at v3.2-rc2 56 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/prio_tree.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/range.h> 16#include <linux/pfn.h> 17#include <linux/bit_spinlock.h> 18#include <linux/shrinker.h> 19 20struct mempolicy; 21struct anon_vma; 22struct file_ra_state; 23struct user_struct; 24struct writeback_control; 25 26#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 27extern unsigned long max_mapnr; 28#endif 29 30extern unsigned long num_physpages; 31extern unsigned long totalram_pages; 32extern void * high_memory; 33extern int page_cluster; 34 35#ifdef CONFIG_SYSCTL 36extern int sysctl_legacy_va_layout; 37#else 38#define sysctl_legacy_va_layout 0 39#endif 40 41#include <asm/page.h> 42#include <asm/pgtable.h> 43#include <asm/processor.h> 44 45#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 46 47/* to align the pointer to the (next) page boundary */ 48#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 49 50/* 51 * Linux kernel virtual memory manager primitives. 52 * The idea being to have a "virtual" mm in the same way 53 * we have a virtual fs - giving a cleaner interface to the 54 * mm details, and allowing different kinds of memory mappings 55 * (from shared memory to executable loading to arbitrary 56 * mmap() functions). 57 */ 58 59extern struct kmem_cache *vm_area_cachep; 60 61#ifndef CONFIG_MMU 62extern struct rb_root nommu_region_tree; 63extern struct rw_semaphore nommu_region_sem; 64 65extern unsigned int kobjsize(const void *objp); 66#endif 67 68/* 69 * vm_flags in vm_area_struct, see mm_types.h. 70 */ 71#define VM_READ 0x00000001 /* currently active flags */ 72#define VM_WRITE 0x00000002 73#define VM_EXEC 0x00000004 74#define VM_SHARED 0x00000008 75 76/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 77#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 78#define VM_MAYWRITE 0x00000020 79#define VM_MAYEXEC 0x00000040 80#define VM_MAYSHARE 0x00000080 81 82#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 83#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 84#define VM_GROWSUP 0x00000200 85#else 86#define VM_GROWSUP 0x00000000 87#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 88#endif 89#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 90#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 91 92#define VM_EXECUTABLE 0x00001000 93#define VM_LOCKED 0x00002000 94#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 95 96 /* Used by sys_madvise() */ 97#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 98#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 99 100#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 101#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 102#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 103#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 104#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 105#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 106#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 107#ifndef CONFIG_TRANSPARENT_HUGEPAGE 108#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 109#else 110#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 111#endif 112#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 113#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 114 115#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 116#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 117#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 118#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 119#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 120 121/* Bits set in the VMA until the stack is in its final location */ 122#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 123 124#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 125#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 126#endif 127 128#ifdef CONFIG_STACK_GROWSUP 129#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 130#else 131#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 132#endif 133 134#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 135#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 136#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 137#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 138#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 139 140/* 141 * Special vmas that are non-mergable, non-mlock()able. 142 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 143 */ 144#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 145 146/* 147 * mapping from the currently active vm_flags protection bits (the 148 * low four bits) to a page protection mask.. 149 */ 150extern pgprot_t protection_map[16]; 151 152#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 153#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 154#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 155#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 156#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 157#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 158 159/* 160 * This interface is used by x86 PAT code to identify a pfn mapping that is 161 * linear over entire vma. This is to optimize PAT code that deals with 162 * marking the physical region with a particular prot. This is not for generic 163 * mm use. Note also that this check will not work if the pfn mapping is 164 * linear for a vma starting at physical address 0. In which case PAT code 165 * falls back to slow path of reserving physical range page by page. 166 */ 167static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 168{ 169 return !!(vma->vm_flags & VM_PFN_AT_MMAP); 170} 171 172static inline int is_pfn_mapping(struct vm_area_struct *vma) 173{ 174 return !!(vma->vm_flags & VM_PFNMAP); 175} 176 177/* 178 * vm_fault is filled by the the pagefault handler and passed to the vma's 179 * ->fault function. The vma's ->fault is responsible for returning a bitmask 180 * of VM_FAULT_xxx flags that give details about how the fault was handled. 181 * 182 * pgoff should be used in favour of virtual_address, if possible. If pgoff 183 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 184 * mapping support. 185 */ 186struct vm_fault { 187 unsigned int flags; /* FAULT_FLAG_xxx flags */ 188 pgoff_t pgoff; /* Logical page offset based on vma */ 189 void __user *virtual_address; /* Faulting virtual address */ 190 191 struct page *page; /* ->fault handlers should return a 192 * page here, unless VM_FAULT_NOPAGE 193 * is set (which is also implied by 194 * VM_FAULT_ERROR). 195 */ 196}; 197 198/* 199 * These are the virtual MM functions - opening of an area, closing and 200 * unmapping it (needed to keep files on disk up-to-date etc), pointer 201 * to the functions called when a no-page or a wp-page exception occurs. 