at v3.2-rc2 2725 lines 82 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24/* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30#define CLONE_NEWNET 0x40000000 /* New network namespace */ 31#define CLONE_IO 0x80000000 /* Clone io context */ 32 33/* 34 * Scheduling policies 35 */ 36#define SCHED_NORMAL 0 37#define SCHED_FIFO 1 38#define SCHED_RR 2 39#define SCHED_BATCH 3 40/* SCHED_ISO: reserved but not implemented yet */ 41#define SCHED_IDLE 5 42/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43#define SCHED_RESET_ON_FORK 0x40000000 44 45#ifdef __KERNEL__ 46 47struct sched_param { 48 int sched_priority; 49}; 50 51#include <asm/param.h> /* for HZ */ 52 53#include <linux/capability.h> 54#include <linux/threads.h> 55#include <linux/kernel.h> 56#include <linux/types.h> 57#include <linux/timex.h> 58#include <linux/jiffies.h> 59#include <linux/rbtree.h> 60#include <linux/thread_info.h> 61#include <linux/cpumask.h> 62#include <linux/errno.h> 63#include <linux/nodemask.h> 64#include <linux/mm_types.h> 65 66#include <asm/system.h> 67#include <asm/page.h> 68#include <asm/ptrace.h> 69#include <asm/cputime.h> 70 71#include <linux/smp.h> 72#include <linux/sem.h> 73#include <linux/signal.h> 74#include <linux/compiler.h> 75#include <linux/completion.h> 76#include <linux/pid.h> 77#include <linux/percpu.h> 78#include <linux/topology.h> 79#include <linux/proportions.h> 80#include <linux/seccomp.h> 81#include <linux/rcupdate.h> 82#include <linux/rculist.h> 83#include <linux/rtmutex.h> 84 85#include <linux/time.h> 86#include <linux/param.h> 87#include <linux/resource.h> 88#include <linux/timer.h> 89#include <linux/hrtimer.h> 90#include <linux/task_io_accounting.h> 91#include <linux/latencytop.h> 92#include <linux/cred.h> 93#include <linux/llist.h> 94 95#include <asm/processor.h> 96 97struct exec_domain; 98struct futex_pi_state; 99struct robust_list_head; 100struct bio_list; 101struct fs_struct; 102struct perf_event_context; 103struct blk_plug; 104 105/* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111/* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121extern unsigned long avenrun[]; /* Load averages */ 122extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124#define FSHIFT 11 /* nr of bits of precision */ 125#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128#define EXP_5 2014 /* 1/exp(5sec/5min) */ 129#define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131#define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136extern unsigned long total_forks; 137extern int nr_threads; 138DECLARE_PER_CPU(unsigned long, process_counts); 139extern int nr_processes(void); 140extern unsigned long nr_running(void); 141extern unsigned long nr_uninterruptible(void); 142extern unsigned long nr_iowait(void); 143extern unsigned long nr_iowait_cpu(int cpu); 144extern unsigned long this_cpu_load(void); 145 146 147extern void calc_global_load(unsigned long ticks); 148 149extern unsigned long get_parent_ip(unsigned long addr); 150 151struct seq_file; 152struct cfs_rq; 153struct task_group; 154#ifdef CONFIG_SCHED_DEBUG 155extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 156extern void proc_sched_set_task(struct task_struct *p); 157extern void 158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 159#else 160static inline void 161proc_sched_show_task(struct task_struct *p, struct seq_file *m) 162{ 163} 164static inline void proc_sched_set_task(struct task_struct *p) 165{ 166} 167static inline void 168print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 169{ 170} 171#endif 172 173/* 174 * Task state bitmask. NOTE! These bits are also 175 * encoded in fs/proc/array.c: get_task_state(). 176 * 177 * We have two separate sets of flags: task->state 178 * is about runnability, while task->exit_state are 179 * about the task exiting. Confusing, but this way 180 * modifying one set can't modify the other one by 181 * mistake. 182 */ 183#define TASK_RUNNING 0 184#define TASK_INTERRUPTIBLE 1 185#define TASK_UNINTERRUPTIBLE 2 186#define __TASK_STOPPED 4 187#define __TASK_TRACED 8 188/* in tsk->exit_state */ 189#define EXIT_ZOMBIE 16 190#define EXIT_DEAD 32 191/* in tsk->state again */ 192#define TASK_DEAD 64 193#define TASK_WAKEKILL 128 194#define TASK_WAKING 256 195#define TASK_STATE_MAX 512 196 197#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 198 199extern char ___assert_task_state[1 - 2*!!( 200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 201 202/* Convenience macros for the sake of set_task_state */ 203#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 204#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 205#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 206 207/* Convenience macros for the sake of wake_up */ 208#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 209#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 210 211/* get_task_state() */ 212#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 214 __TASK_TRACED) 215 216#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 217#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 218#define task_is_dead(task) ((task)->exit_state != 0) 219#define task_is_stopped_or_traced(task) \ 220 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 221#define task_contributes_to_load(task) \ 222 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 223 (task->flags & PF_FREEZING) == 0) 224 225#define __set_task_state(tsk, state_value) \ 226 do { (tsk)->state = (state_value); } while (0) 227#define set_task_state(tsk, state_value) \ 228 set_mb((tsk)->state, (state_value)) 229 230/* 231 * set_current_state() includes a barrier so that the write of current->state 232 * is correctly serialised wrt the caller's subsequent test of whether to 233 * actually sleep: 234 * 235 * set_current_state(TASK_UNINTERRUPTIBLE); 236 * if (do_i_need_to_sleep()) 237 * schedule(); 238 * 239 * If the caller does not need such serialisation then use __set_current_state() 240 */ 241#define __set_current_state(state_value) \ 242 do { current->state = (state_value); } while (0) 243#define set_current_state(state_value) \ 244 set_mb(current->state, (state_value)) 245 246/* Task command name length */ 247#define TASK_COMM_LEN 16 248 249#include <linux/spinlock.h> 250 251/* 252 * This serializes "schedule()" and also protects 253 * the run-queue from deletions/modifications (but 254 * _adding_ to the beginning of the run-queue has 255 * a separate lock). 256 */ 257extern rwlock_t tasklist_lock; 258extern spinlock_t mmlist_lock; 259 260struct task_struct; 261 262#ifdef CONFIG_PROVE_RCU 263extern int lockdep_tasklist_lock_is_held(void); 264#endif /* #ifdef CONFIG_PROVE_RCU */ 265 266extern void sched_init(void); 267extern void sched_init_smp(void); 268extern asmlinkage void schedule_tail(struct task_struct *prev); 269extern void init_idle(struct task_struct *idle, int cpu); 270extern void init_idle_bootup_task(struct task_struct *idle); 271 272extern int runqueue_is_locked(int cpu); 273 274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275extern void select_nohz_load_balancer(int stop_tick); 276extern int get_nohz_timer_target(void); 277#else 278static inline void select_nohz_load_balancer(int stop_tick) { } 279#endif 280 281/* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284extern void show_state_filter(unsigned long state_filter); 285 286static inline void show_state(void) 287{ 288 show_state_filter(0); 289} 290 291extern void show_regs(struct pt_regs *); 292 293/* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300void io_schedule(void); 301long io_schedule_timeout(long timeout); 302 303extern void cpu_init (void); 304extern void trap_init(void); 305extern void update_process_times(int user); 306extern void scheduler_tick(void); 307 308extern void sched_show_task(struct task_struct *p); 309 310#ifdef CONFIG_LOCKUP_DETECTOR 311extern void touch_softlockup_watchdog(void); 312extern void touch_softlockup_watchdog_sync(void); 313extern void touch_all_softlockup_watchdogs(void); 314extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317extern unsigned int softlockup_panic; 318void lockup_detector_init(void); 319#else 320static inline void touch_softlockup_watchdog(void) 321{ 322} 323static inline void touch_softlockup_watchdog_sync(void) 324{ 325} 326static inline void touch_all_softlockup_watchdogs(void) 327{ 328} 329static inline void lockup_detector_init(void) 330{ 331} 332#endif 333 334#ifdef CONFIG_DETECT_HUNG_TASK 335extern unsigned int sysctl_hung_task_panic; 336extern unsigned long sysctl_hung_task_check_count; 337extern unsigned long sysctl_hung_task_timeout_secs; 338extern unsigned long sysctl_hung_task_warnings; 339extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 340 void __user *buffer, 341 size_t *lenp, loff_t *ppos); 342#else 343/* Avoid need for ifdefs elsewhere in the code */ 344enum { sysctl_hung_task_timeout_secs = 0 }; 345#endif 346 347/* Attach to any functions which should be ignored in wchan output. */ 348#define __sched __attribute__((__section__(".sched.text"))) 349 350/* Linker adds these: start and end of __sched functions */ 351extern char __sched_text_start[], __sched_text_end[]; 352 353/* Is this address in the __sched functions? */ 354extern int in_sched_functions(unsigned long addr); 355 356#define MAX_SCHEDULE_TIMEOUT LONG_MAX 357extern signed long schedule_timeout(signed long timeout); 358extern signed long schedule_timeout_interruptible(signed long timeout); 359extern signed long schedule_timeout_killable(signed long timeout); 360extern signed long schedule_timeout_uninterruptible(signed long timeout); 361asmlinkage void schedule(void); 362extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 363 364struct nsproxy; 365struct user_namespace; 366 367/* 368 * Default maximum number of active map areas, this limits the number of vmas 369 * per mm struct. Users can overwrite this number by sysctl but there is a 370 * problem. 371 * 372 * When a program's coredump is generated as ELF format, a section is created 373 * per a vma. In ELF, the number of sections is represented in unsigned short. 374 * This means the number of sections should be smaller than 65535 at coredump. 