at v3.2-rc2 404 lines 11 kB view raw
1/* 2 * fs/logfs/inode.c - inode handling code 3 * 4 * As should be obvious for Linux kernel code, license is GPLv2 5 * 6 * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> 7 */ 8#include "logfs.h" 9#include <linux/slab.h> 10#include <linux/writeback.h> 11#include <linux/backing-dev.h> 12 13/* 14 * How soon to reuse old inode numbers? LogFS doesn't store deleted inodes 15 * on the medium. It therefore also lacks a method to store the previous 16 * generation number for deleted inodes. Instead a single generation number 17 * is stored which will be used for new inodes. Being just a 32bit counter, 18 * this can obvious wrap relatively quickly. So we only reuse inodes if we 19 * know that a fair number of inodes can be created before we have to increment 20 * the generation again - effectively adding some bits to the counter. 21 * But being too aggressive here means we keep a very large and very sparse 22 * inode file, wasting space on indirect blocks. 23 * So what is a good value? Beats me. 64k seems moderately bad on both 24 * fronts, so let's use that for now... 25 * 26 * NFS sucks, as everyone already knows. 27 */ 28#define INOS_PER_WRAP (0x10000) 29 30/* 31 * Logfs' requirement to read inodes for garbage collection makes life a bit 32 * harder. GC may have to read inodes that are in I_FREEING state, when they 33 * are being written out - and waiting for GC to make progress, naturally. 34 * 35 * So we cannot just call iget() or some variant of it, but first have to check 36 * wether the inode in question might be in I_FREEING state. Therefore we 37 * maintain our own per-sb list of "almost deleted" inodes and check against 38 * that list first. Normally this should be at most 1-2 entries long. 39 * 40 * Also, inodes have logfs-specific reference counting on top of what the vfs 41 * does. When .destroy_inode is called, normally the reference count will drop 42 * to zero and the inode gets deleted. But if GC accessed the inode, its 43 * refcount will remain nonzero and final deletion will have to wait. 44 * 45 * As a result we have two sets of functions to get/put inodes: 46 * logfs_safe_iget/logfs_safe_iput - safe to call from GC context 47 * logfs_iget/iput - normal version 48 */ 49static struct kmem_cache *logfs_inode_cache; 50 51static DEFINE_SPINLOCK(logfs_inode_lock); 52 53static void logfs_inode_setops(struct inode *inode) 54{ 55 switch (inode->i_mode & S_IFMT) { 56 case S_IFDIR: 57 inode->i_op = &logfs_dir_iops; 58 inode->i_fop = &logfs_dir_fops; 59 inode->i_mapping->a_ops = &logfs_reg_aops; 60 break; 61 case S_IFREG: 62 inode->i_op = &logfs_reg_iops; 63 inode->i_fop = &logfs_reg_fops; 64 inode->i_mapping->a_ops = &logfs_reg_aops; 65 break; 66 case S_IFLNK: 67 inode->i_op = &logfs_symlink_iops; 68 inode->i_mapping->a_ops = &logfs_reg_aops; 69 break; 70 case S_IFSOCK: /* fall through */ 71 case S_IFBLK: /* fall through */ 72 case S_IFCHR: /* fall through */ 73 case S_IFIFO: 74 init_special_inode(inode, inode->i_mode, inode->i_rdev); 75 break; 76 default: 77 BUG(); 78 } 79} 80 81static struct inode *__logfs_iget(struct super_block *sb, ino_t ino) 82{ 83 struct inode *inode = iget_locked(sb, ino); 84 int err; 85 86 if (!inode) 87 return ERR_PTR(-ENOMEM); 88 if (!(inode->i_state & I_NEW)) 89 return inode; 90 91 err = logfs_read_inode(inode); 92 if (err || inode->i_nlink == 0) { 93 /* inode->i_nlink == 0 can be true when called from 94 * block validator */ 95 /* set i_nlink to 0 to prevent caching */ 96 clear_nlink(inode); 97 logfs_inode(inode)->li_flags |= LOGFS_IF_ZOMBIE; 98 iget_failed(inode); 99 if (!err) 100 err = -ENOENT; 101 return ERR_PTR(err); 102 } 103 104 logfs_inode_setops(inode); 105 unlock_new_inode(inode); 106 return inode; 107} 108 109struct inode *logfs_iget(struct super_block *sb, ino_t ino) 110{ 111 BUG_ON(ino == LOGFS_INO_MASTER); 112 BUG_ON(ino == LOGFS_INO_SEGFILE); 113 return __logfs_iget(sb, ino); 114} 115 116/* 117 * is_cached is set to 1 if we hand out a cached inode, 0 otherwise. 