202 */ 203struct vm_operations_struct { 204 void (*open)(struct vm_area_struct * area); 205 void (*close)(struct vm_area_struct * area); 206 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 207 208 /* notification that a previously read-only page is about to become 209 * writable, if an error is returned it will cause a SIGBUS */ 210 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 211 212 /* called by access_process_vm when get_user_pages() fails, typically 213 * for use by special VMAs that can switch between memory and hardware 214 */ 215 int (*access)(struct vm_area_struct *vma, unsigned long addr, 216 void *buf, int len, int write); 217#ifdef CONFIG_NUMA 218 /* 219 * set_policy() op must add a reference to any non-NULL @new mempolicy 220 * to hold the policy upon return. Caller should pass NULL @new to 221 * remove a policy and fall back to surrounding context--i.e. do not 222 * install a MPOL_DEFAULT policy, nor the task or system default 223 * mempolicy. 224 */ 225 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 226 227 /* 228 * get_policy() op must add reference [mpol_get()] to any policy at 229 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 230 * in mm/mempolicy.c will do this automatically. 231 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 232 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 233 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 234 * must return NULL--i.e., do not "fallback" to task or system default 235 * policy. 236 */ 237 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 238 unsigned long addr); 239 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 240 const nodemask_t *to, unsigned long flags); 241#endif 242}; 243 244struct mmu_gather; 245struct inode; 246 247#define page_private(page) ((page)->private) 248#define set_page_private(page, v) ((page)->private = (v)) 249 250/* 251 * FIXME: take this include out, include page-flags.h in 252 * files which need it (119 of them) 253 */ 254#include <linux/page-flags.h> 255#include <linux/huge_mm.h> 256 257/* 258 * Methods to modify the page usage count. 259 * 260 * What counts for a page usage: 261 * - cache mapping (page->mapping) 262 * - private data (page->private) 263 * - page mapped in a task's page tables, each mapping 264 * is counted separately 265 * 266 * Also, many kernel routines increase the page count before a critical 267 * routine so they can be sure the page doesn't go away from under them. 268 */ 269 270/* 271 * Drop a ref, return true if the refcount fell to zero (the page has no users) 272 */ 273static inline int put_page_testzero(struct page *page) 274{ 275 VM_BUG_ON(atomic_read(&page->_count) == 0); 276 return atomic_dec_and_test(&page->_count); 277} 278 279/* 280 * Try to grab a ref unless the page has a refcount of zero, return false if 281 * that is the case. 282 */ 283static inline int get_page_unless_zero(struct page *page) 284{ 285 return atomic_inc_not_zero(&page->_count); 286} 287 288extern int page_is_ram(unsigned long pfn); 289 290/* Support for virtually mapped pages */ 291struct page *vmalloc_to_page(const void *addr); 292unsigned long vmalloc_to_pfn(const void *addr); 293 294/* 295 * Determine if an address is within the vmalloc range 296 * 297 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 298 * is no special casing required. 299 */ 300static inline int is_vmalloc_addr(const void *x) 301{ 302#ifdef CONFIG_MMU 303 unsigned long addr = (unsigned long)x; 304 305 return addr >= VMALLOC_START && addr < VMALLOC_END; 306#else 307 return 0; 308#endif 309} 310#ifdef CONFIG_MMU 311extern int is_vmalloc_or_module_addr(const void *x); 312#else 313static inline int is_vmalloc_or_module_addr(const void *x) 314{ 315 return 0; 316} 317#endif 318 319static inline void compound_lock(struct page *page) 320{ 321#ifdef CONFIG_TRANSPARENT_HUGEPAGE 322 bit_spin_lock(PG_compound_lock, &page->flags); 323#endif 324} 325 326static inline void compound_unlock(struct page *page) 327{ 328#ifdef CONFIG_TRANSPARENT_HUGEPAGE 329 bit_spin_unlock(PG_compound_lock, &page->flags); 330#endif 331} 332 333static inline unsigned long compound_lock_irqsave(struct page *page) 334{ 335 unsigned long uninitialized_var(flags); 336#ifdef CONFIG_TRANSPARENT_HUGEPAGE 337 local_irq_save(flags); 338 compound_lock(page); 339#endif 340 return flags; 341} 342 343static inline void compound_unlock_irqrestore(struct page *page, 344 unsigned long flags) 345{ 346#ifdef CONFIG_TRANSPARENT_HUGEPAGE 347 compound_unlock(page); 348 local_irq_restore(flags); 349#endif 350} 351 352static inline struct page *compound_head(struct page *page) 353{ 354 if (unlikely(PageTail(page))) 355 return page->first_page; 356 return page; 357} 358 359/* 360 * The atomic page->_mapcount, starts from -1: so that transitions 361 * both from it and to it can be tracked, using atomic_inc_and_test 362 * and atomic_add_negative(-1). 363 */ 364static inline void reset_page_mapcount(struct page *page) 365{ 366 atomic_set(&(page)->_mapcount, -1); 367} 368 369static inline int page_mapcount(struct page *page) 370{ 371 return atomic_read(&(page)->_mapcount) + 1; 372} 373 374static inline int page_count(struct page *page) 375{ 376 return atomic_read(&compound_head(page)->_count); 377} 378 379static inline void get_huge_page_tail(struct page *page) 380{ 381 /* 382 * __split_huge_page_refcount() cannot run 383 * from under us. 384 */ 385 VM_BUG_ON(page_mapcount(page) < 0); 386 VM_BUG_ON(atomic_read(&page->_count) != 0); 387 atomic_inc(&page->_mapcount); 388} 389 390extern bool __get_page_tail(struct page *page); 391 392static inline void get_page(struct page *page) 393{ 394 if (unlikely(PageTail(page))) 395 if (likely(__get_page_tail(page))) 396 return; 397 /* 398 * Getting a normal page or the head of a compound page 399 * requires to already have an elevated page->_count. 400 */ 401 VM_BUG_ON(atomic_read(&page->_count) <= 0); 402 atomic_inc(&page->_count); 403} 404 405static inline struct page *virt_to_head_page(const void *x) 406{ 407 struct page *page = virt_to_page(x); 408 return compound_head(page); 409} 410 411/* 412 * Setup the page count before being freed into the page allocator for 413 * the first time (boot or memory hotplug) 414 */ 415static inline void init_page_count(struct page *page) 416{ 417 atomic_set(&page->_count, 1); 418} 419 420/* 421 * PageBuddy() indicate that the page is free and in the buddy system 422 * (see mm/page_alloc.c). 423 * 424 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 425 * -2 so that an underflow of the page_mapcount() won't be mistaken 426 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 427 * efficiently by most CPU architectures. 428 */ 429#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 430 431static inline int PageBuddy(struct page *page) 432{ 433 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 434} 435 436static inline void __SetPageBuddy(struct page *page) 437{ 438 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 439 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 440} 441 442static inline void __ClearPageBuddy(struct page *page) 443{ 444 VM_BUG_ON(!PageBuddy(page)); 445 atomic_set(&page->_mapcount, -1); 446} 447 448void put_page(struct page *page); 449void put_pages_list(struct list_head *pages); 450 451void split_page(struct page *page, unsigned int order); 452int split_free_page(struct page *page); 453 454/* 455 * Compound pages have a destructor function. Provide a 456 * prototype for that function and accessor functions. 