375 * Because the kernel adds some informative sections to a image of program at 376 * generating coredump, we need some margin. The number of extra sections is 377 * 1-3 now and depends on arch. We use "5" as safe margin, here. 378 */ 379#define MAPCOUNT_ELF_CORE_MARGIN (5) 380#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 381 382extern int sysctl_max_map_count; 383 384#include <linux/aio.h> 385 386#ifdef CONFIG_MMU 387extern void arch_pick_mmap_layout(struct mm_struct *mm); 388extern unsigned long 389arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 390 unsigned long, unsigned long); 391extern unsigned long 392arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 393 unsigned long len, unsigned long pgoff, 394 unsigned long flags); 395extern void arch_unmap_area(struct mm_struct *, unsigned long); 396extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 397#else 398static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 399#endif 400 401 402extern void set_dumpable(struct mm_struct *mm, int value); 403extern int get_dumpable(struct mm_struct *mm); 404 405/* mm flags */ 406/* dumpable bits */ 407#define MMF_DUMPABLE 0 /* core dump is permitted */ 408#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 409 410#define MMF_DUMPABLE_BITS 2 411#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 412 413/* coredump filter bits */ 414#define MMF_DUMP_ANON_PRIVATE 2 415#define MMF_DUMP_ANON_SHARED 3 416#define MMF_DUMP_MAPPED_PRIVATE 4 417#define MMF_DUMP_MAPPED_SHARED 5 418#define MMF_DUMP_ELF_HEADERS 6 419#define MMF_DUMP_HUGETLB_PRIVATE 7 420#define MMF_DUMP_HUGETLB_SHARED 8 421 422#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 423#define MMF_DUMP_FILTER_BITS 7 424#define MMF_DUMP_FILTER_MASK \ 425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 426#define MMF_DUMP_FILTER_DEFAULT \ 427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 429 430#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 431# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 432#else 433# define MMF_DUMP_MASK_DEFAULT_ELF 0 434#endif 435 /* leave room for more dump flags */ 436#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 437#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 438 439#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 440 441struct sighand_struct { 442 atomic_t count; 443 struct k_sigaction action[_NSIG]; 444 spinlock_t siglock; 445 wait_queue_head_t signalfd_wqh; 446}; 447 448struct pacct_struct { 449 int ac_flag; 450 long ac_exitcode; 451 unsigned long ac_mem; 452 cputime_t ac_utime, ac_stime; 453 unsigned long ac_minflt, ac_majflt; 454}; 455 456struct cpu_itimer { 457 cputime_t expires; 458 cputime_t incr; 459 u32 error; 460 u32 incr_error; 461}; 462 463/** 464 * struct task_cputime - collected CPU time counts 465 * @utime: time spent in user mode, in &cputime_t units 466 * @stime: time spent in kernel mode, in &cputime_t units 467 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 468 * 469 * This structure groups together three kinds of CPU time that are 470 * tracked for threads and thread groups. Most things considering 471 * CPU time want to group these counts together and treat all three 472 * of them in parallel. 473 */ 474struct task_cputime { 475 cputime_t utime; 476 cputime_t stime; 477 unsigned long long sum_exec_runtime; 478}; 479/* Alternate field names when used to cache expirations. */ 480#define prof_exp stime 481#define virt_exp utime 482#define sched_exp sum_exec_runtime 483 484#define INIT_CPUTIME \ 485 (struct task_cputime) { \ 486 .utime = cputime_zero, \ 487 .stime = cputime_zero, \ 488 .sum_exec_runtime = 0, \ 489 } 490 491/* 492 * Disable preemption until the scheduler is running. 493 * Reset by start_kernel()->sched_init()->init_idle(). 494 * 495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 496 * before the scheduler is active -- see should_resched(). 497 */ 498#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 499 500/** 501 * struct thread_group_cputimer - thread group interval timer counts 502 * @cputime: thread group interval timers. 503 * @running: non-zero when there are timers running and 504 * @cputime receives updates. 505 * @lock: lock for fields in this struct. 506 * 507 * This structure contains the version of task_cputime, above, that is 508 * used for thread group CPU timer calculations. 509 */ 510struct thread_group_cputimer { 511 struct task_cputime cputime; 512 int running; 513 raw_spinlock_t lock; 514}; 515 516#include <linux/rwsem.h> 517struct autogroup; 518 519/* 520 * NOTE! "signal_struct" does not have its own 521 * locking, because a shared signal_struct always 522 * implies a shared sighand_struct, so locking 523 * sighand_struct is always a proper superset of 524 * the locking of signal_struct. 525 */ 526struct signal_struct { 527 atomic_t sigcnt; 528 atomic_t live; 529 int nr_threads; 530 531 wait_queue_head_t wait_chldexit; /* for wait4() */ 532 533 /* current thread group signal load-balancing target: */ 534 struct task_struct *curr_target; 535 536 /* shared signal handling: */ 537 struct sigpending shared_pending; 538 539 /* thread group exit support */ 540 int group_exit_code; 541 /* overloaded: 542 * - notify group_exit_task when ->count is equal to notify_count 543 * - everyone except group_exit_task is stopped during signal delivery 544 * of fatal signals, group_exit_task processes the signal. 545 */ 546 int notify_count; 547 struct task_struct *group_exit_task; 548 549 /* thread group stop support, overloads group_exit_code too */ 550 int group_stop_count; 551 unsigned int flags; /* see SIGNAL_* flags below */ 552 553 /* POSIX.1b Interval Timers */ 554 struct list_head posix_timers; 555 556 /* ITIMER_REAL timer for the process */ 557 struct hrtimer real_timer; 558 struct pid *leader_pid; 559 ktime_t it_real_incr; 560 561 /* 562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 564 * values are defined to 0 and 1 respectively 565 */ 566 struct cpu_itimer it[2]; 567 568 /* 569 * Thread group totals for process CPU timers. 570 * See thread_group_cputimer(), et al, for details. 571 */ 572 struct thread_group_cputimer cputimer; 573 574 /* Earliest-expiration cache. */ 575 struct task_cputime cputime_expires; 576 577 struct list_head cpu_timers[3]; 578 579 struct pid *tty_old_pgrp; 580 581 /* boolean value for session group leader */ 582 int leader; 583 584 struct tty_struct *tty; /* NULL if no tty */ 585 586#ifdef CONFIG_SCHED_AUTOGROUP 587 struct autogroup *autogroup; 588#endif 589 /* 590 * Cumulative resource counters for dead threads in the group, 591 * and for reaped dead child processes forked by this group. 592 * Live threads maintain their own counters and add to these 593 * in __exit_signal, except for the group leader. 594 */ 595 cputime_t utime, stime, cutime, cstime; 596 cputime_t gtime; 597 cputime_t cgtime; 598#ifndef CONFIG_VIRT_CPU_ACCOUNTING 599 cputime_t prev_utime, prev_stime; 600#endif 601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 603 unsigned long inblock, oublock, cinblock, coublock; 604 unsigned long maxrss, cmaxrss; 605 struct task_io_accounting ioac; 606 607 /* 608 * Cumulative ns of schedule CPU time fo dead threads in the 609 * group, not including a zombie group leader, (This only differs 610 * from jiffies_to_ns(utime + stime) if sched_clock uses something 611 * other than jiffies.) 612 */ 613 unsigned long long sum_sched_runtime; 614 615 /* 616 * We don't bother to synchronize most readers of this at all, 617 * because there is no reader checking a limit that actually needs 618 * to get both rlim_cur and rlim_max atomically, and either one 619 * alone is a single word that can safely be read normally. 620 * getrlimit/setrlimit use task_lock(current->group_leader) to 621 * protect this instead of the siglock, because they really 622 * have no need to disable irqs. 623 */ 624 struct rlimit rlim[RLIM_NLIMITS]; 625 626#ifdef CONFIG_BSD_PROCESS_ACCT 627 struct pacct_struct pacct; /* per-process accounting information */ 628#endif 629#ifdef CONFIG_TASKSTATS 630 struct taskstats *stats; 631#endif 632#ifdef CONFIG_AUDIT 633 unsigned audit_tty; 634 struct tty_audit_buf *tty_audit_buf; 635#endif 636#ifdef CONFIG_CGROUPS 637 /* 638 * The threadgroup_fork_lock prevents threads from forking with 639 * CLONE_THREAD while held for writing. Use this for fork-sensitive 640 * threadgroup-wide operations. It's taken for reading in fork.c in 641 * copy_process(). 642 * Currently only needed write-side by cgroups. 643 */ 644 struct rw_semaphore threadgroup_fork_lock; 645#endif 646 647 int oom_adj; /* OOM kill score adjustment (bit shift) */ 648 int oom_score_adj; /* OOM kill score adjustment */ 649 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 650 * Only settable by CAP_SYS_RESOURCE. */ 651 652 struct mutex cred_guard_mutex; /* guard against foreign influences on 653 * credential calculations 654 * (notably. ptrace) */ 655}; 656 657/* Context switch must be unlocked if interrupts are to be enabled */ 658#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 659# define __ARCH_WANT_UNLOCKED_CTXSW 660#endif 661 662/* 663 * Bits in flags field of signal_struct. 664 */ 665#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 666#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 667#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 668/* 669 * Pending notifications to parent. 670 */ 671#define SIGNAL_CLD_STOPPED 0x00000010 672#define SIGNAL_CLD_CONTINUED 0x00000020 673#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 674 675#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 676 677/* If true, all threads except ->group_exit_task have pending SIGKILL */ 678static inline int signal_group_exit(const struct signal_struct *sig) 679{ 680 return (sig->flags & SIGNAL_GROUP_EXIT) || 681 (sig->group_exit_task != NULL); 682} 683 684/* 685 * Some day this will be a full-fledged user tracking system.. 