118 * this allows logfs_iput to do the right thing later 119 */ 120struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *is_cached) 121{ 122 struct logfs_super *super = logfs_super(sb); 123 struct logfs_inode *li; 124 125 if (ino == LOGFS_INO_MASTER) 126 return super->s_master_inode; 127 if (ino == LOGFS_INO_SEGFILE) 128 return super->s_segfile_inode; 129 130 spin_lock(&logfs_inode_lock); 131 list_for_each_entry(li, &super->s_freeing_list, li_freeing_list) 132 if (li->vfs_inode.i_ino == ino) { 133 li->li_refcount++; 134 spin_unlock(&logfs_inode_lock); 135 *is_cached = 1; 136 return &li->vfs_inode; 137 } 138 spin_unlock(&logfs_inode_lock); 139 140 *is_cached = 0; 141 return __logfs_iget(sb, ino); 142} 143 144static void logfs_i_callback(struct rcu_head *head) 145{ 146 struct inode *inode = container_of(head, struct inode, i_rcu); 147 INIT_LIST_HEAD(&inode->i_dentry); 148 kmem_cache_free(logfs_inode_cache, logfs_inode(inode)); 149} 150 151static void __logfs_destroy_inode(struct inode *inode) 152{ 153 struct logfs_inode *li = logfs_inode(inode); 154 155 BUG_ON(li->li_block); 156 list_del(&li->li_freeing_list); 157 call_rcu(&inode->i_rcu, logfs_i_callback); 158} 159 160static void logfs_destroy_inode(struct inode *inode) 161{ 162 struct logfs_inode *li = logfs_inode(inode); 163 164 BUG_ON(list_empty(&li->li_freeing_list)); 165 spin_lock(&logfs_inode_lock); 166 li->li_refcount--; 167 if (li->li_refcount == 0) 168 __logfs_destroy_inode(inode); 169 spin_unlock(&logfs_inode_lock); 170} 171 172void logfs_safe_iput(struct inode *inode, int is_cached) 173{ 174 if (inode->i_ino == LOGFS_INO_MASTER) 175 return; 176 if (inode->i_ino == LOGFS_INO_SEGFILE) 177 return; 178 179 if (is_cached) { 180 logfs_destroy_inode(inode); 181 return; 182 } 183 184 iput(inode); 185} 186 187static void logfs_init_inode(struct super_block *sb, struct inode *inode) 188{ 189 struct logfs_inode *li = logfs_inode(inode); 190 int i; 191 192 li->li_flags = 0; 193 li->li_height = 0; 194 li->li_used_bytes = 0; 195 li->li_block = NULL; 196 inode->i_uid = 0; 197 inode->i_gid = 0; 198 inode->i_size = 0; 199 inode->i_blocks = 0; 200 inode->i_ctime = CURRENT_TIME; 201 inode->i_mtime = CURRENT_TIME; 202 li->li_refcount = 1; 203 INIT_LIST_HEAD(&li->li_freeing_list); 204 205 for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) 206 li->li_data[i] = 0; 207 208 return; 209} 210 211static struct inode *logfs_alloc_inode(struct super_block *sb) 212{ 213 struct logfs_inode *li; 214 215 li = kmem_cache_alloc(logfs_inode_cache, GFP_NOFS); 216 if (!li) 217 return NULL; 218 logfs_init_inode(sb, &li->vfs_inode); 219 return &li->vfs_inode; 220} 221 222/* 223 * In logfs inodes are written to an inode file. The inode file, like any 224 * other file, is managed with a inode. The inode file's inode, aka master 225 * inode, requires special handling in several respects. First, it cannot be 226 * written to the inode file, so it is stored in the journal instead. 227 * 228 * Secondly, this inode cannot be written back and destroyed before all other 229 * inodes have been written. The ordering is important. Linux' VFS is happily 230 * unaware of the ordering constraint and would ordinarily destroy the master 231 * inode at umount time while other inodes are still in use and dirty. Not 232 * good. 233 * 234 * So logfs makes sure the master inode is not written until all other inodes 235 * have been destroyed. Sadly, this method has another side-effect. The VFS 236 * will notice one remaining inode and print a frightening warning message. 237 * Worse, it is impossible to judge whether such a warning was caused by the 238 * master inode or any other inodes have leaked as well. 239 * 240 * Our attempt of solving this is with logfs_new_meta_inode() below. Its 241 * purpose is to create a new inode that will not trigger the warning if such 242 * an inode is still in use. An ugly hack, no doubt. Suggections for 243 * improvement are welcome. 