457 * These are _only_ valid on the head of a PG_compound page. 458 */ 459typedef void compound_page_dtor(struct page *); 460 461static inline void set_compound_page_dtor(struct page *page, 462 compound_page_dtor *dtor) 463{ 464 page[1].lru.next = (void *)dtor; 465} 466 467static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 468{ 469 return (compound_page_dtor *)page[1].lru.next; 470} 471 472static inline int compound_order(struct page *page) 473{ 474 if (!PageHead(page)) 475 return 0; 476 return (unsigned long)page[1].lru.prev; 477} 478 479static inline int compound_trans_order(struct page *page) 480{ 481 int order; 482 unsigned long flags; 483 484 if (!PageHead(page)) 485 return 0; 486 487 flags = compound_lock_irqsave(page); 488 order = compound_order(page); 489 compound_unlock_irqrestore(page, flags); 490 return order; 491} 492 493static inline void set_compound_order(struct page *page, unsigned long order) 494{ 495 page[1].lru.prev = (void *)order; 496} 497 498#ifdef CONFIG_MMU 499/* 500 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 501 * servicing faults for write access. In the normal case, do always want 502 * pte_mkwrite. But get_user_pages can cause write faults for mappings 503 * that do not have writing enabled, when used by access_process_vm. 504 */ 505static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 506{ 507 if (likely(vma->vm_flags & VM_WRITE)) 508 pte = pte_mkwrite(pte); 509 return pte; 510} 511#endif 512 513/* 514 * Multiple processes may "see" the same page. E.g. for untouched 515 * mappings of /dev/null, all processes see the same page full of 516 * zeroes, and text pages of executables and shared libraries have 517 * only one copy in memory, at most, normally. 518 * 519 * For the non-reserved pages, page_count(page) denotes a reference count. 520 * page_count() == 0 means the page is free. page->lru is then used for 521 * freelist management in the buddy allocator. 522 * page_count() > 0 means the page has been allocated. 523 * 524 * Pages are allocated by the slab allocator in order to provide memory 525 * to kmalloc and kmem_cache_alloc. In this case, the management of the 526 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 527 * unless a particular usage is carefully commented. (the responsibility of 528 * freeing the kmalloc memory is the caller's, of course). 529 * 530 * A page may be used by anyone else who does a __get_free_page(). 531 * In this case, page_count still tracks the references, and should only 532 * be used through the normal accessor functions. The top bits of page->flags 533 * and page->virtual store page management information, but all other fields 534 * are unused and could be used privately, carefully. The management of this 535 * page is the responsibility of the one who allocated it, and those who have 536 * subsequently been given references to it. 537 * 538 * The other pages (we may call them "pagecache pages") are completely 539 * managed by the Linux memory manager: I/O, buffers, swapping etc. 540 * The following discussion applies only to them. 541 * 542 * A pagecache page contains an opaque `private' member, which belongs to the 543 * page's address_space. Usually, this is the address of a circular list of 544 * the page's disk buffers. PG_private must be set to tell the VM to call 545 * into the filesystem to release these pages. 546 * 547 * A page may belong to an inode's memory mapping. In this case, page->mapping 548 * is the pointer to the inode, and page->index is the file offset of the page, 549 * in units of PAGE_CACHE_SIZE. 550 * 551 * If pagecache pages are not associated with an inode, they are said to be 552 * anonymous pages. These may become associated with the swapcache, and in that 553 * case PG_swapcache is set, and page->private is an offset into the swapcache. 554 * 555 * In either case (swapcache or inode backed), the pagecache itself holds one 556 * reference to the page. Setting PG_private should also increment the 557 * refcount. The each user mapping also has a reference to the page. 558 * 559 * The pagecache pages are stored in a per-mapping radix tree, which is 560 * rooted at mapping->page_tree, and indexed by offset. 561 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 562 * lists, we instead now tag pages as dirty/writeback in the radix tree. 563 * 564 * All pagecache pages may be subject to I/O: 565 * - inode pages may need to be read from disk, 566 * - inode pages which have been modified and are MAP_SHARED may need 567 * to be written back to the inode on disk, 568 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 569 * modified may need to be swapped out to swap space and (later) to be read 570 * back into memory. 571 */ 572 573/* 574 * The zone field is never updated after free_area_init_core() 575 * sets it, so none of the operations on it need to be atomic. 576 */ 577 578 579/* 580 * page->flags layout: 581 * 582 * There are three possibilities for how page->flags get 583 * laid out. The first is for the normal case, without 584 * sparsemem. The second is for sparsemem when there is 585 * plenty of space for node and section. The last is when 586 * we have run out of space and have to fall back to an 587 * alternate (slower) way of determining the node. 588 * 589 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 590 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 591 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 592 */ 593#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 594#define SECTIONS_WIDTH SECTIONS_SHIFT 595#else 596#define SECTIONS_WIDTH 0 597#endif 598 599#define ZONES_WIDTH ZONES_SHIFT 600 601#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 602#define NODES_WIDTH NODES_SHIFT 603#else 604#ifdef CONFIG_SPARSEMEM_VMEMMAP 605#error "Vmemmap: No space for nodes field in page flags" 606#endif 607#define NODES_WIDTH 0 608#endif 609 610/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 611#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 612#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 613#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 614 615/* 616 * We are going to use the flags for the page to node mapping if its in 617 * there. This includes the case where there is no node, so it is implicit. 