686 */ 687struct user_struct { 688 atomic_t __count; /* reference count */ 689 atomic_t processes; /* How many processes does this user have? */ 690 atomic_t files; /* How many open files does this user have? */ 691 atomic_t sigpending; /* How many pending signals does this user have? */ 692#ifdef CONFIG_INOTIFY_USER 693 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 694 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 695#endif 696#ifdef CONFIG_FANOTIFY 697 atomic_t fanotify_listeners; 698#endif 699#ifdef CONFIG_EPOLL 700 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 701#endif 702#ifdef CONFIG_POSIX_MQUEUE 703 /* protected by mq_lock */ 704 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 705#endif 706 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 707 708#ifdef CONFIG_KEYS 709 struct key *uid_keyring; /* UID specific keyring */ 710 struct key *session_keyring; /* UID's default session keyring */ 711#endif 712 713 /* Hash table maintenance information */ 714 struct hlist_node uidhash_node; 715 uid_t uid; 716 struct user_namespace *user_ns; 717 718#ifdef CONFIG_PERF_EVENTS 719 atomic_long_t locked_vm; 720#endif 721}; 722 723extern int uids_sysfs_init(void); 724 725extern struct user_struct *find_user(uid_t); 726 727extern struct user_struct root_user; 728#define INIT_USER (&root_user) 729 730 731struct backing_dev_info; 732struct reclaim_state; 733 734#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 735struct sched_info { 736 /* cumulative counters */ 737 unsigned long pcount; /* # of times run on this cpu */ 738 unsigned long long run_delay; /* time spent waiting on a runqueue */ 739 740 /* timestamps */ 741 unsigned long long last_arrival,/* when we last ran on a cpu */ 742 last_queued; /* when we were last queued to run */ 743}; 744#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 745 746#ifdef CONFIG_TASK_DELAY_ACCT 747struct task_delay_info { 748 spinlock_t lock; 749 unsigned int flags; /* Private per-task flags */ 750 751 /* For each stat XXX, add following, aligned appropriately 752 * 753 * struct timespec XXX_start, XXX_end; 754 * u64 XXX_delay; 755 * u32 XXX_count; 756 * 757 * Atomicity of updates to XXX_delay, XXX_count protected by 758 * single lock above (split into XXX_lock if contention is an issue). 759 */ 760 761 /* 762 * XXX_count is incremented on every XXX operation, the delay 763 * associated with the operation is added to XXX_delay. 764 * XXX_delay contains the accumulated delay time in nanoseconds. 765 */ 766 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 767 u64 blkio_delay; /* wait for sync block io completion */ 768 u64 swapin_delay; /* wait for swapin block io completion */ 769 u32 blkio_count; /* total count of the number of sync block */ 770 /* io operations performed */ 771 u32 swapin_count; /* total count of the number of swapin block */ 772 /* io operations performed */ 773 774 struct timespec freepages_start, freepages_end; 775 u64 freepages_delay; /* wait for memory reclaim */ 776 u32 freepages_count; /* total count of memory reclaim */ 777}; 778#endif /* CONFIG_TASK_DELAY_ACCT */ 779 780static inline int sched_info_on(void) 781{ 782#ifdef CONFIG_SCHEDSTATS 783 return 1; 784#elif defined(CONFIG_TASK_DELAY_ACCT) 785 extern int delayacct_on; 786 return delayacct_on; 787#else 788 return 0; 789#endif 790} 791 792enum cpu_idle_type { 793 CPU_IDLE, 794 CPU_NOT_IDLE, 795 CPU_NEWLY_IDLE, 796 CPU_MAX_IDLE_TYPES 797}; 798 799/* 800 * Increase resolution of nice-level calculations for 64-bit architectures. 801 * The extra resolution improves shares distribution and load balancing of 802 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 803 * hierarchies, especially on larger systems. This is not a user-visible change 804 * and does not change the user-interface for setting shares/weights. 805 * 806 * We increase resolution only if we have enough bits to allow this increased 807 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 808 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 809 * increased costs. 810 */ 811#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 812# define SCHED_LOAD_RESOLUTION 10 813# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 814# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 815#else 816# define SCHED_LOAD_RESOLUTION 0 817# define scale_load(w) (w) 818# define scale_load_down(w) (w) 819#endif 820 821#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 822#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 823 824/* 825 * Increase resolution of cpu_power calculations 826 */ 827#define SCHED_POWER_SHIFT 10 828#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 829 830/* 831 * sched-domains (multiprocessor balancing) declarations: 832 */ 833#ifdef CONFIG_SMP 834#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 835#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 836#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 837#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 838#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 839#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 840#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 841#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 842#define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 843#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 844#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 845#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 846#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 847#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 848 849enum powersavings_balance_level { 850 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 851 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 852 * first for long running threads 853 */ 854 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 855 * cpu package for power savings 856 */ 857 MAX_POWERSAVINGS_BALANCE_LEVELS 858}; 859 860extern int sched_mc_power_savings, sched_smt_power_savings; 861 862static inline int sd_balance_for_mc_power(void) 863{ 864 if (sched_smt_power_savings) 865 return SD_POWERSAVINGS_BALANCE; 866 867 if (!sched_mc_power_savings) 868 return SD_PREFER_SIBLING; 869 870 return 0; 871} 872 873static inline int sd_balance_for_package_power(void) 874{ 875 if (sched_mc_power_savings | sched_smt_power_savings) 876 return SD_POWERSAVINGS_BALANCE; 877 878 return SD_PREFER_SIBLING; 879} 880 881extern int __weak arch_sd_sibiling_asym_packing(void); 882 883/* 884 * Optimise SD flags for power savings: 885 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings. 886 * Keep default SD flags if sched_{smt,mc}_power_saving=0 887 */ 888 889static inline int sd_power_saving_flags(void) 890{ 891 if (sched_mc_power_savings | sched_smt_power_savings) 892 return SD_BALANCE_NEWIDLE; 893 894 return 0; 895} 896 897struct sched_group_power { 898 atomic_t ref; 899 /* 900 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 901 * single CPU. 902 */ 903 unsigned int power, power_orig; 904}; 905 906struct sched_group { 907 struct sched_group *next; /* Must be a circular list */ 908 atomic_t ref; 909 910 unsigned int group_weight; 911 struct sched_group_power *sgp; 912 913 /* 914 * The CPUs this group covers. 915 * 916 * NOTE: this field is variable length. (Allocated dynamically 917 * by attaching extra space to the end of the structure, 918 * depending on how many CPUs the kernel has booted up with) 919 */ 920 unsigned long cpumask[0]; 921}; 922 923static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 924{ 925 return to_cpumask(sg->cpumask); 926} 927 928struct sched_domain_attr { 929 int relax_domain_level; 930}; 931 932#define SD_ATTR_INIT (struct sched_domain_attr) { \ 933 .relax_domain_level = -1, \ 934} 935 936extern int sched_domain_level_max; 937 938struct sched_domain { 939 /* These fields must be setup */ 940 struct sched_domain *parent; /* top domain must be null terminated */ 941 struct sched_domain *child; /* bottom domain must be null terminated */ 942 struct sched_group *groups; /* the balancing groups of the domain */ 943 unsigned long min_interval; /* Minimum balance interval ms */ 944 unsigned long max_interval; /* Maximum balance interval ms */ 945 unsigned int busy_factor; /* less balancing by factor if busy */ 946 unsigned int imbalance_pct; /* No balance until over watermark */ 947 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 948 unsigned int busy_idx; 949 unsigned int idle_idx; 950 unsigned int newidle_idx; 951 unsigned int wake_idx; 952 unsigned int forkexec_idx; 953 unsigned int smt_gain; 954 int flags; /* See SD_* */ 955 int level; 956 957 /* Runtime fields. */ 958 unsigned long last_balance; /* init to jiffies. units in jiffies */ 959 unsigned int balance_interval; /* initialise to 1. units in ms. */ 960 unsigned int nr_balance_failed; /* initialise to 0 */ 961 962 u64 last_update; 963 964#ifdef CONFIG_SCHEDSTATS 965 /* load_balance() stats */ 966 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 967 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 968 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 969 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 970 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 971 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 972 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 973 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 974 975 /* Active load balancing */ 976 unsigned int alb_count; 977 unsigned int alb_failed; 978 unsigned int alb_pushed; 979 980 /* SD_BALANCE_EXEC stats */ 981 unsigned int sbe_count; 982 unsigned int sbe_balanced; 983 unsigned int sbe_pushed; 984 985 /* SD_BALANCE_FORK stats */ 986 unsigned int sbf_count; 987 unsigned int sbf_balanced; 988 unsigned int sbf_pushed; 989 990 /* try_to_wake_up() stats */ 991 unsigned int ttwu_wake_remote; 992 unsigned int ttwu_move_affine; 993 unsigned int ttwu_move_balance; 994#endif 995#ifdef CONFIG_SCHED_DEBUG 996 char *name; 997#endif 998 union { 999 void *private; /* used during construction */ 1000 struct rcu_head rcu; /* used during destruction */ 1001 }; 1002 1003 unsigned int span_weight; 1004 /* 1005 * Span of all CPUs in this domain. 