 realmino, int flags, 742 struct ceph_cap_reservation *caps_reservation); 743extern void __ceph_remove_cap(struct ceph_cap *cap); 744static inline void ceph_remove_cap(struct ceph_cap *cap) 745{ 746 struct inode *inode = &cap->ci->vfs_inode; 747 spin_lock(&inode->i_lock); 748 __ceph_remove_cap(cap); 749 spin_unlock(&inode->i_lock); 750} 751extern void ceph_put_cap(struct ceph_mds_client *mdsc, 752 struct ceph_cap *cap); 753 754extern void ceph_queue_caps_release(struct inode *inode); 755extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc); 756extern int ceph_fsync(struct file *file, loff_t start, loff_t end, 757 int datasync); 758extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 759 struct ceph_mds_session *session); 760extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, 761 int mds); 762extern int ceph_get_cap_mds(struct inode *inode); 763extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps); 764extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had); 765extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 766 struct ceph_snap_context *snapc); 767extern void __ceph_flush_snaps(struct ceph_inode_info *ci, 768 struct ceph_mds_session **psession, 769 int again); 770extern void ceph_check_caps(struct ceph_inode_info *ci, int flags, 771 struct ceph_mds_session *session); 772extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc); 773extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc); 774 775extern int ceph_encode_inode_release(void **p, struct inode *inode, 776 int mds, int drop, int unless, int force); 777extern int ceph_encode_dentry_release(void **p, struct dentry *dn, 778 int mds, int drop, int unless); 779 780extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, 781 int *got, loff_t endoff); 782 783/* for counting open files by mode */ 784static inline void __ceph_get_fmode(struct ceph_inode_info *ci, int mode) 785{ 786 ci->i_nr_by_mode[mode]++; 787} 788extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode); 789 790/* addr.c */ 791extern const struct address_space_operations ceph_aops; 792extern int ceph_mmap(struct file *file, struct vm_area_struct *vma); 793 794/* file.c */ 795extern const struct file_operations ceph_file_fops; 796extern const struct address_space_operations ceph_aops; 797extern int ceph_copy_to_page_vector(struct page **pages, 798 const char *data, 799 loff_t off, size_t len); 800extern int ceph_copy_from_page_vector(struct page **pages, 801 char *data, 802 loff_t off, size_t len); 803extern struct page **ceph_alloc_page_vector(int num_pages, gfp_t flags); 804extern int ceph_open(struct inode *inode, struct file *file); 805extern struct dentry *ceph_lookup_open(struct inode *dir, struct dentry *dentry, 806 struct nameidata *nd, int mode, 807 int locked_dir); 808extern int ceph_release(struct inode *inode, struct file *filp); 809 810/* dir.c */ 811extern const struct file_operations ceph_dir_fops; 812extern const struct inode_operations ceph_dir_iops; 813extern const struct dentry_operations ceph_dentry_ops, ceph_snap_dentry_ops, 814 ceph_snapdir_dentry_ops; 815 816extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry); 817extern int ceph_handle_snapdir(struct ceph_mds_request *req, 818 struct dentry *dentry, int err); 819extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req, 820 struct dentry *dentry, int err); 821 822extern void ceph_dentry_lru_add(struct dentry *dn); 823extern void ceph_dentry_lru_touch(struct dentry *dn); 824extern void ceph_dentry_lru_del(struct dentry *dn); 825extern void ceph_invalidate_dentry_lease(struct dentry *dentry); 826extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn); 827extern struct inode *ceph_get_dentry_parent_inode(struct dentry *dentry); 828 829/* 830 * our d_ops vary depending on whether the inode is live, 831 * snapshotted (read-only), or a virtual ".snap" directory. 832 */ 833int ceph_init_dentry(struct dentry *dentry); 834 835 836/* ioctl.c */ 837extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 838 839/* export.c */ 840extern const struct export_operations ceph_export_ops; 841 842/* locks.c */ 843extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl); 844extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl); 845extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num); 846extern int ceph_encode_locks(struct inode *i, struct ceph_pagelist *p, 847 int p_locks, int f_locks); 848extern int lock_to_ceph_filelock(struct file_lock *fl, struct ceph_filelock *c); 849 850/* debugfs.c */ 851extern int ceph_fs_debugfs_init(struct ceph_fs_client *client); 852extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client); 853 854#endif /* _FS_CEPH_SUPER_H */