618 */ 619#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 620#define NODE_NOT_IN_PAGE_FLAGS 621#endif 622 623/* 624 * Define the bit shifts to access each section. For non-existent 625 * sections we define the shift as 0; that plus a 0 mask ensures 626 * the compiler will optimise away reference to them. 627 */ 628#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 629#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 630#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 631 632/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 633#ifdef NODE_NOT_IN_PAGE_FLAGS 634#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 635#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 636 SECTIONS_PGOFF : ZONES_PGOFF) 637#else 638#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 639#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 640 NODES_PGOFF : ZONES_PGOFF) 641#endif 642 643#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 644 645#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 646#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 647#endif 648 649#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 650#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 651#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 652#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 653 654static inline enum zone_type page_zonenum(const struct page *page) 655{ 656 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 657} 658 659/* 660 * The identification function is only used by the buddy allocator for 661 * determining if two pages could be buddies. We are not really 662 * identifying a zone since we could be using a the section number 663 * id if we have not node id available in page flags. 664 * We guarantee only that it will return the same value for two 665 * combinable pages in a zone. 666 */ 667static inline int page_zone_id(struct page *page) 668{ 669 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 670} 671 672static inline int zone_to_nid(struct zone *zone) 673{ 674#ifdef CONFIG_NUMA 675 return zone->node; 676#else 677 return 0; 678#endif 679} 680 681#ifdef NODE_NOT_IN_PAGE_FLAGS 682extern int page_to_nid(const struct page *page); 683#else 684static inline int page_to_nid(const struct page *page) 685{ 686 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 687} 688#endif 689 690static inline struct zone *page_zone(const struct page *page) 691{ 692 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 693} 694 695#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 696static inline void set_page_section(struct page *page, unsigned long section) 697{ 698 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 699 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 700} 701 702static inline unsigned long page_to_section(const struct page *page) 703{ 704 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 705} 706#endif 707 708static inline void set_page_zone(struct page *page, enum zone_type zone) 709{ 710 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 711 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 712} 713 714static inline void set_page_node(struct page *page, unsigned long node) 715{ 716 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 717 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 718} 719 720static inline void set_page_links(struct page *page, enum zone_type zone, 721 unsigned long node, unsigned long pfn) 722{ 723 set_page_zone(page, zone); 724 set_page_node(page, node); 725#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 726 set_page_section(page, pfn_to_section_nr(pfn)); 727#endif 728} 729 730/* 731 * Some inline functions in vmstat.h depend on page_zone() 732 */ 733#include <linux/vmstat.h> 734 735static __always_inline void *lowmem_page_address(const struct page *page) 736{ 737 return __va(PFN_PHYS(page_to_pfn(page))); 738} 739 740#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 741#define HASHED_PAGE_VIRTUAL 742#endif 743 744#if defined(WANT_PAGE_VIRTUAL) 745#define page_address(page) ((page)->virtual) 746#define set_page_address(page, address) \ 747 do { \ 748 (page)->virtual = (address); \ 749 } while(0) 750#define page_address_init() do { } while(0) 751#endif 752 753#if defined(HASHED_PAGE_VIRTUAL) 754void *page_address(const struct page *page); 755void set_page_address(struct page *page, void *virtual); 756void page_address_init(void); 757#endif 758 759#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 760#define page_address(page) lowmem_page_address(page) 761#define set_page_address(page, address) do { } while(0) 762#define page_address_init() do { } while(0) 763#endif 764 765/* 766 * On an anonymous page mapped into a user virtual memory area, 767 * page->mapping points to its anon_vma, not to a struct address_space; 768 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 769 * 770 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 771 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 772 * and then page->mapping points, not to an anon_vma, but to a private 773 * structure which KSM associates with that merged page. See ksm.h. 774 * 775 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 776 * 777 * Please note that, confusingly, "page_mapping" refers to the inode 778 * address_space which maps the page from disk; whereas "page_mapped" 779 * refers to user virtual address space into which the page is mapped. 780 */ 781#define PAGE_MAPPING_ANON 1 782#define PAGE_MAPPING_KSM 2 783#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 784 785extern struct address_space swapper_space; 786static inline struct address_space *page_mapping(struct page *page) 787{ 788 struct address_space *mapping = page->mapping; 789 790 VM_BUG_ON(PageSlab(page)); 791 if (unlikely(PageSwapCache(page))) 792 mapping = &swapper_space; 793 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 794 mapping = NULL; 795 return mapping; 796} 797 798/* Neutral page->mapping pointer to address_space or anon_vma or other */ 799static inline void *page_rmapping(struct page *page) 800{ 801 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 802} 803 804static inline int PageAnon(struct page *page) 805{ 806 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 807} 808 809/* 810 * Return the pagecache index of the passed page. Regular pagecache pages 811 * use ->index whereas swapcache pages use ->private 812 */ 813static inline pgoff_t page_index(struct page *page) 814{ 815 if (unlikely(PageSwapCache(page))) 816 return page_private(page); 817 return page->index; 818} 819 820/* 821 * Return true if this page is mapped into pagetables. 822 */ 823static inline int page_mapped(struct page *page) 824{ 825 return atomic_read(&(page)->_mapcount) >= 0; 826} 827 828/* 829 * Different kinds of faults, as returned by handle_mm_fault(). 830 * Used to decide whether a process gets delivered SIGBUS or 831 * just gets major/minor fault counters bumped up. 832 */ 833 834#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 835 836#define VM_FAULT_OOM 0x0001 837#define VM_FAULT_SIGBUS 0x0002 838#define VM_FAULT_MAJOR 0x0004 839#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 840#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 841#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 842 843#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 844#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 845#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 846 847#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 848 849#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 850 VM_FAULT_HWPOISON_LARGE) 851 852/* Encode hstate index for a hwpoisoned large page */ 853#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 854#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 855 856/* 857 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 858 */ 859extern void pagefault_out_of_memory(void); 860 861#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 862 863/* 864 * Flags passed to show_mem() and show_free_areas() to suppress output in 865 * various contexts. 