1006 * 1007 * NOTE: this field is variable length. (Allocated dynamically 1008 * by attaching extra space to the end of the structure, 1009 * depending on how many CPUs the kernel has booted up with) 1010 */ 1011 unsigned long span[0]; 1012}; 1013 1014static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1015{ 1016 return to_cpumask(sd->span); 1017} 1018 1019extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1020 struct sched_domain_attr *dattr_new); 1021 1022/* Allocate an array of sched domains, for partition_sched_domains(). */ 1023cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1024void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1025 1026/* Test a flag in parent sched domain */ 1027static inline int test_sd_parent(struct sched_domain *sd, int flag) 1028{ 1029 if (sd->parent && (sd->parent->flags & flag)) 1030 return 1; 1031 1032 return 0; 1033} 1034 1035unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1036unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1037 1038#else /* CONFIG_SMP */ 1039 1040struct sched_domain_attr; 1041 1042static inline void 1043partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1044 struct sched_domain_attr *dattr_new) 1045{ 1046} 1047#endif /* !CONFIG_SMP */ 1048 1049 1050struct io_context; /* See blkdev.h */ 1051 1052 1053#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1054extern void prefetch_stack(struct task_struct *t); 1055#else 1056static inline void prefetch_stack(struct task_struct *t) { } 1057#endif 1058 1059struct audit_context; /* See audit.c */ 1060struct mempolicy; 1061struct pipe_inode_info; 1062struct uts_namespace; 1063 1064struct rq; 1065struct sched_domain; 1066 1067/* 1068 * wake flags 1069 */ 1070#define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1071#define WF_FORK 0x02 /* child wakeup after fork */ 1072#define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1073 1074#define ENQUEUE_WAKEUP 1 1075#define ENQUEUE_HEAD 2 1076#ifdef CONFIG_SMP 1077#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1078#else 1079#define ENQUEUE_WAKING 0 1080#endif 1081 1082#define DEQUEUE_SLEEP 1 1083 1084struct sched_class { 1085 const struct sched_class *next; 1086 1087 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1088 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1089 void (*yield_task) (struct rq *rq); 1090 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1091 1092 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1093 1094 struct task_struct * (*pick_next_task) (struct rq *rq); 1095 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1096 1097#ifdef CONFIG_SMP 1098 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1099 1100 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1101 void (*post_schedule) (struct rq *this_rq); 1102 void (*task_waking) (struct task_struct *task); 1103 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1104 1105 void (*set_cpus_allowed)(struct task_struct *p, 1106 const struct cpumask *newmask); 1107 1108 void (*rq_online)(struct rq *rq); 1109 void (*rq_offline)(struct rq *rq); 1110#endif 1111 1112 void (*set_curr_task) (struct rq *rq); 1113 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1114 void (*task_fork) (struct task_struct *p); 1115 1116 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1117 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1118 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1119 int oldprio); 1120 1121 unsigned int (*get_rr_interval) (struct rq *rq, 1122 struct task_struct *task); 1123 1124#ifdef CONFIG_FAIR_GROUP_SCHED 1125 void (*task_move_group) (struct task_struct *p, int on_rq); 1126#endif 1127}; 1128 1129struct load_weight { 1130 unsigned long weight, inv_weight; 1131}; 1132 1133#ifdef CONFIG_SCHEDSTATS 1134struct sched_statistics { 1135 u64 wait_start; 1136 u64 wait_max; 1137 u64 wait_count; 1138 u64 wait_sum; 1139 u64 iowait_count; 1140 u64 iowait_sum; 1141 1142 u64 sleep_start; 1143 u64 sleep_max; 1144 s64 sum_sleep_runtime; 1145 1146 u64 block_start; 1147 u64 block_max; 1148 u64 exec_max; 1149 u64 slice_max; 1150 1151 u64 nr_migrations_cold; 1152 u64 nr_failed_migrations_affine; 1153 u64 nr_failed_migrations_running; 1154 u64 nr_failed_migrations_hot; 1155 u64 nr_forced_migrations; 1156 1157 u64 nr_wakeups; 1158 u64 nr_wakeups_sync; 1159 u64 nr_wakeups_migrate; 1160 u64 nr_wakeups_local; 1161 u64 nr_wakeups_remote; 1162 u64 nr_wakeups_affine; 1163 u64 nr_wakeups_affine_attempts; 1164 u64 nr_wakeups_passive; 1165 u64 nr_wakeups_idle; 1166}; 1167#endif 1168 1169struct sched_entity { 1170 struct load_weight load; /* for load-balancing */ 1171 struct rb_node run_node; 1172 struct list_head group_node; 1173 unsigned int on_rq; 1174 1175 u64 exec_start; 1176 u64 sum_exec_runtime; 1177 u64 vruntime; 1178 u64 prev_sum_exec_runtime; 1179 1180 u64 nr_migrations; 1181 1182#ifdef CONFIG_SCHEDSTATS 1183 struct sched_statistics statistics; 1184#endif 1185 1186#ifdef CONFIG_FAIR_GROUP_SCHED 1187 struct sched_entity *parent; 1188 /* rq on which this entity is (to be) queued: */ 1189 struct cfs_rq *cfs_rq; 1190 /* rq "owned" by this entity/group: */ 1191 struct cfs_rq *my_q; 1192#endif 1193}; 1194 1195struct sched_rt_entity { 1196 struct list_head run_list; 1197 unsigned long timeout; 1198 unsigned int time_slice; 1199 int nr_cpus_allowed; 1200 1201 struct sched_rt_entity *back; 1202#ifdef CONFIG_RT_GROUP_SCHED 1203 struct sched_rt_entity *parent; 1204 /* rq on which this entity is (to be) queued: */ 1205 struct rt_rq *rt_rq; 1206 /* rq "owned" by this entity/group: */ 1207 struct rt_rq *my_q; 1208#endif 1209}; 1210 1211struct rcu_node; 1212 1213enum perf_event_task_context { 1214 perf_invalid_context = -1, 1215 perf_hw_context = 0, 1216 perf_sw_context, 1217 perf_nr_task_contexts, 1218}; 1219 1220struct task_struct { 1221 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1222 void *stack; 1223 atomic_t usage; 1224 unsigned int flags; /* per process flags, defined below */ 1225 unsigned int ptrace; 1226 1227#ifdef CONFIG_SMP 1228 struct llist_node wake_entry; 1229 int on_cpu; 1230#endif 1231 int on_rq; 1232 1233 int prio, static_prio, normal_prio; 1234 unsigned int rt_priority; 1235 const struct sched_class *sched_class; 1236 struct sched_entity se; 1237 struct sched_rt_entity rt; 1238 1239#ifdef CONFIG_PREEMPT_NOTIFIERS 1240 /* list of struct preempt_notifier: */ 1241 struct hlist_head preempt_notifiers; 1242#endif 1243 1244 /* 1245 * fpu_counter contains the number of consecutive context switches 1246 * that the FPU is used. If this is over a threshold, the lazy fpu 1247 * saving becomes unlazy to save the trap. This is an unsigned char 1248 * so that after 256 times the counter wraps and the behavior turns 1249 * lazy again; this to deal with bursty apps that only use FPU for 1250 * a short time 1251 */ 1252 unsigned char fpu_counter; 1253#ifdef CONFIG_BLK_DEV_IO_TRACE 1254 unsigned int btrace_seq; 1255#endif 1256 1257 unsigned int policy; 1258 cpumask_t cpus_allowed; 1259 1260#ifdef CONFIG_PREEMPT_RCU 1261 int rcu_read_lock_nesting; 1262 char rcu_read_unlock_special; 1263 struct list_head rcu_node_entry; 1264#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1265#ifdef CONFIG_TREE_PREEMPT_RCU 1266 struct rcu_node *rcu_blocked_node; 1267#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1268#ifdef CONFIG_RCU_BOOST 1269 struct rt_mutex *rcu_boost_mutex; 1270#endif /* #ifdef CONFIG_RCU_BOOST */ 1271 1272#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1273 struct sched_info sched_info; 1274#endif 1275 1276 struct list_head tasks; 1277#ifdef CONFIG_SMP 1278 struct plist_node pushable_tasks; 1279#endif 1280 1281 struct mm_struct *mm, *active_mm; 1282#ifdef CONFIG_COMPAT_BRK 1283 unsigned brk_randomized:1; 1284#endif 1285#if defined(SPLIT_RSS_COUNTING) 1286 struct task_rss_stat rss_stat; 1287#endif 1288/* task state */ 1289 int exit_state; 1290 int exit_code, exit_signal; 1291 int pdeath_signal; /* The signal sent when the parent dies */ 1292 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1293 /* ??? */ 1294 unsigned int personality; 1295 unsigned did_exec:1; 1296 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1297 * execve */ 1298 unsigned in_iowait:1; 1299 1300 1301 /* Revert to default priority/policy when forking */ 1302 unsigned sched_reset_on_fork:1; 1303 unsigned sched_contributes_to_load:1; 1304 1305 pid_t pid; 1306 pid_t tgid; 1307 1308#ifdef CONFIG_CC_STACKPROTECTOR 1309 /* Canary value for the -fstack-protector gcc feature */ 1310 unsigned long stack_canary; 1311#endif 1312 1313 /* 1314 * pointers to (original) parent process, youngest child, younger sibling, 1315 * older sibling, respectively. (p->father can be replaced with 1316 * p->real_parent->pid) 1317 */ 1318 struct task_struct *real_parent; /* real parent process */ 1319 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1320 /* 1321 * children/sibling forms the list of my natural children 1322 */ 1323 struct list_head children; /* list of my children */ 1324 struct list_head sibling; /* linkage in my parent's children list */ 1325 struct task_struct *group_leader; /* threadgroup leader */ 1326 1327 /* 1328 * ptraced is the list of tasks this task is using ptrace on. 1329 * This includes both natural children and PTRACE_ATTACH targets. 1330 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1331 */ 1332 struct list_head ptraced; 1333 struct list_head ptrace_entry; 1334 1335 /* PID/PID hash table linkage. */ 1336 struct pid_link pids[PIDTYPE_MAX]; 1337 struct list_head thread_group; 1338 1339 struct completion *vfork_done; /* for vfork() */ 1340 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1341 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1342 1343 cputime_t utime, stime, utimescaled, stimescaled; 1344 cputime_t gtime; 1345#ifndef CONFIG_VIRT_CPU_ACCOUNTING 1346 cputime_t prev_utime, prev_stime; 1347#endif 1348 unsigned long nvcsw, nivcsw; /* context switch counts */ 1349 struct timespec start_time; /* monotonic time */ 1350 struct timespec real_start_time; /* boot based time */ 1351/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1352 unsigned long min_flt, maj_flt; 1353 1354 struct task_cputime cputime_expires; 1355 struct list_head cpu_timers[3]; 1356 1357/* process credentials */ 1358 const struct cred __rcu *real_cred; /* objective and real subjective task 1359 * credentials (COW) */ 1360 const struct cred __rcu *cred; /* effective (overridable) subjective task 1361 * credentials (COW) */ 1362 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1363 1364 char comm[TASK_COMM_LEN]; /* executable name excluding path 1365 - access with [gs]et_task_comm (which lock 1366 it with task_lock()) 1367 - initialized normally by setup_new_exec */ 1368/* file system info */ 1369 int link_count, total_link_count; 1370#ifdef CONFIG_SYSVIPC 1371/* ipc stuff */ 1372 struct sysv_sem sysvsem; 1373#endif 1374#ifdef CONFIG_DETECT_HUNG_TASK 1375/* hung task detection */ 1376 unsigned long last_switch_count; 1377#endif 1378/* CPU-specific state of this task */ 1379 struct thread_struct thread; 1380/* filesystem information */ 1381 struct fs_struct *fs; 1382/* open file information */ 1383 struct files_struct *files; 1384/* namespaces */ 1385 struct nsproxy *nsproxy; 1386/* signal handlers */ 1387 struct signal_struct *signal; 1388 struct sighand_struct *sighand; 1389 1390 sigset_t blocked, real_blocked; 1391 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1392 struct sigpending pending; 1393 1394 unsigned long sas_ss_sp; 1395 size_t sas_ss_size; 1396 int (*notifier)(void *priv); 1397 void *notifier_data; 1398 sigset_t *notifier_mask; 1399 struct audit_context *audit_context; 1400#ifdef CONFIG_AUDITSYSCALL 1401 uid_t loginuid; 1402 unsigned int sessionid; 1403#endif 1404 seccomp_t seccomp; 1405 1406/* Thread group tracking */ 1407 u32 parent_exec_id; 1408 u32 