244 * 245 * AV: that's what ->put_super() is for... 246 */ 247struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino) 248{ 249 struct inode *inode; 250 251 inode = new_inode(sb); 252 if (!inode) 253 return ERR_PTR(-ENOMEM); 254 255 inode->i_mode = S_IFREG; 256 inode->i_ino = ino; 257 inode->i_data.a_ops = &logfs_reg_aops; 258 mapping_set_gfp_mask(&inode->i_data, GFP_NOFS); 259 260 return inode; 261} 262 263struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino) 264{ 265 struct inode *inode; 266 int err; 267 268 inode = logfs_new_meta_inode(sb, ino); 269 if (IS_ERR(inode)) 270 return inode; 271 272 err = logfs_read_inode(inode); 273 if (err) { 274 iput(inode); 275 return ERR_PTR(err); 276 } 277 logfs_inode_setops(inode); 278 return inode; 279} 280 281static int logfs_write_inode(struct inode *inode, struct writeback_control *wbc) 282{ 283 int ret; 284 long flags = WF_LOCK; 285 286 /* Can only happen if creat() failed. Safe to skip. */ 287 if (logfs_inode(inode)->li_flags & LOGFS_IF_STILLBORN) 288 return 0; 289 290 ret = __logfs_write_inode(inode, flags); 291 LOGFS_BUG_ON(ret, inode->i_sb); 292 return ret; 293} 294 295/* called with inode->i_lock held */ 296static int logfs_drop_inode(struct inode *inode) 297{ 298 struct logfs_super *super = logfs_super(inode->i_sb); 299 struct logfs_inode *li = logfs_inode(inode); 300 301 spin_lock(&logfs_inode_lock); 302 list_move(&li->li_freeing_list, &super->s_freeing_list); 303 spin_unlock(&logfs_inode_lock); 304 return generic_drop_inode(inode); 305} 306 307static void logfs_set_ino_generation(struct super_block *sb, 308 struct inode *inode) 309{ 310 struct logfs_super *super = logfs_super(sb); 311 u64 ino; 312 313 mutex_lock(&super->s_journal_mutex); 314 ino = logfs_seek_hole(super->s_master_inode, super->s_last_ino + 1); 315 super->s_last_ino = ino; 316 super->s_inos_till_wrap--; 317 if (super->s_inos_till_wrap < 0) { 318 super->s_last_ino = LOGFS_RESERVED_INOS; 319 super->s_generation++; 320 super->s_inos_till_wrap = INOS_PER_WRAP; 321 } 322 inode->i_ino = ino; 323 inode->i_generation = super->s_generation; 324 mutex_unlock(&super->s_journal_mutex); 325} 326 327struct inode *logfs_new_inode(struct inode *dir, int mode) 328{ 329 struct super_block *sb = dir->i_sb; 330 struct inode *inode; 331 332 inode = new_inode(sb); 333 if (!inode) 334 return ERR_PTR(-ENOMEM); 335 336 logfs_init_inode(sb, inode); 337 338 /* inherit parent flags */ 339 logfs_inode(inode)->li_flags |= 340 logfs_inode(dir)->li_flags & LOGFS_FL_INHERITED; 341 342 inode->i_mode = mode; 343 logfs_set_ino_generation(sb, inode); 344 345 inode_init_owner(inode, dir, mode); 346 logfs_inode_setops(inode); 347 insert_inode_hash(inode); 348 349 return inode; 350} 351 352static void logfs_init_once(void *_li) 353{ 354 struct logfs_inode *li = _li; 355 int i; 356 357 li->li_flags = 0; 358 li->li_used_bytes = 0; 359 li->li_refcount = 1; 360 for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) 361 li->li_data[i] = 0; 362 inode_init_once(&li->vfs_inode); 363} 364 365static int logfs_sync_fs(struct super_block *sb, int wait) 366{ 367 logfs_write_anchor(sb); 368 return 0; 369} 370 371static void logfs_put_super(struct super_block *sb) 372{ 373 struct logfs_super *super = logfs_super(sb); 374 /* kill the meta-inodes */ 375 iput(super->s_master_inode); 376 iput(super->s_segfile_inode); 377 iput(super->s_mapping_inode); 378} 379 380const struct super_operations logfs_super_operations = { 381 .alloc_inode = logfs_alloc_inode, 382 .destroy_inode = logfs_destroy_inode, 383 .evict_inode = logfs_evict_inode, 384 .drop_inode = logfs_drop_inode, 385 .put_super = logfs_put_super, 386 .write_inode = logfs_write_inode, 387 .statfs = logfs_statfs, 388 .sync_fs = logfs_sync_fs, 389}; 390 391int logfs_init_inode_cache(void) 392{ 393 logfs_inode_cache = kmem_cache_create("logfs_inode_cache", 394 sizeof(struct logfs_inode), 0, SLAB_RECLAIM_ACCOUNT, 395 logfs_init_once); 396 if (!logfs_inode_cache) 397 return -ENOMEM; 398 return 0; 399} 400 401void logfs_destroy_inode_cache(void) 402{ 403 kmem_cache_destroy(logfs_inode_cache); 404}