866 */ 867#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 868 869extern void show_free_areas(unsigned int flags); 870extern bool skip_free_areas_node(unsigned int flags, int nid); 871 872int shmem_lock(struct file *file, int lock, struct user_struct *user); 873struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 874int shmem_zero_setup(struct vm_area_struct *); 875 876extern int can_do_mlock(void); 877extern int user_shm_lock(size_t, struct user_struct *); 878extern void user_shm_unlock(size_t, struct user_struct *); 879 880/* 881 * Parameter block passed down to zap_pte_range in exceptional cases. 882 */ 883struct zap_details { 884 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 885 struct address_space *check_mapping; /* Check page->mapping if set */ 886 pgoff_t first_index; /* Lowest page->index to unmap */ 887 pgoff_t last_index; /* Highest page->index to unmap */ 888}; 889 890struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 891 pte_t pte); 892 893int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 894 unsigned long size); 895unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 896 unsigned long size, struct zap_details *); 897unsigned long unmap_vmas(struct mmu_gather *tlb, 898 struct vm_area_struct *start_vma, unsigned long start_addr, 899 unsigned long end_addr, unsigned long *nr_accounted, 900 struct zap_details *); 901 902/** 903 * mm_walk - callbacks for walk_page_range 904 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 905 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 906 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 907 * this handler is required to be able to handle 908 * pmd_trans_huge() pmds. They may simply choose to 909 * split_huge_page() instead of handling it explicitly. 910 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 911 * @pte_hole: if set, called for each hole at all levels 912 * @hugetlb_entry: if set, called for each hugetlb entry 913 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 914 * is used. 915 * 916 * (see walk_page_range for more details) 917 */ 918struct mm_walk { 919 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 920 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 921 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 922 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 923 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 924 int (*hugetlb_entry)(pte_t *, unsigned long, 925 unsigned long, unsigned long, struct mm_walk *); 926 struct mm_struct *mm; 927 void *private; 928}; 929 930int walk_page_range(unsigned long addr, unsigned long end, 931 struct mm_walk *walk); 932void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 933 unsigned long end, unsigned long floor, unsigned long ceiling); 934int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 935 struct vm_area_struct *vma); 936void unmap_mapping_range(struct address_space *mapping, 937 loff_t const holebegin, loff_t const holelen, int even_cows); 938int follow_pfn(struct vm_area_struct *vma, unsigned long address, 939 unsigned long *pfn); 940int follow_phys(struct vm_area_struct *vma, unsigned long address, 941 unsigned int flags, unsigned long *prot, resource_size_t *phys); 942int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 943 void *buf, int len, int write); 944 945static inline void unmap_shared_mapping_range(struct address_space *mapping, 946 loff_t const holebegin, loff_t const holelen) 947{ 948 unmap_mapping_range(mapping, holebegin, holelen, 0); 949} 950 951extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 952extern void truncate_setsize(struct inode *inode, loff_t newsize); 953extern int vmtruncate(struct inode *inode, loff_t offset); 954extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 955 956int truncate_inode_page(struct address_space *mapping, struct page *page); 957int generic_error_remove_page(struct address_space *mapping, struct page *page); 958 959int invalidate_inode_page(struct page *page); 960 961#ifdef CONFIG_MMU 962extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 963 unsigned long address, unsigned int flags); 964extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 965 unsigned long address, unsigned int fault_flags); 966#else 967static inline int handle_mm_fault(struct mm_struct *mm, 968 struct vm_area_struct *vma, unsigned long address, 969 unsigned int flags) 970{ 971 /* should never happen if there's no MMU */ 972 BUG(); 973 return VM_FAULT_SIGBUS; 974} 975static inline int fixup_user_fault(struct task_struct *tsk, 976 struct mm_struct *mm, unsigned long address, 977 unsigned int fault_flags) 978{ 979 /* should never happen if there's no MMU */ 980 BUG(); 981 return -EFAULT; 982} 983#endif 984 985extern int make_pages_present(unsigned long addr, unsigned long end); 986extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 987extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 988 void *buf, int len, int write); 989 990int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 991 unsigned long start, int len, unsigned int foll_flags, 992 struct page **pages, struct vm_area_struct **vmas, 993 int *nonblocking); 994int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 995 unsigned long start, int nr_pages, int write, int force, 996 struct page **pages, struct vm_area_struct **vmas); 997int get_user_pages_fast(unsigned long start, int nr_pages, int write, 998 struct page **pages); 999struct page *get_dump_page(unsigned long addr); 1000 1001extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1002extern void do_invalidatepage(struct page *page, unsigned long offset); 1003 1004int __set_page_dirty_nobuffers(struct page *page); 1005int __set_page_dirty_no_writeback(struct page *page); 1006int redirty_page_for_writepage(struct writeback_control *wbc, 1007 struct page *page); 1008void account_page_dirtied(struct page *page, struct address_space *mapping); 1009void account_page_writeback(struct page *page); 1010int set_page_dirty(struct page *page); 1011int set_page_dirty_lock(struct page *page); 1012int clear_page_dirty_for_io(struct page *page); 1013 1014/* Is the vma a continuation of the stack vma above it? */ 1015static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1016{ 1017 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1018} 1019 1020static inline int stack_guard_page_start(struct vm_area_struct *vma, 1021 unsigned long addr) 1022{ 1023 return (vma->vm_flags & VM_GROWSDOWN) && 1024 (vma->vm_start == addr) && 1025 !vma_growsdown(vma->vm_prev, addr); 1026} 1027 1028/* Is the vma a continuation of the stack vma below it? */ 1029static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1030{ 1031 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1032} 1033 1034static inline int stack_guard_page_end(struct vm_area_struct *vma, 1035 unsigned long addr) 1036{ 1037 return (vma->vm_flags & VM_GROWSUP) && 1038 (vma->vm_end == addr) && 1039 !vma_growsup(vma->vm_next, addr); 1040} 1041 1042extern unsigned long move_page_tables(struct vm_area_struct *vma, 1043 unsigned long old_addr, struct vm_area_struct *new_vma, 1044 unsigned long new_addr, unsigned long len); 1045extern unsigned long do_mremap(unsigned long addr, 1046 unsigned long old_len, unsigned long new_len, 1047 unsigned long flags, unsigned long new_addr); 1048extern int mprotect_fixup(struct vm_area_struct *vma, 1049 struct vm_area_struct **pprev, unsigned long start, 1050 unsigned long end, unsigned long newflags); 1051 1052/* 1053 * doesn't attempt to fault and will return short. 