self_exec_id; 1409/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1410 * mempolicy */ 1411 spinlock_t alloc_lock; 1412 1413#ifdef CONFIG_GENERIC_HARDIRQS 1414 /* IRQ handler threads */ 1415 struct irqaction *irqaction; 1416#endif 1417 1418 /* Protection of the PI data structures: */ 1419 raw_spinlock_t pi_lock; 1420 1421#ifdef CONFIG_RT_MUTEXES 1422 /* PI waiters blocked on a rt_mutex held by this task */ 1423 struct plist_head pi_waiters; 1424 /* Deadlock detection and priority inheritance handling */ 1425 struct rt_mutex_waiter *pi_blocked_on; 1426#endif 1427 1428#ifdef CONFIG_DEBUG_MUTEXES 1429 /* mutex deadlock detection */ 1430 struct mutex_waiter *blocked_on; 1431#endif 1432#ifdef CONFIG_TRACE_IRQFLAGS 1433 unsigned int irq_events; 1434 unsigned long hardirq_enable_ip; 1435 unsigned long hardirq_disable_ip; 1436 unsigned int hardirq_enable_event; 1437 unsigned int hardirq_disable_event; 1438 int hardirqs_enabled; 1439 int hardirq_context; 1440 unsigned long softirq_disable_ip; 1441 unsigned long softirq_enable_ip; 1442 unsigned int softirq_disable_event; 1443 unsigned int softirq_enable_event; 1444 int softirqs_enabled; 1445 int softirq_context; 1446#endif 1447#ifdef CONFIG_LOCKDEP 1448# define MAX_LOCK_DEPTH 48UL 1449 u64 curr_chain_key; 1450 int lockdep_depth; 1451 unsigned int lockdep_recursion; 1452 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1453 gfp_t lockdep_reclaim_gfp; 1454#endif 1455 1456/* journalling filesystem info */ 1457 void *journal_info; 1458 1459/* stacked block device info */ 1460 struct bio_list *bio_list; 1461 1462#ifdef CONFIG_BLOCK 1463/* stack plugging */ 1464 struct blk_plug *plug; 1465#endif 1466 1467/* VM state */ 1468 struct reclaim_state *reclaim_state; 1469 1470 struct backing_dev_info *backing_dev_info; 1471 1472 struct io_context *io_context; 1473 1474 unsigned long ptrace_message; 1475 siginfo_t *last_siginfo; /* For ptrace use. */ 1476 struct task_io_accounting ioac; 1477#if defined(CONFIG_TASK_XACCT) 1478 u64 acct_rss_mem1; /* accumulated rss usage */ 1479 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1480 cputime_t acct_timexpd; /* stime + utime since last update */ 1481#endif 1482#ifdef CONFIG_CPUSETS 1483 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1484 int mems_allowed_change_disable; 1485 int cpuset_mem_spread_rotor; 1486 int cpuset_slab_spread_rotor; 1487#endif 1488#ifdef CONFIG_CGROUPS 1489 /* Control Group info protected by css_set_lock */ 1490 struct css_set __rcu *cgroups; 1491 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1492 struct list_head cg_list; 1493#endif 1494#ifdef CONFIG_FUTEX 1495 struct robust_list_head __user *robust_list; 1496#ifdef CONFIG_COMPAT 1497 struct compat_robust_list_head __user *compat_robust_list; 1498#endif 1499 struct list_head pi_state_list; 1500 struct futex_pi_state *pi_state_cache; 1501#endif 1502#ifdef CONFIG_PERF_EVENTS 1503 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1504 struct mutex perf_event_mutex; 1505 struct list_head perf_event_list; 1506#endif 1507#ifdef CONFIG_NUMA 1508 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1509 short il_next; 1510 short pref_node_fork; 1511#endif 1512 struct rcu_head rcu; 1513 1514 /* 1515 * cache last used pipe for splice 1516 */ 1517 struct pipe_inode_info *splice_pipe; 1518#ifdef CONFIG_TASK_DELAY_ACCT 1519 struct task_delay_info *delays; 1520#endif 1521#ifdef CONFIG_FAULT_INJECTION 1522 int make_it_fail; 1523#endif 1524 struct prop_local_single dirties; 1525 /* 1526 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1527 * balance_dirty_pages() for some dirty throttling pause 1528 */ 1529 int nr_dirtied; 1530 int nr_dirtied_pause; 1531 1532#ifdef CONFIG_LATENCYTOP 1533 int latency_record_count; 1534 struct latency_record latency_record[LT_SAVECOUNT]; 1535#endif 1536 /* 1537 * time slack values; these are used to round up poll() and 1538 * select() etc timeout values. These are in nanoseconds. 1539 */ 1540 unsigned long timer_slack_ns; 1541 unsigned long default_timer_slack_ns; 1542 1543 struct list_head *scm_work_list; 1544#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1545 /* Index of current stored address in ret_stack */ 1546 int curr_ret_stack; 1547 /* Stack of return addresses for return function tracing */ 1548 struct ftrace_ret_stack *ret_stack; 1549 /* time stamp for last schedule */ 1550 unsigned long long ftrace_timestamp; 1551 /* 1552 * Number of functions that haven't been traced 1553 * because of depth overrun. 1554 */ 1555 atomic_t trace_overrun; 1556 /* Pause for the tracing */ 1557 atomic_t tracing_graph_pause; 1558#endif 1559#ifdef CONFIG_TRACING 1560 /* state flags for use by tracers */ 1561 unsigned long trace; 1562 /* bitmask and counter of trace recursion */ 1563 unsigned long trace_recursion; 1564#endif /* CONFIG_TRACING */ 1565#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1566 struct memcg_batch_info { 1567 int do_batch; /* incremented when batch uncharge started */ 1568 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1569 unsigned long nr_pages; /* uncharged usage */ 1570 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1571 } memcg_batch; 1572#endif 1573#ifdef CONFIG_HAVE_HW_BREAKPOINT 1574 atomic_t ptrace_bp_refcnt; 1575#endif 1576}; 1577 1578/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1579#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1580 1581/* 1582 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1583 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1584 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1585 * values are inverted: lower p->prio value means higher priority. 1586 * 1587 * The MAX_USER_RT_PRIO value allows the actual maximum 1588 * RT priority to be separate from the value exported to 1589 * user-space. This allows kernel threads to set their 1590 * priority to a value higher than any user task. Note: 1591 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1592 */ 1593 1594#define MAX_USER_RT_PRIO 100 1595#define MAX_RT_PRIO MAX_USER_RT_PRIO 1596 1597#define MAX_PRIO (MAX_RT_PRIO + 40) 1598#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1599 1600static inline int rt_prio(int prio) 1601{ 1602 if (unlikely(prio < MAX_RT_PRIO)) 1603 return 1; 1604 return 0; 1605} 1606 1607static inline int rt_task(struct task_struct *p) 1608{ 1609 return rt_prio(p->prio); 1610} 1611 1612static inline struct pid *task_pid(struct task_struct *task) 1613{ 1614 return task->pids[PIDTYPE_PID].pid; 1615} 1616 1617static inline struct pid *task_tgid(struct task_struct *task) 1618{ 1619 return task->group_leader->pids[PIDTYPE_PID].pid; 1620} 1621 1622/* 1623 * Without tasklist or rcu lock it is not safe to dereference 1624 * the result of task_pgrp/task_session even if task == current, 1625 * we can race with another thread doing sys_setsid/sys_setpgid. 1626 */ 1627static inline struct pid *task_pgrp(struct task_struct *task) 1628{ 1629 return task->group_leader->pids[PIDTYPE_PGID].pid; 1630} 1631 1632static inline struct pid *task_session(struct task_struct *task) 1633{ 1634 return task->group_leader->pids[PIDTYPE_SID].pid; 1635} 1636 1637struct pid_namespace; 1638 1639/* 1640 * the helpers to get the task's different pids as they are seen 1641 * from various namespaces 1642 * 1643 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1644 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1645 * current. 1646 * task_xid_nr_ns() : id seen from the ns specified; 1647 * 1648 * set_task_vxid() : assigns a virtual id to a task; 1649 * 1650 * see also pid_nr() etc in include/linux/pid.h 1651 */ 1652pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1653 struct pid_namespace *ns); 1654 1655static inline pid_t task_pid_nr(struct task_struct *tsk) 1656{ 1657 return tsk->pid; 1658} 1659 1660static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1661 struct pid_namespace *ns) 1662{ 1663 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1664} 1665 1666static inline pid_t task_pid_vnr(struct task_struct *tsk) 1667{ 1668 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1669} 1670 1671 1672static inline pid_t task_tgid_nr(struct task_struct *tsk) 1673{ 1674 return tsk->tgid; 1675} 1676 1677pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1678 1679static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1680{ 1681 return pid_vnr(task_tgid(tsk)); 1682} 1683 1684 1685static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1686 struct pid_namespace *ns) 1687{ 1688 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1689} 1690 1691static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1692{ 1693 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1694} 1695 1696 1697static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1698 struct pid_namespace *ns) 1699{ 1700 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1701} 1702 1703static inline pid_t task_session_vnr(struct task_struct *tsk) 1704{ 1705 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1706} 1707 1708/* obsolete, do not use */ 1709static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1710{ 1711 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1712} 1713 1714/** 1715 * pid_alive - check that a task structure is not stale 1716 * @p: Task structure to be checked. 1717 * 1718 * Test if a process is not yet dead (at most zombie state) 1719 * If pid_alive fails, then pointers within the task structure 1720 * can be stale and must not be dereferenced. 1721 */ 1722static inline int pid_alive(struct task_struct *p) 1723{ 1724 return p->pids[PIDTYPE_PID].pid != NULL; 1725} 1726 1727/** 1728 * is_global_init - check if a task structure is init 1729 * @tsk: Task structure to be checked. 1730 * 1731 * Check if a task structure is the first user space task the kernel created. 1732 */ 1733static inline int is_global_init(struct task_struct *tsk) 1734{ 1735 return tsk->pid == 1; 1736} 1737 1738/* 1739 * is_container_init: 1740 * check whether in the task is init in its own pid namespace. 