1054 */ 1055int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1056 struct page **pages); 1057/* 1058 * per-process(per-mm_struct) statistics. 1059 */ 1060static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1061{ 1062 atomic_long_set(&mm->rss_stat.count[member], value); 1063} 1064 1065#if defined(SPLIT_RSS_COUNTING) 1066unsigned long get_mm_counter(struct mm_struct *mm, int member); 1067#else 1068static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1069{ 1070 return atomic_long_read(&mm->rss_stat.count[member]); 1071} 1072#endif 1073 1074static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1075{ 1076 atomic_long_add(value, &mm->rss_stat.count[member]); 1077} 1078 1079static inline void inc_mm_counter(struct mm_struct *mm, int member) 1080{ 1081 atomic_long_inc(&mm->rss_stat.count[member]); 1082} 1083 1084static inline void dec_mm_counter(struct mm_struct *mm, int member) 1085{ 1086 atomic_long_dec(&mm->rss_stat.count[member]); 1087} 1088 1089static inline unsigned long get_mm_rss(struct mm_struct *mm) 1090{ 1091 return get_mm_counter(mm, MM_FILEPAGES) + 1092 get_mm_counter(mm, MM_ANONPAGES); 1093} 1094 1095static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1096{ 1097 return max(mm->hiwater_rss, get_mm_rss(mm)); 1098} 1099 1100static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1101{ 1102 return max(mm->hiwater_vm, mm->total_vm); 1103} 1104 1105static inline void update_hiwater_rss(struct mm_struct *mm) 1106{ 1107 unsigned long _rss = get_mm_rss(mm); 1108 1109 if ((mm)->hiwater_rss < _rss) 1110 (mm)->hiwater_rss = _rss; 1111} 1112 1113static inline void update_hiwater_vm(struct mm_struct *mm) 1114{ 1115 if (mm->hiwater_vm < mm->total_vm) 1116 mm->hiwater_vm = mm->total_vm; 1117} 1118 1119static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1120 struct mm_struct *mm) 1121{ 1122 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1123 1124 if (*maxrss < hiwater_rss) 1125 *maxrss = hiwater_rss; 1126} 1127 1128#if defined(SPLIT_RSS_COUNTING) 1129void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); 1130#else 1131static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 1132{ 1133} 1134#endif 1135 1136int vma_wants_writenotify(struct vm_area_struct *vma); 1137 1138extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1139 spinlock_t **ptl); 1140static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1141 spinlock_t **ptl) 1142{ 1143 pte_t *ptep; 1144 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1145 return ptep; 1146} 1147 1148#ifdef __PAGETABLE_PUD_FOLDED 1149static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1150 unsigned long address) 1151{ 1152 return 0; 1153} 1154#else 1155int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1156#endif 1157 1158#ifdef __PAGETABLE_PMD_FOLDED 1159static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1160 unsigned long address) 1161{ 1162 return 0; 1163} 1164#else 1165int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1166#endif 1167 1168int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1169 pmd_t *pmd, unsigned long address); 1170int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1171 1172/* 1173 * The following ifdef needed to get the 4level-fixup.h header to work. 1174 * Remove it when 4level-fixup.h has been removed. 1175 */ 1176#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1177static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1178{ 1179 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1180 NULL: pud_offset(pgd, address); 1181} 1182 1183static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1184{ 1185 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1186 NULL: pmd_offset(pud, address); 1187} 1188#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1189 1190#if USE_SPLIT_PTLOCKS 1191/* 1192 * We tuck a spinlock to guard each pagetable page into its struct page, 1193 * at page->private, with BUILD_BUG_ON to make sure that this will not 1194 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1195 * When freeing, reset page->mapping so free_pages_check won't complain. 1196 */ 1197#define __pte_lockptr(page) &((page)->ptl) 1198#define pte_lock_init(_page) do { \ 1199 spin_lock_init(__pte_lockptr(_page)); \ 1200} while (0) 1201#define pte_lock_deinit(page) ((page)->mapping = NULL) 1202#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1203#else /* !USE_SPLIT_PTLOCKS */ 1204/* 1205 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1206 */ 1207#define pte_lock_init(page) do {} while (0) 1208#define pte_lock_deinit(page) do {} while (0) 1209#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1210#endif /* USE_SPLIT_PTLOCKS */ 1211 1212static inline void pgtable_page_ctor(struct page *page) 1213{ 1214 pte_lock_init(page); 1215 inc_zone_page_state(page, NR_PAGETABLE); 1216} 1217 1218static inline void pgtable_page_dtor(struct page *page) 1219{ 1220 pte_lock_deinit(page); 1221 dec_zone_page_state(page, NR_PAGETABLE); 1222} 1223 1224#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1225({ \ 1226 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1227 pte_t *__pte = pte_offset_map(pmd, address); \ 1228 *(ptlp) = __ptl; \ 1229 spin_lock(__ptl); \ 1230 __pte; \ 1231}) 1232 1233#define pte_unmap_unlock(pte, ptl) do { \ 1234 spin_unlock(ptl); \ 1235 pte_unmap(pte); \ 1236} while (0) 1237 1238#define pte_alloc_map(mm, vma, pmd, address) \ 1239 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1240 pmd, address))? \ 1241 NULL: pte_offset_map(pmd, address)) 1242 1243#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1244 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1245 pmd, address))? \ 1246 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1247 1248#define pte_alloc_kernel(pmd, address) \ 1249 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1250 NULL: pte_offset_kernel(pmd, address)) 1251 1252extern void free_area_init(unsigned long * zones_size); 1253extern void free_area_init_node(int nid, unsigned long * zones_size, 1254 unsigned long zone_start_pfn, unsigned long *zholes_size); 1255#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1256/* 1257 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1258 * zones, allocate the backing mem_map and account for memory holes in a more 1259 * architecture independent manner. This is a substitute for creating the 1260 * zone_sizes[] and zholes_size[] arrays and passing them to 1261 * free_area_init_node() 1262 * 1263 * An architecture is expected to register range of page frames backed by 1264 * physical memory with add_active_range() before calling 1265 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1266 * usage, an architecture is expected to do something like 1267 * 1268 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1269 * max_highmem_pfn}; 1270 * for_each_valid_physical_page_range() 1271 * add_active_range(node_id, start_pfn, end_pfn) 1272 * free_area_init_nodes(max_zone_pfns); 1273 * 1274 * If the architecture guarantees that there are no holes in the ranges 1275 * registered with add_active_range(), free_bootmem_active_regions() 1276 * will call free_bootmem_node() for each registered physical page range. 