1741 */ 1742extern int is_container_init(struct task_struct *tsk); 1743 1744extern struct pid *cad_pid; 1745 1746extern void free_task(struct task_struct *tsk); 1747#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1748 1749extern void __put_task_struct(struct task_struct *t); 1750 1751static inline void put_task_struct(struct task_struct *t) 1752{ 1753 if (atomic_dec_and_test(&t->usage)) 1754 __put_task_struct(t); 1755} 1756 1757extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1758extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1759 1760/* 1761 * Per process flags 1762 */ 1763#define PF_STARTING 0x00000002 /* being created */ 1764#define PF_EXITING 0x00000004 /* getting shut down */ 1765#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1766#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1767#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1768#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1769#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1770#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1771#define PF_DUMPCORE 0x00000200 /* dumped core */ 1772#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1773#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1774#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1775#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1776#define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1777#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1778#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1779#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1780#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1781#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1782#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1783#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1784#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1785#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1786#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1787#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1788#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1789#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1790#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1791#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1792#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1793 1794/* 1795 * Only the _current_ task can read/write to tsk->flags, but other 1796 * tasks can access tsk->flags in readonly mode for example 1797 * with tsk_used_math (like during threaded core dumping). 1798 * There is however an exception to this rule during ptrace 1799 * or during fork: the ptracer task is allowed to write to the 1800 * child->flags of its traced child (same goes for fork, the parent 1801 * can write to the child->flags), because we're guaranteed the 1802 * child is not running and in turn not changing child->flags 1803 * at the same time the parent does it. 1804 */ 1805#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1806#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1807#define clear_used_math() clear_stopped_child_used_math(current) 1808#define set_used_math() set_stopped_child_used_math(current) 1809#define conditional_stopped_child_used_math(condition, child) \ 1810 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1811#define conditional_used_math(condition) \ 1812 conditional_stopped_child_used_math(condition, current) 1813#define copy_to_stopped_child_used_math(child) \ 1814 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1815/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1816#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1817#define used_math() tsk_used_math(current) 1818 1819/* 1820 * task->jobctl flags 1821 */ 1822#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1823 1824#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1825#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1826#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1827#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1828#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1829#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1830#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1831 1832#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1833#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1834#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1835#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1836#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1837#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1838#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1839 1840#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1841#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1842 1843extern bool task_set_jobctl_pending(struct task_struct *task, 1844 unsigned int mask); 1845extern void task_clear_jobctl_trapping(struct task_struct *task); 1846extern void task_clear_jobctl_pending(struct task_struct *task, 1847 unsigned int mask); 1848 1849#ifdef CONFIG_PREEMPT_RCU 1850 1851#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1852#define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */ 1853#define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */ 1854 1855static inline void rcu_copy_process(struct task_struct *p) 1856{ 1857 p->rcu_read_lock_nesting = 0; 1858 p->rcu_read_unlock_special = 0; 1859#ifdef CONFIG_TREE_PREEMPT_RCU 1860 p->rcu_blocked_node = NULL; 1861#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1862#ifdef CONFIG_RCU_BOOST 1863 p->rcu_boost_mutex = NULL; 1864#endif /* #ifdef CONFIG_RCU_BOOST */ 1865 INIT_LIST_HEAD(&p->rcu_node_entry); 1866} 1867 1868#else 1869 1870static inline void rcu_copy_process(struct task_struct *p) 1871{ 1872} 1873 1874#endif 1875 1876#ifdef CONFIG_SMP 1877extern void do_set_cpus_allowed(struct task_struct *p, 1878 const struct cpumask *new_mask); 1879 1880extern int set_cpus_allowed_ptr(struct task_struct *p, 1881 const struct cpumask *new_mask); 1882#else 1883static inline void do_set_cpus_allowed(struct task_struct *p, 1884 const struct cpumask *new_mask) 1885{ 1886} 1887static inline int set_cpus_allowed_ptr(struct task_struct *p, 1888 const struct cpumask *new_mask) 1889{ 1890 if (!cpumask_test_cpu(0, new_mask)) 1891 return -EINVAL; 1892 return 0; 1893} 1894#endif 1895 1896#ifndef CONFIG_CPUMASK_OFFSTACK 1897static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1898{ 1899 return set_cpus_allowed_ptr(p, &new_mask); 1900} 1901#endif 1902 1903/* 1904 * Do not use outside of architecture code which knows its limitations. 1905 * 1906 * sched_clock() has no promise of monotonicity or bounded drift between 1907 * CPUs, use (which you should not) requires disabling IRQs. 1908 * 1909 * Please use one of the three interfaces below. 1910 */ 1911extern unsigned long long notrace sched_clock(void); 1912/* 1913 * See the comment in kernel/sched_clock.c 1914 */ 1915extern u64 cpu_clock(int cpu); 1916extern u64 local_clock(void); 1917extern u64 sched_clock_cpu(int cpu); 1918 1919 1920extern void sched_clock_init(void); 1921 1922#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1923static inline void sched_clock_tick(void) 1924{ 1925} 1926 1927static inline void sched_clock_idle_sleep_event(void) 1928{ 1929} 1930 1931static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1932{ 1933} 1934#else 1935/* 1936 * Architectures can set this to 1 if they have specified 1937 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1938 * but then during bootup it turns out that sched_clock() 1939 * is reliable after all: 1940 */ 1941extern int sched_clock_stable; 1942 1943extern void sched_clock_tick(void); 1944extern void sched_clock_idle_sleep_event(void); 1945extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1946#endif 1947 1948#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1949/* 1950 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1951 * The reason for this explicit opt-in is not to have perf penalty with 1952 * slow sched_clocks. 1953 */ 1954extern void enable_sched_clock_irqtime(void); 1955extern void disable_sched_clock_irqtime(void); 1956#else 1957static inline void enable_sched_clock_irqtime(void) {} 1958static inline void disable_sched_clock_irqtime(void) {} 1959#endif 1960 1961extern unsigned long long 1962task_sched_runtime(struct task_struct *task); 1963 1964/* sched_exec is called by processes performing an exec */ 1965#ifdef CONFIG_SMP 1966extern void sched_exec(void); 1967#else 1968#define sched_exec() {} 1969#endif 1970 1971extern void sched_clock_idle_sleep_event(void); 1972extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1973 1974#ifdef CONFIG_HOTPLUG_CPU 1975extern void idle_task_exit(void); 1976#else 1977static inline void idle_task_exit(void) {} 1978#endif 1979 1980#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1981extern void wake_up_idle_cpu(int cpu); 1982#else 1983static inline void wake_up_idle_cpu(int cpu) { } 1984#endif 1985 1986extern unsigned int sysctl_sched_latency; 1987extern unsigned int sysctl_sched_min_granularity; 1988extern unsigned int sysctl_sched_wakeup_granularity; 1989extern unsigned int sysctl_sched_child_runs_first; 1990 1991enum sched_tunable_scaling { 1992 SCHED_TUNABLESCALING_NONE, 1993 SCHED_TUNABLESCALING_LOG, 1994 SCHED_TUNABLESCALING_LINEAR, 1995 SCHED_TUNABLESCALING_END, 1996}; 1997extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1998 1999#ifdef CONFIG_SCHED_DEBUG 2000extern unsigned int sysctl_sched_migration_cost; 2001extern unsigned int sysctl_sched_nr_migrate; 2002extern unsigned int sysctl_sched_time_avg; 2003extern unsigned int sysctl_timer_migration; 2004extern unsigned int sysctl_sched_shares_window; 2005 2006int sched_proc_update_handler(struct ctl_table *table, int write, 2007 void __user *buffer, size_t *length, 2008 loff_t *ppos); 2009#endif 2010#ifdef CONFIG_SCHED_DEBUG 2011static inline unsigned int get_sysctl_timer_migration(void) 2012{ 2013 return sysctl_timer_migration; 2014} 2015#else 2016static inline unsigned int get_sysctl_timer_migration(void) 2017{ 2018 return 1; 2019} 2020#endif 2021extern unsigned int sysctl_sched_rt_period; 2022extern int sysctl_sched_rt_runtime; 2023 2024int sched_rt_handler(struct ctl_table *table, int write, 2025 void __user *buffer, size_t *lenp, 2026 loff_t *ppos); 2027 2028#ifdef CONFIG_SCHED_AUTOGROUP 2029extern unsigned int sysctl_sched_autogroup_enabled; 2030 2031extern void sched_autogroup_create_attach(struct task_struct *p); 2032extern void sched_autogroup_detach(struct task_struct *p); 2033extern void sched_autogroup_fork(struct signal_struct *sig); 2034extern void sched_autogroup_exit(struct signal_struct *sig); 2035#ifdef CONFIG_PROC_FS 2036extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2037extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice); 2038#endif 2039#else 2040static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2041static inline void sched_autogroup_detach(struct task_struct *p) { } 2042static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2043static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2044#endif 2045 2046#ifdef CONFIG_CFS_BANDWIDTH 2047extern unsigned int sysctl_sched_cfs_bandwidth_slice; 2048#endif 2049 2050#ifdef CONFIG_RT_MUTEXES 2051extern int rt_mutex_getprio(struct task_struct *p); 2052extern void rt_mutex_setprio(struct task_struct *p, int prio); 2053extern void rt_mutex_adjust_pi(struct task_struct *p); 2054#else 2055static inline int rt_mutex_getprio(struct task_struct *p) 2056{ 2057 return p->normal_prio; 2058} 2059# define rt_mutex_adjust_pi(p) do { } while (0) 2060#endif 2061 2062extern bool yield_to(struct task_struct *p, bool preempt); 2063extern void set_user_nice(struct task_struct *p, long nice); 2064extern int task_prio(const struct task_struct *p); 2065extern int task_nice(const struct task_struct *p); 2066extern int can_nice(const struct task_struct *p, const int nice); 2067extern int task_curr(const struct task_struct *p); 2068extern int idle_cpu(int cpu); 2069extern int sched_setscheduler(struct task_struct *, int, 2070 const struct sched_param *); 2071extern int sched_setscheduler_nocheck(struct task_struct *, int, 2072 const struct sched_param *); 2073extern struct task_struct *idle_task(int cpu); 2074extern struct task_struct *curr_task(int cpu); 2075extern void set_curr_task(int cpu, struct task_struct *p); 2076 2077void yield(void); 2078 2079/* 2080 * The default (Linux) execution domain. 