1277 * Similarly sparse_memory_present_with_active_regions() calls 1278 * memory_present() for each range when SPARSEMEM is enabled. 1279 * 1280 * See mm/page_alloc.c for more information on each function exposed by 1281 * CONFIG_ARCH_POPULATES_NODE_MAP 1282 */ 1283extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1284extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1285 unsigned long end_pfn); 1286extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1287 unsigned long end_pfn); 1288extern void remove_all_active_ranges(void); 1289void sort_node_map(void); 1290unsigned long node_map_pfn_alignment(void); 1291unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1292 unsigned long end_pfn); 1293extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1294 unsigned long end_pfn); 1295extern void get_pfn_range_for_nid(unsigned int nid, 1296 unsigned long *start_pfn, unsigned long *end_pfn); 1297extern unsigned long find_min_pfn_with_active_regions(void); 1298extern void free_bootmem_with_active_regions(int nid, 1299 unsigned long max_low_pfn); 1300int add_from_early_node_map(struct range *range, int az, 1301 int nr_range, int nid); 1302u64 __init find_memory_core_early(int nid, u64 size, u64 align, 1303 u64 goal, u64 limit); 1304typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1305extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1306extern void sparse_memory_present_with_active_regions(int nid); 1307#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1308 1309#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1310 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1311static inline int __early_pfn_to_nid(unsigned long pfn) 1312{ 1313 return 0; 1314} 1315#else 1316/* please see mm/page_alloc.c */ 1317extern int __meminit early_pfn_to_nid(unsigned long pfn); 1318#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1319/* there is a per-arch backend function. */ 1320extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1321#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1322#endif 1323 1324extern void set_dma_reserve(unsigned long new_dma_reserve); 1325extern void memmap_init_zone(unsigned long, int, unsigned long, 1326 unsigned long, enum memmap_context); 1327extern void setup_per_zone_wmarks(void); 1328extern int __meminit init_per_zone_wmark_min(void); 1329extern void mem_init(void); 1330extern void __init mmap_init(void); 1331extern void show_mem(unsigned int flags); 1332extern void si_meminfo(struct sysinfo * val); 1333extern void si_meminfo_node(struct sysinfo *val, int nid); 1334extern int after_bootmem; 1335 1336extern __printf(3, 4) 1337void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1338 1339extern void setup_per_cpu_pageset(void); 1340 1341extern void zone_pcp_update(struct zone *zone); 1342 1343/* nommu.c */ 1344extern atomic_long_t mmap_pages_allocated; 1345extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1346 1347/* prio_tree.c */ 1348void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1349void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1350void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1351struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1352 struct prio_tree_iter *iter); 1353 1354#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1355 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1356 (vma = vma_prio_tree_next(vma, iter)); ) 1357 1358static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1359 struct list_head *list) 1360{ 1361 vma->shared.vm_set.parent = NULL; 1362 list_add_tail(&vma->shared.vm_set.list, list); 1363} 1364 1365/* mmap.c */ 1366extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1367extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1368 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1369extern struct vm_area_struct *vma_merge(struct mm_struct *, 1370 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1371 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1372 struct mempolicy *); 1373extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1374extern int split_vma(struct mm_struct *, 1375 struct vm_area_struct *, unsigned long addr, int new_below); 1376extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1377extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1378 struct rb_node **, struct rb_node *); 1379extern void unlink_file_vma(struct vm_area_struct *); 1380extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1381 unsigned long addr, unsigned long len, pgoff_t pgoff); 1382extern void exit_mmap(struct mm_struct *); 1383 1384extern int mm_take_all_locks(struct mm_struct *mm); 1385extern void mm_drop_all_locks(struct mm_struct *mm); 1386 1387/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1388extern void added_exe_file_vma(struct mm_struct *mm); 1389extern void removed_exe_file_vma(struct mm_struct *mm); 1390extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1391extern struct file *get_mm_exe_file(struct mm_struct *mm); 1392 1393extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1394extern int install_special_mapping(struct mm_struct *mm, 1395 unsigned long addr, unsigned long len, 1396 unsigned long flags, struct page **pages); 1397 1398extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1399 1400extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1401 unsigned long len, unsigned long prot, 1402 unsigned long flag, unsigned long pgoff); 1403extern unsigned long mmap_region(struct file *file, unsigned long addr, 1404 unsigned long len, unsigned long flags, 1405 vm_flags_t vm_flags, unsigned long pgoff); 1406 1407static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1408 unsigned long len, unsigned long prot, 1409 unsigned long flag, unsigned long offset) 1410{ 1411 unsigned long ret = -EINVAL; 1412 if ((offset + PAGE_ALIGN(len)) < offset) 1413 goto out; 1414 if (!