2081 */ 2082extern struct exec_domain default_exec_domain; 2083 2084union thread_union { 2085 struct thread_info thread_info; 2086 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2087}; 2088 2089#ifndef __HAVE_ARCH_KSTACK_END 2090static inline int kstack_end(void *addr) 2091{ 2092 /* Reliable end of stack detection: 2093 * Some APM bios versions misalign the stack 2094 */ 2095 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2096} 2097#endif 2098 2099extern union thread_union init_thread_union; 2100extern struct task_struct init_task; 2101 2102extern struct mm_struct init_mm; 2103 2104extern struct pid_namespace init_pid_ns; 2105 2106/* 2107 * find a task by one of its numerical ids 2108 * 2109 * find_task_by_pid_ns(): 2110 * finds a task by its pid in the specified namespace 2111 * find_task_by_vpid(): 2112 * finds a task by its virtual pid 2113 * 2114 * see also find_vpid() etc in include/linux/pid.h 2115 */ 2116 2117extern struct task_struct *find_task_by_vpid(pid_t nr); 2118extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2119 struct pid_namespace *ns); 2120 2121extern void __set_special_pids(struct pid *pid); 2122 2123/* per-UID process charging. */ 2124extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2125static inline struct user_struct *get_uid(struct user_struct *u) 2126{ 2127 atomic_inc(&u->__count); 2128 return u; 2129} 2130extern void free_uid(struct user_struct *); 2131extern void release_uids(struct user_namespace *ns); 2132 2133#include <asm/current.h> 2134 2135extern void xtime_update(unsigned long ticks); 2136 2137extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2138extern int wake_up_process(struct task_struct *tsk); 2139extern void wake_up_new_task(struct task_struct *tsk); 2140#ifdef CONFIG_SMP 2141 extern void kick_process(struct task_struct *tsk); 2142#else 2143 static inline void kick_process(struct task_struct *tsk) { } 2144#endif 2145extern void sched_fork(struct task_struct *p); 2146extern void sched_dead(struct task_struct *p); 2147 2148extern void proc_caches_init(void); 2149extern void flush_signals(struct task_struct *); 2150extern void __flush_signals(struct task_struct *); 2151extern void ignore_signals(struct task_struct *); 2152extern void flush_signal_handlers(struct task_struct *, int force_default); 2153extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2154 2155static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2156{ 2157 unsigned long flags; 2158 int ret; 2159 2160 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2161 ret = dequeue_signal(tsk, mask, info); 2162 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2163 2164 return ret; 2165} 2166 2167extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2168 sigset_t *mask); 2169extern void unblock_all_signals(void); 2170extern void release_task(struct task_struct * p); 2171extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2172extern int force_sigsegv(int, struct task_struct *); 2173extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2174extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2175extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2176extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2177 const struct cred *, u32); 2178extern int kill_pgrp(struct pid *pid, int sig, int priv); 2179extern int kill_pid(struct pid *pid, int sig, int priv); 2180extern int kill_proc_info(int, struct siginfo *, pid_t); 2181extern __must_check bool do_notify_parent(struct task_struct *, int); 2182extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2183extern void force_sig(int, struct task_struct *); 2184extern int send_sig(int, struct task_struct *, int); 2185extern int zap_other_threads(struct task_struct *p); 2186extern struct sigqueue *sigqueue_alloc(void); 2187extern void sigqueue_free(struct sigqueue *); 2188extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2189extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2190extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2191 2192static inline int kill_cad_pid(int sig, int priv) 2193{ 2194 return kill_pid(cad_pid, sig, priv); 2195} 2196 2197/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2198#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2199#define SEND_SIG_PRIV ((struct siginfo *) 1) 2200#define SEND_SIG_FORCED ((struct siginfo *) 2) 2201 2202/* 2203 * True if we are on the alternate signal stack. 2204 */ 2205static inline int on_sig_stack(unsigned long sp) 2206{ 2207#ifdef CONFIG_STACK_GROWSUP 2208 return sp >= current->sas_ss_sp && 2209 sp - current->sas_ss_sp < current->sas_ss_size; 2210#else 2211 return sp > current->sas_ss_sp && 2212 sp - current->sas_ss_sp <= current->sas_ss_size; 2213#endif 2214} 2215 2216static inline int sas_ss_flags(unsigned long sp) 2217{ 2218 return (current->sas_ss_size == 0 ? SS_DISABLE 2219 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2220} 2221 2222/* 2223 * Routines for handling mm_structs 2224 */ 2225extern struct mm_struct * mm_alloc(void); 2226 2227/* mmdrop drops the mm and the page tables */ 2228extern void __mmdrop(struct mm_struct *); 2229static inline void mmdrop(struct mm_struct * mm) 2230{ 2231 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2232 __mmdrop(mm); 2233} 2234 2235/* mmput gets rid of the mappings and all user-space */ 2236extern void mmput(struct mm_struct *); 2237/* Grab a reference to a task's mm, if it is not already going away */ 2238extern struct mm_struct *get_task_mm(struct task_struct *task); 2239/* Remove the current tasks stale references to the old mm_struct */ 2240extern void mm_release(struct task_struct *, struct mm_struct *); 2241/* Allocate a new mm structure and copy contents from tsk->mm */ 2242extern struct mm_struct *dup_mm(struct task_struct *tsk); 2243 2244extern int copy_thread(unsigned long, unsigned long, unsigned long, 2245 struct task_struct *, struct pt_regs *); 2246extern void flush_thread(void); 2247extern void exit_thread(void); 2248 2249extern void exit_files(struct task_struct *); 2250extern void __cleanup_sighand(struct sighand_struct *); 2251 2252extern void exit_itimers(struct signal_struct *); 2253extern void flush_itimer_signals(void); 2254 2255extern NORET_TYPE void do_group_exit(int); 2256 2257extern void daemonize(const char *, ...); 2258extern int allow_signal(int); 2259extern int disallow_signal(int); 2260 2261extern int do_execve(const char *, 2262 const char __user * const __user *, 2263 const char __user * const __user *, struct pt_regs *); 2264extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2265struct task_struct *fork_idle(int); 2266 2267extern void set_task_comm(struct task_struct *tsk, char *from); 2268extern char *get_task_comm(char *to, struct task_struct *tsk); 2269 2270#ifdef CONFIG_SMP 2271void scheduler_ipi(void); 2272extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2273#else 2274static inline void scheduler_ipi(void) { } 2275static inline unsigned long wait_task_inactive(struct task_struct *p, 2276 long match_state) 2277{ 2278 return 1; 2279} 2280#endif 2281 2282#define next_task(p) \ 2283 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2284 2285#define for_each_process(p) \ 2286 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2287 2288extern bool current_is_single_threaded(void); 2289 2290/* 2291 * Careful: do_each_thread/while_each_thread is a double loop so 2292 * 'break' will not work as expected - use goto instead. 2293 */ 2294#define do_each_thread(g, t) \ 2295 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2296 2297#define while_each_thread(g, t) \ 2298 while ((t = next_thread(t)) != g) 2299 2300static inline int get_nr_threads(struct task_struct *tsk) 2301{ 2302 return tsk->signal->nr_threads; 2303} 2304 2305static inline bool thread_group_leader(struct task_struct *p) 2306{ 2307 return p->exit_signal >= 0; 2308} 2309 2310/* Do to the insanities of de_thread it is possible for a process 2311 * to have the pid of the thread group leader without actually being 2312 * the thread group leader. For iteration through the pids in proc 2313 * all we care about is that we have a task with the appropriate 2314 * pid, we don't actually care if we have the right task. 2315 */ 2316static inline int has_group_leader_pid(struct task_struct *p) 2317{ 2318 return p->pid == p->tgid; 2319} 2320 2321static inline 2322int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2323{ 2324 return p1->tgid == p2->tgid; 2325} 2326 2327static inline struct task_struct *next_thread(const struct task_struct *p) 2328{ 2329 return list_entry_rcu(p->thread_group.next, 2330 struct task_struct, thread_group); 2331} 2332 2333static inline int thread_group_empty(struct task_struct *p) 2334{ 2335 return list_empty(&p->thread_group); 2336} 2337 2338#define delay_group_leader(p) \ 2339 (thread_group_leader(p) && !thread_group_empty(p)) 2340 2341/* 2342 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2343 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2344 * pins the final release of task.io_context. Also protects ->cpuset and 2345 * ->cgroup.subsys[]. 2346 * 2347 * Nests both inside and outside of read_lock(&tasklist_lock). 2348 * It must not be nested with write_lock_irq(&tasklist_lock), 2349 * neither inside nor outside. 2350 */ 2351static inline void task_lock(struct task_struct *p) 2352{ 2353 spin_lock(&p->alloc_lock); 2354} 2355 2356static inline void task_unlock(struct task_struct *p) 2357{ 2358 spin_unlock(&p->alloc_lock); 2359} 2360 2361extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2362 unsigned long *flags); 2363 2364#define lock_task_sighand(tsk, flags) \ 2365({ struct sighand_struct *__ss; \ 2366 __cond_lock(&(tsk)->sighand->siglock, \ 2367 (__ss = __lock_task_sighand(tsk, flags))); \ 2368 __ss; \ 2369}) \ 2370 2371static inline void unlock_task_sighand(struct task_struct *tsk, 2372 unsigned long *flags) 2373{ 2374 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2375} 2376 2377/* See the declaration of threadgroup_fork_lock in signal_struct. */ 2378#ifdef CONFIG_CGROUPS 2379static inline void threadgroup_fork_read_lock(struct task_struct *tsk) 2380{ 2381 down_read(&tsk->signal->threadgroup_fork_lock); 2382} 2383static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) 2384{ 2385 up_read(&tsk->signal->threadgroup_fork_lock); 2386} 2387static inline void threadgroup_fork_write_lock(struct task_struct *tsk) 2388{ 2389 down_write(&tsk->signal->threadgroup_fork_lock); 2390} 2391static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) 2392{ 2393 up_write(&tsk->signal->threadgroup_fork_lock); 2394} 2395#else 2396static inline void threadgroup_fork_read_lock(struct task_struct *tsk) {} 2397static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) {} 2398static inline void threadgroup_fork_write_lock(struct task_struct *tsk) {} 2399static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) {} 2400#endif 2401 2402#ifndef __HAVE_THREAD_FUNCTIONS 2403 2404#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2405#define task_stack_page(task) ((task)->stack) 2406 2407static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2408{ 2409 *task_thread_info(p) = *task_thread_info(org); 2410 task_thread_info(p)->task = p; 2411} 2412 2413static inline unsigned long *end_of_stack(struct task_struct *p) 2414{ 2415 return (unsigned long *)(task_thread_info(p) + 1); 2416} 2417 2418#endif 2419 2420static inline int object_is_on_stack(void *obj) 2421{ 2422 void *stack = task_stack_page(current); 2423 2424 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2425} 2426 2427extern void thread_info_cache_init(void); 2428 2429#ifdef CONFIG_DEBUG_STACK_USAGE 2430static inline unsigned long stack_not_used(struct task_struct *p) 2431{ 2432 unsigned long *n = end_of_stack(p); 2433 2434 do { /* Skip over canary */ 2435 n++; 2436 } while (!*n); 2437 2438 return (unsigned long)n - (unsigned long)end_of_stack(p); 2439} 2440#endif 2441 2442/* set thread flags in other task's structures 2443 * - see asm/thread_info.h for TIF_xxxx flags available 2444 */ 2445static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2446{ 2447 set_ti_thread_flag(task_thread_info(tsk), flag); 2448} 2449 2450static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2451{ 2452 clear_ti_thread_flag(task_thread_info(tsk), flag); 2453} 2454 2455static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2456{ 2457 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2458} 2459 2460static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2461{ 2462 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2463} 2464 2465static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2466{ 2467 return test_ti_thread_flag(task_thread_info(tsk), flag); 2468} 2469 2470static inline void set_tsk_need_resched(struct task_struct *tsk) 2471{ 2472 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2473} 2474 2475static inline void clear_tsk_need_resched(struct task_struct *tsk) 2476{ 2477 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2478} 2479 2480static inline int test_tsk_need_resched(struct task_struct *tsk) 2481{ 2482 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2483} 2484 2485static inline int restart_syscall(void) 2486{ 2487 set_tsk_thread_flag(current, TIF_SIGPENDING); 2488 return -ERESTARTNOINTR; 2489} 2490 2491static inline int signal_pending(struct task_struct *p) 2492{ 2493 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2494} 2495 2496static inline int __fatal_signal_pending(struct task_struct *p) 2497{ 2498 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2499} 2500 2501static inline int fatal_signal_pending(struct task_struct *p) 2502{ 2503 return signal_pending(p) && __fatal_signal_pending(p); 2504} 2505 2506static inline int signal_pending_state(long state, struct task_struct *p) 2507{ 2508 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2509 return 0; 2510 if (!signal_pending(p)) 2511 return 0; 2512 2513 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2514} 2515 2516static inline int need_resched(void) 2517{ 2518 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2519} 2520 2521/* 2522 * cond_resched() and cond_resched_lock(): latency reduction via 2523 * explicit rescheduling in places that are safe. The return 2524 * value indicates whether a reschedule was done in fact. 2525 * cond_resched_lock() will drop the spinlock before scheduling, 2526 * cond_resched_softirq() will enable bhs before scheduling. 2527 */ 2528extern int _cond_resched(void); 2529 2530#define cond_resched() ({ \ 2531 __might_sleep(__FILE__, __LINE__, 0); \ 2532 _cond_resched(); \ 2533}) 2534 2535extern int __cond_resched_lock(spinlock_t *lock); 2536 2537#ifdef CONFIG_PREEMPT_COUNT 2538#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2539#else 2540#define PREEMPT_LOCK_OFFSET 0 2541#endif 2542 2543#define cond_resched_lock(lock) ({ \ 2544 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2545 __cond_resched_lock(lock); \ 2546}) 2547 2548extern int __cond_resched_softirq(void); 2549 2550#define cond_resched_softirq() ({ \ 2551 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2552 __cond_resched_softirq(); \ 2553}) 2554 2555/* 2556 * Does a critical section need to be broken due to another 2557 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2558 * but a general need for low latency) 2559 */ 2560static inline int spin_needbreak(spinlock_t *lock) 2561{ 2562#ifdef CONFIG_PREEMPT 2563 return spin_is_contended(lock); 2564#else 2565 return 0; 2566#endif 2567} 2568 2569/* 2570 * Thread group CPU time accounting. 2571 */ 2572void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2573void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2574 2575static inline void thread_group_cputime_init(struct signal_struct *sig) 2576{ 2577 raw_spin_lock_init(&sig->cputimer.lock); 2578} 2579 2580/* 2581 * Reevaluate whether the task has signals pending delivery. 2582 * Wake the task if so. 2583 * This is required every time the blocked sigset_t changes. 2584 * callers must hold sighand->siglock. 2585 */ 2586extern void recalc_sigpending_and_wake(struct task_struct *t); 2587extern void recalc_sigpending(void); 2588 2589extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2590 2591/* 2592 * Wrappers for p->thread_info->cpu access. No-op on UP. 2593 */ 2594#ifdef CONFIG_SMP 2595 2596static inline unsigned int task_cpu(const struct task_struct *p) 2597{ 2598 return task_thread_info(p)->cpu; 2599} 2600 2601extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2602 2603#else 2604 2605static inline unsigned int task_cpu(const struct task_struct *p) 2606{ 2607 return 0; 2608} 2609 2610static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2611{ 2612} 2613 2614#endif /* CONFIG_SMP */ 2615 2616extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2617extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2618 2619extern void normalize_rt_tasks(void); 2620 2621#ifdef CONFIG_CGROUP_SCHED 2622 2623extern struct task_group root_task_group; 2624 2625extern struct task_group *sched_create_group(struct task_group *parent); 2626extern void sched_destroy_group(struct task_group *tg); 2627extern void sched_move_task(struct task_struct *tsk); 2628#ifdef CONFIG_FAIR_GROUP_SCHED 2629extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2630extern unsigned long sched_group_shares(struct task_group *tg); 2631#endif 2632#ifdef CONFIG_RT_GROUP_SCHED 2633extern int sched_group_set_rt_runtime(struct task_group *tg, 2634 long rt_runtime_us); 2635extern long sched_group_rt_runtime(struct task_group *tg); 2636extern int sched_group_set_rt_period(struct task_group *tg, 2637 long rt_period_us); 2638extern long sched_group_rt_period(struct task_group *tg); 2639extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2640#endif 2641#endif 2642 2643extern int task_can_switch_user(struct user_struct *up, 2644 struct task_struct *tsk); 2645 2646#ifdef CONFIG_TASK_XACCT 2647static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2648{ 2649 tsk->ioac.rchar += amt; 2650} 2651 2652static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2653{ 2654 tsk->ioac.wchar += amt; 2655} 2656 2657static inline void inc_syscr(struct task_struct *tsk) 2658{ 2659 tsk->ioac.syscr++; 2660} 2661 2662static inline void inc_syscw(struct task_struct *tsk) 2663{ 2664 tsk->ioac.syscw++; 2665} 2666#else 2667static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2668{ 2669} 2670 2671static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2672{ 2673} 2674 2675static inline void inc_syscr(struct task_struct *tsk) 2676{ 2677} 2678 2679static inline void inc_syscw(struct task_struct *tsk) 2680{ 2681} 2682#endif 2683 2684#ifndef TASK_SIZE_OF 2685#define TASK_SIZE_OF(tsk) TASK_SIZE 2686#endif 2687 2688#ifdef CONFIG_MM_OWNER 2689extern void mm_update_next_owner(struct mm_struct *mm); 2690extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2691#else 2692static inline void mm_update_next_owner(struct mm_struct *mm) 2693{ 2694} 2695 2696static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2697{ 2698} 2699#endif /* CONFIG_MM_OWNER */ 2700 2701static inline unsigned long task_rlimit(const struct task_struct *tsk, 2702 unsigned int limit) 2703{ 2704 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2705} 2706 2707static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2708 unsigned int limit) 2709{ 2710 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2711} 2712 2713static inline unsigned long rlimit(unsigned int limit) 2714{ 2715 return task_rlimit(current, limit); 2716} 2717 2718static inline unsigned long rlimit_max(unsigned int limit) 2719{ 2720 return task_rlimit_max(current, limit); 2721} 2722 2723#endif /* __KERNEL__ */ 2724 2725#endif