(offset & ~PAGE_MASK)) 1415 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1416out: 1417 return ret; 1418} 1419 1420extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1421 1422extern unsigned long do_brk(unsigned long, unsigned long); 1423 1424/* truncate.c */ 1425extern void truncate_inode_pages(struct address_space *, loff_t); 1426extern void truncate_inode_pages_range(struct address_space *, 1427 loff_t lstart, loff_t lend); 1428 1429/* generic vm_area_ops exported for stackable file systems */ 1430extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1431 1432/* mm/page-writeback.c */ 1433int write_one_page(struct page *page, int wait); 1434void task_dirty_inc(struct task_struct *tsk); 1435 1436/* readahead.c */ 1437#define VM_MAX_READAHEAD 128 /* kbytes */ 1438#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1439 1440int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1441 pgoff_t offset, unsigned long nr_to_read); 1442 1443void page_cache_sync_readahead(struct address_space *mapping, 1444 struct file_ra_state *ra, 1445 struct file *filp, 1446 pgoff_t offset, 1447 unsigned long size); 1448 1449void page_cache_async_readahead(struct address_space *mapping, 1450 struct file_ra_state *ra, 1451 struct file *filp, 1452 struct page *pg, 1453 pgoff_t offset, 1454 unsigned long size); 1455 1456unsigned long max_sane_readahead(unsigned long nr); 1457unsigned long ra_submit(struct file_ra_state *ra, 1458 struct address_space *mapping, 1459 struct file *filp); 1460 1461/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1462extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1463 1464/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1465extern int expand_downwards(struct vm_area_struct *vma, 1466 unsigned long address); 1467#if VM_GROWSUP 1468extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1469#else 1470 #define expand_upwards(vma, address) do { } while (0) 1471#endif 1472 1473/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1474extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1475extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1476 struct vm_area_struct **pprev); 1477 1478/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1479 NULL if none. Assume start_addr < end_addr. */ 1480static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1481{ 1482 struct vm_area_struct * vma = find_vma(mm,start_addr); 1483 1484 if (vma && end_addr <= vma->vm_start) 1485 vma = NULL; 1486 return vma; 1487} 1488 1489static inline unsigned long vma_pages(struct vm_area_struct *vma) 1490{ 1491 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1492} 1493 1494#ifdef CONFIG_MMU 1495pgprot_t vm_get_page_prot(unsigned long vm_flags); 1496#else 1497static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1498{ 1499 return __pgprot(0); 1500} 1501#endif 1502 1503struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1504int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1505 unsigned long pfn, unsigned long size, pgprot_t); 1506int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1507int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1508 unsigned long pfn); 1509int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1510 unsigned long pfn); 1511 1512struct page *follow_page(struct vm_area_struct *, unsigned long address, 1513 unsigned int foll_flags); 1514#define FOLL_WRITE 0x01 /* check pte is writable */ 1515#define FOLL_TOUCH 0x02 /* mark page accessed */ 1516#define FOLL_GET 0x04 /* do get_page on page */ 1517#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1518#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1519#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1520 * and return without waiting upon it */ 1521#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1522#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1523#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1524 1525typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1526 void *data); 1527extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1528 unsigned long size, pte_fn_t fn, void *data); 1529 1530#ifdef CONFIG_PROC_FS 1531void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1532#else 1533static inline void vm_stat_account(struct mm_struct *mm, 1534 unsigned long flags, struct file *file, long pages) 1535{ 1536} 1537#endif /* CONFIG_PROC_FS */ 1538 1539#ifdef CONFIG_DEBUG_PAGEALLOC 1540extern int debug_pagealloc_enabled; 1541 1542extern void kernel_map_pages(struct page *page, int numpages, int enable); 1543 1544static inline void enable_debug_pagealloc(void) 1545{ 1546 debug_pagealloc_enabled = 1; 1547} 1548#ifdef CONFIG_HIBERNATION 1549extern bool kernel_page_present(struct page *page); 1550#endif /* CONFIG_HIBERNATION */ 1551#else 1552static inline void 1553kernel_map_pages(struct page *page, int numpages, int enable) {} 1554static inline void enable_debug_pagealloc(void) 1555{ 1556} 1557#ifdef CONFIG_HIBERNATION 1558static inline bool kernel_page_present(struct page *page) { return true; } 1559#endif /* CONFIG_HIBERNATION */ 1560#endif 1561 1562extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1563#ifdef __HAVE_ARCH_GATE_AREA 1564int in_gate_area_no_mm(unsigned long addr); 1565int in_gate_area(struct mm_struct *mm, unsigned long addr); 1566#else 1567int in_gate_area_no_mm(unsigned long addr); 1568#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1569#endif /* __HAVE_ARCH_GATE_AREA */ 1570 1571int drop_caches_sysctl_handler(struct ctl_table *, int, 1572 void __user *, size_t *, loff_t *); 1573unsigned long shrink_slab(struct shrink_control *shrink, 1574 unsigned long nr_pages_scanned, 1575 unsigned long lru_pages); 1576 1577#ifndef CONFIG_MMU 1578#define randomize_va_space 0 1579#else 1580extern int randomize_va_space; 1581#endif 1582 1583const char * arch_vma_name(struct vm_area_struct *vma); 1584void print_vma_addr(char *prefix, unsigned long rip); 1585 1586void sparse_mem_maps_populate_node(struct page **map_map, 1587 unsigned long pnum_begin, 1588 unsigned long pnum_end, 1589 unsigned long map_count, 1590 int nodeid); 1591 1592struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1593pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1594pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1595pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1596pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1597void *vmemmap_alloc_block(unsigned long size, int node); 1598void *vmemmap_alloc_block_buf(unsigned long size, int node); 1599void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1600int vmemmap_populate_basepages(struct page *start_page, 1601 unsigned long pages, int node); 1602int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1603void vmemmap_populate_print_last(void); 1604 1605 1606enum mf_flags { 1607 MF_COUNT_INCREASED = 1 << 0, 1608}; 1609extern void memory_failure(unsigned long pfn, int trapno); 1610extern int __memory_failure(unsigned long pfn, int trapno, int flags); 1611extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1612extern int unpoison_memory(unsigned long pfn); 1613extern int sysctl_memory_failure_early_kill; 1614extern int sysctl_memory_failure_recovery; 1615extern void shake_page(struct page *p, int access); 1616extern atomic_long_t mce_bad_pages; 1617extern int soft_offline_page(struct page *page, int flags); 1618 1619extern void dump_page(struct page *page); 1620 1621#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1622extern void clear_huge_page(struct page *page, 1623 unsigned long addr, 1624 unsigned int pages_per_huge_page); 1625extern void copy_user_huge_page(struct page *dst, struct page *src, 1626 unsigned long addr, struct vm_area_struct *vma, 1627 unsigned int pages_per_huge_page); 1628#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1629 1630#endif /* __KERNEL__ */ 1631#endif /* _LINUX_MM_H */